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Transition temperature for weakly interacting homogeneous Bose gases
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We apply the nonperturbative optimized lineaexpansion method to th@(N) scalar field model in three
dimensions to determine the transition temperature of a dilute homogeneous Bose gas. Our results show that
the shift of the transition temperatufeT ./ T, of the interacting model, compared with the ideal-gas transition
temperature, really behaves pan'® wherea is thes-wave scattering length andis the number density. For
N=2 our calculations yield the valug=3.059.
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I. INTRODUCTION must resort to nonperturbative methods. Recently various
nonperturbative methods have also been used to treat the
The experimental realization of the Bose-Einstein condenproblem of the transition temperature in an analytical way.
sation in dilute atomic gases has stimulated an enormousor example, the authors in Ref. 11 perform a self-consistent
number of theoretical studies in this figlidr recent reviews  calculation obtainingAT./T.=yan*?, with y=2.9. The
on the theory and experiments, see for instance, Refs. 1 aihnperturbative N method has been also used to determine
2). Most of this interest comes from the fact that in thesethe shift. Its leading-order contribution has been evaluated by
experiments a great deal of control can be achieved in almosgaym, Blaizot, and Zinn-Justih who obtainedAT,/T,
every parameter of the system. Thus, experiments in dilute_ yan3 with y=2.33 forN=2. Considering the next-to-
Bose gases provide a perfect ground to test numerous mOdEﬂe%ding—order term, Arnold and Tosi&'® determined a cor-

and |deasz such as, for e>_<amp|e, those .C?”?m"”'y used foction to this largeN expansion, obtaining a value for
qguantum field theory, applied to nonrelativistic systems. In T /T. that is ~ 26% smaller
rIclhlc .

particular, a theoretical study that has attracted some atte . .
tion very recently is the determination of the behavior of the The "?SUI.tS obtained by Bulsma and Stééqu? used
transition temperature in the presence of a repulsive intera(g_enormallzat!on—group techniques, ar,‘?' Baym;a.I. were
tion. This nontrivial problem has been treated by differentcOmpared with the temper%tsure transition Qata in the Vycor-
methods with different results. Taking a dilute Bose gas, 1€ System by Reppgt al.” Those experiments seem to
with a repulsive interaction characterized by the scatteringive & somewhat larger value for the constanis y~5.°
length parametea, the dependence aa for the difference  This value is close toy=4.66, which is the one obtained in
between the critical temperature shift with and without inter-Ref. 14. Nevertheless some authors argue that this system
action [ATC/TC:(TC_TS)/TC] is a highly controversial would not exactly correspond to a dilute Bose gas of hard
point, with respect to the functional dependenceaar even spheres?
regarding the sign. An early Hartree-Fock calculatinith a In this paper we apply the nonperturbative linéagxpan-
nondelta interaction gave a negative signAdr, . This same sion (or optimized perturbation theory (for earlier refer-
sign was also obtained by Toyddasing a one-loop renor- ences see, e.g., Refs. 1731 an effective model for dilute
malization group and obtaining a functional dependenca on homogeneous Bose gases. This approximation has been
as AT./T.=y(a%n)'%, wheren is the density. More re- shown to be a powerful nonperturbative method and suffi-
cently, Huang obtained the same dependence ¥, /T, ciently simple to use in very different applications, including
but with a positive constang. Griter, Ceperley, and Lalge  the study of nonperturbative high-temperature effects, as
Holzmann and Krauth,and Holzmann, Gher, and Lal68  shown very recently in the context of finite temperature
investigated the dependence &T. numerically using quantum field theorf as well as finite chemical potenti.
Monte Carlo methods. They obtained, in the low-densityThe method also introduces an arbitrary mass parameter that
limit, a dependence of the typeT,./T.=y(a’n)® but with  prevents infrared-divergence problems. Nonperturbative re-
different values fory. More recently the Monte Carlo tech- sults are generated when one optimizes the theory with re-
nigue has been again applied to this problem by Prokof'ewspect to this mass parameter.
and SvistunoVand Arnold and Mooré® These authors, who The paper is organized as follows. We present the method
obtained y=1.29+0.05 and y=1.32+0.02, respectively, in Sec. Il illustrating with an application to the pure anhar-
claim that their results are more accurate than those obtainedonic oscillator, which has many similarities with the model
in Refs. 6-8. used here to describe dilute Bose gases. The interpolated
The reason for the multitude of results and methods stemeersion of an effective model for weakly interacting homo-
from the fact that at the transition temperature ordinary pergeneous Bose gases is obtained in Sec. lll. Section IV is
turbation theory failgdue to infrared divergencesind we devoted to the perturbative evaluation of density-related

0163-1829/2001/64)/01451%7)/$20.00 64 014515-1 ©2001 The American Physical Society



CRUZ, PINTO, AND RAMOS PHYSICAL REVIEW B64 014515

guantities. In Sec. V we present our nonperturbative results S(k)=i(k*—Q?%+ie)*

for the critical temperature shift comparing with results

available in the literature. The conclusions are presented in i i
Sec. VI. Sl mirie| 1

-1
(—in?)|

k2—m?+ie
Il. THE LINEAR & EXPANSION (2.6

The optimized linea® expansionLDE) is an alternative
nonperturbative approximation that has been successfullipdicating that the term proportional t° ¢* contained inCq
used in a plethora of different problems in particle is entering the theory in a nonperturbative way. On the other
theory622-24 quantum mechanic€2>2® nuclear mattef/  hand, the piece proportional @7,?¢? is only being treated
and lattice field theof3} as well as for determining the equa- perturbatively as a quadratic vertésf weighti 57»?). Since
tion of state for the Ising modéf. One advantage of this only an infinite order calculation would be able to compen-
method is that the selection and evaluatiowluding renor-  sate for the infinite number of(i 7?) insertions contained
malization of Feynman diagrams are done exactly as in perin Eg. (2.6), one always ends up withza dependence in any
turbation theory using a very simple modified propagatorquantity calculated to finite order id. Then, at the end of
that depends on an arbitrary mass parameter. The results dke calculation one sets the dummy paramétey unity (the
optimized with respect to this parameter at the end of thevalue at which the original theory is retrieyednd fixesz
calculation. The standard application of the LDE to a theorywith the variational procedure known as the principle of
described by some Lagrangian dengitgtarts with an inter- minimal sensitivity® (PMS), which requires that a physical
polation defined by quantity P calculatedperturbativelyin powers ofé be evalu-
ated at the point where it is less sensitive to variations of the

arbitrary . That is, one optimizes the perturbative calcula-
Ls=(1=6)Lo(n)+6L=Lo(n)+ L~ Lo(7)], 21 tion by requiring
2.1

where Ly( ) is the Lagrangian density of a solvable theory
that can contain arbitrary mass parametgrsThe Lagrang- IP(7) -0 2.7
ian density L interpolates between the solvablg(7) an |, ' '
(when §=0) and the originalC (when §=1). To illustrate
how the method works let us consider the anharmonic oscil-
lator described by This procedure giveg as a function of the original param-
eters, including the couplings, and generates nonperturbative
results as shown in the numerous applications cited above.
As a warmup for our application to the Bose gas problem
we follow Bellet, Garcia, and Nevel, evaluating the
ground-state energy densityand the vacuum expectation
value( ¢?) for the anharmonic oscillator. Other applications
to this problem can be found in Refs. 18, 25, and 26.
By takingm=0 in Eg. (2.2) one obtains the Lagrangian

1 1 N
ﬁZE(ﬁo¢)2—§m2¢2—Z¢4- (2.2

Following the interpolation prescription given by E@.1)
one may choose

Lo(n)= 1((90(1,)2_ Em2¢2— 1 e, (2.3  density for the pure anharmonic oscillat®AO), which can-
2 2 2 not be treated by ordinary perturbation theory. The exact
obtaining result
1 1 N 1)
£§=§(ﬁo¢)2— EQZ¢>2— e AR 5772¢>2, (2.4 £ )\18 0420804 974 478 - (2.8

whereQ?=m?+ 52. The general way the method works be-
comes clear by looking at the Feynman rules generated b
Ls. First, the original¢* vertex has its original Feynman
rule —i6N modified to—i65\. This minor modification is
just a reminder that one is really expanding in orders of the
artificial parameters. Most importantly, let us look at the exact. s —1/3
modifications implied by the addition of the arbitrary qua- (9= 0.456119955748 -. (2.9
dratic part. The original bare propagator,

as been obtained by Bender, Olaussen, and \Wangile
anerjeeet al® have obtained the exact result fap?),

S(k)=i(kK2—mP+ie) (2.5 In quantum field theory, the ground-state energy density is
’ ' represented by vacuum-to-vacuum diagrams. The relevant
becomes contributions toO( %) are*
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—w2m) 2w 2w

Note that the second, fourth, and fifth contributions are duenate methods used to study the same quantity, like Hartree-
to the extra quadratic vertex, while all the others would alsd=ock or ordinary perturbation theory. This result also rein-
appear in an ordinary perturbative expansio(.?). Set-  forces the correctness of our procedure of optimizing the
ting m=0 (PAO), evaluating the integrals, and eliminating density in this particular application to Bose condensates.

the divergento(s°) term, one obtains Before applying thes expansion to the Bose-Einstein
condensation problem let us clarify a few points regarding
D () , 3\ 5 21\2 the method. First, one cou!d object to the fact tﬁf_:is for- _
EN(m =& () + & 6 ;0 12875 (210 mally treated as small during the actual calculation and fi-
7 7 nally set to unity at the end. However, we recall that the only
where role attributed to this dummy parameter is to label the orders

so that one can keep track of the extra diagrams that arise
1 from the quadratic verteXz?¢?.
ED(n)= Sgnto—. (2.12 Finally, one could ask how the LDE relates to other non-
167 perturbative analytical methods such as thi g&kpansion.

Good numerical results appear already at first order whergO see that, let us consider the_same model discussed above
or the case where the dynamical variables are a set of

the application of the PMS te€)(7) yields €M(7)  geqpar fields¢p?(a=1, ... N). Proceeding as before th
=\130.4290 atn=(\ 1.5)". To second order the authors expansion would give the following result férat O(s),
in Ref. 31 obtain€®(7)=\30.4210 and then carry on

improving this result to show convergence. The interested ) N(N+2) 3\

reader is referred to Ref. 31 for details concerning the opti- e =oNgn+té—7s— 1612 (2.14

mization proceduréselection of roots, ejc Other proofs of n

convergence are given in Refs. 25 and 26. The application of the PMS to this quantity gives
Bellet, Garcia, and Neveu also investigate the vacuum

expectation valué¢?) and we discuss their results here be- = (N+2) |3

cause this physical quantity is particularly important for our & (n)= 3 A 0.4290, (219

application to bosonic condensates. The perturbative expan-

sion for (#?) can be obtained in different ways using stan-at

dard quantum-field-theory methods. The authors in Ref. 31 -

prefer to do it from the perturbative expansion #” re- n=[1.5(N+2)\]*5. (2.1

calling that ) o ]
Higher-order contributions bring more factors Nf (more

P loops making the calculation meaninglesNfis very large.
<¢2>(5)=2—25(5>_ (2.13  However, this particular limit can also be properly handled
Q) by the LDE provided one defines=NN\ declaring that the

Going to second order i they optimize this quantity in two '2/9&N limit will be studied with fixedg.™ Usingg=NA in
different ways. First, by applying the PMS condition directly Ed- (2.16 one sees that, in the largédimit, » is of order
to (¢?)® they obtain($?)(P=\"130.455758. Next, they N°, in terms of which Eq.(2.14 gives that€™)(7) is of
use the optimum values obtained by extremizii§) and  orderN, exactly as the leading [¥/result, as one can easily
getting (¢?)(2=)\"130.454 246, showing that both ap- check.

proaches lead to results with the same order of accuracy. An important result, proven in the context of the effective

Still in the context of the anharmonic oscillator, Jones,potential*® shows that the LDE exactly reproduces latge-

Parkin, and Winder in Ref. 34 have shown that the lingar results in any order i¥ provided that one stays within the
expansion applied to the calculation of dynamical evolutionlargeN limit. Moreover, the LDE is sensitive to sma\-
of (#?), where the PMS is applied directly to this quantity, effects since these terms may appear in terms sucd¥( s
tracks the exact solution longer than any previous approxi-+2)\ in Eq. (2.14). In fact, Ref. 23 shows how sma\l-
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context of the B 1 dimensional Gross-Neveu model at finite S=

temperatures where the results nicely converge, order by or-

der, towards the exact result set by Landau’s theorem. whereg= (¢4, $,) is related to the original real components
The formal relationship in between the LDE andNlis of ¢ by ¢;=(mT)Y2¢; and ,=(mT)¥2¢,, while r andu

investigated in detail in Refs. 23 and 36. Here, we shallgre given by

concern ourselves with the finité-case only.

effects are effectively taken into account by the LDE in the 1 1 u
f d3x §|V¢|2+ §r¢2+ E((ﬁz)z : (3.9

r=-—2mu, u=48mramT. (3.6
IIl. THE INTERPOLATED MODEL FOR DILUTE By considering the usual interpolation prescription given by
HOMOGENEOUS BOSE GASES Eq. (2.1) we write
Let us start by considering the typical model that de-
y 9 yp S—S5= 85+ (1—8)Sy, (3.7

scribes a gas of interacting boson particles, described by a

complex scalar field with Lagrangian density given by \yheres, is quadratically(exactly solvablgin the fields.

One can choose

d 1
L=y*(x,1) ia‘f’ﬁvz>l//(X,t)+/.Ll/l*(X,t)l//(X,t) 1
So=5LIVel*+Re?, (3.8
1
- Ef X YOO P (R OV X)X DY (X, whereR=r + 77, obtaining

(3.2
85: j dSX
wherepu is the chemical potential. Let us take the interatomic

interaction potential as being the one for a hard-sphere gas,

with # being an arbitrary parameter with mass dimensions
47a that is fixed at a finite order i@ by the PMS condition, Eq.
V(Xx=x") === 8(x=x), (3.2 (2.7. Here we will optimize the physical quantity repre-
sented by ¢?), which, as we shall see, is directly related to
the critical temperature shii T, /T, . Let us first define the
density for the interacting case

1 1 1) ou
§|V¢|2+§R¢2— > 772¢2+—4! (¢2)2}.
(3.9

wherea is the swave scattering length.
We want to determine the deviation of the critical tem-
peratureT ., of the interacting model, in relation to the criti-

— 2
cal temperature for Bose-Einstein condensation for a free gas n=mT(¢%u. (310
To, given by the usual expression where, for theD(N) symmetric modek ¢?),, is expressed in
terms of the three-dimensional dressed Green's function
27 n 2B Gs(p) as
0= : (3.3
m \ £(3/2) N
($90=3 (=N [ P Gp. @11

wheren is the number density of the boson gas di(@/2) e $ihu= (2m)?3 ° P, :
=2.612.

As discussed in Refs. 12 and 13, close to the critical pointvhere
we can reduce Eq3.1) to an effective three-dimensional
model for the zero Matsubara frequency modi® static Gsp)=[p?+R—67%+24p)] 1, (3.12
modes of the fieldsy, given by the functional integration of

the nonzero modes, obtaining an effective action defined bnd = s(p) is the ¢ field renormalized self-energy that will
(B 1=T) e evaluated perturbatively in powers &f

At the critical temperature the original system must ex-
g hibit infinite correlation length, which means thatTgt and
f de A3X Lyl (X, 1), % (X, 7)] 6=1 (the original theory, G;*(0)=0. Then, one gets the
0 relation

HBJ dX L $(X), ¢* (X)], 3.4 r=-2,0), (3.13

which is just the form of the Hugenholtz-Pines theorem. We
where Lg,q is the Lagrangian density in Euclidean spacemust stress that the choid8.9) respects the Hugenholtz-
(7=it, as usualand with the effective action for the static Pines theorem at all orders ih
modes [d3xL.¢ being equivalent to a three-dimensional ~ Now, by using the relatiori3.13 in Eq. (3.11), one can
0(2) field theory, defined by the action write
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z_jdspN fl—”1+2|M+1+024
<¢ >u_ (271_)3 p2+ 7]2 pp2+ 7]2— an € n27] (€9) ( .5
(—672)+3 5(p)—3 50) -1 and its derivatives with respect g to determine Eq(4.4).
X| 1+ T . (3.19 The setting sun self-energy diagram, with zero external mo-
pet+ 7 mentum, is given bysee, for example, Ref. 37
IV. EVALUATION OF (¢?) TO O(6?) S A D)oo (N+2) u?6®
s p=0—"" " 1q
Expanding the above expression in powerssdb O(5), 18 (8m)?
one sees that the only contribution to the self-energy is a 1 M 2
momentum-independent tadpole diagram that is cancelled by X|—+4 In2—+2+4 Inz+0(e) |,
the condition orr. Then, to orders, we obtain € Y 3
4.6
d®p N 5n° . (40
<¢2>u=f 7 (4.7  from which one gets
(2m)® p*+9°|  p’t+7y
N
which is u independent and cannot furnish nonperturbativef ———52s40)
results. At next order in5 the only momentum-dependent 7p(P~+ 7°)
contribution to the self-energy comes from the two-loop set-
. . Lo . N(N+2) &%u?
ting sun diagram, which is of orde®. Then, we obtain __
9 (8m)3y
) d3p N 5772 527]4
<¢>U:f 3.2, 2 2, 2 2. 202 1 M 2
(2m)° p+ 7y p*+ 7 (p“+ 759 X Z+3Inﬂ +1+2In§+(9(e) . 4.7
_M ’ (4.2) The momentum-dependent setting sun contribution can be
p2+ 7? written as
where > (p) represents the setting sun contribution to the N(N+2)u26? d
self-energy, f—z =7 —I|, (4.8
S.(p)=— (N+2)u252j d*k d3q wheré’
) 18 (2m)® (2m)°
1
1 lbaSk:fzzzzzz 2, 2
X —. pka(p”+ 7)(k*+ ) (" + 77)[(P+q+k)*+ 7]
(+ 7°) (0 + 7)) [(p+a+K) >+ 7]
n |1 M
4.3 =— () Z+6In§7+8—4ln2+(9(e) . 4.9
a
Note that# acts naturally as an infrared cutoff so we do .
not have to worry about these type of divergences. The firsWe then obtain for Eq(4.8)
three terms in Eq(4.2) represent one-loop diagrams with
different powers ofé»? insertions. We regularize all dia- S.dp)
grams with dimensional regularization in arbitrary dimen-/p(p°+ 7°)
sionsd=3—2¢ and carry the renormalization with thdS -
scheme. So the momentum integrals are replaced by __N(N+2) &u
9 8m)3
f d3p J~ e¥eEM 2 EJ~ ddp . ( M) 7
— | = ,
2m?® Jp Am (2m)d X|5+31n 2—7])+1—2|n2+(9(e) . (4.10
whereM is an arbitrary mass scale ang¢=0.5772 is the
EuIer-Mas_che.roni constant. One then obtains(;ﬂ(néz) one- V. THE TEMPERATURE SHIFT IN THE OPTIMIZED
loop contributions LINEAR & EXPANSION
Ny 6Nz &Ny Using Eqs.(4.4), (4.7), and(4.10 in Eqg. (4.2), we deter-
“ i 57,8 1, T O, (4.4 mine(¢?), at orders®. Note that all divergences iacancel
and that at ordes?, (¢?),, is a finite quantity. One can now
where we have used the expression set5=1 and optimize( $?), with the PMS. After that one
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setsu=0 in the optimized ¢?),, obtaining the5 expansion should be neglected since there are one-loop diagrams of
result for the critical temperature sHift*® O(N). However, these terms are linear #fn as shown by
their contribution, Eq(4.4), and so the PMS does not give
any meaningful result in this limit for the present model as
To 5 2 opposed to the anharmonic oscillator case. The difference
3n [{(¢%)u=(d%ol. arises mainly because momentum-independent tadpole dia-
(5.2 grams of O(N) are now being subtracted due to the
Hugenholz-Pines theorem while the one-loop momentum-
independent diagrams survive. Then, the PMS generates
nontrivial results only by mixing diagrams that would belong
to different orders in a standard lareapplication. To have
a rough idea about what is being summed one can consider

AT, 2mT, ) 2m
T, e M7

where T, is given by Eq.(3.3). At this stage it should be
clear that it is preferable to optimizé4?), rather than
A{$?) because the latter quantity is legsdependent. One
then obtains

12 the second and fourth terms in Ed.2) together with their

6(N+2)uln= integrated forms. Then it is clear that, apart from a numerical
n=~+ —3 , (5.2 factor, the optimized;? given by Eq.(5.2 behaves as the
(36m)2 optimized 2 .(p) —2:4{0). One canthen see that, to this

order, the optimization dresses the simple propagapdr (
+ )71, present in Eq(4.2), with setting sun features giv-
12 ing nonperturbative results that are compatible with the ones
(5.3 obtained in the self-consistent summation of Ref. 11.

which leads to

($D),=7 6(N+2)In3

19242

In principle one could not single out one solution in favor of V1. CONCLUSIONS
the other and we must be careful in choosing thg appropriate \we conclude that our results for the critical temperature
one. Equation(5.3) implies that the optimized$“)o van-  jndeed reproduce the expected behavior obtained from other
ishes no matter which sign is chos_en. NOW?) represents gy dies, which iST.=To(1+ yan®). We obtain an analyti-
the density(divided by a factomT) in the absence of inter- 5| expression for the numerical coefficieptin terms of
actions, which turns out to be zero for the present effectivginite values ofN. Our final numerical results are similar to
theory.. However', this is of no concern here since one ishe ones obtained with the self-consistent summatiqre-
really interested in the differenc@?), —($?)o, represented  gicting that the numerical value of is greater than the ones
by AT.. Also, one knows that the density of the interacting predicted by the N expansion at leading ordérand next-
gas (#%),) should be smaller than that of the noninteractingtq_leading ordet All these analytical results, including
gas, which means that here one should h&é),<0, ours, have been compared with earlier and recent Monte
which is achieved by selecting the positive Using this in  Carlo results in Ref. 10. It should be clear that the present
Eq. (5.1, we then get our final result calculation has been carried out to an order where only one
two-loop diagram contributes and so the quality of the ap-
proximation is hard to be inferred from a quantitative point
ATCN 27 N 4 13 of view. In fact, the purpose of the present application was
T, W, 3 6(N+2)|”§ an™™. (54  justto introduce the method as a possible alternative to study
the condensation problem. Nevertheless, one should remark
SettingN=2 in the above expression yields that although carried out in a completely different fashion,
our simple application seems to capture much of the features
of the self-consistent calculation performed by Bagnall!
Te s Also, our work does not exhaust the different ways in
T, =3.05%n™". (5.5 which this method can be implemented within this particular
problem and the possibility of further improvements is still
Using the 1N expansion, Baym, Blaizot, and Zinn-Jusfin  wide open. This could be achieved by investigating alterna-
obtainedAT./T.=2.33an'? in the leading order while Ar- tive forms of implementing the method within this model,
nold and Tomaik*? obtainedAT./T.~1.71an'® consider- including an investigation of the best quantity to be opti-
ing the next to leading order in the same approximation. Oumized, and/or by pushing the calculation to higher orders. It
result is closer toAT,/T.=2.9an'® obtained in Ref. 11 is possible that with more refinements this method will gen-
with a method that sums setting sun contributions in a selferate even better numerical results with the advantage, as
consistent way. These analytical results, including ours, arshown in the paper, of being considerably simpler and easier
compared with the recent and earlier Monte Carlo estimateto use than all previous methods used to determine the be-
in Ref. 10. Finally let us remark that the result given by Eq.havior of T,.
(5.4) is valid only for finite N. This can be understood as  Due to its simplicity and easy implementation, we believe
follows. In a largeN study one would have to consideN  that the optimizedS expansion can also be useful in other
as fixed(meaning thati~N~1) and so, by takind\ large in  aspects of the theoretical study and understanding of the
Eq. (4.2, one sees that the setting sun diagram&0OR°) Bose condensation of dilute atomic gases, such as determin-

12
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