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Disappearance of ensemble-averaged Josephson current
in dirty superconductor-normal-superconductor junctions of d-wave superconductors
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We discuss the Josephson current in superconductor/dirty normal conductor/superconductor junctions,
where the superconductors hasle:_,» pairing symmetry. The low-temperature behavior of the Josephson
current depends on the orientation angle between the crystalline axis and the normal of the junction interface.
We show that the ensemble-averaged Josephson current vanishes when the orientationddgiadsthe
normal conductor is in the diffusive transport regime. The ,.-wave pairing symmetry is responsible for this
fact.
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I. INTRODUCTION II. JOSEPHSON CURRENT FORMULA

In recent years, the Josephson effect between the aniso: Let us c_:onS|der the two-dimensional SNS Junct|o_n as
tropic superconductors has attracted much attention becauggown n [.:'g' L, Where th? Iehgth of the_normal T‘"e?a”ﬁ
the highT, superconductors might have tigz_ > pairing and the width of thfa junction |W. The pair po_tenual in the
symmetry*? In anisotropic superconductors, the sign of themomentum space is schematically depicted in the supercon-
pair potential depends on the direction of a quasiparticle’ uctors. In thejxg,yz-vx_/ave superco_nductor, tmax'.s points.
motion. As a consequence, the zero-energy StAFES) are in the _d|rect|on in which the amplitude of thg pair potential
formed at the normal-metal/superconductdlS) interface tﬁkes |ts. maximum. The ar?gle between thehrectlo?l aTdft
when the potential barrier at the interface is large enought € a axis IS a, (ag) in the superconductor_ on the left-
The ZES are sensitive to the orientation angle between thg'ght') hand side. We assume that th% effective naysof
crystalline axis of the high-, superconductors and the nor- &N €lectron and the Fermi energy{(=kg/2m) are common
mal of the junction interface. The zero-bias conductancd” the superconductors and the normal conductor, wkere
peak, which is due to the ZES, is observed in conductanct 1€ Fermi wave number. We describe the SNS junction by
spectra of N/id-wave superconductor junctions and the peakt!Sing the Bogoliubov-de Gennes equatfon
height is maximum when the orientation anglerig!.* Here S(r—r"Yhy(r") A(rr)
| is the insulator. In superconductor-insulator-superconductor j d ,[ 0 '
(SIS junctions, the ZES dominate the dc Josephson effect A*(r,r’) —o(r=r")ho(r’)
and the low-temperature anomaly in the Josephson current u(r)
has been discussed in a number of theoretical worksin :E{ }
experiments, it seems to be difficult to fabricate clean SIS v(r)]’
and superconductor-normal-supercondu€8MS junctions. )
Thus it is important to understand the effects of disorder on ho(r)= — ~— +U(r)— )
the Josephson current. So far it has been pointed out that the © 2m K
roughness at the interface suppresses the low-temperature
anomaly of the Josephson current in SIS junctiohs. i

In this paper, we study the dc Josephson effect in U(f)sz[5(X)+5(X—LN)]+Z v 8(r—ry), 3
superconductor/normal conductor/superconductor junctions, ot
where the superconductors have tg ,.-wave pairing where the first term in Eq3) is the barrier potential at the
symmetry and the normal metal is in the diffusive transportNS interface and the second term is the impurity potential in
regime. We analytically derive the Josephson current in dirtythe normal metal. The energy of a quasiparti is mea-
SNS junctions based on a formtian which the Josephson sured from the chemical potential of the junction. The pair
current is calculated from the two Andreev reflection potential can be described by the Fourier representation
coefficientst* We show that the ensemble-averaged Joseph-

u(r’)}
v(r’)

(€Y

N:

son current vanishes when the orientation angle/& The L
analytic results are confirmed by a numerical simulation by d-wave S d-wave 8
using the recursive Green-function methddThroughout acaxis
this paper we take units okg=%=1, wherekg is the Y O, ﬁlﬁ W
k X
Boltzmann constant. *
This paper is organized as follows. In Sec. Il, we derive x x=0 <=1

the general expression of the Josephson current in SNS junc-

tions. In Sec. Ill, we discuss the Josephson current in dirty FIG. 1. The SNS junction of thé-wave superconductor is il-
SNS junctions. The discussion is given in Sec. IV. We sumAustrated. The orientation angle in the léfight) superconductor is
marize this paper in Sec. V. a, (ag).
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wave number in the directionk, specifies the propagating

Sle)] N |s@) sl N ]S channel and the number of propagation channels for each
1 o the _h spin is N.=Wk:/. Thg coef_ficier_]ts al(lfy ,wn) and
s - rle e e re az(ky,_wn) are .the analytic con.tlnugtlonElen) of the
a ;- T a £ he e reflection coefficients of a quasiparticle from the left super-
SN

conductor to the left superconductor. The Andreev reflection
coefficient from the electrorihole) channels to the hole
(electron) channels is denoted ey (a,). In the presence of
S(eL) N | S(¢:) S(e.) N | S(#r) the time-reversal symmetry, the Josephson current can be
decomposed into the series of

el
rNN

J= E_l J.,sin(me), (10)

wherep= ¢, — . In this paper, we neglect the serieslgf
for m=2. This approximation is justified in the presence of

s@)] N [ S@) s@)] N [ 5@,) the high potential ba(rier at the NS interface. In Figa)2vye
show the four reflection processesafanda, that contrib-
_h ute toJ,;. In order to estimat&,; anda,, we calculate the
Fav — rellTT7 e transmission and the reflection coefficients of the single NS
e interface for fixedk, . The sixteen coefficients are obtained

b) from the continuity condition of the wave function at the NS
interface since there are four incoming and four outgoing
FIG. 2. The reflection coefficients ife) contribute to the Jo- ~channels for eack, . In Appendix A, we show eight trans-
sephson current proportional to st ¢g). The Josephson current Mission and_four reflect_lon coefficients, which are requw_ed
calculated from the four reflection coefficients( is summarized  in the following calculation. The Andreev reflection coeffi-

in a reflection process ith). cients in Fig. 2a) are estimated as
hh h
AR —r")= 1 ik(r=r") 4) a(ll)(ky,wn)=2 tSN(ky'aLv‘PL)tky,k;
(277)2 ky
where we assume that the pair potential is uniform in the XKy ar, o)ty | tRE(Ky g, e0),
superconductors and neglect the dependence oh R=(r v
+r’)/2. The swave superconductor is characterized by (11)
A(k)=Ae€'?. Thed,2_ 2-wave superconductor is character-
ized by agZ)(kvan):Z tg?\l(kyyaL ’(’DL)tEy,k)’/
A(k)=Ae'¥icog2a;—2y), (5) Yy
_ Xreh (K., ar, er)tlr o the(ky L, oL,
€Y= cosy+i siny= (ky+iky)/ke, 6) Ky am, @Rty i tnsthy e o)
whereA is the uniform amplitude of the pair potential, and (12)
¢; ande; with (j=L or R) are the phase of the pair poten-
tial and the orientation angle, respectivlt the Fermi a(gl)(ky,wn)=2 t2(Ky aL, et o

surface, the wave number in tlkairection isk, and the one

[3
in the y direction isk,. In the normal conductor, the pair g
potential is set to be zero. . . erN(ky,aR ep)t k, Ns(ky,a,_ o),
We calculate the Josephson current by using the Furusaki-
Tsukada formul&*? 13
Aflay(ky, o) A |as(ky, o) h
JZETE 2 | L| 1(+y . —| L| 2(_y . , (7) a(22)(kvan):2 th\l(kyva’Ly‘PL)tk K’
wn Ky QL QL k;’/ T
Aji=A COSZaJ-Iy), (8) XrNN(kyra’Rv(PR) kr NS(kyra’L e,
+_ [ 7 (14)
QO = o+ (A])?, 9) i
wherete( ) is the transmission coefficient of the electronlike

with j=L or R. Here T and w,=(2n+1)#T are the tem- Ky
perature and the Matsubara frequency, respectively. Th(sholehke) quaS|part|cIe in the normal conductor, ahpm-
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dicates the propagating channel at the right NS interface. The | %

.. . . . N r' ry.rr, b rr, n,%n.r
transmission coefficients in the normal metal are described =— _ 7 + 7 3 77 H 7 o 7 .
by 3 N NI NI
I‘_mnr' r’rr’ n’ rr’ n’ b’ r
€ ikp cosy’L w w
— —1 ! . . . .
tk)',’ky_wF cosye™ "FERY N o dy o dy FIG. 3. The propagation process in the diffusive normal conduc-

tor is diagrammatically illustrated. The cross represents the impu-

X G (LY 509X (Y )Xk V), (15 My scattering.

with
" =—iv cosy’e“‘FCOSV’LNJWdnydy’ h e e h
ky K, F o 2 Jo Tky k)=t ot =to, ot ., (23
Yy Ty y y' y Ty
XG_. (Ly,Y':0Y) xs (y"), 16 _
G o, (EnY 0D X (V)X (V) (16) cogyA K}
Q(ky,aj)=—""%—", (24)

wheregwn(r,r’) is the Green function of the normal conduc-
tor, v is the Fermi velocity, and(ky(y) is the wave function _ e L
in they direction belonging to the channel specifiedkyy*’ Bj=Z%(A AT +KIK]) +cosyA[ AT,

In this paper, we assume that the NS interface is sufficiently (29
clean so thak, is conserved while the transmission and the TR

reflection are at the interface. &' in Eq. (11), a quasipar- Ki=Qj —|w,, (26)

ticle wave is |n|t|aIIy incident into the normal part from the whereZ= me/kF represents the strength of the barrier po-
left superconductor through the channel specifieyAf-  tential. In what follows, we consider the high potential bar-
ter the Andreev reflection at the right NS interface, we asrier at the NS interfacé.e., Z>1). We note thaQ(k, , a;)
sume that the reflected wave transmits to the left supercons proportional to the Andreev reflection coefficient at the NS
ductor through the initial channel &, because of the retro interface. Equation€1) and(22) are the general expressions
property of a quasiparticle under the time-reversalof the Josephson current proportional to @irit is possible
symmetry:® The two Andreev reflection coefficients in Eq. to apply these expressions to various junctions if the trans-
(7) are given bya;=af"+af® anda,=af"+al?, respec- mission coefficients in the normal part can be calculated.
tively. By using the transmission and the reflection coeffi-

cients in Appendix A, the following equations can be de- IIl. DIRTY SNS JUNCTIONS

rived,

=i

When the normal conductor is in the diffusive transport

+ - . e(h) . . .
5 A A0 [AL] a(z)l 2 p an reg|me,tk;‘ky is almost independent of the propagating chan-

+ 1 — 2 1
ke | Q) Q ky k! nels,

- ky K, tethy, 2
A 18T ] Tkl )= {00 20
S St a-Claw -5 S P, (8 .
k| QF ! Qr 2 S 2 where (- --) means the ensemble average and is the
Y average over the propagation channels. The transmission co-
with efficients are approximately given by

P,=r8"(k,,a ¢ )th e (k! ar, er)ts, ., (19 Y w
A T A T (teth)=2—’\;f dyf dy'X(Ln.yi0y'), (28
c’0 0

h
Pa=ruikysat o0t TRk ar Rty i - (20

X(r,r’)E(an(r,r’)g,wn(r,r’)>. (29

In the diffusive regime, the functioX(r,r’) for small w,
satisfies the diffusion equation,

The Josephson current in E) can be written as

J=2ieTY, X, (P;—P,). (21)
oy ky 70(2|wn| ~DoVAX(r,r")~27Ngro8(r—1'),  (30)
Equation(21) corresponds to the reflection processes show

in Fig. 2(b). After a little algebra, we find the final expres-
sion of the Josephson current,

IthereDo, 79, and Ny are the diffusion constant, the mean
free time, and the density of states at the Fermi energy per
unit area for each spin degree of freedom, respectively. The
propagating process in the normal conductor is diagrammati-
J=desineTY, > Q(ky,a)Q(k],ar) Tk, k), cally illustrated in Fig. 3, where the cross represents the im-
“n Ky kj purity scattering. We solve Eq30) and show the results in
(220  Appendix B. The averaged transmission coefficients are
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T=u) (1)2 In a1 T/T T/T,
ttN = —]| ONnToo 31 00 01 02 03°04 00 01 02 03 04 05
Nc/ “Nsinhin 0.04 ———————————————————— 0.04
whereln=y2n+1Ly/ép, ép=\Do/27T is the coherence e=0 T =0 - 7 003
length, andGy=(2e?/h)gy is the conductance in the normal o | N“me“cal__ Analytical 1~
metal_. Th_e en_semble-averaged {Iosephson current in dirty @ o, [ O average | o average J 002
SNS junctions is calculated by using E482) and (31), { 1 ]
In = 001 (@ ™= 4 001
=eT2, N N —_— 2 1 g
(e am)=eT2 N(a)N(ar)On g (32 00 000
] o =mn/4
w2 coSyA[ K 002+ Numerical- 0.02
N(“i)EJ dy——="", (33 - ;
—mh2 =i 2 000 0.00
where we replace the summaticm<y by the integration |<:1° 1
(Ne/2) 2 dycosy. When the orientation angles are zero =002 ® ] 002
(|.e_., a g=0), th.e epsemble-averaged critical current in PO E T S S TR NP TP S B B WA
units of mAg/eR; is given by, 00 01 02 03 04 00 01 02 03 04 05
T/T, T/T,
— 9 A A In
(3(0,0)=—TX T SR (34) FIG. 4. The Josephson current in dirty SNS junctions is shown
25Aq & w2+ A2 sinhin _ .
n %n as a function of the temperatures. The numerical resultsxfgg
where the resistance of the junction is described by =0 andw/4 are plotted in(@) and (b), respectively. The lines are

the numerical results of several samples with different random con-

2e2 4 g - figurations and the open circles are the average over a number of
== —': , (35 samples. For comparison, we show the analytical resultsrfgg
h 9z =0 in (¢) and for /4 in (d).

andA, is the amplitude of the pair potential at=0. In the
case of theswave junctions, the numerical factg in Eq.  current. We conclude that the ZES do not contribute to the
(34) is replaced by 1 and the expression is identical to that overaged Josephson current in dirty SNS junctions of the
the Usadel equatiol?.In recent studiegRefs. 20 and 21, and d-wave superconductor.
references therejnit is pointed out that the results in Ref. 19 In Figs. 4a) and 4b), we show the numerical results of
are not correct in the low-temperature regime and the nonthe Josephson current gt==/2 by using the recursive
sinusoidal current-phase relation is observed. In these stugreen-function method on the two-dimensional tight-binding
ies, the electron transmission at the NS interface is perfeGhodel!® whereA,=0.01ug, Ly=1008,, W= 30a,, anda,
and the higher harmonics co_ntrlbute to the Josephson CU[s the |attice constant. The mean free path {s about 6.2,.
rent. Irj our rgsults, the amplitude of the Josephson.currenlthe numerical results fak, r=0 and/4 are shown in Fig.
tbaekce:u;tg é??ﬁ;mur? att_ng/Z_for ?I:hterﬂps)e_reltu;e regimes 4@ and 4b), respectively. The dependence &fon T is
= potentia’ barrier at tne = intertace. described by the BCS theory. The lines are the Josephson
When a| g= 7/4, we find thatN(#/4)=0, therefore, S .
: current for several samples with different random configura-
- tions and the open circles denote the ensemble average. In
(I(l4,ml4))=0. (36 Fig. 4(a), the resrzjlts for all samples increase with decreagsing
This is becauserR and g are even functions ofy,  temperature and the averaged Josephson current agrees with
whereasA; ;= —Asin2y is an odd function ofy in Eq.  the analytic results in Eq34) which are plotted in Fig. &),
(33). The symmetry of the pair potential is responsible forwhere a parametelty/ép|r-7 =7.6 is estimated from the
the disappearance of the ensemble-averaged Josephson aummerical simulation. In Fig. @), the averaged Josephson

rent. current is almost zero fow = m/4 as is predicted in Eq.
When the orientation angle i8/8, the averaged critical (36). This fact, however, does not mean the absence of the
current results in Josephson current in experiments for a single sample. The
sign of the Josephson current is either positive or negative
— 97? A A In depending on the random configuration ddfl of a single
<J(7T/8177/8)>:5_12A_0T§4 w2t A2/2 sinhin” (37 sample increases rapidly with decreasing temperature as
n n

shown in Fig. 4b). These results indicate the importance of
The condition for the ZESi.e., A" A; <0) is satisfied in the the mesoscopic fluctuations in the Josephson cuffeéntn
range ofm/8<|y|<3w/8 in Eq.(33). For the same reason as Eq. (27), we assume tha{7(k, ky)) is independent ok,
with the case ofy g= /4, the contribution from this range andk; . In other words, the transmission coefficients are iso-
becomes zero. In Eq37), the integration in the range of 0 tropic in the momentum space. In order to explain the nu-
<|y|<m/8 in Eq.(33) contributes to the averaged Josephsonmerical results in Fig. @), we have to consider a sample-

014511-4



DISAPPEARANCE OF ENSEMBLE-AVERAGED . .. PHYSICAL REVIEW B4 014511

specific anisotropy in the transmission coefficients. Here weosephson current are essentially the same as those in the

introduce the anisotropy in a simple function, swave junctions. On the other hand, the fluctuations for
e a g=m/4 in Fig. 4b) are mainly due to the ZES at the
Tky k) = (N L+ F18 1, Bk kg + F20k 1k, O~k ]y interfaces and strongly depend @rand T as shown in Eq.

(38 (40) and Fig. 4d). Though the average of the Josephson
wheref; andf, are positive numerical factors much smaller current is zero, the fluctuations me’R.: 77/.4 can'be_larger
than unity. In Eq.(38), we consider the situation where the than those fow r=0. Further theoretical investigations are
two elementsZ(k, ,k;) and 7(k,,—k,) are slightly larger Necessary to understand the amplitude of the fluctuations.
than the average. By using E@8), the Josephson current in The impurities in the normal metal may suppress the pair

a single sample withy, r= /4 results in potentials near the NS interfaces because the normal impuri-
’ ties break a Cooper pair in the anisotropic superconductors.

— A In The pair potential should be determined self-consistently in
I(mldml4)= A_OT%: m[le( v~ f2Y(72)], such situations. So far in SIS junctions, Tanaka and

(39) Kashiwaya&* calculated the Josephson current where the pair

potentials were determined in a self-consistent way and com-

3 A codysirt2y parec_i it with the Josep_hson current obtained in a non-self?
Y(y)=-— 5. (40) consistent manner. Their results show that there are no quali-
4 tative differences in the Josephson current between the two
methods. In their study, the pair breaker is the insulator. The

pair breaker in the present paper is the impurities in the nor-

The denominator of Eq40) approaches zero in the limit of mal metal. Though the origin of the pair break is different in

w,—0, andZ>1, which reflects the ZES at the NS inter- the two systems, the suppression of the pair potentials, and
face. In Fig. 4d), we plot the analytical results in E39)  therefore, the suppression of the Josephson current are con-
for several choices of,, f,, y1, andy,, wheref, andf, sidered to be the common consequence when we determine

are of the order of 10°. Some of the results show nonmono- the pair potential self-consistently. Thus it may be possible

tonic temperature dependence, and others change the sigm infer that the Josephson current in real SNS junctions
with decreasing temperature as shown in both Figs. @and  would be smaller than that of the present paper. The self-
(d). The analytical results explain the numerical results.consistent study has to be done to discuss the amplitude of
These results indicate the enhancement of the mesoscopite Josephson current quantitatively. However the main con-

A .
|own|+ Eco§y|sm 2y

fluctuations of the Josephson current in the limitTe£ 0. clusion in Eq.(36) is not sensitive to the profile of the pair
potential because treewave symmetry is responsible for the
IV. DISCUSSION disappearance of the averaged Josephson current. The impu-

rities may also modify the symmetry of the pair potentials. If

In Sec. Ill, we calculatd(k, k) by solving the diffusion  the finite values of the averaged Josephson current are ob-
equation, Eq(30). The conclusion in Eq:36) is independent  served in experiments, such results might be evidence for the
of the detail of the approximation. In the diffusive conduc- change of the pairing symmetry due to the impurities. This is
tors, (7(ky ,ky)) are independent df, andk, . The conclu-  because thel-wave component of the pair potentials does
sion in Eq.(36) always holds whe7(k, ,k;)) is isotropic in  not contribute to the averaged current te 7/4.
the momentum space because the integration with respect to The sign change of the pair potential on the Fermi sur-
v at the two NS interfaces can be carried out independentl§ace, which is a characteristic feature of the anisotropic su-
in Eq. (22). For this reason, we derive an equation for theperconductors, leads to the disappearance of the Josephson

dirty SNS junctions, current. Thus the conclusion in EB6) may be applied to
the SNS junctions of the superconductors wittvave pair-
(J(ay,ml4))=(I(ml4,ag))=0 (41)  ing symmetry such as URtfor certain orientation angles

between the junction interface normal and the node lines of
the pair potentials. An investigation in this direction is now

(I, ar))=I(a,,—ar)) in progress.

=(J(—a_,ar)=I(—a_,—ar)) (42

because the zero-energy states do not contribute to the en-
semble average of the Josephson current. In conclusion, we analytically derive the general expres-
In the swave SNS junctions, the amplitude of the fluc- sion of the Josephson current in SNS junctions ofctveave
tuations is 8J,=(eE./%)Cq, where E;.=AD/L% is the  superconductors. In dirty SNS junctions, we show that the
Thouless energy of the normal conductor @glis a con- ZES do not contribute to the ensemble-averaged Josephson
stant of the order of unity? The amplitude of the fluctua- current because of the symmetry of the pair potential. In
tions in the Josephson current fog k=0 at T=0 is ex-  particular, when the orientation angle of tbevave super-
pected to be proportional to the Thouless energy and dependsnductor iso= /4, the ensemble-averaged Josephson cur-
on the sample size since the characteristic features of thent vanishes. The critical current of a single sample, how-

for any oy andar. We also derive relations

V. CONCLUSION
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AF=AcosAyFaj),

U= (1+Q; T wy)/2,
vy =V(1-0] )2,

k. =Kkg cosy+iQ; /v cosy,

(A3)
(A4)
(A5)
(A6)

(A7)

wherej=L or R. The phase and the sign of the pair potential
FIG. 5. The transmission and the reflection coefficients at thds considered in the matrix

left NS interface. There are four incoming and outgoing channels.

ever, remains finite, which indicates an importance of the
mesoscopic fluctuations of the Josephson current.
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APPENDIX A: TRANSMISSION AND REFLECTION
COEFFICIENTS

We derive the transmission and reflection coefficients of
the NS interface at=0 as shown in Fig. 5. In what follows,
we calculate the coefficients after analytic continuati@n (
—iw,) for ,>0 and we assume tha&t<ug. In the nor-
mal metal, the wave function of the quasiparticle wih
=Kk siny can be described by

a ! e P X+ 0 elP-X4+ A ! giP+x
0 1 0
0 )
+B| e

WhereZandE(Kandg) are the amplitudes of the incoming
(outgoing waves in the electron and hole channels, respec-
tively. The wave function in the direction isxky(y), p-
=Kg coSy=*iw,/vg cosy, andve=kg/m is the Fermi veloc-
ity.

In the same way, the wave function in the superconductor
is given by

TR (xy)=

X, (V). (A1)

+

— uL . — UE e
y® | ek ob | e kX
v u,

T (xy)=
L

_ u
+CO | _
UL

N

Cikex o, et [ U] ikt x

e "X+DP | |, e+
ug

XX, (Y), (A2)

wherey and § (C andD) are the amplitudes of incoming
(outgoing waves in the electron and hole channels, respec-
tively. We define that
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3NN .
Wi (oY) =W (xGY)
x=0

o) =

giej+ 6,12 0 )

0 e e+ 932

T (0y) =3 (0y),

x=0

> |

res TS tee e [ e
B| [ rhe rin the || B
cl | e ore el
D the e reg Y \s

ACKSQF
t8%=—iM* % w_iefl(%)/zeum/zg
L
ACKS =
thh=—im %eﬂw;/aeu(wq
UL
+tre— Ot
the=—N ALK Q_Leiw;/z)efi(wua
+ )
ug wn

-
the = N_AL +KL ei(y/Dg=i(oL/2)
L
- -
ALKL Q_Leiw;/z)efim&),
v, @®n

thit=—iMm

(A8)

where eiE:sgn(Ai). The two wave functions satisfy the
continuity condition at the left NS interfadgée., x=0 and
The author is indebted to N. Tokuda, H. Akera, Y. @j=aL),

(A9)

+2me\iny(O,y).

(A10)

From Egs.(A9) and (A10), the amplitudes of the outgoing
waves are connected with those of the incoming waves.

(A11)

We explicitly show 10 coefficients that are required for cal-
culating the Josephson current,

(A12)

(A13)

(A14)

(A15)

(Al6)
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T N
188 =—iM* &eiw;/mefiwzy (A17) ﬁe‘”/ : (B2)
UL

U where/ =v g7y is the mean free path and=|r—r’|. In Eq.
ALK Q (B1), we replace this function by thé function in two di-

eh_ L oo, 2)gileL2)
tns=N U on et (A18)  mensions because the smallest length scale in the diffusion
- equation is”. The functionX(r,r’) is the Green function of
— the Schrdinger-type equation
N AKD  —
tsh=—N———e 1(4,/2gi(e/2), (A19) 5
u_ DoVef(r)=Nf(r). (B3)

(A20) The normal conductor is separated by the high potential bar-

he H —i
ryn=—1Q(—ky, e 'L, . ; . .
NN Ql—ky,ar) rier at the two NS interfaces and there is no current flow in

they direction. In such situations, we solve E&3) under

eh _ _ ip
run= —1Q(Ky, )€™, (A21) the boundary conditions,
cosy(cosy+iZ)
M= (A22) 91(r) -0 (B4)
=L X | '
x=0Ly
Z cosy
== (A23) af(r)
—L —_— :O. (BS)
<9y y=0W

Ei=Z%A/ A +K[ K )+cogyA[ A, (A24)
The functionX(r,r") is represented by

mV,
zzk—, (A25)  X(r,r")
F
F=07 o, (A26) =2mNo >, 2 ALBE,
m=0 m' =0
coSyA; K marx max’ m’ wy m’ y’
Qky, @)= ——z"—", (A27)
y & E, co ™ co Ly cos —\ /%08
codyA K 2| |+ Dol (Mar/Ly)2+(m' 7/ W)?] ’
Q=ky,aj)=———. (A28) (B6)
al
These coefficients are a functionkyf, @, ande, . On the ( 1
derivation, we use the approximatidk. =p. =Kkg cosy, o for m=0,
where we assume that,<ug . A — N (B7)
The reflection coefficients at the right NS interface are = ™ 2
obtained in the same way. The two Andreev coefficients are o for m#0,
given by ) N
rrl\]leN(kyiaR!(PR): _iQ(ky!aR)eii‘pR! (A29) i for m:O
W’ 1
ren(ky am, er) = —iQ(—ky,ar)e¥?.  (A30)  Bm=) (B8)
W for m=#0.
APPENDIX B: SOLUTION OF THE DIFFUSION )
EQUATION Next we calculate the function
In this paper, we consider the low-temperature regime w w
<T.~103-10“ur and the diffusive transport regime f dyf dy’ X(r,r")y=L. x'—o0
Uup7o~10"1—10"2. Thus a relation 2T7y<1 is satis- 0 0 N
fied. In these regimes, we solve the diffusion equation w1 In
=27NoTo— 57— — =, (B9)
To(2|l@p| ~DV2)X(r,1")~2mNgred(r—1'),  (B1) "Ly 2]wp| 7o sinhin

under the appropriate boundary conditidf® The right- whereln=2n+1Ly/&p and ép=+/Dy/27T is the coher-
hand side of Eq(B1) corresponds to the first term in Fig. 3, ence length. Finally the averaged transmission coefficients
which can be calculated to be are

014511-7



YASUHIRO ASANO PHYSICAL REVIEW B 64 014511

—— 12 In 1 a quasiparticle in the normal conductor is not sensitive to the
(tt >:(N_c INSinhin 2[an 7o’ (B10)  poundary condition at the NS interface aNg(t’t") is close

) ) ) to gy in the limit of w,—0, we regularize Eq(B10) by
wheregy=2mNoDoW/Ly is the dimensionless conductance jntroducing the cutoff,

of the normal metal for each spin degree of freedom. In Eq.
(B10), (t°t") seems to be singular in the limit af,—0. We _1)\2 In
note that the singularity is stemming from the boundary con- <teth>:(_> In———F(2|wn| 7o), (B12)
dition in Eq. (B4). When there is no potential barrier at the N sinhin
NS interface, we apply the boundary conditibﬁ)|X:O,LN
=0 instead of Eq(B4) and obtain

In 1 cosh2y2|w,m9)—1

2
N_C> INSinhin 2[w] 7 2

F(x)=®(1—x)+®(x—1)§, (B13)

where ©(x) is the step function. Sincét®t") decays as

(B1D) exp(—=+v2n+1Ly/ép), the contributions from smalh are
where the integration with respect yoandy' is carried out dominant in the summation with respectdg in Eg. (32).
atx=Ly+//y2 andx’=—//\2. Since the propagation of Thus in most cases;(2|w,| o) is unity.
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