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Fluctuating diamagnetism in underdoped high-temperature superconductors
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The fluctuation-induced diamagnetism of underdoped high-temperature superconductors is studied in the
framework of the Lawrence-Doniach model. By taking into account the fluctuations of the phase of the order
parameter only, the latter reduces to a layexed model describing a liquid of vortices that can be either
thermally excited or induced by the external magnetic field. The diamagnetic response is given by a current-
current correlation function that is evaluated using the Coulomb-gas analogy. Our results are then applied to
recent measurements of fluctuation diamagnetism in underdopegCYiBa; ¢ They make possible the un-
derstanding of both the observed anomalous temperature dependence of the zero-field susceptibility and the
two distinct regimes appearing in the magnetic-field dependence of the magnetization.
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[. INTRODUCTION that describes a homogeneous magnetic field perpendicular
to the lattice planes. Rather than considering Gaussian fluc-
Owing to their short coherence length, high-temperaturduations, we assume a “precursor regime” in which the am-
superconductors show marked deviations from the mearplitude of A has already acquired a nonzero average value
field behavior that describes rather well the behavior of conwhereas its phase is subject to strong fluctuations inhibiting
ventional superconductors. The underdoped regime of thong-range superconducting order. In this context the LD
various cuprates is particularly interesting, given their pro-functional reduces to an anisotropic layedéd model. The
nounced anisotropy and the low density of charge carriers. Irelevant thermal excitations of such a system are the phase-
this region of the phase diagram, fluctuations are stronglfield singularities that manifest themselves as vortices and
enhanced and are manifest already well above the criticantivortices in two dimension&D) and as vortex loops in
temperaturdl ;. This fluctuation regime gives rise to various 3D. The applied magnetic field also acts on the phases by
unusual phenomerlasuch as an anomalous temperature deinducing vortex lines crossing the sample from one end to
pendence of the Knight shift, NMR relaxation rate and electhe other. The diamagnetic susceptibility, expressed in the
trical conductivity, an anomalous frequency dependence ofisual way by a current-current correlation function, is then
infrared conductivity, as well as the formation of a related to the positional correlation function of the vortex-

pseudogap in the electronic density of states. CIoSE,tit line elements, the static structure fact®fgq). We model
also allows to see true critical behavior in quantities such a$(q) in a simple way by using various known results ob-
the specific heAtor thermal expansion. tained either by analytic considerations based on the

In the present work, we specifically address the temperaCoulomb-gas analogy or by Monte CailbIC) simulations
ture and field dependence of the diamagnetic susceptikility of the anisotropic 3DXY model. Then we arrive at explicit
of strongly anisotropic high-temperature superconductorgxpressions for the zero-field susceptibilipfT) and the
aboveT.. The influence of fluctuations op has been stud- temperature and field-dependent magnetizatMi(T,B).
ied long ago in the framework of a Landau-Ginzburg model, They contain several material-dependent parameters that are
taking into account Gaussian fluctuations of the order paramestimated by comparing with the experimental data on un-
eter above the critical temperatdréMore-refined calcula- derdoped YBaCuO from Ref. 6.
tions based on the Lawrence-Doniach model have taken into This procedure unravels three main features. First, the
account the lattice structureRecent measuremeftiave  density of the vortex-line elements contributing to the dia-
shown that the Gaussian approximation can indeed well denagnetic responsghose that are oriented indirection, i.e.,
scribe the diamagnetic fluctuations in optimally dopedparallel to the applied fie)dis thermally activated with a
YBa,Cu;0; (YBCO), whereas underdoped specimens of thevalue of the activation energy that is compatible with what is
same compound, such as Yf&arOg 67, Show dramatic de- found in the above mentioned MC simulations. Second, in
viations from this behavior. The fluctuation region where thethe temperature range covered by the experiments, the value
zero-field orbital susceptibility shows appreciable values exof the anisotropy shows that the positions of the vortex-line
tends over a much larger temperature range than in the optelements fluctuate strongly from one layer to the other. This
mally doped system. Moreover, the field dependence of thpoints to a rather weak effective coupling between layers,
magnetization shows a much more pronounced crossover beich is compatible with the fact of being above the vortex
tween low and high fields than what would have been exmelting and the “vortex decoupling” line. Finally the rather
pected from Gaussian fluctuations. sharp crossover of the magnetizatibh(T,B) as a function

We base our calculations on an anisotropic Lawrenceef B points to a subtle interplay between thermally excited
Doniach (LD) functional, involving the superconducting vortex loops and field-induced vortex lines.
order-parameter field in the presence of a vector potential  These observations allow for the following conclusions.
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(i) The experiments in Ref. 6 can be much better acDoniach approach. Expressi¢h is a partial continuum ver-
counted for by phase excitations than by Gaussian fluctuasion of the discrete-30XY model, the Josephson coupling
tions of the pairing field. This is particularly manifest in the 1—cos(@—¢;) between neighboring lattice sites in a given
activatedT dependence of the susceptibility, but also in thelayer having been replaced by the phase gradient.
existence of two field regimes with quite different behaviors  The orbital magnetic responsge in a finite external field
of the magnetization. In this context we have, however, tds obtained by adding a small perturbation to the applied
admit that the very sharp crossover between these two rerector potential
gimes observed in the experiment may also be due to sample
inhomogeneities as it was suggested in the experimental A=A+ A 3

papers. and by calculating the second derivative of the free energy

(ii) Except for the data taken close to the zero-field critical . . . . i
temperature, the diamagnetic response of the underdopé'}gth respect o the perturbing fields; . The magnetic sus

compound presented in Ref. 6 seems to be “precritical,” incept|bll|ty x(T.B) is then given by
the sense that the relevant lengths in the lattice planes as well A
as in the perpendicular direction do not show any true critical Y= Iimﬂ (4)
(i.e., singulay behavior(which would be supposed to belong q—0 Q
to the 3DXY universality clasy. _
In Sec. Il we develop the theoretical formalism that al-With
lows to expresg/(T) andM (T,B) in terms of the vortex-line 3 (272 3
structure factor, and in Sec. |l we compare our theoretical A(q)=—”(—> [—C(q)—l ) (5)
results with the data presented in Ref. 6 for underdoped d\®o) [kgT

YBCO, thereby extracting the free parameters from the exyha second term of Eq5) is the diamagnetic response,

perimental curves. A summary is presented in Sec. IV.  \ hereas the first term involves the current-current correlation
function

II. DIAMAGNETIC RESPONSE

We discuss the orbital magnetic response of an under- :i f 2 42 1 iq(r=r')/; -

doped superconductor in the London approximation to the c@ L2 E dpdpre (i), (6

LD model, i.e., in the framework of an 3D anisotropic lay-

eredXY model in which the phaseé of the superconducting ) 27

order parameted is coupled to the vector potential; de- Ix(r)=V,60n(p) — @A”,x(r)- (7)

scribing a homogeneous magnetic fi@dperpendicular to

the lattice planes(we restrict ourselves to temperatures Here the coordinate means p,nd) and the sample volume

T>T, where the Meissner effect is absent, identifying thusis Q=L2Nd whereN is the number of layers. In order to

the external and the effective internal vector potejtial have a finitey, the limit C(q—0) has to cancel the diamag-
netic term. It will be shown below that this is indeed the case

1 27 |2 in our approach. We have chosen the gauge in which
0= 57 = f dzr[3|a2 Vibn™ EOA”}
A(r)=(-yB,0,0. ®
_ _ Thus the relevant wave vectagr has only ay component
+J,[1—cog6,— 0 . 1
al 0n n“)]] @ denoted simply by.

In order to study the thermodynamic properties of the 3D
anisotropicXY model, we first recall that the Berenzinskii-
Kosterlitz-Thouless transition occurring in the strictly 2D
case is best described in terms of vortex and antivortex ex-

Herea is the lattice constant in the planes wherdakenotes
the distance between two layeds.andJ, are the respective
phase couplings. Their ratio

, J| citations. Although the 3IXY system shows a “normal”
Y =J—>1 2 second-order transition, even when it is anisotropic, it has
+ been shown that it is also possible to understand the critical
determines the anisotropy of the system. Th® Hamil-  behavior of such a system in terms of vortex excitations,

tonian can be obtained starting from a LD functional for thewhich—for topological reasons—now have to form closed
complex superconducting pairing fie by keeping the am- loops or continuous lines crossing the whole systefe
plitude of the latter constaritondon approximation Thisis  loops are the 3D extension of the planar vortex—antivortex
a current stratedybased on the assumption that the variousstructure whereas the lines arise from the presence of an
precursor phenomena, observed in underdoped cuprates kexternal magnetic flux penetrating into the sample in the
tweenT,. and some higher temperatufé and mentioned in same way as in a type Il superconductor beldw In the

the Introduction, are essentially due to fluctuations of thefollowing we will use this vortex picture of the 3IXY
phase ofA whereas its amplitudg\ | maintains a finite mean model in order to calculate the phase correlation function
value. Moreover, these materials exhibit a layered structur€(q) that determines the diamagnetic response according to
that is specifically taken into account by the Lawrence-Eq. (6). Since vortex lines are either closédrming a loop
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The other term in Eq(11) comes from the secondiamag-
netic) contribution to the current7) and represents the total
flux going through the system due to the applied figiibss
correlations betweeV,6 and A, are supposed to vanish
due to the disordered structure of the vortex system above
the melting temperatuyeln the Appendix we show that the
singular zero-wave vector value of the correlation function
S(q) compensates the second contribution to @4) so that
the limit C(q—0) is well behaved. The main problem left is
thus to find a suitable form for the regular part of the corre-
lation functionS(q).

FIG. 1. Schematic representation of a 3D thermally excited vor-  First, we recall that we are interested in the fluctuation-
tex loop(left) and of a field-induced vortex lingight). Since inthe  induced diamagnetism above the zero-field transition tem-
Lawrence-Doniach approach the phase field is defined only for diSperatureTc, a range in which recent experiments have been
crete values of the coordinate ¢=nd), one often refers to these carried ouf For a finite field one has thus to deal with a
structures as “stacks of pancake vortices.” The latter are repreregion in theT-B phase diagram lying beyond the different
sented by the gray ellipses whereas the lines linking them are thegossible transition lines that are discussed in the literature,
just guides to the eye. such as the vortex-melting line and the vortex-decoupling

, line X% Our structure factorS(q) thus has to describe a
or extend continuously through the whole sample, we cajisordered vortex-liquid system in  which  strongly

characterize their structure by labeling each line by an indexXrinklied” vortex lines and loop&Lgo through the sample.

s and by giving its positiorR(s,n) in a given layem that  \ye yse the following reasoning for obtaining an approxi-

corresponds to the center of the corresponding “pancak@,ate form of the regular contribution ®(q).

vortex” (see Fig. 1. Thex component of the phase gradient (i) | the extreme limit of totally decoupled layers, each

created by all the vortex lines is then given by the same,ane would have to be described by a XI¥ model above

expression used in magnetostatics in order to calculate th@e critical temperature, which is frustrated when an external

magnetic field of a system of current loops and lines, magnetic field is applied. Its vortex structure would be the

, one of a neutral Coulomb gas, more precisely of a mixture of
Vop=d S & f , (Ta=To)Kg(s,r") , @ neutral two-component Coulomb gégiven by an equal
xUnlp b Xapf P Ir—r'|3 ' number of thermal vortices and antivorticemnd of a one-
o component gasthe field-induced vorticgsin a neutralizing

Heres g, is the fully antisymmetric tensor of rank 3 and Packground(given by the external flux In the purely 2D
the vector fieldK (s,r') is given by the line element “tan- case, the nontrivial part of E412) thus reduces to
gential” to the vortex-line numbes at pointr’=(p’,n’d),

X Sp(a) =N t(s,0t(s',0)(expliq-[R(s,00—R(s',0)]})
K(s,r")=t(s,n")8(p' —R(s,n"))z, (10 ss’

N2
z being the unit vector in the direction and the sum in Eq. NL nvSc(a)- (13
(9) thus runs over all vortex line elemergsnd layersn. In Here we represented the positional structure factor involv-
order to make connection with thenore simple 2D case, it jng a sum over all vortex and antivortex positions by the

is useful to attribute a topological numbgfs,n)==1 t0  Coulomb-gas structure fact@.(q). We use the following
each vertical-vortex line element. Its sign is chosen such thagpproximate forrt?

the product(s,n)i gives the oriented “tangential”” vector of
2

the vortex line at that poiri.e.,t=+1 (—1), when the line q

moves upwarddownward with respect to the lattice plane Sc(q)= Py (14)
n]. The current correlato(6) is then given by two contribu- q vavKe

tions, wheren,, is the areal vortex density and the “charggy of

_ . 11 qy=2mJ). (19
NG 11 v I

. . o The expressiofil4) yields the correct limiting behavior of
The first term, stemming from the phase gradient in the curs_(q) for —0 and should be valid for temperatures not too
rent density(7), represents the structure factor of the vortexg|gge toT.. Inserting expressionl4) into Eq. (11) gives a

line elements oriented in direction, given by similar form of the current-current correlation functiqq)
as used by Kwon and Dorsé).
_ t(sn)t(s'.n' ) explig-[R(s,n)—R(s’.n)TH. (i) For a strong anisotropy and for the considered tem-
S(@) S’ng"n, (Sm( Kexplig: [R(s.:m =R 1 perature range the effective interlayer coupling will be very

(12 weak. For evaluating expressida?2), we split the double
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sum ovem andn’ into two parts. In the first part, we take  Here we used the relatiofu?(n))=3(kgT/\)nd applying
equal ton’ that yields a 2D-problem analogous to the onefor harmonic deformations and yielding a geometric series.
treated above. The corresponding contribution to®&8) is  The final result for the regular part €(q) in Eq. (11) then
therefore similar to the structure factor of point vortices in atakes the form

single XY plane, X

4
S1(a) = NL2nySu(@), 16 Clq)- q—vasc<q>[1+2><(q>]. (20

where ny, is now the areal density ofertical vortex-line In order to evaluatey according to Eq(4), we have to

((ellz)msc?rt]?:.iizgr? ;r?g?]r)din?/?v(iﬂ)g Cgiff‘ztreegfllj:;zrzuﬂépe Te expandC in powers ofq. First, the above-mentioned cancel-
use the fact that in the considered temperature range, ﬂi:atlon of C(q=0) in Eq. (5) with the (firs)) diamagnetic

S : ntribution is fulfilled, provided that the effective charge of
vortex loops and also the field-induced lines have a very, | Coulomb-gas structure factor is chosen to be
irregular shape. Indeed, the region in fheB plane we are
interested in lies above any lattice layer decoupling tfhe. q\2,=27TJ||(1+2n3), (22)

This fact is formulated in Ref. 7, by indicatingTadomain o o
which is a reasonable generalization of the purely 2D result

[T—T / (15), taking into account the fact that the “charges” are now
>y, (17)  vortex lines elements correlated over a distaragd along
the z direction. The cancellation of thg=0 term in Eq.(5)

with an XY exponentr~0.6, for which the lattice planes are makes the limit(4) finite and guarantees that the phase sys-

practically decoupled. Therefore only those ones that aréem of the superconductor has no stiffness above the critical

close enough to anothén a sense to be specified belpare  temperature by making the limi) finite. Evaluating the

correlated and will contribute t6,(q). We first expand for- latter leads directly to the final result for the bulk suscepti-

mally in expressior(12) the positionR(s’,n’) of a vortex  bility x (per unit volume that reads

line s’ in layern’ with respect to its value in layer. This

gives 1 keTi 1
X7 (1+2nyd 2| ny

S(= X t(smi(s’,n’)(expliq-[R(s,n) @3
s:shmn’#n Expression(23) will be used in the following section for
—R(s’,n)]}exp{—iqg-u(s’,n—n")}). (18  interpreting the experimental datéow-field susceptibility

and field dependence of the magnetizatiohtained on un-
Then we split the average bracket of E8) and factor  derdoped YBCO.
out from the sum oven’ the first exponential that pertains to

C

+(7T’y)2n3(1+ n3)d2 .

a given layem as well as the topological numbets’,n") lll. ANALYSIS OF EXPERIMENTAL MAGNETIZATION

that are equal td(s’,n) for neighboring layersy andn’. AND SUSCEPTIBILITY DATA

This yields the previous resu(il6). We are then left with )

correlations between the positioRsof a single vortex line In order to apply our theoretical results to underdoped

s’ in layern’ and in layem#n’. Assuming that such cor- YBCO, we use the followingapproximatg values for the
relations are the same for all vortex lingsand extend only lattice parameters a=4 A and d=12 A. Moreover, the

over a distancé;=nsd, we obtain molar quantities like those reported in Ref. 6 are obtained by
multiplying expression(23) by the molar volumeQ,,
N3 =Na?d=115 cn? and by a reduction factok that ac-

S,(q)=2S,(q) >, (e”'TUM=25 (q)X(q). (19  counts for the fact that in the materials we are interested in
n=1 only a fraction of the unit-cell volume actually carries the

. o _ _ current densities and thus contributes to the diamagnetic re-
Hereu(n) is the deviation of a given line or loop from a sponse.

straight line along the direction. The factor 2 comes from
the fact that the sums overn’ andn>n’ have been re-
duced to one such sum in EG.9). Assuming that the vortex o )
lines behave like harmonic strings with an effective stiffness  The susceptibility data of Ref. 6, for a very low applied
above the zero-field transition temperature, Tte- 110 K.
Above T=80 K the diamagnetic susceptibility is essen-
tially equal to zero, a background consisting of spin suscep-
tibility and free-electron orbital diamagnetism having been
subtracted. For zero applied field, our expressi28) for y
- 1—exp(—kgTngd o’/40) _ (200  contains several yet-undetermined parameters: the areal den-
expkgTd g?/4N)—1 sity ny of vertical vortex line elements that are thermally

A. Low-field susceptibility

n3

1
X(@)=~ 2, exp[— 5 a%(u(n))

n=
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90 sion of the correlations of the vortex structure along the
TIK] direction must be of the order of a few lattice distaxlcgve
will take n3=2 in the following. This provides ara poste-
riori justification for the assumptions we made when deriv-
ing Eqg. (21). Finally we note that the fact that the diamag-
netic response is associated with loops containing line
A elements parallel to thedirection directly follows from the
221 %(T,B=0) [emu/mol] magnetostatics: the vertical loop elements are generated by

currents flowing perpendicular to the external fi@dand

are the experimental data from Ref. 6 and the full line is the best fit \\e can now estimate roughly the value of the density of
of the theoretical expressiai23) assuming the activated behavior {na yortices contributing to the diamagnetic response in the
(25). temperature range of interest. Using the above valuds,of

ited. th lation | 4 and th . W andng and taking into account a reduction factor of O(6e
excited, the correlation lengti,d, and the anisotropy. We low), we getn,~ 10 um~2 for T=65 K. This relatively

mention that the subsequent analysis of the temperature a% all value will be discussed in the next section but we

field-dependent magnetization will show that the secon hould not forget the fact that it concerns only the part of the

term of Eq.(23)_ is irrelevant at low f'?lds' There_fore_z the total number of vortices that contains elements perpendicular
value of y is unimportant and the dominant contribution to to the lavers. We also remark thsyin—‘f>a which full
x(T,B—0) is given by in-plane correlations of the thermal- YErs. v y y

vortex loop elements. Figure 2, in which the data of Ref. 6Justlfles the continuous approach in the lattice planes used in

are reproduced with our expressi®8), shows that the ob- the LD action(1).

served zero-field diamagnetic susceptibility is almost per- _ o
fectly fitted by B. Field dependence of the magnetization

“es 70 78

>y

Here we have to deal with coexisting thermal loops and
field-induced vortex lines. The magnetic-field dependence in
expression(23) for y is hidden in the densitp,, and, possi-
bly, in nsd, the interplanar correlation length. The most
simple approach to deal with this situation consists in split-
‘ﬁ'ng ny into a thermal and a field-induced part as follows:

, (24

T.B=0)=C Eo
x(T,B=0)=Cex KT

with Ey/kgT.~22. This means that the quantity, must be
temperature dependent and obey a thermally activated b

havior
. ny=n+nl=nT1+2(T,B)]. (26)
0
Ny=nNg eXF{ - kB_T) ; (25 This gives naturally rise to the dimensionless variable
with the factomy~ 10%a2. The number of vortex excitations _ n{, B
in the XY model is indeed known to show an activatéd z= n_{?_ Cpon{/h' (27)

dependence. In 2D this has recently been confiffhadd
various authors find the same result in®83°using numeri-  quantifying the relative importance of the two types of vor-
cal studies. In the first case the activation energy is roughlyex elements. Assuming thag does not depend oB, one
given byEy~10 kg T, .1” Simulations for the anisotropic 3D can integrate/(T,B) in order to obtain the magnetization per
case yield values that are somewhat la¥yend that depend unit volume,

on the structure of the corresponding |d8p?°getting larger

the more planes are crossed. In a strongly anisotropiX 3D kT

system, most of the thermal loops existing up to the critical M(T.B)=~ (1+2n,)d ?[(DO In{1+2(T.B)}
temperature consist of elements parallel to the lattice 0

planest2922:2425 gop segments perpendicular to the planes +(7y)%ng(1+n3)d?B]. (28)
only begin to be formed abovE,. Thus the activated form ) o o

attributed to the vortex-line density, in Eqg. (25) can be The corresponding molar quantity is multiplied by the ad-

seen as a measure for the rapidly increasing number of loogitional prefactorA(}y, already mentioned at the beginning
crossing two planes or even more. Such loops contain at lea8f this sectionM depends on temperature througl} and,

two line segments perpendicular to the planes, the rest beirigpssibly, throughns. The first contribution to E¢(28), given
between two planes. This 3D structure may explain the relaby In(1+2), has two different limiting behaviors. For low
tively large value of the activation enerdgy, found above. fields In(1+2)~z and M is essentially given byx(T,B

The latter is also compatible with an explicit expression for=0)B, whereas for high fields the first part bf varies like

the loop self-energy proposed in Ref. 7 assuming that thén(z). The crossover between the two regimes takes place for
total length of the loop segments orientedzidirection is on  z~1 that describes the situation where the quantities of ther-
the order of two interplanar distances, the rest of the loopnally excited and field-induced vortex-line elements are
being oriented parallel to the lattice planes. The valuggf similar to one another. Thus the corresponding field value
further suggests that the quantityd measuring the exten- depends crucially on the thermal vortex element der‘rﬁﬁy
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09 1 2 3 4 5 6  B([Tesla] possible to show that the second term in our expresszs)s

B and_ (_28) is irreIevant_for the Iow-figld behaviorz as we _have
-0.0002 . anticipated when fitting the zero-field susceptibility. Finally
A we note that the picture of the vortex structure emerging
-0.0004 Wiy from the above analysis that consists in loops and lines loos-
0.0006 [ ing their interplanar correlations over a very short distance
T4=69.9K nsd agrees very well with the usual descriptions of a vortex
-0.0008 13=67.4K system at temperatures lying abolgand above the vortex
M(T;,B) [emu Tesla/mol] 1p=64.9% melting and a possible vortex-decoupling Ifr&:26-2

T=6201K However, as Fig. 3 shows, the experimentally observed

FIG. 3. MagnetizationM (T=constB): the full lines corre- Crossover is extremely sharp—in fact much sharper than

spond to the theoretical expressit8) with the values of the pa- What we can obtain using our expressi@a). This observa-
rameters mentioned in the text and the trianglé3 {n the inset are  tion calls for a more refined treatment where other effects of

the experimental data from Ref. 6. the magnetic field than the mere creation of vortex lines must
be taken into account.
showing up in the dimensionless varialdalefined in Eq. It is in fact possible to understand, in the framework of

(27). Using the values obtained in Sec. Il A for the param-our approach, what makes the crossover so sharp. In terms of
etersng and g enteringn{,h, and choosing\ such that the the susceptibilityy(T,B) in Eq. (23), the sharpness of the
theoretical curves and the experimental data match reasofrossover suggests that the first term must tend to zero very
ably, we find thaz~1 corresponds to a fielB,~0.025 T.  rapidly asB increases. In this way, only the seccfagproxi-
This is shown on Fig. 3 where we note that the experimenmately constantterm remains and then yields the linear be-
tally observed behavior shows indeed a crossover at fields dfavior of the magnetizatioM (T,B) for B>B;.
the order of 0.05 T. Therefore our theoretical crossover field This behavior could be achieved by assuming a small
B. is a bit too small. However the two different regimes magnetic-field dependence of the activation enetgyand
observed experimentally can be clearly interpreted in thée motivated as follows. In Ref. 21 it is emphasized that,
framework of our theory: they describe the two situationsbelow T, the effective interaction between vortex loops is
where the diamagnetic response is essentially due to soleicreened by the thermal defects of the Abrikosov vortex lat-
one type of vortex-line elemenighermal for smallB and  tice. For smallB, this effect is enhanced when the magnetic
field induced for largeB). This is already gratifying for a field is increased because the density of vortex lines is di-
first approach. For larger fields the termangould yield a  rectly proportional toB as in Eq.(27). Above a crossover
magnetization that increases more slowly wighthan the field B* the screening becomes weaker due to the fact that
measured data, which rather show a lin@adependence. the finite stiffness € B?) of the vortex lines inhibits the for-
This is reproduced by the second part of E28) that, in our ~ mation of further defects. In the liquid phase abdyethat
procedure, arises from the vortex correlations between difwe are interested in, a similar qualitative behavior can be
ferent layers and becomes relevant for large valueB. of expected, at least for low fields. A screened interaction be-
These considerations are illustrated on Fig. 3 where théveen vortex loops then reduces the energetic cost of creat-
data from Ref. 6 are shown together with the theoreticaing such an object. Thus the total number of thermally ex-
curves given by Eq(28). Although the quantitative agree- cited vortex loops must increase with the magnetic figld
ment is less spectacular than in the case of the zero-fieldmong them asmall percentage corresponds to those con-
susceptibility, it still allows to extract the values of the tributing to the diamagnetic response as discussed in the pre-
“magnetically active volume fraction’n (from the smallB  Vvious section. They will also follow the above behavior so
region) and of the anisotropy parameter(from the largeB  that we may reasonably assume that their effective activation
region. For the four temperatures of interest we find that theenergy E, introduced in Eq.(25 must decrease slightly
choicex~0.15 is the most satisfying. This is quite reason-when the magnetic field increases. To lowest order, we
able for a layered compound such as underdoped YBChave
where superconductivity occurs only in copper oxide planes
that represent only a small fraction of the unit cell. Concern- Eo(1—aB), B<B,
ing the anisotropyy, we find a value~2. Its order of mag- Eq—Ey(B)= (29
nitude is correct since, by multiplying it by the lattice anisot- E;<Eo, B>B..
ropy d/a~3, we obtain a value of 6 for the effective
anisotropy. The latter is somewhat lower than what is ob- The largeB behavior is not important since it affects only
served in penetration-depth measurements where it is fourttie first term of the susceptibility when it is already very
to be of the order of 25 &f..'® However, we recall thay ~ small. To illustrate this idea, we take=1 such that the
entered our theory through the vortex line effective stiffnessalue of the activation energy saturates at a vétye20%
in Eq. (20). This rather rough description of the vortex loops lower thanE, aroundB=0.5 T. After having performed a
interlayer correlations and the assumption we made by keemumerical integration of the susceptibility(T,B) over B,
ing n5 independent of the temperature may possibly explairwe obtain the curves shown in Fig. 4. The crossover between
the fact that the observed value is a bit different from 25.the two-field regimes is sharper than in the previous case and
Using the values of\ and y discussed above, it is now the corresponding value of the magnetic fi@ldis higher.
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0Q 1 2 3 4 5 6 vated temperature behavior. This observation indeed points
_0.0002?5”:; B[Tesla] to excitations that have a finite creation eneftjye vortex
™~ loops, rather than some wavelike fluctuations of the pairing

-0.0004

00006\\ field (the Gaussian modgsThe value of the activation en-
- ergy is roughly 20 times the critical temperature, which
-0.0008

~ T D=64%K shows that the relevant vortex loops extend over several lay-
M(T;,B)lemu Tesla/mol] ™ 7,301k ers. The density of those loops is relatively small, indicating
that, close to the critical temperature, the phase system con-
sists predominantly of vortex loops running essentially par-
allel to the planes, and the line elementszidirection that
contribute toy only develop significantly above the critical

, temperature.
We emphasize however that the above strategy was only jii) The interlayer current correlations reflecting the geo-

intended to show how the developed formalism could b&netrical structure of vortex loops in tizdirection are taken
modified in order to improve the mterpret_athn of.the eXperi-into account in terms of an effective correlation length
mental results ]‘rom Ref. 6 A proper justification of the =n4d. The value of the latter has been determined by the
above assumptiof29) requires concepts and methods thatygriex-loop activation energy. In the temperature range of
are beyond the scope of this work. the measurements it is small, typically 2 or 3 interlayer dis-
tances. This feature can be also characterized by the stiffness
of the vortex line that is found to be approximately inversely
proportional to the anisotropy parameter. These observations

We have derived explicit expressions for the field- andindicate that the observed phase structure corresponds very
temperature-dependent diamagnetic susceptibiist,B)  well to the picture of weakly coupled layers of two-
and magnetizatioM (T,B) of an anisotropic superconductor dimensional “pancake” vortices.
above its critical temperature. The superconducting fluctua- (iv) In the calculation of the molar susceptibility we have
tions aboveT ., are treated in the framework of the Lawrence- multiplied the molar volume by an overall prefactor called
Doniach model including a magnetic fieRiperpendicular to  “effective active volume fraction” taking into account only
the lattice planes. In order to describe specifically the precurthose parts of the unit cell that contribute to superconducting
sor effects abov@ ., we have used the London approxima- fluctuations. This quantity was found to be of the order of
tion, assuming thereby that the relevant fluctuations ard0-20%.
given by the phase of the order parameter only. Such an (v) Both the activated behavior gf and the small value
approach should apply to the underdoped regime of cupratesf the above correlation lengtfy=nzd point to the fact that
In this context the current-current correlation function thatthe measurements of Ref. 6 cover a “precritical” regime.
determinesy andM is expressed by the structure factor of Indeed, although the relevant physics is governed by phase
the relevant phase excitations—the thermally excited vortefluctuations according to our assumptions, no divergence of
loops and the field-induced vortex lines. Our expressions fothe 3DXY type has been observed. The latter is nevertheless
x andM contain still several undetermined parameters suclexpected for the data taken the closesT{g as it has been
as the areal density of vortex-line elements within a givendentified in Ref. 8 for layered superconductors with a rea-
layer, an appropriate length describing vortex-line correlasonable value of the anisotropy. In fact one observes that
tions between different layers, the anisotropy, and a factosome deviations from the activated behavior appear for the
smaller than one that gives the fraction of the volume of theemperatures closest 1q.. This may indicate a crossover to
superconductor that is “active” in contributing to the fluc- a critical regime in which thd dependence of is no more
tuation induced diamagnetism. These quantities, which mustimply governed by théotal vortex density, but by a diverg-
be compatible to another, are estimated by comparingng correlation lengtt¥ associated with th&ee vortex den-
x(T,B=0) andM(T,B) to experimental data obtained on sity that should be used insteadmj in the structure factor
underdoped YBC®and allow then to deduce an accurate(14) and in y [Eq(23)], as it was done in the 2D case for
picture of the phase system of such materials. Our findingsalculating the zero-field susceptibility.Moreover, in this
can be summarized as follows. case the dimensionless quantitydefined in Eq.(27) be-

(i) There have been attempts to understand the same datames the scaling variabR&?/ ® that has been used exten-
based on Gaussian fluctuations of the anisotropic LD mbdelsively to study critical properties under magnetic fiid.
The corresponding fit for optimally doped YBCO, where the (vi) The experimental data show an extremely sharp
precursor region is much narrower, has worked out successrossover in the field dependence of the magnetization.
fully. However, the discrepancies between experiment andlVithin our approach this is attributed to a subtle interplay
the corresponding theoretical curves for the underdopedietween the two types of vortices suggesting that the pres-
compound are very large, both in the temperature an@nce of field-induced vortex lines is favoring the creation of
magnetic-field dependences. Our approach, based on toptitermal vortex loops containing at least two segments along
logical phase excitations in a noncritical regime, is muchthe z direction. However, even our most refined theoretical
more satisfactory. curves are still more smooth than the data. It is therefore not

(ii) The experimental low-field susceptibility has an acti- excluded that the observed behavior may have yet another

FIG. 4. Improved version of the magnetizatioM (T
=constB): the full lines correspond to the theoretical expression
based on Eq(29).

IV. SUMMARY AND CONCLUSIONS
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origin than superconducting fluctuations, for instance samplevhereN, [N_] is the number of vortex-line elements with
inhomogeneities, as it has been suggested and observedtifs,n)=+1 [t(s,n)=—1] in layern. They correspond ex-
other samples by the authors of the experimental vt actly to the 2D concepts of vortex and antivortex that are

we have analyzed. often interpreted as positive and negative charges of a 2D
Coulomb gas.
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APPENDIX The neutrality condition requires that, in every layethe

external flux is exactly compensated by the net chaige
Here we show that the zero-wave vector value of the po— §  of the vortex-antivortex system

sitional structure factof12) compensates the singular term
of the current-current correlation functiohl). Starting from Ne=N,.—N_, Vn. (A3)
Eqg. (12), we find )

Therefore Eq(A1) may be written as

S(q=0)= > t(s,n)t(s’,n’) L2B)2
n,s,n’,s’ S(q=0)=N2 = | (A4)
Dq
= 2 (N, —N_)?, (A1) which is exactly the singular term of the current-current cor-
n,n relation functionC(q).
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