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Transition temperature for weakly interacting homogeneous Bose gases
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We apply the nonperturbative optimized lineard expansion method to theO(N) scalar field model in three
dimensions to determine the transition temperature of a dilute homogeneous Bose gas. Our results show that
the shift of the transition temperatureDTc /Tc of the interacting model, compared with the ideal-gas transition
temperature, really behaves asgan1/3 wherea is thes-wave scattering length andn is the number density. For
N52 our calculations yield the valueg53.059.
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I. INTRODUCTION

The experimental realization of the Bose-Einstein cond
sation in dilute atomic gases has stimulated an enorm
number of theoretical studies in this field~for recent reviews
on the theory and experiments, see for instance, Refs. 1
2!. Most of this interest comes from the fact that in the
experiments a great deal of control can be achieved in alm
every parameter of the system. Thus, experiments in di
Bose gases provide a perfect ground to test numerous mo
and ideas, such as, for example, those commonly use
quantum field theory, applied to nonrelativistic systems.
particular, a theoretical study that has attracted some a
tion very recently is the determination of the behavior of t
transition temperature in the presence of a repulsive inte
tion. This nontrivial problem has been treated by differe
methods with different results. Taking a dilute Bose g
with a repulsive interaction characterized by the scatter
length parametera, the dependence ona for the difference
between the critical temperature shift with and without int
action @DTc /Tc5(Tc2Tc

0)/Tc# is a highly controversial
point, with respect to the functional dependence ona or even
regarding the sign. An early Hartree-Fock calculation3 with a
nondelta interaction gave a negative sign forDTc . This same
sign was also obtained by Toyoda4 using a one-loop renor
malization group and obtaining a functional dependence oa
as DTc /Tc5g(a3n)1/6, where n is the density. More re-
cently, Huang5 obtained the same dependence forDTc /Tc ,
but with a positive constantg. Grüter, Ceperley, and Laloe¨,6

Holzmann and Krauth,7 and Holzmann, Gru¨ter, and Laloe¨8

investigated the dependence ofDTc numerically using
Monte Carlo methods. They obtained, in the low-dens
limit, a dependence of the typeDTc /Tc5g(a3n)1/3 but with
different values forg. More recently the Monte Carlo tech
nique has been again applied to this problem by Proko
and Svistunov9 and Arnold and Moore.10 These authors, who
obtained g51.2960.05 and g51.3260.02, respectively,
claim that their results are more accurate than those obta
in Refs. 6–8.

The reason for the multitude of results and methods st
from the fact that at the transition temperature ordinary p
turbation theory fails~due to infrared divergences! and we
0163-1829/2001/64~1!/014515~7!/$20.00 64 0145
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must resort to nonperturbative methods. Recently vari
nonperturbative methods have also been used to treat
problem of the transition temperature in an analytical w
For example, the authors in Ref. 11 perform a self-consis
calculation obtainingDTc /Tc5gan1/3, with g.2.9. The
nonperturbative 1/N method has been also used to determ
the shift. Its leading-order contribution has been evaluated
Baym, Blaizot, and Zinn-Justin12 who obtainedDTc /Tc

5gan1/3, with g.2.33 for N52. Considering the next-to
leading-order term, Arnold and Toma´sik13 determined a cor-
rection to this large-N expansion, obtaining a value fo
DTc /Tc that is;26% smaller.

The results obtained by Bijlsma and Stoof,14 who used
renormalization-group techniques, and Baymet al.11 were
compared with the temperature transition data in the Vyc
4He system by Reppyet al.15 Those experiments seem t
give a somewhat larger value for the constantg, asg;5.15

This value is close tog.4.66, which is the one obtained i
Ref. 14. Nevertheless some authors argue that this sys
would not exactly correspond to a dilute Bose gas of h
spheres.13

In this paper we apply the nonperturbative lineard expan-
sion ~or optimized perturbation theory!16 ~for earlier refer-
ences see, e.g., Refs. 17–19! to an effective model for dilute
homogeneous Bose gases. This approximation has b
shown to be a powerful nonperturbative method and su
ciently simple to use in very different applications, includin
the study of nonperturbative high-temperature effects,
shown very recently in the context of finite temperatu
quantum field theory20 as well as finite chemical potential.21

The method also introduces an arbitrary mass parameter
prevents infrared-divergence problems. Nonperturbative
sults are generated when one optimizes the theory with
spect to this mass parameter.

The paper is organized as follows. We present the met
in Sec. II illustrating with an application to the pure anha
monic oscillator, which has many similarities with the mod
used here to describe dilute Bose gases. The interpol
version of an effective model for weakly interacting hom
geneous Bose gases is obtained in Sec. III. Section IV
devoted to the perturbative evaluation of density-rela
©2001 The American Physical Society15-1
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quantities. In Sec. V we present our nonperturbative res
for the critical temperature shift comparing with resu
available in the literature. The conclusions are presente
Sec. VI.

II. THE LINEAR d EXPANSION

The optimized lineard expansion~LDE! is an alternative
nonperturbative approximation that has been success
used in a plethora of different problems in partic
theory,16,22–24 quantum mechanics,18,25,26 nuclear matter,27

and lattice field theory28 as well as for determining the equa
tion of state for the Ising model.29 One advantage of this
method is that the selection and evaluation~including renor-
malization! of Feynman diagrams are done exactly as in p
turbation theory using a very simple modified propaga
that depends on an arbitrary mass parameter. The result
optimized with respect to this parameter at the end of
calculation. The standard application of the LDE to a the
described by some Lagrangian densityL starts with an inter-
polation defined by

Ld5~12d!L0~h!1dL5L0~h!1d@L2L0~h!#,
~2.1!

whereL0(h) is the Lagrangian density of a solvable theo
that can contain arbitrary mass parametersh. The Lagrang-
ian density Ld interpolates between the solvableL0(h)
~when d50) and the originalL ~when d51). To illustrate
how the method works let us consider the anharmonic os
lator described by

L5
1

2
~]0f!22

1

2
m2f22

l

4
f4. ~2.2!

Following the interpolation prescription given by Eq.~2.1!
one may choose

L0~h!5
1

2
~]0f!22

1

2
m2f22

1

2
h2f2, ~2.3!

obtaining

Ld5
1

2
~]0f!22

1

2
V2f22d

l

4
f41

d

2
h2f2, ~2.4!

whereV25m21h2. The general way the method works b
comes clear by looking at the Feynman rules generated
Ld . First, the originalf4 vertex has its original Feynma
rule 2 i6l modified to2 i6dl. This minor modification is
just a reminder that one is really expanding in orders of
artificial parameterd. Most importantly, let us look at the
modifications implied by the addition of the arbitrary qu
dratic part. The original bare propagator,

S~k!5 i ~k22m21 i e!21, ~2.5!

becomes
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S~k!5 i ~k22V21 i e!21

5
i

k22m21 i e F12
i

k22m21 i e
~2 ih2!G21

,

~2.6!

indicating that the term proportional toh2f2 contained inL0
is entering the theory in a nonperturbative way. On the ot
hand, the piece proportional todh2f2 is only being treated
perturbatively as a quadratic vertex~of weight idh2). Since
only an infinite order calculation would be able to compe
sate for the infinite number of (2 ih2) insertions contained
in Eq. ~2.6!, one always ends up with ah dependence in any
quantity calculated to finite order ind. Then, at the end of
the calculation one sets the dummy parameterd to unity ~the
value at which the original theory is retrieved! and fixesh
with the variational procedure known as the principle
minimal sensitivity30 ~PMS!, which requires that a physica
quantityP calculatedperturbativelyin powers ofd be evalu-
ated at the point where it is less sensitive to variations of
arbitrary h. That is, one optimizes the perturbative calcu
tion by requiring

]P~h!

]h U
h̄

50. ~2.7!

This procedure givesh̄ as a function of the original param
eters, including the couplings, and generates nonperturba
results as shown in the numerous applications cited abo

As a warmup for our application to the Bose gas probl
we follow Bellet, Garcia, and Neveu,31 evaluating the
ground-state energy densityE and the vacuum expectatio
value^f2& for the anharmonic oscillator. Other application
to this problem can be found in Refs. 18, 25, and 26.

By taking m50 in Eq. ~2.2! one obtains the Lagrangia
density for the pure anharmonic oscillator~PAO!, which can-
not be treated by ordinary perturbation theory. The ex
result

E exact5l1/3 0.420 804 974 478••• ~2.8!

has been obtained by Bender, Olaussen, and Wang,32 while
Banerjeeet al.33 have obtained the exact result for^f2&,

^f2&exact5l21/3 0.456 119 955 748•••. ~2.9!

In quantum field theory, the ground-state energy density
represented by vacuum-to-vacuum diagrams. The rele
contributions toO(d2) are31
5-2
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E (2)~h!52
i

2E2`

1` dp

2p
ln@p22V2#2d

i

2E2`

1` dp

2p

h2

p22V2
2dl

3

4 S E
2`

1` dp

2p

1

p22V2D 2

1d2
i

4E2`

1` dp

2p F h2

p22V2G 2

1d2l
3

2E2`

1` dp

2p

1

p22V2E2`

1` dp

2p

h2

~p22V2!2
2d2l2

9

4 S E
2`

1` dp

2p

1

p22V2D 2E
2`

1` dp

2p

1

~p22V2!2

2d2l2
3

4E2`

1` dp

2pE2`

1` dq

2pE2`

1` dl

2p F 1

~p22V2!~q22V2!~ l 22V2!

1

~p1q1 l !22V2G1O~d3!. ~2.10!
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Note that the second, fourth, and fifth contributions are d
to the extra quadratic vertex, while all the others would a
appear in an ordinary perturbative expansion toO(l2). Set-
ting m50 ~PAO!, evaluating the integrals, and eliminatin
the divergentO(d0) term, one obtains

E (2)~h!5E (1)~h!1d2
3l

16h2
2d2

21l2

128h5
, ~2.11!

where

E (1)~h!5d
1

4
h1d

3l

16h2
. ~2.12!

Good numerical results appear already at first order wh
the application of the PMS toE (1)(h) yields E (1)(h̄)
5l1/30.4290 ath̄5(l 1.5)1/3. To second order the author
in Ref. 31 obtainE (2)(h̄)5l1/30.4210 and then carry on
improving this result to show convergence. The interes
reader is referred to Ref. 31 for details concerning the o
mization procedure~selection of roots, etc!. Other proofs of
convergence are given in Refs. 25 and 26.

Bellet, Garcia, and Neveu also investigate the vacu
expectation valuêf2& and we discuss their results here b
cause this physical quantity is particularly important for o
application to bosonic condensates. The perturbative ex
sion for ^f2& can be obtained in different ways using sta
dard quantum-field-theory methods. The authors in Ref.
prefer to do it from the perturbative expansion forE (d) re-
calling that

^f2& (d)52
]

]V2
E (d). ~2.13!

Going to second order ind they optimize this quantity in two
different ways. First, by applying the PMS condition direc
to ^f2& (2) they obtain^f2& (2)5l21/30.455 758. Next, they
use the optimum values obtained by extremizingE (2) and
getting ^f2& (2)5l21/30.454 246, showing that both ap
proaches lead to results with the same order of accuracy

Still in the context of the anharmonic oscillator, Jone
Parkin, and Winder in Ref. 34 have shown that the linead
expansion applied to the calculation of dynamical evolut
of ^f2&, where the PMS is applied directly to this quantit
tracks the exact solution longer than any previous appr
01451
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mate methods used to study the same quantity, like Hart
Fock or ordinary perturbation theory. This result also re
forces the correctness of our procedure of optimizing
density in this particular application to Bose condensates

Before applying thed expansion to the Bose-Einstei
condensation problem let us clarify a few points regard
the method. First, one could object to the fact thatd is for-
mally treated as small during the actual calculation and
nally set to unity at the end. However, we recall that the o
role attributed to this dummy parameter is to label the ord
so that one can keep track of the extra diagrams that a
from the quadratic vertexdh2f2.

Finally, one could ask how the LDE relates to other no
perturbative analytical methods such as the 1/N expansion.
To see that, let us consider the same model discussed a
for the case where the dynamical variables are a set oN
scalar fieldsfa(a51, . . . ,N). Proceeding as before thed
expansion would give the following result forE at O(d),

E (1)~h!5dN
1

4
h1d

N~N12!

3

3l

16h2
. ~2.14!

The application of the PMS to this quantity gives

E (1)~ h̄ !5F ~N12!

3
lG1/3

0.4290, ~2.15!

at

h̄5@1.5~N12!l#1/3. ~2.16!

Higher-order contributions bring more factors ofN ~more
loops! making the calculation meaningless ifN is very large.
However, this particular limit can also be properly handl
by the LDE provided one definesg5Nl declaring that the
large-N limit will be studied with fixedg.35 Usingg5Nl in
Eq. ~2.16! one sees that, in the large-N limit, h̄ is of order
N0, in terms of which Eq.~2.14! gives thatE (1)(h̄) is of
orderN, exactly as the leading 1/N result, as one can easil
check.

An important result, proven in the context of the effecti
potential,36 shows that the LDE exactly reproduces largeN
results in any order ind provided that one stays within th
large-N limit. Moreover, the LDE is sensitive to small-N
effects since these terms may appear in terms such asN(N
12)l in Eq. ~2.14!. In fact, Ref. 23 shows how small-N
5-3
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effects are effectively taken into account by the LDE in t
context of the 111 dimensional Gross-Neveu model at fini
temperatures where the results nicely converge, order by
der, towards the exact result set by Landau’s theorem.

The formal relationship in between the LDE and 1/N is
investigated in detail in Refs. 23 and 36. Here, we sh
concern ourselves with the finite-N case only.

III. THE INTERPOLATED MODEL FOR DILUTE
HOMOGENEOUS BOSE GASES

Let us start by considering the typical model that d
scribes a gas of interacting boson particles, described b
complex scalar fieldc with Lagrangian density given by

L5c* ~x,t !S i
d

dt
1

1

2m
¹2Dc~x,t !1mc* ~x,t !c~x,t !

2
1

2E d3x8c~x,t !c* ~x,t !V~x2x8!c~x8,t !c* ~x8,t !,

~3.1!

wherem is the chemical potential. Let us take the interatom
interaction potential as being the one for a hard-sphere g

V~x2x8!5
4pa

m
d~x2x8!, ~3.2!

wherea is thes-wave scattering length.
We want to determine the deviation of the critical tem

peratureTc , of the interacting model, in relation to the crit
cal temperature for Bose-Einstein condensation for a free
T0, given by the usual expression

T05
2p

m S n

z~3/2! D
2/3

, ~3.3!

wheren is the number density of the boson gas andz(3/2)
.2.612.

As discussed in Refs. 12 and 13, close to the critical po
we can reduce Eq.~3.1! to an effective three-dimensiona
model for the zero Matsubara frequency modes~the static
modes! of the fieldsc, given by the functional integration o
the nonzero modes, obtaining an effective action defined
(b215T)

E
0

b

dtE d3xLEucl@c~x,t!,c* ~x,t!#

→bE d3xLeff@c~x!,c* ~x!#, ~3.4!

where LEucl is the Lagrangian density in Euclidean spa
(t5 i t , as usual! and with the effective action for the stat
modes *d3xLeff being equivalent to a three-dimension
O(2) field theory, defined by the action
01451
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S5E d3xF1

2
u¹fu21

1

2
rf21

u

4!
~f2!2G , ~3.5!

wheref5(f1 ,f2) is related to the original real componen
of c by c15(mT)1/2f1 andc25(mT)1/2f2, while r andu
are given by

r 522mm, u548pamT. ~3.6!

By considering the usual interpolation prescription given
Eq. ~2.1! we write

S→Sd5dS1~12d!S0 , ~3.7!

whereS0 is quadratically~exactly solvable! in the fields.
One can choose

S05
1

2
@ u¹fu21Rf2#, ~3.8!

whereR5r 1h2, obtaining

Sd5E d3xF1

2
u¹fu21

1

2
Rf22

d

2
h2f21

du

4!
~f2!2G ,

~3.9!

with h being an arbitrary parameter with mass dimensio
that is fixed at a finite order ind by the PMS condition, Eq.
~2.7!. Here we will optimize the physical quantity repre
sented bŷ f2&, which, as we shall see, is directly related
the critical temperature shiftDTc /Tc . Let us first define the
density for the interacting case

n5mT^f2&u , ~3.10!

where, for theO(N) symmetric model,̂f2&u is expressed in
terms of the three-dimensional dressed Green’s func
Gd(p) as

^f2&u5(
i 51

N

^f i
2&u5NE d3p

~2p!3
Gd~p!, ~3.11!

where

Gd~p!5@p21R2dh21Sd~p!#21, ~3.12!

and Sd(p) is the f field renormalized self-energy that wi
be evaluated perturbatively in powers ofd.

At the critical temperature the original system must e
hibit infinite correlation length, which means that atTc and
d51 ~the original theory!, Gd

21(0)50. Then, one gets the
relation

r 52Sd~0!, ~3.13!

which is just the form of the Hugenholtz-Pines theorem. W
must stress that the choice~3.9! respects the Hugenholtz
Pines theorem at all orders ind.

Now, by using the relation~3.13! in Eq. ~3.11!, one can
write
5-4
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^f2&u5E d3p

~2p!3

N

p21h2

3F11
~2dh2!1Sd~p!2Sd~0!

p21h2 G21

. ~3.14!

IV. EVALUATION OF Šf2
‹ TO O„d2

…

Expanding the above expression in powers ofd to O(d),
one sees that the only contribution to the self-energy i
momentum-independent tadpole diagram that is cancelle
the condition onr. Then, to orderd, we obtain

^f2&u5E d3p

~2p!3

N

p21h2 F11
dh2

p21h2G , ~4.1!

which is u independent and cannot furnish nonperturbat
results. At next order ind the only momentum-dependen
contribution to the self-energy comes from the two-loop s
ting sun diagram, which is of orderd2. Then, we obtain

^f2&u5E d3p

~2p!3

N

p21h2 F11
dh2

p21h2
1

d2h4

~p21h2!2

2
Sss~p!2Sss~0!

p21h2 G , ~4.2!

whereSss(p) represents the setting sun contribution to t
self-energy,

Sss~p!52
~N12!u2d2

18 E d3k

~2p!3

d3q

~2p!3

3
1

~k21h2!~q21h2!@~p1q1k!21h2#
.

~4.3!

Note thath acts naturally as an infrared cutoff so we d
not have to worry about these type of divergences. The
three terms in Eq.~4.2! represent one-loop diagrams wi
different powers ofdh2 insertions. We regularize all dia
grams with dimensional regularization in arbitrary dime
sionsd5322e and carry the renormalization with theMS
scheme. So the momentum integrals are replaced by

E d3p

~2p!3
→E

p
[S egEM2

4p D eE ddp

~2p!d
,

whereM is an arbitrary mass scale andgE.0.5772 is the
Euler-Mascheroni constant. One then obtains theO(d2) one-
loop contributions

2
Nh

4p
1

d

2

Nh

4p
1

d2

8

Nh

4p
1O~e!, ~4.4!

where we have used the expression37
01451
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p

1

p21h2
52

h

4p F112eS ln
M

2h
11D1O~e2!G ~4.5!

and its derivatives with respect toh2 to determine Eq.~4.4!.
The setting sun self-energy diagram, with zero external m
mentum, is given by~see, for example, Ref. 37!

Sss~p!up5052
~N12!

18

u2d2

~8p!2

3F1

e
14 ln

M

2h
1214 ln

2

3
1O~e!G ,

~4.6!

from which one gets

E
p

N

~p21h2!2
Sss~0!

52
N~N12!

9

d2u2

~8p!3h

3F 1

2e
13 lnS M

2h D1112 ln
2

3
1O~e!G . ~4.7!

The momentum-dependent setting sun contribution can
written as

E
p

N

~p21h2!2
Sss~p!5

N~N12!u2d2

72

d

dh2
I , ~4.8!

where37

I bask5E
pkq

1

~p21h2!~k21h2!~q21h2!@~p1q1k!21h2#

52
h

~4p!3 F1

e
16 ln

M

2h
1824 ln 21O~e!G . ~4.9!

We then obtain for Eq.~4.8!

E
p

N

~p21h2!2
Sss~p!

52
N~N12!

9

d2u2

~8p!3h

3F 1

2e
13 lnS M

2h D1122 ln 21O~e!G . ~4.10!

V. THE TEMPERATURE SHIFT IN THE OPTIMIZED
LINEAR d EXPANSION

Using Eqs.~4.4!, ~4.7!, and~4.10! in Eq. ~4.2!, we deter-
mine ^f2&u at orderd2. Note that all divergences ine cancel
and that at orderd2, ^f2&u is a finite quantity. One can now
set d51 and optimizê f2&u with the PMS. After that one
5-5
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setsu50 in the optimized̂ f2&u, obtaining thed expansion
result for the critical temperature shift11–13

DTc

Tc
.2

2mT0

3n
D^f2&52

2mT0

3n
@^f2&u2^f2&0#,

~5.1!

whereT0 is given by Eq.~3.3!. At this stage it should be
clear that it is preferable to optimizêf2&u rather than
D^f2& because the latter quantity is lessh dependent. One
then obtains

h̄56F 6~N12!u2 ln
4

3

~36p!2
G 1/2

, ~5.2!

which leads to

^f2&u57
uN

192p2 F6~N12!ln
4

3G1/2

. ~5.3!

In principle one could not single out one solution in favor
the other and we must be careful in choosing the appropr
one. Equation~5.3! implies that the optimized̂f2&0 van-
ishes no matter which sign is chosen. Now^f2&0 represents
the density~divided by a factormT) in the absence of inter
actions, which turns out to be zero for the present effec
theory. However, this is of no concern here since one
really interested in the difference^f2&u2^f2&0, represented
by DTc . Also, one knows that the density of the interacti
gas (̂ f2&u) should be smaller than that of the noninteracti
gas, which means that here one should have^f2&u,0,
which is achieved by selecting the positiveh̄. Using this in
Eq. ~5.1!, we then get our final result

DTc

Tc
.

2p

z~3/2!4/3

N

3 F6~N12!ln
4

3G1/2

an1/3. ~5.4!

SettingN52 in the above expression yields

DTc

Tc
.3.059an1/3. ~5.5!

Using the 1/N expansion, Baym, Blaizot, and Zinn-Justin12

obtainedDTc /Tc.2.33an1/3 in the leading order while Ar-
nold and Toma´sik13 obtainedDTc /Tc;1.71an1/3 consider-
ing the next to leading order in the same approximation. O
result is closer toDTc /Tc.2.9an1/3 obtained in Ref. 11
with a method that sums setting sun contributions in a s
consistent way. These analytical results, including ours,
compared with the recent and earlier Monte Carlo estima
in Ref. 10. Finally let us remark that the result given by E
~5.4! is valid only for finite N. This can be understood a
follows. In a large-N study one would have to consideruN
as fixed~meaning thatu;N21) and so, by takingN large in
Eq. ~4.2!, one sees that the setting sun diagrams ofO(N0)
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should be neglected since there are one-loop diagram
O(N). However, these terms are linear inh as shown by
their contribution, Eq.~4.4!, and so the PMS does not giv
any meaningful result in this limit for the present model
opposed to the anharmonic oscillator case. The differe
arises mainly because momentum-independent tadpole
grams of O(N) are now being subtracted due to th
Hugenholz-Pines theorem while the one-loop momentu
independent diagrams survive. Then, the PMS gener
nontrivial results only by mixing diagrams that would belon
to different orders in a standard large-N application. To have
a rough idea about what is being summed one can cons
the second and fourth terms in Eq.~4.2! together with their
integrated forms. Then it is clear that, apart from a numer
factor, the optimizedh̄2 given by Eq.~5.2! behaves as the
optimized Sss(p)2Sss(0). One canthen see that, to this
order, the optimization dresses the simple propagatorp2

1h2)21, present in Eq.~4.2!, with setting sun features giv
ing nonperturbative results that are compatible with the o
obtained in the self-consistent summation of Ref. 11.

VI. CONCLUSIONS

We conclude that our results for the critical temperatu
indeed reproduce the expected behavior obtained from o
studies, which isTc.T0(11gan1/3). We obtain an analyti-
cal expression for the numerical coefficientg in terms of
finite values ofN. Our final numerical results are similar t
the ones obtained with the self-consistent summation,11 pre-
dicting that the numerical value ofg is greater than the one
predicted by the 1/N expansion at leading order12 and next-
to-leading order.13 All these analytical results, including
ours, have been compared with earlier and recent Mo
Carlo results in Ref. 10. It should be clear that the pres
calculation has been carried out to an order where only
two-loop diagram contributes and so the quality of the a
proximation is hard to be inferred from a quantitative po
of view. In fact, the purpose of the present application w
just to introduce the method as a possible alternative to st
the condensation problem. Nevertheless, one should rem
that although carried out in a completely different fashio
our simple application seems to capture much of the featu
of the self-consistent calculation performed by Baymet al.11

Also, our work does not exhaust the different ways
which this method can be implemented within this particu
problem and the possibility of further improvements is s
wide open. This could be achieved by investigating alter
tive forms of implementing the method within this mode
including an investigation of the best quantity to be op
mized, and/or by pushing the calculation to higher orders
is possible that with more refinements this method will ge
erate even better numerical results with the advantage
shown in the paper, of being considerably simpler and ea
to use than all previous methods used to determine the
havior of Tc .

Due to its simplicity and easy implementation, we belie
that the optimizedd expansion can also be useful in oth
aspects of the theoretical study and understanding of
Bose condensation of dilute atomic gases, such as deter
5-6
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ing the correct corrections to the energy spectrum or in
plications related to the recent studies of the dynamics of
Bose-Einstein condensate formation.38 The results of Ref. 34
are particularly motivating in the context of applying th
optimized lineard expansion also to dynamical problem
Finally, we point out that Bedingham and Evans39 have suc-
cessfully extended the present work to the ultrarelativis
case.
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6P. Grüter, D. Ceperley, and F. Lalo¨e, Phys. Rev. Lett.79, 3549

~1997!.
7M. Holzmann and W. Krauth, Phys. Rev. Lett.83, 2687~1999!.
8M. Holzmann, P. Gru¨ter, and F. Laloe¨, Eur. Phys. J.B 10, 739

~1999!.
9N. Prokof’ev and B. Svistunov, cond-mat/0103149~unpublished!.

10P. Arnold and G. Moore, cond-mat/0103228~unpublished!.
11G. Baym, J.-P. Blaizot, M. Holzmann, F. Lalo¨e, and D. Vauth-

erin, Phys. Rev. Lett.83, 1703~1999!.
12G. Baym, J.-P. Blaizot, and J. Zinn-Justin, Europhys. Lett.49,

150 ~2000!.
13P. Arnold and B. Toma´sik, Phys. Rev. A62, 063 604~2000!.
14M. Bijlsma and H. T. C. Stoof, Phys. Rev. A54, 5085~1996!.
15J. Reppy, B. Crooker, B. Hebral, A. Corwin, J. He, and G. Za

sanhaus, Phys. Rev. Lett.84, 2060~2000!.
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