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Quantum tunneling of the order parameter in superconducting nanowires
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Quantum tunneling of the superconducting order parameter gives rise to the phase slippage process which
controls the resistance of ultrathin superconducting wires at sufficiently low temperatures. If the quantum phase
slip rate is high, superconductivity is completely destroyed by quantum fluctuations and the wire resistance
never decreases below its normal state value. We present a detailed microscopic theory of quantum phase slips
in homogeneous superconducting nanowires. Focusing our attention on relatively short wires we evaluate the
guantum tunneling rate for phase slips, both the quasiclassical exponent and the pre-exponential factor. In very
thin and dirty metallic wires the effect is shown to be clearly observable ev&n-di. Our results are fully
consistent with recent experimental findijgs Bezryadin, C.N. Lau, and M. Tinkham, Natufieondon 404,

971 (2000] which provide direct evidence for the effect of quantum phase slips.
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[. INTRODUCTION further belowT¢ the number of TAPS decreases exponen-
tially and no measurable wire resistance is predicted by the
It is well established that superconducting fluctuationstheory*® except in the immediate vicinity of the critical
play a very important role in reduced dimension. Above thetemperature.
critical temperaturel ¢ such fluctuations yield an enhanced  Experiment were done on small diameter whiskers and
conductivity! Below T¢ fluctuations are known to destroy thin film samples of typical diameters5000 A. Recent
the long-range order in low-dimensional superconductors.progress in nanolithographic technique allowed to fabricate
Does the latter result mean that the resistance of such sup&famples with much smaller diameters down~t@0 nm. In
conductors always remains finiter even infinitg, or can it such systems one can consider a possibility for phase slips to
drop to zero under certain conditions? be created not only due to thermal but also duguantum
It was first pointed out by LittR that quasi-one- fluctuations of a superconducting order parameter. Mooij and
dimensional wires made of a superconducting material cago-worker$ discussed this possibility and attempted to ob-
acquire a finite resistance beldl of a bulk material due to  serve quantum phase slip@PS experimentally.
the mechanism of thermally activated phase slipaPS). Later Giordan® performed experiments which clearly
This TAPS process corresponds to local destruction of supedtemonstrated a notable resistivity of ultrathin superconduct-
conductivity by thermal fluctuations. Superconducting phaséng wires far belowT.. Their observations could not be
¢(t) can flip by 27 across those points of the wire where the adequately interpreted within the TAPS theory and were at-
order parameter i@gemporarily destroyed. According to the tributed to QPS. Other groups also reported noticeable devia-
Josephson relatio'= ¢/2e (here and below we sét=1) tions from the TAPS prediction in thin(quasijone-
such phase slips cause a nonzero voltage drop and, heneémensional(1D) wires?*°
dissipative currents inside the wire. A theory of this TAPS  First theoretical studies of the QPS effétts were per-
phenomenon was developed in Refs. 4,5. This theory yieldformed within a simple approach based on the time-
a natural result, that the TAPS probability and, hence, resisdependent Ginzburg-Landa(TDGL) equations. Later in
tance of a superconducting wiRtbelow T are determined Refs. 14,15 a microscopic theory of QPS processes was de-

by the activation exponent veloped with the aid of the imaginary time effective action
techniqué® which properly accounts for nonequilibrium, dis-

NoA2(T) sipative and electromagnetic effects during a QPS event. One

R(T)<exp—U/T), U~———s&(T), (1) of the main conclusions reached in Refs. 14,15 is that the

QPS probability is considerably larger than it was predicted
whereU(T) is the effective potential barrier for TAPS de- previously? For ultrathin superconducting wires with suffi-
termined simply as the superconducting condensation energyently many impurities and with diameters in the 10 nm
[Ny is the metallic density of states at the Fermi energy andange this probability can already be large enough to yield
A(T) is the BCS order parameféior a part of the wire of a  experimentally observable phenomena. Also, further interest-
volume s¢ where superconductivity is destroyed by thermaling effects including quantum phase transitions caused by
fluctuations[ s is the wire cross section arg{T) is the su- interactions between quantum phase slips were
perconducting coherence lengjtiAt temperatures very close discussed*'®
to T¢ Eq. (1) yields appreciable resistivity which was indeed  In spite of all these developments an unambiguous inter-
detected experimentalfy.Close to Tc the experimental pretation of the resulfsn terms of QPS could still be ques-
result§ fully confirm the activation behavior oR(T) pre-  tioned because of possible granularity of the samples used in
dicted in Eq.(1). However, as the temperature is loweredthese experiments. If that was indeed the case, QPS could
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easily be created inside weak links connecting neighboring Il. THE MODEL AND EFFECTIVE ACTION

grains. Also in this case superconducting fluctuations play a The starting point for our analysis is a model Hamiltonian

very important rolé,~** however, in contrast to the QPS that includes a short range attractive BCS and a long range

scenario;*** the superconducting order parameteeds not  repulsive Coulomb interaction. The idea is to integrate out

to be destroyediuring the QPS event. the electronic degrees of freedom on the level of the partition
Recently, Bezryadin, Lau, and Tinkh&mdeveloped a function, so that we are left with an effective theory in terms

new technology which allowed them to fabricate essentiallyof collective fields?>*##*The partition functiorZ is conve-

uniform superconducting wires with thicknesses down tohiently expressed as a path integral over the anticommuting

3-5 nm. According to our theol*>the QPS effects should electronic fieldsy, ¢ and the commuting gauge fielésand

be sufficiently large in such systems to be observed in exA, with Euclidean action

periments. And indeed, the auth@observed that several .

wires showed no sign of superconductivity even at tempera- Szf dx‘ /s

tures well below the bulk critical temperature. Moreover, at

lower temperatures their resistance was foundntrease -

with decreasing temperature, i.e., these samples could even =Ny +ienV+H[EX+ BZ]/SW]- 2

turn insulating aff—0. The author® also argued that their > ) )

experimental data can be interpreted in terms of a (;1uantur%_?|ere§(v)E — V¥/2m—u+U(x) describes a single conduc-

dissipative phase transitiév?2 which was predicted also 10N band with quadratic dispersion and also includes an ar-
for ultrathin superconducting wires in a certain parameterb'trary Impurity pptgnual,)\ 's the BCS coupling constant,
range o=1,] is the spin index, anén denotes the background

2 . ) ) i charge density of the ions. In our notatidm denotesd®xd
The results” are qualitatively consistent with previous ex- 5nq we use units in whick and kg are set equal to unity.

perimental findings. Both experimental works support our The field strengths are functions of the gauge fields through
general understanding of the role of QPS processes in mesg—= — VV+(1/c)d,A andB=V XA in the usual way for the
scopic superconducting wires and call for more detailed theimaginary time formulation.

oretical studies of the QPS effects. In Refs. 14,15 an impor- We use a Hubbard-Stratonovich transformation to de-
tance of collective modé$and QPS interaction effects was couple the BCS interaction term and to introduce the super-
mainly emphasized. These are particularly important for longconducting order parameter fiekl=Ae'®

wires. On the other hand, for relatively short wires interac-

tion between different phase slips—at least its spatially de- ex;{)\ f dxﬁ% ¥, ‘/’T)

pendent part—should not play any significant role. Let us

d,—ieV+¢

ie )
V_FA l//(r

now recall that the wires studied in the experiméhese not 2% I fdxa? -1
only considerably thinner but also mushorterthan those = J D<Ae
investigated by Giordan®To give some numbers, the length
of the wire§ was typically 40-50um whereas the wiré8 2% A JAX(AN) A2+ Ry g + 5% g1 1]
) X | DAe 1 Wl (3)
were only 0.1-0.2«m long. At the same time, the supercon-

ducting coherence length in the experiméhtaas even where the first factor is for normalization and will not be
shorter,é~7-8 nm, i.e., such samples can still be consid-important in the following. As a result, the partition function
ered as quasi-1D superconductors. now reads

Motivated by the experimental finding%in this paper we
will present a detailed microscopic investigation of single sz DZZJ D3Af DVDZq;e(*So*fdx‘T'Q‘lll')’
guantum phase slips. We will focus our attention on an ac-
curate evaluation of the QPS tunneling rate rather than on the E2+ B2 A2
interaction effects between different phase stbs.We will So[V,A A= f dx( +ienV+ —
go beyond the exponential accuracy and also evaluate a pre- 8 A
exponential function in the expression for the QPS rate. Wavhere the Nambu spinor notation for the electronic fields and
will then use our results for a direct quantitative comparisorthe matrix Green function in Nambu space
with the experimental resulfs. (

'\P_

, 4

%) V=0 )
) [

The structure of the paper is as follows. In Sec. Il we will
formulate a simple derivation of the effective action for our
problem with an emphasis put on the Ward identities. In Sec.
[l we will make use of our general results and derive the¥
action for a special case of ultrathin superconducting wires.
We also evaluate the QPS rate within the exponential accu- d,—ieV+¢
racy. Section IV is devoted to an estimate of the pre- _—
exponent for this rate. Comparison with experiments and K o +iev—¢
brief conclusions are presented in Sec. V. Some further tech- T
nical details are diverted to the Appendix.
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has been introduced. After the Gaussian integral over th&he logarithm in Eq(7) can now be expanded in powers of
electronic degrees of freedom, we are left with the final ef-G;* and we get
fective action

_ - 0 1 _
Ser=—TrinG 1+ S[V,A AT (6) TrnG = *=Trn Gy +Tr(GoG1 ) = 5Tr(GoG1 2.
Here the trace Tr denotes both a matrix trace in Nambu space (12
and a trace over internal coordinates or momenta and freFhe Green functiorg, has the form
guencies. In the following “tr” is used to denote a trace over
internal coordinates only. G F
The gauge invariance of the theory enables us to rewrite goz( _>_ (13
the action(6) in a different form, which is more convenient F G
for us, :
In Eq. (13) we used the fact that the non-diagonal component
Ser=—TrinG 1+ S,[V,A,A], (7) A in the matrixggl is real. As a result we have=F,
where F(X1,X2) =F(X2,X1), andG(x1,Xz) = — G(Xz,Xy).

2

) mvg i
Irt g(v)_'e(DJrT_E{V’VS} A The Green functiong, satisfies an important identity,

G = 2 , (8 which is easy to check:

. mvg
A 0T—§(V)+Ie¢—7—§{v,vs}

B. Ward identities

glx—xglj—"—(v B],, (14
and we have introduced the gauge invariant linear combina- 0 0 a7 '2m) 7

tions of the electromagnetic potentials and the phase of the . . . . .
order parameter wherey is an arbitrary function of time and space, anglis

one of the Pauli matrices. Multiplying this matrix identity by

: g from the left and from the right side and taking the diag-
10 1 2e . . )

O=V— =, Vi=z—|Ve——A]|. (9)  onal components of the resulting matrix equation we get two
2e 2m c identities

The curly bracket§A,B} denote an anticommutator.

G-Gy=G| VVXGF' VVXF
XG=Gx=G{x—1 V.55 +F xt Sml |

A. Perturbation theory

The action(7) cannot be evaluated exactly. Here we will o Vy - Yy | —
perform a perturbative expansiondnandvs. We will keep xG—Gyx= F(X— { V.==t |[F+G| x+{V, —] ) G.
the terms up to the second order in these values. This pertur- 2m 2m (15

bation theory is sufficient for nearly all practical purposes,
because nonlinear electromagnetic effeéttescribed by pgejow we will use these identities in order to decouple the
higher order termsare known to be usually very small in the gtfective action of the BCS superconductor and to reduce it
systems in question. Our general derivation holds for an arg, 5 transparent and convenient form. It is important to em-
bitrary concentration and distribution of impurities as well asy, - cize again that these identities are valid for any impurity
for ar_bitrary fluctuations of the order parameter field in spaceyisiribution and for any time and spatial dependence of the
and time. _ o order parameter field. It is also worth mentioning that the
We split the inverse Green functid) into two parts Ward identity(14) is notthe result of the gauge invariance of
the theory. It remains valid even for uncharged particles.
[0 ¢(v) A ) (10) The Ward identity related to the gauge invariance of our

0 A 9,— (V) theory has a different form
and
_ 4 9x Vx| ..
o1 Go 103)(—)(U3g01250'3—[v,ﬁ]—2|0'2A)(.
! (16)
. mv2 i . . . ,
—ie®d+ ——={V,vg 0 We will use this identity to transform the first order correc-
_ 2 2 tion to the action. It is interesting, that in the absence of
- v§ i ' superconductivity the identitied4) and(16) are equivalent
0 ied— > E{V’VS} because the inverse Green function commutes wit this

case. For superconductors, however, these two identities are
(11 different.
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C. First order
The first order correction to the effective action is

S =—Tr(GeG1 Y

mvZ o
2

=—tr

)(G—E)—IE{V,VS}(GJrE)

17
With the aid of the Ward identity16) it is easy to show that

PHYSICAL REVIEW B 64 014504

K={V M=V vo
—u MV o)

Vo
Y= 2m

e T , , 1
+VS=E 7ood7' [VV(T )]_EA .
The values# and v are now almost decoupled. The terms
containing both these values were transformed into the terms
containing the linear combination of these valuesvhich
does not depend on the phase of the order parameter field.

the phase of the order parameter drops out from the firsg,q action(21) can be simplified further. We rewrite the first

order terms in the electromagnetic fields. The actgrcan
therefore be rewritten as

2 : 1.
Sl=—tr(mvSG)—fdx(lene[A]VJr EJQ[A]A . (19

We note that in general the electron densityA] and the

term of Eq.(21) as follows:

v, 2
—t[G(vV 0)]=tr ¥ —muz)G.

4m

( mvZ+

Again we decoupled andvs. Making use of the identities
(15) yet a couple of times we arrive at the final expression

current density [ A ] explicitly depend on the absolute value fq the second order contribution to the effective action

of the order parameter.

D. Second order

It is convenient to introduce the following notations:

0=2ed, L={V,vg}. (19

In terms of these new variables the second order correction

to the action reads
1 —1,2
$=5Tr(GeG 1)
1 . _
=—gtr[GaGH+GOG6—2FOF0+GL‘GL‘

+GLGL+2FLFL+2GHGL—2GOGL]. (20)

Here we used the properties of the Green funcfit8). The

form (20) of the second order correction is not quite conve-

nient, because it contains té& terms. In order to separate
and £ we use the Ward identitied.5). We write

VV‘9 F
!% ’

v 05k 60—V Vol
Inserting these expressions into EQ0) after some simple

transformations we rewrite the second order contribution
follows:

. Vo .
GOG=60G—-GoH+G V,—]G—F 6+
2m

GOG=6G—Go+G:

1 _
S,= ~tr(G(VsV ) — g[GKGK+GKGK

~GMGM+GMGM—G#GH—GoGH
—2FKFK—2F9F 0+ 2FMFM +4FLFL]. (21)

Here we have introduced

S,=tr(mv2G) —tr(mu’G) — %tr(G{V,u}G{V,u})
1 1.
+Ztr(F{V,u}F{V,u})+§tr(F0F0)
(22)

—%tr(F{V,vS}F{V,VS}).

E. Resulting action

Combining all contributions, we get the final reBit

S=SJA,P,v]+S\[AV,A]+S[E.B], (23
where
2
ss=f dx(%)—Trlngal[A]JrTrInggl[A:O]
(I |
+§tr(FGF0)—§tr(F{V,vS}F{V,VS}), (24
_ 1 mu?
SN=J dx(—le(ne[A]—n)V— Eje[A]A+ Tne[A]

- %tr(G{V,u}G{V,u})+%tr(F{V,u}F{V,u}), (25

Semzf dx

Ill. EFFECTIVE ACTION FOR ULTRA-THIN WIRES

as

E*+B?

8w (26)

A. Averaging over the electromagnetic field

The above expressions are complicated and in general can
hardly be evaluated in a closed form. In this section we will
focus our attention specifically on the case of quasi-one-
dimensional superconducting wires and calculate the effec-

014504-4



QUANTUM TUNNELING OF THE ORDER PARAMETERN . .. PHYSICAL REVIEW B 64 014504

tive action performing several approximations. We will ar-Here L and C are, respectively, the inductance times unit
gue that our procedure allows us to evaluate the QPS actidength and the capacitance per unit length of the wire. The
up to a numerical prefactor of order one. functions yg, xj, xL, andx,, which depend both on the

If one assumes that deviations of the amplitude of therequencies and the wave vectors, are expressed in terms of
order parameter field from its equilibrium value are rela-the averaged products of the Green functions appearing in
tively small, the above effective action can be significantlythe Eqgs.(24), (25 (see Ref. 16 for more detajilsThese
simplified. We expand the general effective acti@3) in  functions can be evaluated analytically for most limiting
powers of SA(x,7)=A(x,7)—A (hereA=Agco up to the cases. For the sake of completeness some explicit expres-
second order terms. The next step is to average over th&ons are presented in the Appendix.

random potential of impuritie¥ After that the effective ac- The voltageV and the vector potentig enter the action
tion becomes translationally invariant both in space and inn a quadratic form and, hence, can be integrated out exactly.
time. Performing the Fourier transformation we obtain After that the effective action will only depend @nand 5A.
We find
dwdq |A|2 c|v|2 )
S— <t +xelgV+ = A|
(2m)?
_1[dvda + xal 8|2 28
) V+w 2 Ll _EAZ_F sal? -5 (2m)2 xal 8A[%}, (28)
X3 2e R A Xal OA[% (.
(27 where
|
X3 XL 9°]) | xaxe 9’
2 2 2
—w + Co+ — ) [C }
Fogq=te__4m an 1576 S an - 29
w,q
C 2 1 2 62 2 2.2
g+XJ+XEq a*’XEw +EXL —Xe®@q
|
The electromagnetic potentials are expressed as follows: - EJ dwdq
(2m)?
2 2
— txew’+ e - — xex 9’ Xo 2, XL (C 2) XIXL o
sL m> —w —+ +
= - " 4¢? 4m2q s XET )T e ¢
C 1 e
2 C
§+XJ+XEq2) E—F)(sz-i— EXL — Xg@’0? §+XJ+XEq2
| e 30
2e ¢ (30
X[ @[+ xal 6A[? (32
e’ |[C )
X <+ X0t Xed? | + xex@ and
e 1 e’ —j
2 2 2 242 X3 lw
S TXaTXed ) SL TXe® +EXL XE@C V:C |26 <P), (33
§+XJ+XEq
icq
X| = ) (31
2e A=0. (34)

Let us note that the Josephson relafiba ¢/2e is in general
In most of the situations the wire inductance is not impor-not satisfied. According to Eq.33) this relation may ap-
tant and can be neglected. Therefore here and below we pptoximately hold only in the limity;>C/s+ ygg?. Making
L=0. Then we get use of the results presented in the Appendix one easily ob-
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C (9
J.dXdT{ ( ¢)
4€%s
To ( P )2]
+
32e2A \ IXaT

E WL

(40)
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serves that in a practically important limit of small elastic
mean free pathkthe latter condition is obeyed only at low S=
frequencies and wave vector®/A<1 and Dg?/A<1,
whereD =v¢l/3 is the diffusion constant. 2

Let us now perform yet one more approximation and ex- moA (_)
pand the action in powers af andqg?. Keeping the terms of 4e? |\ 9X
the orderg* and w?qg? we find

dwdq w2 T
S= f w 2+ moAq +—0'Dq4+—w q?
(2m)?|\s 8

+sN0f dXdT[ 5A%+

2
+2N,

w?> 7DQg? 5 Then we assume that the absolute value of the order pa-
1+ 12A2 + 8A | 5[ rameter is equal to zero at a time=0 and at a poink=0.

The size of the QPS core is denoted xgs and its time

¢
X

%6 (35

The termx=w* turns out to be equal to zero. In E@5) we
introduced the normal state conductance of the wire
=2e’NyD. At even smaller wave vectorsDg?/2A
<2C/me’Ngs<1, we get

_E dwdq
S= ZJ (277)2[(Cw

2
“"e +sXA|5A|2].

(36)

Here we have assuméi2e’Nys<1. This inequality is usu-

duration is7y. The amplitude of the fluctuating part of the
order parameter fieldlSA(x,7)| can be approximately ex-
pressed as follows:
|8A(X,7)| = A exp(—x2/2x5— 721275). (41)

The QPS phase dependence omnd = should satisfy
several requirements. In a short wire and outside the QPS
core the phase should not depend on the spatial coordinate
in the zero current bias limit. On top of that,>at0 andr
=0 the phase should flip in a way to provide the change of

ally well satisfied for sufficiently good metals, perhaps ex-the net phase difference across the wire hy Zor concrete-
cept for the case of some specially chosen substrates. Thess, let us present two different trial functions which obey
form of the action suggests the existence of the plasmehe above requirements. For instance, one may choose
modes which can propagate along the wire. These are the

so-called Mooij-Scho modes?® the velocity of which is
given by the equation

ToAS
CO: C .

B. QPS action
One can show that for very long wires the actio(86)

(37

yields a QPS solution described by a simple formula;
—arctang/cy7). The long time behavior of this so-
lution results in the logarithmic interaction between two

e(x,7)=
phase slipsX;,71) and X,,7):

o | (Xg=X)2+Ch( 71— 75)?
Sim=§|n 2 ; (39
where
oo sC (39
K™ 44 4m\?

o X
e T)= = 5 cosh T/To)tam(xo ta”KT/TO)) “
or
I-(XTO)
o(x,7)= —Etan o7’ (43)

Similar other trial functions can also be considered.
Substituting the trial function$41), (42) [or (41), (43)]
into the action(40) one arrives at the expression

C
S(Xo,To) a; 2+a25N0 +a3$N0DA—
e Xo
+ sheD 1 + NyA2 + C
ay A XO_T a5SNgA™Xp T aee 7'0
(44)

wherea; are numerical factors of order one which depend on
the precise form of the trial function&=CX is the total
capacitance of the wire, and is the wire length. Note that
fictitious divergences emerging from a singular behavior of

Here a=1/137 is the fine structure constant. In short wires,the functions(42), (43) at x=x, and 7= 7, are eliminated

however, the above logarithmic interacti@88) does not
play an important role and can be essentially neglected.

since the order parameter vanishes inside the QPS core.
Let us first disregard capacitive effects neglecting the last

Let us estimate the contribution of a single phase slip tderm in Eq.(44). Minimizing the remaining action with re-

the effective action. First we rewrite the acti¢db) in the
space-time domain dropping the unimportant teriDq2):

spect to the core parameteggand 7, and making use of the
inequality C/e*Nys<1, we obtain

014504-6
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asa, 1/4\F a,a,\ ¥4 1 to Egs.(41), (42), and(43) we have used several other trial
Xo= A T %\ mal A (45 QPS functions. In all cases we have obtaiedvithin the
295 395 interval A~0.8—2.5. In a way our method can be regarded as
These values provide the minimum for the QPS action, an@ variational procedure. Therefore, even though the exact
we find value of a numerical prefactéxin Eq. (47) cannot be estab-
lished within our approach, we do not expekto deviate
Sops=2(Vazas+ Vasas)Ngs\DA. (46)  substantially from the above values.
One can also express E6#6) in the form convenient for Qur last remark in this section concerns the role (_)f dissi-
further comparison with experiments: pation. From the form of the resu{#6) one could naively
assume that the correct QPS action could be guessed, e.g.,
Ry X from a simple TDGL-based approatbr, alternatively, only
Sops=A R E (47)  from the “condensation energy” term proportional §q,)

without taking into account dissipative and electromagnetic
HereA=2(Jaaz+ yasas)/ 7, Ris the total wire resistance, effects. Indeed, minimization of the contribution|sA|?
Rq=7rh/2e2=6.453 K is the resistance quantum, agd [the last three terms in Eq40)] is formally sufficient to
=+/D/A is the superconducting coherence length. arrive at the correct estima@,ps~ NosyDA. It is obvious,

As it was already pointed out, the resu(#b) and (46)  on the other hand, that not only the amplitude but also the
hold provided the capacitive effects are small. This is thephase fluctuations of the order parameter are important dur-
case for relatively short wires ing the QPS event. If the latter fluctuations are taken into
) accountwithoutincluding dissipative effecthis would cor-
e"Nos (48) respond to formally setting/— 0 in Eqg. (40)] the estimate

c - for the QPS actiorBgps~ 1 Would follow immediately. This
In the opposite limit the same minimization procedure of theLeSUIt would be pa_rametncally d|ﬁer¢nt .f“’”.” Eg6). Note,
action (44) yields however, that W|th|n20ur model the dissipative effects can be

ignored only forC/e“Nys=1. Usually the latter condition
o~ &, Arg~ \/mzN—OS>1_ (49) cannot be §atisfied for metallic systems, perhaps gxcept for
some specially chosen substrates. In the opposite—more

The QPS action again takes the for@7) with A realistic—limit C/e?Nys<1 dissipation plays a dominant
~ XC/ £€%Ngs. role during the phase slip event, and the correct QPS action

For the sake of clarity, let us summarize the approxima-cannotbe obtained without an adequate microscopic descrip-
tions performed in this section. As a first step, we expandedion of dissipative currents flowing inside the wire.
the action derived in Sec. Il up to the second order in
SA(X,7)=A(X,7)—A. Obviously this approximation is suf- IV. PRE-EXPONENT
ficient everywhere except inside the QPS core whigpe, 7) _ )
is small. In these space- and time-restricted regions one can The above results allow us to estimate the exponential
expand already in\(x,7) again arriving at Eq(27) with ~ Suppression of QPS in ultrathin superconducting wires de-
SA(x,7)— A(x,7) and with all they functions defined in the Pending on thickness, impurity concentration, and other pa-
Appendix with A=0. Both expansions match smoothly at Fameters. These results, however, are not yet sufficient to
the scale of the core sizey~ &, 7o~ 1/A. Hence, the ap- evaluate the whole QPS rate which has the form
proximation(27) is sufficient to obtain the correct QPS ac- _
tion, perhaps up to a numerical prefactor of order 1. Yqps™ B eXp(— Sop9- (50)

In order to simplify our analysis further, in E35 we  The task at hand is to provide a reliable estimate for the
expanded Eq(27) in powers ofw/A andDg?/A. Again this  pre-exponential factdB in Eq. (50). A general strategy to be
approximation is sufficient within the same accuracy. Indeedused for this purpose is well knowA.One can start, e.g.,
one can—even without performing this expansion—from the expression for the grand partition function of the
substitute the trial function@ll), (42) [or (41), (43)] directly  wire
into the action(32). If the capacitive effects are neglected
(48), the resulting QPS action can be represented as a func-
tion of the dimensionless parametetg/¢é and A7y only.
Making use of the general expressions for phdunctions
collected in the Appendix and minimizing the QPS action
with respect tax, and 7y one again arrives at the resgit7)

X<

Z=f DADg exp —9S) (51

and evaluate this path integral within the saddle point ap-
proximation. The least action paths

with A~1. I_f thg inequality(48) is violated, the accuracy of 5SI|6A|=0, &S5/6¢=0 (52)
our expansion in powers ab/A may only become better
[see Eq.(49)]. determine all possible QPS configurations. Integrating over

Finally, the particular choice of the trial functiofs.g., small fluctuations around all QPS trajectories one represents
Egs. (41) and (42)] describing the QPS event also appearsthe grand partition function in terms of infinite seri@ach
not to play any significant role as long as these trial functiongerm in such series corresponds to one particular QPS saddle
obey the general requirements formulated above. In additiopoint). Then—at least if interaction between different quan-
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tum phase slips is small and can be neglected—one can eabBhen we get
ily sum these series and represent the final result in the form

of the exponent 1
FSLOY]=5 2 Aty

Z=exp(—F/T), (53
where a formal expression for the free eneFgyeads 1
FsLaY]=5 2 Ndud?, (56
k=N+1
2
J DAY exp(— 6°S,[ 6Y]) where fork<N the Fourier coefficients, = 5z, are just the
F=Fo—T exp( — Sgp9 shifts of the instanton position along théh axis and\, are
jD&Y exp(— 8°S[ Y1) the eigenvalues 062S,[ 8Y]. Integrating over the Fourier
coefficients one obtains
Yaops
=Fo— ——. 54
° 2 4 f DY exp( — 62S,[ 5Y])
Here F, is the free energy without quantum phase slips,
5Y=(8A,8¢) denote the fluctuations of relevant coordi- fD5Y exp( — 6°S[ 6Y])
nates(fields), 5°S,  8Y] are the quadratic i@Y parts of the
action, and the subscripts “0” and “1” denote the action, L Ly detA,,
respectively, without and with one QPS. =J doéxy- - f déxy ,
0 0

The integrals over fluctuations in E¢p4) can be evalu-
ated exactly only in simple cases. Technically such a calcu-
lation can be quite complicated even if the saddle point tra- (57
jectories can be determined explicitly. In our case an
analytical expression for the QPS trajectory is not everwherel, is the system size in thkth dimension. The for-
known. Hence, an exact evaluation of the path integrals imula (57) is, of course, not at all new. It just represents the
Eq. (54) is not possible. standard ratio of determinants with excluded zero mé@es.

Below we will present a simple approach which allows toWe will argue now, that with a sufficient accuracy in the
establish the correct expression for the pre-expoBamp to  latter formula one can keep the contribution of only fixst
an unimportant numerical prefactor. Within our presenteigenvalues. Indeed, the contribution of the ‘“fast’eigen-
analysis any attempt to find an explicit value for such a prefmodes(corresponding to frequencies and wave vectors much
actor would make little sense simply because the numericdhrger than the inverse instanton size in the corresponding
value of A in Eq. (47) is not known exactly. Also for other dimension is insensitive to the presence of an instanton.
problems numerical prefactors in the pre-exponent are ustHence, the corresponding eigenvalues are the same for both
ally of little interest. Therefore we believe that our approachs?S, and 6S,; and just cancel out from E@57). In addition
may be useful for various other situations because it allowso the fast modes there are several eigenmodes with frequen-
to establish the correct functional form of the pre-exponenties (wave vectors of order of the inverse instanton size.
practically without any calculation. If needed, with a little The ratio between the product of all such modes 468,
extra effort our method may also allow to approximately and the product of eigenvalues f6tS, with the same num-
evaluate a numerical coefficient in the pre-exponent. bers is dimensionless and may only affect a numerical pref-

In order to calculate the ratio of the path integrals in Eqg.actor which is not interesting for us here. Dropping the con-
(54) let us introduce the basis in the functional spdcgz) tribution of all such eigenvalues one gets
in which the second variation of the action around the instan-
ton 6°S,[ 8Y] is diagonal. Here the basis functions depend
on a general vector coordinatevhich is simplyz=(7,x) in
our case. The firsN functions¥, are the so-called “zero
modes” related to the invariance of the instanton action un- f DSY exp( — §°Sy[ 8Y])
der arbitrary shifts in certain directions in the functional

space(in our case, shifts of the QPS position along the wire L, Ly detAy | nen
and in imaginary time, i.eN=2). Let us denote an instan- f«f doéxq- - f doxy Z—N\
ton solution a¥(z). Then the zero mode eigenfunctions are 0 0 (2m)

expressed as follows¥  (X) = 4Y/dz,, wherek<N and the (58
number of zero modeX coincides with the dimension of the \ynat remains is to estimate the parametégg for k<N.

vectorz An arbitrary fluctuationsY(z) can be represented Eo; this purpose let us observe that the second variation of

o IT A
k=N+1

J DSY exp(— 6°S,[6Y])

in terms of the Fourier expansion the action becomes approximately equal to the instanton ac-
N Ny - tion, 62S; = 3 Azg~ Saps, When the shift in théth direc-
tion becomes equal to the instanton size in the same direction
oY(z)= oz + U (2). 55 :
2 g’l Koz, kW1 K (2) 59 0z,=12q,. Then we fmdAkkaSQpS/zék and
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N (ZSQPS)N Later it was realizett that this divergence is artificial.
detAypl nen= 1T Av=~ et (59 Performing a simple one-loop perturbative calculattamne
k=1 H 72 arrives exactly at the same high frequency divergence as in
ep oK the result® It implies that this divergence has nothing to do

. . . with tunneling, and it is regularized by means of a proper
Finally, combining Eqs(50), (54), (58), and(59) we obtain  renormalization of the bare parameters in the effective ac-
N N/2 tion. After that the high frequency contribution to the pre-
B=bT( I1 ﬂ)(SQ;PS) _ (60)  exponent is eliminated and one fifBoc 1/\/7. [Note a
k=1 Zok/\ T misprint in the power ofy in Eq. (8) of Ref. 31] This ex-

: : . , pression does not contain the particle masat all. It also
Here b is an unimportant numerical prefactor. This result . .
allowed to fully resolve a discrepancy with the

demonstrates that the functional dependence of the pre-

) . , experiments2 Note that the result can also be expressed in
exponent can be determined practically without any calcula:

tion. It is sufficient to know just the instanton action, thethe form B~ /Sy/ 7o, whereS, 7 i the instantor(bounce

number of the zero modds and the instanton effective size action andro= 7 i.S its_typical size. As we have already ar-
2o, for each of these modes gued, the result in this form can be guessed from (&@)
O .

without any calculation[For this particular problem our ap-

Let us also note that a similar observation has alread)éroaCh allows one o even reproduce an exact numerical
been mad® for some local Lagrangians equal to the sum OfBrefactor] P

kinetic and potential energies. Here we have shown that th The last le is th bl f Coulomb blockade i
result (60) holds for arbitrary effective actions, including € last example IS the problem ot &-oulomb blockade in
6|ormal tunnel junctions in the strong tunneling limit. This

nonlocal ones. Hence, this result can be directly applied t L . . i
our problem of quantum phase slips in thin superconductin roblem. was treated W't.h'n the instanton technique in Ref‘
wires. In this case we have,=1/T, L,=X and Eq.(60) 3. In this problem each instanton has two zero modes which
yields correspond to its shifts in time and fluct_uatl_ons of its fre-
quency{). The value of the instanton action is well known
SopeX and the parameteiz,; and zy, for both zero modes can be
~ (61)  evaluated directly by means of the approach presented
above. Each of these parameters is found to depend on one
This equation provides an accurate expression for the presf the zero mode$). However, the producty,zy, turns out
exponentd up to a numerical factor of order 1. As we have to be an()-independent constant. Making use of this fact and
already discussed, such an accuracy is sufficient for our puintegrating over the zero mode coordinates in E&f), we
poses. We also note that the res(6fl) is parametrically arrive at the functional form of the pre-exponent derived in
different from previous results obtained within a TDGL type Eq. (10) of Ref. 33 by means of an explicit calculation of the
of analysi¢® or suggested phenomenologically in Ref. 8.  fluctuation determinants, see also Ref. 22. The above ex-
Finally, it is worth mentioning that we have also com- amples demonstrate that our approach allows to easily derive
pared our Eq(60) with the exact results previously obtained the functional form of the pre-exponent in a variety of prob-
for various other problems by means of different approachedems, including those where technically involved calcula-
Here we will briefly discuss three different examples for thetions appear to be inevitable otherwise.
sake of illustration. The first example is the problem of a
guantum particle in a cosine periodic potential. In this case
an explicit expression for the interwell tunneling rate is well
known. If we apply our method and evaluate owly;, we Now let us compare our results with experimental find-
will obtain the tunneling rate which is-40% smaller than ings. Recently Bezryadin, Lau, and TinkhZmeported clear
the exact result. If we also evalua#g, and\, and include experimental evidence for the existence of quantum phase
their ratio into our formula, the result for the tunneling rate slips in ultrathin(with diameters down to 3 njrand uniform
will be only 10% smaller as compared to the exact one. Thisn thickness superconducting wires. Three out of eight
example demonstrates that also a sufficient numerical accsamples studied in the experimefitshowed no sign of su-
racy in the pre-exponent can be achieved without a compliperconductivity even well below the bulk critical tempera-
cated calculation of the ratio of the determinants. ture T . Furthermore, in the low temperature limit the resis-
Two other examples concern the systems with nonlocal ifance of these samples was found to show a slight upturn
time Lagrangians. Consider, e.g., the problem of quantumvith decreasingl. In view of that one can conjecture that
decay of a particle in the presence of dissipafidin the  these samples may actually become insulatin§-at0. The
limit of strong dissipation this problem was treated by Larkinresistance of other five sampf@slecreased with decreasing
and Ovchinniko¥® who found the exact eigenvalues and, T. Also for these five samples no clear superconducting
evaluating the ratio of the determinants, obtained the prefaghase transition was observed.
tor in expression for the decay raBec »”2/m?, where 7 is All three nonsuperconducting wire$l(, i2, andi3) had
an effective friction constant and is the particle mass. This the normal state resistance below the quantumRpitwhile
result would imply that the pre-exponential factor in the de-the normal state resistance of the remaining five “supercon-
cay raté® should be very large and may even diverge if oneducting” samples was larger thaR, . This observation al-
formally setsm— 0. lowed the authorf8 to suggest that a dramatic difference in

B

ToXo

V. COMPARISON WITH EXPERIMENT
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TABLE I. quantum phase slips should in principle be important also for
“superconducting” wires® Then one can indeed relate the
Sample  R/d, kQ/nm S tola=1,S€C tola=2,S€C  pehavior of these samples to DBTas a result of which

i1 0.122 78 1011 10°8 quantum phase slips are bound in pairs and, hence, quantum
i2 0.110 8.7 1011 10-8 fluctuations are strongly suppressed.

i3 0.079 12.7 10° 104 If, however, one chooseA=2 the QPS time for the

sl 0.038 251 10% 106 samples ;1-552 tu_rns out to be very long, much Ionger_than
2 0.028 33.7 1 1% the experimental time. Then the QPS effects should be irrel-
s3 0.039 22.6 105 10° evant, and one would expect these samples to show a super-
ssl 0.054 15.4 107 10-t conducting behavior, perhaps with the renormalized critical
s 0.044 19.6 106 1P temperaturé® This conclusion would also be consistent with

the experimental observatioffs.

Finally, let us note that all the above estimates are per-
formed in the limitT=0. This is correct if temperature is
considerably belowT.. Otherwise the expression for the
QPS actionSgps needs to be modified.

the behavior of these two group of sampletherwise hav-
ing similar parametejscan be due to the dissipative phase

transition(DPT) (Refs. 15,21,2Panalogous to that observed > . . .
earlier in Josephson junctiof. In conclusion, we have developed a detailed microscopic

Without going into details here, let us just point out thattN€ory of quantum phase slips in ultrathin homogeneous su-
DPT can be observed only provided quantum phase slips a,@erconduc.tlng wires. We have Qerlved the effective QPS re_lte
easily created inside the wire. The results fgpsderived in for such wires and evaluated this rate for the systems studied
the present paper allow us to estimate a typical average timig recent experiment. Our results are fully consistent with
within which one QPS event occurs in the sample. Makingthe experimental finding8 which provide perhaps the first
use of Eqs(47), (50), and(61) we performed an estimate of unambiguous evidence for QPS in mesoscopic metallic
such a timety= 1/yqps for all eight samples studied in Ref. wires.

20. In this experiment the samples were fabricated from
Mo,¢Ge,; alloy. For our estimates we will use the value of

the density of statesly=1.86x 10" sec/n? for clean Mo, APPENDIX
which can be extracted from the specific heat data. The re-
sistivity of the material was measured to pe1.8 u€)/m, Let us collect some rigorous expressions for the “suscep-

the superconducting critical temperaturelis=5.5 K. With  pilities” ye, v,, ., andxa. In Ref. 16 these quantities

these numbers we obtain the coherence ledgHY nm in  4y6 peen related to the so-called polarization bublyes,
agreement with the estimateThe results foty are summa- ho. In the interesting for us diffusive limitl/yp<1

ng.igr;;a?;giéérg%gitii;fg is defined by Eq(47) with these polarization bubbles are defined by the equdfions

¢ fo=T> f d (F(o+w,,q+K)F(0, k)
_ = WTw,, @, , i
tO_XAS,A expAS). 0 < (277)3 q dis
is very sensitive to the particular value of the factothere- A2
fore here we present two estimates corresponding al =N T (A1)

y ' 2\’
andA=2. o, WW (W+W’'+Dq?)

In spite of remaining uncertainty in the prefactors some
important conclusions can be drawn already from the above

estimates. For instance, we observe that for bpthl and d3k

A=2 the QPS rateygps= 1/t, is very high(as compared, go=T§ f (277)3<G(“’+“’V’Q+k)G(“’V'k)>dis
e.g., to the typical experimental time scalel seg in the !

“insulating” wires i1, i2, andi3. This fact is fully consis- WW — w(o+o,)

tent with the observatioA$ numerous quantum phase slips =—Ng+ WNOTE -, (A2)
occurring in these wires completely destroy the phase coher- w, WW (W+W’+Dg?)

ence and, hence, superconductivity is washed out. Thus, non-
superconducting behavior of these three samples should be
due to quantum phase slips. d3k

On the other hand, the QPS rate is notably lower for all h0=T2

(G(o+w,,q+K)G(w,,k))gs

3
the “superconducting” wire€® Possible interpretation of the oy J(2m)
experimental results for the samplesl—ss2 depends
strongly on the value oA. For example, foA=1 the QPS = —7NyTY, WW + o(oto,) _ (A3)
rate is high enough practically in all samples. In this case @, WW (W+W'+Dg?)
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In these equations we use the notations Let us start from the functioyg defined as
W=Vol+A2, W=\(0,+0)?+A2 (A4 2¢’
“r (e, + w) (Ad) xe=——5 (fot o). (A5)
w,=7T(2v+1) andow=27Tn, wherev andn are arbitrary q

integers, and - - - )4is implies disorder averaging. At T=0 we find

’

ot [~ 124+ V(17— 1)+ 4t%(1+%7)
A ZWJO < V(2= 1)2+ 412 (1+x2) (1+ 2+ (12— 1) 2+ 4% (1+x3)) | =0
o1 m In(y+\y*-1)
XeT) Z(E‘F—Zy@_—l
ol 1l T 1 1-y
\K(E—EJrﬁarctar( Ty
Here and below we set=w/2A andy=Dg?/2A. In the limit |w|>2A we obtain

, x=0, y>1, (AB)

), x=0, y<l.

(o
o= — (A7)
o]+ De?
At small » andq we get
_71'0'131»28Dq2 A8
Xe=ga|'"8l2a) "3 2a ) (A8)
It is also possible to evaluatg- at w=0, q=0, and arbitraryr:
0.0= 7O A A 9
xe(0,0= o+ tanhﬁ‘ﬁ (A9)
coshz—_l_
For A<T we find
oo A?
Xe(00= - (A10)
In this limit also a more general expression for arbitraryandq can be obtained:
B o N 40A%Dg?
Y ol +Dq? (w?-D%g"?
1 |w|+Dg? 1\] 20A%(0?+D%gY)[ (1 ol 1 oA? 1 o
XV z+———| V|5 |- —+— |-V ||+t — V| =+ —],
2 47T 2 |w|(w?—D?q*)? 2 2@T 2 27T(w?—D%q%) 2 2@T
(A11)
whereW (x) is the digamma function.
The remainingy functions are evaluated analogously. Consider the function
x,=4€f,. (A12)

After straightforward algebra we obtain
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4 o In(|x| +V1+x?) 0
e“N , y=0,
O ox|VI+ 2|x|V1+x2 y
a  In(y+y?
;=4 4e’N, y )) x=0, y>1, (A13)
4y 2y\y?
46°N,| — ! tr(x/l_y) 0, y<1
e°Ng| — — ———= arcta — |, x=0, y<Ll
Ly Ty Lty
In the limit of low frequencies and wave vectors one has
5 2/ w\? wDq
x0=2eNo 13|58 ~ 7 25 | (AL
At w=0, q=0 and for arbitraryT we get
2e2N,, T<A,
1
=2me?NoA’TY, —5———=1 74(3) €®NoA?
x3=2me"NpA Tz (w2+A2)3/2 2§( 2) Tc; C TeA, (A15)
a

where(3)=1.202. In the limitT>A andw# 0 we find

8N’ e RE L M E =T
= [ b o BB MER = G e

We proceed further with the function

8m2A2| 1 2
First we consider the limiT=0 and find
( 1
Am?AND—— f , y=0,
J— nrratiand )
XL= 1 4m2ANOD\/7_In(y+x/ 1), x=0, y>1, (A18)
y
Am2ANGD— VY] =0 1
k m 0 \/1__y2arcta m , Xx=0, y<1.
At low frequencies and wave vectors the above expressions yield
_ 2mNgDmea] 15[ | - 2 Be A19
= 2mNDmAIL=Z 158 "7 A (A19)
For high temperatures>A we obtain
_ 4AmPoA? wlt || Ly 1 5w 1 |w|+Dg? v 1 720
ey I RAPRE = J R Pl e E AP A= o B PIU (A20)

In the limit of zero frequency and wave vectgys reduces to a very simple form
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mm?aA?
= (A21)
Finally, let us evaluate the function
1
We obtain
( 2
Vv1+x
2NOTIn(|x|+\/1+x2), y=0,
T y-—1 5
xa=1{ 2Np 2—y+ y In(y++vy-—1)|, x=0, y>1, (A23)
m 2yJ1-y? 1-y
2N0(—— t r( —], x=0, y<Ll
| 2y 1+y
|
In the limit of high frequencie$w|>A one finds In the high-temperature limit>A we find
|w|+Dg? 2
xa=2NgIn————. (A24) _ T . (1 le[+Dg% /1
At low frequencies and wave vectors we derive (A26)
PN 1+} o 2+ m Dg? (A25) The above expressions are sufficient to evaluate the QPS
XA 0 3\2A 4 2A | action practically in all interesting limiting cases.
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