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Fluctuating diamagnetism in underdoped high-temperature superconductors
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The fluctuation-induced diamagnetism of underdoped high-temperature superconductors is studied in the
framework of the Lawrence-Doniach model. By taking into account the fluctuations of the phase of the order
parameter only, the latter reduces to a layeredXY model describing a liquid of vortices that can be either
thermally excited or induced by the external magnetic field. The diamagnetic response is given by a current-
current correlation function that is evaluated using the Coulomb-gas analogy. Our results are then applied to
recent measurements of fluctuation diamagnetism in underdoped YBa2Cu3O6.67. They make possible the un-
derstanding of both the observed anomalous temperature dependence of the zero-field susceptibility and the
two distinct regimes appearing in the magnetic-field dependence of the magnetization.
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I. INTRODUCTION

Owing to their short coherence length, high-temperat
superconductors show marked deviations from the me
field behavior that describes rather well the behavior of c
ventional superconductors. The underdoped regime of
various cuprates is particularly interesting, given their p
nounced anisotropy and the low density of charge carriers
this region of the phase diagram, fluctuations are stron
enhanced and are manifest already well above the cri
temperatureTc . This fluctuation regime gives rise to variou
unusual phenomena,1 such as an anomalous temperature
pendence of the Knight shift, NMR relaxation rate and el
trical conductivity, an anomalous frequency dependence
infrared conductivity, as well as the formation of
pseudogap in the electronic density of states. Close toTc it
also allows to see true critical behavior in quantities such
the specific heat2 or thermal expansion.3

In the present work, we specifically address the tempe
ture and field dependence of the diamagnetic susceptibilix
of strongly anisotropic high-temperature superconduc
aboveTc . The influence of fluctuations onx has been stud
ied long ago in the framework of a Landau-Ginzburg mod
taking into account Gaussian fluctuations of the order par
eter above the critical temperature.4 More-refined calcula-
tions based on the Lawrence-Doniach model have taken
account the lattice structure.5 Recent measurements6 have
shown that the Gaussian approximation can indeed well
scribe the diamagnetic fluctuations in optimally dop
YBa2Cu3O7 ~YBCO!, whereas underdoped specimens of
same compound, such as YBa2Cu3O6.67, show dramatic de-
viations from this behavior. The fluctuation region where t
zero-field orbital susceptibility shows appreciable values
tends over a much larger temperature range than in the
mally doped system. Moreover, the field dependence of
magnetization shows a much more pronounced crossove
tween low and high fields than what would have been
pected from Gaussian fluctuations.

We base our calculations on an anisotropic Lawren
Doniach ~LD! functional, involving the superconductin
order-parameter fieldD in the presence of a vector potenti
0163-1829/2001/64~1!/014510~8!/$20.00 64 0145
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that describes a homogeneous magnetic field perpendic
to the lattice planes. Rather than considering Gaussian fl
tuations, we assume a ‘‘precursor regime’’ in which the a
plitude of D has already acquired a nonzero average va
whereas its phase is subject to strong fluctuations inhibi
long-range superconducting order. In this context the
functional reduces to an anisotropic layeredXY model. The
relevant thermal excitations of such a system are the ph
field singularities that manifest themselves as vortices
antivortices in two dimensions~2D! and as vortex loops in
3D. The applied magnetic field also acts on the phases
inducing vortex lines crossing the sample from one end
the other. The diamagnetic susceptibility, expressed in
usual way by a current-current correlation function, is th
related to the positional correlation function of the vorte
line elements, the static structure factorS(q). We model
S(q) in a simple way by using various known results o
tained either by analytic considerations based on
Coulomb-gas analogy or by Monte Carlo~MC! simulations
of the anisotropic 3DXY model. Then we arrive at explici
expressions for the zero-field susceptibilityx(T) and the
temperature and field-dependent magnetizationM (T,B).
They contain several material-dependent parameters tha
estimated by comparing with the experimental data on
derdoped YBaCuO from Ref. 6.

This procedure unravels three main features. First,
density of the vortex-line elements contributing to the d
magnetic response~those that are oriented inz direction, i.e.,
parallel to the applied field! is thermally activated with a
value of the activation energy that is compatible with wha
found in the above mentioned MC simulations. Second,
the temperature range covered by the experiments, the v
of the anisotropy shows that the positions of the vortex-l
elements fluctuate strongly from one layer to the other. T
points to a rather weak effective coupling between laye
which is compatible with the fact of being above the vort
melting and the ‘‘vortex decoupling’’ line. Finally the rathe
sharp crossover of the magnetizationM (T,B) as a function
of B points to a subtle interplay between thermally excit
vortex loops and field-induced vortex lines.

These observations allow for the following conclusions
©2001 The American Physical Society10-1
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ALAIN SEWER AND HANS BECK PHYSICAL REVIEW B64 014510
~i! The experiments in Ref. 6 can be much better
counted for by phase excitations than by Gaussian fluc
tions of the pairing field. This is particularly manifest in th
activatedT dependence of the susceptibility, but also in t
existence of two field regimes with quite different behavio
of the magnetization. In this context we have, however,
admit that the very sharp crossover between these two
gimes observed in the experiment may also be due to sam
inhomogeneities as it was suggested in the experime
papers.6

~ii ! Except for the data taken close to the zero-field criti
temperature, the diamagnetic response of the underdo
compound presented in Ref. 6 seems to be ‘‘precritical,’’
the sense that the relevant lengths in the lattice planes as
as in the perpendicular direction do not show any true crit
~i.e., singular! behavior~which would be supposed to belon
to the 3DXY universality class3!.

In Sec. II we develop the theoretical formalism that
lows to expressx(T) andM (T,B) in terms of the vortex-line
structure factor, and in Sec. III we compare our theoret
results with the data presented in Ref. 6 for underdo
YBCO, thereby extracting the free parameters from the
perimental curves. A summary is presented in Sec. IV.

II. DIAMAGNETIC RESPONSE

We discuss the orbital magnetic response of an un
doped superconductor in the London approximation to
LD model, i.e., in the framework of an 3D anisotropic la
eredXY model in which the phaseu of the superconducting
order parameterD is coupled to the vector potentialAi de-
scribing a homogeneous magnetic fieldB perpendicular to
the lattice planes~we restrict ourselves to temperatur
T.Tc where the Meissner effect is absent, identifying th
the external and the effective internal vector potential!,

H@u#5
1

2a2d
(

n
E d2r H Jia

2F“ iun2
2p

F0
AiG2

1J'@12cos~un2un11!#J . ~1!

Herea is the lattice constant in the planes whereasd denotes
the distance between two layers.Ji andJ' are the respective
phase couplings. Their ratio

g25
Ji

J'

.1 ~2!

determines the anisotropy of the system. TheXY Hamil-
tonian can be obtained starting from a LD functional for t
complex superconducting pairing fieldD by keeping the am-
plitude of the latter constant~London approximation!. This is
a current strategy7 based on the assumption that the vario
precursor phenomena, observed in underdoped cuprate
tweenTc and some higher temperatureT* and mentioned in
the Introduction, are essentially due to fluctuations of
phase ofD whereas its amplitudeuDu maintains a finite mean
value. Moreover, these materials exhibit a layered struc
that is specifically taken into account by the Lawrenc
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Doniach approach. Expression~1! is a partial continuum ver-
sion of the discrete-3DXY model, the Josephson couplin
12cos(ui2uj) between neighboring lattice sites in a give
layer having been replaced by the phase gradient.

The orbital magnetic responseL in a finite external field
is obtained by adding a small perturbation to the appl
vector potential

Ai→Ai1dAi ~3!

and by calculating the second derivative of the free ene
with respect to the perturbing fielddAi . The magnetic sus-
ceptibility x(T,B) is then given by

x5 lim
q→0

L~q!

q2
~4!

with

L~q!5
Ji

d S 2p

F0
D 2F Ji

kBT
C~q!21G . ~5!

The second term of Eq.~5! is the diamagnetic response
whereas the first term involves the current-current correla
function

C~q!5
1

L2 (
n,n8

E d2r d2r8 eiq•(r2r8)^ j x~r ! j x~r 8!&, ~6!

j x~r !5¹xun~r!2
2p

F0
Ai ,x~r !. ~7!

Here the coordinater means (r,nd) and the sample volume
is V5L2Nd whereN is the number of layers. In order t
have a finitex, the limit C(q→0) has to cancel the diamag
netic term. It will be shown below that this is indeed the ca
in our approach. We have chosen the gauge in which

Ai~r !5~2yB,0,0!. ~8!

Thus the relevant wave vectorq has only ay component
denoted simply byq.

In order to study the thermodynamic properties of the
anisotropicXY model, we first recall that the Berenzinski
Kosterlitz-Thouless transition occurring in the strictly 2
case is best described in terms of vortex and antivortex
citations. Although the 3DXY system shows a ‘‘normal’’
second-order transition, even when it is anisotropic, it h
been shown that it is also possible to understand the crit
behavior of such a system in terms of vortex excitatio
which—for topological reasons—now have to form clos
loops or continuous lines crossing the whole system.8 The
loops are the 3D extension of the planar vortex–antivor
structure whereas the lines arise from the presence o
external magnetic flux penetrating into the sample in
same way as in a type II superconductor belowTc . In the
following we will use this vortex picture of the 3DXY
model in order to calculate the phase correlation funct
C(q) that determines the diamagnetic response accordin
Eq. ~6!. Since vortex lines are either closed~forming a loop!
0-2
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FLUCTUATING DIAMAGNETISM IN UNDERDOPED . . . PHYSICAL REVIEW B64 014510
or extend continuously through the whole sample, we
characterize their structure by labeling each line by an in
s and by giving its positionR(s,n) in a given layern that
corresponds to the center of the corresponding ‘‘panc
vortex’’ ~see Fig. 1!. Thex component of the phase gradie
created by all the vortex lines is then given by the sa
expression used in magnetostatics in order to calculate
magnetic field of a system of current loops and lines,

¹xun~r!5d (
a,b,s,n8

«xabE d2r8
~r a2r a8 !Kb~s,r 8!

ur2r 8u3
. ~9!

Here«abg is the fully antisymmetric tensor of rank 3 an
the vector fieldK (s,r 8) is given by the line element ‘‘tan
gential’’ to the vortex-line numbers at point r 85(r8,n8d),

K ~s,r 8!5t~s,n8!d„r82R~s,n8!…ẑ, ~10!

ẑ being the unit vector in thez direction and the sum in Eq
~9! thus runs over all vortex line elementss and layersn. In
order to make connection with the~more simple! 2D case, it
is useful to attribute a topological numbert(s,n)561 to
each vertical-vortex line element. Its sign is chosen such
the productt(s,n) ẑ gives the oriented ‘‘tangential’’ vector o
the vortex line at that point@i.e., t511 (21), when the line
moves upward~downward! with respect to the lattice plan
n#. The current correlator~6! is then given by two contribu-
tions,

C~q!5
4p2

L2Nq2 FS~q!2S L2NB

F0
D 2

dq,0G . ~11!

The first term, stemming from the phase gradient in the c
rent density~7!, represents the structure factor of the vort
line elements oriented inz direction, given by

S~q!5 (
s,n,s8,n8

t~s,n!t~s8,n8!^exp$ iq•@R~s,n!2R~s8,n8!#%&.

~12!

FIG. 1. Schematic representation of a 3D thermally excited v
tex loop~left! and of a field-induced vortex line~right!. Since in the
Lawrence-Doniach approach the phase field is defined only for
crete values of thez coordinate (z5nd), one often refers to thes
structures as ‘‘stacks of pancake vortices.’’ The latter are re
sented by the gray ellipses whereas the lines linking them are
just guides to the eye.
01451
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The other term in Eq.~11! comes from the second~diamag-
netic! contribution to the current~7! and represents the tota
flux going through the system due to the applied field~cross
correlations between¹xu and Ai ,x are supposed to vanis
due to the disordered structure of the vortex system ab
the melting temperature!. In the Appendix we show that the
singular zero-wave vector value of the correlation functi
S(q) compensates the second contribution to Eq.~11! so that
the limit C(q→0) is well behaved. The main problem left
thus to find a suitable form for the regular part of the cor
lation functionS(q).

First, we recall that we are interested in the fluctuatio
induced diamagnetism above the zero-field transition te
peratureTc , a range in which recent experiments have be
carried out.6 For a finite field one has thus to deal with
region in theT-B phase diagram lying beyond the differe
possible transition lines that are discussed in the literat
such as the vortex-melting line and the vortex-decoupl
line.10,11 Our structure factorS(q) thus has to describe
disordered vortex-liquid system in which strong
‘‘wrinkled’’ vortex lines and loops9,11go through the sample
We use the following reasoning for obtaining an appro
mate form of the regular contribution toS(q).

~i! In the extreme limit of totally decoupled layers, ea
plane would have to be described by a 2DXY model above
the critical temperature, which is frustrated when an exter
magnetic field is applied. Its vortex structure would be t
one of a neutral Coulomb gas, more precisely of a mixture
a neutral two-component Coulomb gas~given by an equal
number of thermal vortices and antivortices! and of a one-
component gas~the field-induced vortices! in a neutralizing
background~given by the external flux!. In the purely 2D
case, the nontrivial part of Eq.~12! thus reduces to

S2D~q!5N(
s,s8

t~s,0!t~s8,0!^exp$ iq•@R~s,0!2R~s8,0!#%&

5NL2nVSC~q!. ~13!

Here we represented the positional structure factor invo
ing a sum over all vortex and antivortex positions by t
Coulomb-gas structure factorSC(q). We use the following
approximate form12

SC~q!5
q2

q212pnVqV
2/kBT

, ~14!

wherenV is the areal vortex density and the ‘‘charge’’qV of
each vortex is related to the in-plane phase couplingJi by13

qV
252pJi . ~15!

The expression~14! yields the correct limiting behavior o
SC(q) for q→0 and should be valid for temperatures not t
close toTc . Inserting expression~14! into Eq. ~11! gives a
similar form of the current-current correlation functionC(q)
as used by Kwon and Dorsey.14

~ii ! For a strong anisotropy and for the considered te
perature range the effective interlayer coupling will be ve
weak. For evaluating expression~12!, we split the double
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ALAIN SEWER AND HANS BECK PHYSICAL REVIEW B64 014510
sum overn andn8 into two parts. In the first part, we taken
equal ton8 that yields a 2D-problem analogous to the o
treated above. The corresponding contribution to Eq.~12! is
therefore similar to the structure factor of point vortices in
singleXY plane,

S1~q!5NL2nVSC~q!, ~16!

where nV is now the areal density ofvertical vortex-line
elements. The second partS2(q) of the double sum in Eq
~12! containsn and n8 involving different layers. Here we
use the fact that in the considered temperature range,
vortex loops and also the field-induced lines have a v
irregular shape. Indeed, the region in theT-B plane we are
interested in lies above any lattice layer decoupling line10

This fact is formulated in Ref. 7, by indicating aT domain

uT2Tcu
Tc

.g1/n, ~17!

with anXY exponentn'0.6, for which the lattice planes ar
practically decoupled. Therefore only those ones that
close enough to another~in a sense to be specified below! are
correlated and will contribute toS2(q). We first expand for-
mally in expression~12! the positionR(s8,n8) of a vortex
line s8 in layer n8 with respect to its value in layern. This
gives

S2~q!5 (
s,s8,n,n8Þn

t~s,n!t~s8,n8!^exp$ iq•@R~s,n!

2R~s8,n!#%exp$2 iq•u(s8,n2n8)%&. ~18!

Then we split the average bracket of Eq.~18! and factor
out from the sum overn8 the first exponential that pertains t
a given layern as well as the topological numberst(s8,n8)
that are equal tot(s8,n) for neighboring layersn and n8.
This yields the previous result~16!. We are then left with
correlations between the positionsR of a single vortex line
s8 in layer n8 and in layernÞn8. Assuming that such cor
relations are the same for all vortex liness8 and extend only
over a distancej35n3d, we obtain

S2~q!52 S1~q! (
n51

n3

^e2 iq•u(n)&[2 S1~q!X~q!. ~19!

Hereu(n) is the deviation of a given line or loop from
straight line along thez direction. The factor 2 comes from
the fact that the sums overn,n8 and n.n8 have been re-
duced to one such sum in Eq.~19!. Assuming that the vortex
lines behave like harmonic strings with an effective stiffne
given approximately byl' J' /d5 Ji /dg2, one finds

X~q!' (
n51

n3

expF2
1

2
q2^u2~n!&G

5
12exp~2kBTn3d q2/4l!

exp~kBTd q2/4l!21
. ~20!
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Here we used the relation̂u2(n)&5 1
2 (kBT/l)nd applying

for harmonic deformations and yielding a geometric seri
The final result for the regular part ofC(q) in Eq. ~11! then
takes the form

C~q!5
4p2

q2
nVSC~q!@112X~q!#. ~21!

In order to evaluatex according to Eq.~4!, we have to
expandC in powers ofq. First, the above-mentioned cance
lation of C(q50) in Eq. ~5! with the ~first! diamagnetic
contribution is fulfilled, provided that the effective charge
the Coulomb-gas structure factor is chosen to be

qV
252pJi~112n3!, ~22!

which is a reasonable generalization of the purely 2D re
~15!, taking into account the fact that the ‘‘charges’’ are no
vortex lines elements correlated over a distance;n3d along
the z direction. The cancellation of theq50 term in Eq.~5!
makes the limit~4! finite and guarantees that the phase s
tem of the superconductor has no stiffness above the cri
temperature by making the limit~4! finite. Evaluating the
latter leads directly to the final result for the bulk suscep
bility x ~per unit volume! that reads

x52
1

~112n3!d

kBT

F0
2 F 1

nV
1~pg!2n3~11n3!d2G .

~23!

Expression~23! will be used in the following section for
interpreting the experimental data~low-field susceptibility
and field dependence of the magnetization! obtained on un-
derdoped YBCO.6

III. ANALYSIS OF EXPERIMENTAL MAGNETIZATION
AND SUSCEPTIBILITY DATA

In order to apply our theoretical results to underdop
YBCO, we use the following~approximate! values for the
lattice parameters :a54 Å and d512 Å. Moreover, the
molar quantities like those reported in Ref. 6 are obtained
multiplying expression~23! by the molar volumeVM
5N Aa2d5115 cm3 and by a reduction factorl that ac-
counts for the fact that in the materials we are interested
only a fraction of the unit-cell volume actually carries th
current densities and thus contributes to the diamagnetic
sponse.

A. Low-field susceptibility

The susceptibility data of Ref. 6, for a very low applie
field of 0.02 T, cover the range fromT563 K, which is just
above the zero-field transition temperature, toT5110 K.
Above T580 K the diamagnetic susceptibilityx is essen-
tially equal to zero, a background consisting of spin susc
tibility and free-electron orbital diamagnetism having be
subtracted. For zero applied field, our expression~23! for x
contains several yet-undetermined parameters: the areal
sity nV of vertical vortex line elements that are therma
0-4
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FLUCTUATING DIAMAGNETISM IN UNDERDOPED . . . PHYSICAL REVIEW B64 014510
excited, the correlation lengthn3d, and the anisotropyg. We
mention that the subsequent analysis of the temperature
field-dependent magnetization will show that the seco
term of Eq. ~23! is irrelevant at low fields. Therefore th
value of g is unimportant and the dominant contribution
x(T,B→0) is given by in-plane correlations of the therma
vortex loop elements. Figure 2, in which the data of Ref
are reproduced with our expression~23!, shows that the ob-
served zero-field diamagnetic susceptibility is almost p
fectly fitted by

x~T,B50!5C expS E0

kBTD , ~24!

with E0 /kBTc'22. This means that the quantitynV must be
temperature dependent and obey a thermally activated
havior

nV5n0 expS 2
E0

kBTD , ~25!

with the factorn0;104/a2. The number of vortex excitation
in the XY model is indeed known to show an activatedT
dependence. In 2D this has recently been confirmed17 and
various authors find the same result in 3D18–20using numeri-
cal studies. In the first case the activation energy is roug
given byE0;10 kBTc .17 Simulations for the anisotropic 3D
case yield values that are somewhat larger18 and that depend
on the structure of the corresponding loop,19–25getting larger
the more planes are crossed. In a strongly anisotropic 3DXY
system, most of the thermal loops existing up to the criti
temperature consist of elements parallel to the lat
planes.8,20,22,24,25Loop segments perpendicular to the plan
only begin to be formed aboveTc . Thus the activated form
attributed to the vortex-line densitynV in Eq. ~25! can be
seen as a measure for the rapidly increasing number of lo
crossing two planes or even more. Such loops contain at l
two line segments perpendicular to the planes, the rest b
between two planes. This 3D structure may explain the r
tively large value of the activation energyE0 found above.
The latter is also compatible with an explicit expression
the loop self-energy proposed in Ref. 7 assuming that
total length of the loop segments oriented inz direction is on
the order of two interplanar distances, the rest of the lo
being oriented parallel to the lattice planes. The value ofE0
further suggests that the quantityn3d measuring the exten

FIG. 2. Zero-field susceptibilityx(T,B50) : the triangles (m)
are the experimental data from Ref. 6 and the full line is the bes
of the theoretical expression~23! assuming the activated behavio
~25!.
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sion of the correlations of the vortex structure along thez
direction must be of the order of a few lattice distanced ~we
will take n352 in the following!. This provides ana poste-
riori justification for the assumptions we made when der
ing Eq. ~21!. Finally we note that the fact that the diama
netic response is associated with loops containing
elements parallel to thez direction directly follows from the
magnetostatics: the vertical loop elements are generate
currents flowing perpendicular to the external fieldB and
thus responding the most sensitively to the latter.

We can now estimate roughly the value of the density
the vortices contributing to the diamagnetic response in
temperature range of interest. Using the above values oE0
andn0 and taking into account a reduction factor of 0.15~see
below!, we getnV;102 mm22 for T565 K. This relatively
small value will be discussed in the next section but
should not forget the fact that it concerns only the part of
total number of vortices that contains elements perpendic
to the layers. We also remark thatAnV

21@a, which fully
justifies the continuous approach in the lattice planes use
the LD action~1!.

B. Field dependence of the magnetization

Here we have to deal with coexisting thermal loops a
field-induced vortex lines. The magnetic-field dependence
expression~23! for x is hidden in the densitynV and, possi-
bly, in n3d, the interplanar correlation length. The mo
simple approach to deal with this situation consists in sp
ting nV into a thermal and a field-induced part as follows

nV5nV
th1nV

f [nV
th@11z~T,B!#. ~26!

This gives naturally rise to the dimensionless variable

z5
nV

f

nV
th

5
B

F0nV
th

, ~27!

quantifying the relative importance of the two types of vo
tex elements. Assuming thatn3 does not depend onB, one
can integratex(T,B) in order to obtain the magnetization pe
unit volume,

M ~T,B!52
1

~112n3!d

kBT

F0
2 @F0 ln$11z~T,B!%

1~pg!2n3~11n3!d2B#. ~28!

The corresponding molar quantity is multiplied by the a
ditional prefactorlVM already mentioned at the beginnin
of this section.M depends on temperature throughnV

th and,
possibly, throughn3. The first contribution to Eq.~28!, given
by ln(11z), has two different limiting behaviors. For low
fields ln(11z);z and M is essentially given byx(T,B
50)B, whereas for high fields the first part ofM varies like
ln(z). The crossover between the two regimes takes place
z;1 that describes the situation where the quantities of th
mally excited and field-induced vortex-line elements a
similar to one another. Thus the corresponding field va
depends crucially on the thermal vortex element densitynV

th

t

0-5



m

so

en
s
el
s

th
n
le

.

d

th
ca
-
fie
e

th
n
C

ne
rn

t-
e
ob
u

s
ps
e

lai
5

e
lly
ing
os-
ce
ex

ed
han

of
ust

of
s of

very

e-

all

at,
is
lat-
tic
di-

that

be
be-
eat-
x-

n-
pre-
so
tion

e

ly
ry

een
and

ALAIN SEWER AND HANS BECK PHYSICAL REVIEW B64 014510
showing up in the dimensionless variablez defined in Eq.
~27!. Using the values obtained in Sec. III A for the para
etersn0 and E0 enteringnV

th , and choosingl such that the
theoretical curves and the experimental data match rea
ably, we find thatz;1 corresponds to a fieldBc;0.025 T.
This is shown on Fig. 3 where we note that the experim
tally observed behavior shows indeed a crossover at field
the order of 0.05 T. Therefore our theoretical crossover fi
Bc is a bit too small. However the two different regime
observed experimentally can be clearly interpreted in
framework of our theory: they describe the two situatio
where the diamagnetic response is essentially due to so
one type of vortex-line elements~thermal for smallB and
field induced for largeB). This is already gratifying for a
first approach. For larger fields the term ln(z) would yield a
magnetization that increases more slowly withB than the
measured data, which rather show a linearB dependence
This is reproduced by the second part of Eq.~28! that, in our
procedure, arises from the vortex correlations between
ferent layers and becomes relevant for large values ofB.

These considerations are illustrated on Fig. 3 where
data from Ref. 6 are shown together with the theoreti
curves given by Eq.~28!. Although the quantitative agree
ment is less spectacular than in the case of the zero-
susceptibility, it still allows to extract the values of th
‘‘magnetically active volume fraction’’l ~from the smallB
region! and of the anisotropy parameterg ~from the largeB
region!. For the four temperatures of interest we find that
choicel;0.15 is the most satisfying. This is quite reaso
able for a layered compound such as underdoped YB
where superconductivity occurs only in copper oxide pla
that represent only a small fraction of the unit cell. Conce
ing the anisotropyg, we find a value;2. Its order of mag-
nitude is correct since, by multiplying it by the lattice aniso
ropy d/a;3, we obtain a value of 6 for the effectiv
anisotropy. The latter is somewhat lower than what is
served in penetration-depth measurements where it is fo
to be of the order of 25 atTc .16 However, we recall thatg
entered our theory through the vortex line effective stiffne
in Eq. ~20!. This rather rough description of the vortex loo
interlayer correlations and the assumption we made by ke
ing n3 independent of the temperature may possibly exp
the fact that the observed value is a bit different from 2
Using the values ofl and g discussed above, it is now

FIG. 3. MagnetizationM (T5const,B): the full lines corre-
spond to the theoretical expression~28! with the values of the pa-
rameters mentioned in the text and the triangles (m) in the inset are
the experimental data from Ref. 6.
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possible to show that the second term in our expressions~23!
and ~28! is irrelevant for the low-field behavior, as we hav
anticipated when fitting the zero-field susceptibility. Fina
we note that the picture of the vortex structure emerg
from the above analysis that consists in loops and lines lo
ing their interplanar correlations over a very short distan
n3d agrees very well with the usual descriptions of a vort
system at temperatures lying aboveTc and above the vortex
melting and a possible vortex-decoupling line.8,10,26–29

However, as Fig. 3 shows, the experimentally observ
crossover is extremely sharp—in fact much sharper t
what we can obtain using our expression~28!. This observa-
tion calls for a more refined treatment where other effects
the magnetic field than the mere creation of vortex lines m
be taken into account.

It is in fact possible to understand, in the framework
our approach, what makes the crossover so sharp. In term
the susceptibilityx(T,B) in Eq. ~23!, the sharpness of the
crossover suggests that the first term must tend to zero
rapidly asB increases. In this way, only the second~approxi-
mately constant! term remains and then yields the linear b
havior of the magnetizationM (T,B) for B.Bc .

This behavior could be achieved by assuming a sm
magnetic-field dependence of the activation energyE0 and
be motivated as follows. In Ref. 21 it is emphasized th
below Tc , the effective interaction between vortex loops
screened by the thermal defects of the Abrikosov vortex
tice. For smallB, this effect is enhanced when the magne
field is increased because the density of vortex lines is
rectly proportional toB as in Eq.~27!. Above a crossover
field B* the screening becomes weaker due to the fact
the finite stiffness (}B2) of the vortex lines inhibits the for-
mation of further defects. In the liquid phase aboveTc that
we are interested in, a similar qualitative behavior can
expected, at least for low fields. A screened interaction
tween vortex loops then reduces the energetic cost of cr
ing such an object. Thus the total number of thermally e
cited vortex loops must increase with the magnetic fieldB.
Among them a~small! percentage corresponds to those co
tributing to the diamagnetic response as discussed in the
vious section. They will also follow the above behavior
that we may reasonably assume that their effective activa
energy E0 introduced in Eq.~25! must decrease slightly
when the magnetic fieldB increases. To lowest order, w
have

E0→E0~B!5H E0~12aB!, B!Bc

E1,E0 , B@Bc .
~29!

The largeB behavior is not important since it affects on
the first term of the susceptibility when it is already ve
small. To illustrate this idea, we takea51 such that the
value of the activation energy saturates at a valueE1, 20%
lower thanE0 aroundB50.5 T. After having performed a
numerical integration of the susceptibilityx(T,B) over B,
we obtain the curves shown in Fig. 4. The crossover betw
the two-field regimes is sharper than in the previous case
the corresponding value of the magnetic fieldBc is higher.
0-6
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We emphasize however that the above strategy was
intended to show how the developed formalism could
modified in order to improve the interpretation of the expe
mental results from Ref. 6. A proper justification of th
above assumption~29! requires concepts and methods th
are beyond the scope of this work.

IV. SUMMARY AND CONCLUSIONS

We have derived explicit expressions for the field- a
temperature-dependent diamagnetic susceptibilityx(T,B)
and magnetizationM (T,B) of an anisotropic superconducto
above its critical temperature. The superconducting fluct
tions aboveTc are treated in the framework of the Lawrenc
Doniach model including a magnetic fieldB perpendicular to
the lattice planes. In order to describe specifically the prec
sor effects aboveTc , we have used the London approxim
tion, assuming thereby that the relevant fluctuations
given by the phase of the order parameter only. Such
approach should apply to the underdoped regime of cupra
In this context the current-current correlation function th
determinesx and M is expressed by the structure factor
the relevant phase excitations—the thermally excited vo
loops and the field-induced vortex lines. Our expressions
x andM contain still several undetermined parameters s
as the areal density of vortex-line elements within a giv
layer, an appropriate length describing vortex-line corre
tions between different layers, the anisotropy, and a fa
smaller than one that gives the fraction of the volume of
superconductor that is ‘‘active’’ in contributing to the fluc
tuation induced diamagnetism. These quantities, which m
be compatible to another, are estimated by compa
x(T,B50) and M (T,B) to experimental data obtained o
underdoped YBCO6 and allow then to deduce an accura
picture of the phase system of such materials. Our findi
can be summarized as follows.

~i! There have been attempts to understand the same
based on Gaussian fluctuations of the anisotropic LD mod6

The corresponding fit for optimally doped YBCO, where t
precursor region is much narrower, has worked out succ
fully. However, the discrepancies between experiment
the corresponding theoretical curves for the underdo
compound are very large, both in the temperature
magnetic-field dependences. Our approach, based on t
logical phase excitations in a noncritical regime, is mu
more satisfactory.

~ii ! The experimental low-field susceptibility has an ac

FIG. 4. Improved version of the magnetizationM (T
5const,B): the full lines correspond to the theoretical express
based on Eq.~29!.
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vated temperature behavior. This observation indeed po
to excitations that have a finite creation energy~the vortex
loops!, rather than some wavelike fluctuations of the pairi
field ~the Gaussian modes!. The value of the activation en
ergy is roughly 20 times the critical temperature, whi
shows that the relevant vortex loops extend over several
ers. The density of those loops is relatively small, indicat
that, close to the critical temperature, the phase system
sists predominantly of vortex loops running essentially p
allel to the planes, and the line elements inz direction that
contribute tox only develop significantly above the critica
temperature.

~iii ! The interlayer current correlations reflecting the ge
metrical structure of vortex loops in thez direction are taken
into account in terms of an effective correlation lengthj3
5n3d. The value of the latter has been determined by
vortex-loop activation energy. In the temperature range
the measurements it is small, typically 2 or 3 interlayer d
tances. This feature can be also characterized by the stiff
of the vortex line that is found to be approximately inverse
proportional to the anisotropy parameter. These observat
indicate that the observed phase structure corresponds
well to the picture of weakly coupled layers of two
dimensional ‘‘pancake’’ vortices.

~iv! In the calculation of the molar susceptibility we hav
multiplied the molar volume by an overall prefactor calle
‘‘effective active volume fraction’’ taking into account onl
those parts of the unit cell that contribute to superconduc
fluctuations. This quantity was found to be of the order
10–20%.

~v! Both the activated behavior ofx and the small value
of the above correlation lengthj35n3d point to the fact that
the measurements of Ref. 6 cover a ‘‘precritical’’ regim
Indeed, although the relevant physics is governed by ph
fluctuations according to our assumptions, no divergence
the 3DXY type has been observed. The latter is neverthe
expected for the data taken the closest toTc , as it has been
identified in Ref. 8 for layered superconductors with a re
sonable value of the anisotropy. In fact one observes
some deviations from the activated behavior appear for
temperatures closest toTc . This may indicate a crossover t
a critical regime in which theT dependence ofx is no more
simply governed by thetotal vortex density, but by a diverg
ing correlation lengthj associated with thefree vortex den-
sity that should be used instead ofnV in the structure factor
~14! and in x @Eq.~23!#, as it was done in the 2D case fo
calculating the zero-field susceptibility.15 Moreover, in this
case the dimensionless quantityz defined in Eq.~27! be-
comes the scaling variableBj2/F0 that has been used exten
sively to study critical properties under magnetic field.16

~vi! The experimental data show an extremely sh
crossover in the field dependence of the magnetizat
Within our approach this is attributed to a subtle interpl
between the two types of vortices suggesting that the p
ence of field-induced vortex lines is favoring the creation
thermal vortex loops containing at least two segments al
the z direction. However, even our most refined theoreti
curves are still more smooth than the data. It is therefore
excluded that the observed behavior may have yet ano
0-7
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origin than superconducting fluctuations, for instance sam
inhomogeneities, as it has been suggested and observ
other samples by the authors of the experimental work6 that
we have analyzed.
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APPENDIX

Here we show that the zero-wave vector value of the
sitional structure factor~12! compensates the singular ter
of the current-current correlation function~11!. Starting from
Eq. ~12!, we find

S~q50!5 (
n,s,n8,s8

t~s,n!t~s8,n8!

5 (
n,n8

~N12N2!2, ~A1!
ro

P

.
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zo
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d
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whereN1 @N2# is the number of vortex-line elements wit
t(s,n)511 @ t(s,n)521# in layer n. They correspond ex-
actly to the 2D concepts of vortex and antivortex that a
often interpreted as positive and negative charges of a
Coulomb gas.

The external flux generatesNF ‘‘charges’’ according to

NF5
L2B

F0
. ~A2!

Due to the incompressibility of the magnetic field (“•B
50), this number is the same for all layers.

The neutrality condition requires that, in every layern, the
external flux is exactly compensated by the net chargeN1

2N2 of the vortex-antivortex system

NF5N12N2 , ; n. ~A3!

Therefore Eq.~A1! may be written as

S~q50!5N2S L2B

F0
D 2

, ~A4!

which is exactly the singular term of the current-current c
relation functionC(q).
,
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