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Quantum tunneling of the order parameter in superconducting nanowires
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Quantum tunneling of the superconducting order parameter gives rise to the phase slippage process which
controls the resistance of ultrathin superconducting wires at sufficiently low temperatures. If the quantum phase
slip rate is high, superconductivity is completely destroyed by quantum fluctuations and the wire resistance
never decreases below its normal state value. We present a detailed microscopic theory of quantum phase slips
in homogeneous superconducting nanowires. Focusing our attention on relatively short wires we evaluate the
quantum tunneling rate for phase slips, both the quasiclassical exponent and the pre-exponential factor. In very
thin and dirty metallic wires the effect is shown to be clearly observable even atT→0. Our results are fully
consistent with recent experimental findings@A. Bezryadin, C.N. Lau, and M. Tinkham, Nature~London! 404,
971 ~2000!# which provide direct evidence for the effect of quantum phase slips.
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I. INTRODUCTION

It is well established that superconducting fluctuatio
play a very important role in reduced dimension. Above
critical temperatureTC such fluctuations yield an enhance
conductivity.1 Below TC fluctuations are known to destro
the long-range order in low-dimensional superconducto2

Does the latter result mean that the resistance of such su
conductors always remains finite~or even infinite!, or can it
drop to zero under certain conditions?

It was first pointed out by Little3 that quasi-one-
dimensional wires made of a superconducting material
acquire a finite resistance belowTC of a bulk material due to
the mechanism of thermally activated phase slips~TAPS!.
This TAPS process corresponds to local destruction of su
conductivity by thermal fluctuations. Superconducting ph
w(t) can flip by 2p across those points of the wire where t
order parameter is~temporarily! destroyed. According to the
Josephson relationV5ẇ/2e ~here and below we set\51)
such phase slips cause a nonzero voltage drop and, h
dissipative currents inside the wire. A theory of this TAP
phenomenon was developed in Refs. 4,5. This theory yie
a natural result, that the TAPS probability and, hence, re
tance of a superconducting wireR below TC are determined
by the activation exponent

R~T!}exp~2U/T!, U;
N0D2~T!

2
sj~T!, ~1!

whereU(T) is the effective potential barrier for TAPS de
termined simply as the superconducting condensation en
@N0 is the metallic density of states at the Fermi energy a
D(T) is the BCS order parameter# for a part of the wire of a
volumesj where superconductivity is destroyed by therm
fluctuations@s is the wire cross section andj(T) is the su-
perconducting coherence length#. At temperatures very clos
to TC Eq. ~1! yields appreciable resistivity which was indee
detected experimentally.6 Close to TC the experimental
results6 fully confirm the activation behavior ofR(T) pre-
dicted in Eq.~1!. However, as the temperature is lower
0163-1829/2001/64~1!/014504~14!/$20.00 64 0145
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further belowTC the number of TAPS decreases expone
tially and no measurable wire resistance is predicted by
theory4,5 except in the immediate vicinity of the critica
temperature.

Experiments6 were done on small diameter whiskers a
thin film samples of typical diameters;5000 Å. Recent
progress in nanolithographic technique allowed to fabric
samples with much smaller diameters down to;10 nm. In
such systems one can consider a possibility for phase slip
be created not only due to thermal but also due toquantum
fluctuations of a superconducting order parameter. Mooij a
co-workers7 discussed this possibility and attempted to o
serve quantum phase slips~QPS! experimentally.

Later Giordano8 performed experiments which clearl
demonstrated a notable resistivity of ultrathin supercondu
ing wires far belowTC . Their observations could not b
adequately interpreted within the TAPS theory and were
tributed to QPS. Other groups also reported noticeable de
tions from the TAPS prediction in thin~quasi-!one-
dimensional~1D! wires.9,10

First theoretical studies of the QPS effects11–13 were per-
formed within a simple approach based on the tim
dependent Ginzburg-Landau~TDGL! equations. Later in
Refs. 14,15 a microscopic theory of QPS processes was
veloped with the aid of the imaginary time effective actio
technique16 which properly accounts for nonequilibrium, dis
sipative and electromagnetic effects during a QPS event.
of the main conclusions reached in Refs. 14,15 is that
QPS probability is considerably larger than it was predic
previously.12 For ultrathin superconducting wires with suffi
ciently many impurities and with diameters in the 10 n
range this probability can already be large enough to yi
experimentally observable phenomena. Also, further inter
ing effects including quantum phase transitions caused
interactions between quantum phase slips w
discussed.14,15

In spite of all these developments an unambiguous in
pretation of the results8 in terms of QPS could still be ques
tioned because of possible granularity of the samples use
these experiments. If that was indeed the case, QPS c
©2001 The American Physical Society04-1
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DMITRI S. GOLUBEV AND ANDREI D. ZAIKIN PHYSICAL REVIEW B 64 014504
easily be created inside weak links connecting neighbo
grains. Also in this case superconducting fluctuations pla
very important role,17–19 however, in contrast to the QP
scenario,14,15 the superconducting order parameterneeds not
to be destroyedduring the QPS event.

Recently, Bezryadin, Lau, and Tinkham20 developed a
new technology which allowed them to fabricate essentia
uniform superconducting wires with thicknesses down
3–5 nm. According to our theory14,15 the QPS effects should
be sufficiently large in such systems to be observed in
periments. And indeed, the authors20 observed that severa
wires showed no sign of superconductivity even at tempe
tures well below the bulk critical temperature. Moreover,
lower temperatures their resistance was found toincrease
with decreasing temperature, i.e., these samples could
turn insulating atT→0. The authors20 also argued that thei
experimental data can be interpreted in terms of a quan
dissipative phase transition21,22 which was predicted15 also
for ultrathin superconducting wires in a certain parame
range.

The results20 are qualitatively consistent with previous e
perimental findings.8 Both experimental works support ou
general understanding of the role of QPS processes in m
scopic superconducting wires and call for more detailed t
oretical studies of the QPS effects. In Refs. 14,15 an imp
tance of collective modes23 and QPS interaction effects wa
mainly emphasized. These are particularly important for lo
wires. On the other hand, for relatively short wires intera
tion between different phase slips—at least its spatially
pendent part—should not play any significant role. Let
now recall that the wires studied in the experiments20 are not
only considerably thinner but also muchshorter than those
investigated by Giordano.8 To give some numbers, the leng
of the wires8 was typically 40–50mm whereas the wires20

were only 0.1–0.2mm long. At the same time, the superco
ducting coherence length in the experiments20 was even
shorter,j;7 – 8 nm, i.e., such samples can still be cons
ered as quasi-1D superconductors.

Motivated by the experimental findings,20 in this paper we
will present a detailed microscopic investigation of sing
quantum phase slips. We will focus our attention on an
curate evaluation of the QPS tunneling rate rather than on
interaction effects between different phase slips.14,15We will
go beyond the exponential accuracy and also evaluate a
exponential function in the expression for the QPS rate.
will then use our results for a direct quantitative comparis
with the experimental results.20

The structure of the paper is as follows. In Sec. II we w
formulate a simple derivation of the effective action for o
problem with an emphasis put on the Ward identities. In S
III we will make use of our general results and derive t
action for a special case of ultrathin superconducting wir
We also evaluate the QPS rate within the exponential ac
racy. Section IV is devoted to an estimate of the p
exponent for this rate. Comparison with experiments a
brief conclusions are presented in Sec. V. Some further te
nical details are diverted to the Appendix.
01450
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II. THE MODEL AND EFFECTIVE ACTION

The starting point for our analysis is a model Hamiltoni
that includes a short range attractive BCS and a long ra
repulsive Coulomb interaction. The idea is to integrate
the electronic degrees of freedom on the level of the partit
function, so that we are left with an effective theory in term
of collective fields.22,24,25The partition functionZ is conve-
niently expressed as a path integral over the anticommu
electronic fieldsc̄, c and the commuting gauge fieldsV and
A, with Euclidean action

S5E dxH c̄sF]t2 ieV1jS“2
ie

c
AD Gcs

2lc̄↑c̄↓c↓c↑1 ienV1@E21B2#/8pJ . ~2!

Herej(“)[2“

2/2m2m1U(x) describes a single conduc
tion band with quadratic dispersion and also includes an
bitrary impurity potential,l is the BCS coupling constant
s5↑,↓ is the spin index, anden denotes the backgroun
charge density of the ions. In our notationdx denotesd3xdt
and we use units in which\ and kB are set equal to unity
The field strengths are functions of the gauge fields thro
E52“V1(1/c)]tA andB5“3A in the usual way for the
imaginary time formulation.

We use a Hubbard-Stratonovich transformation to
couple the BCS interaction term and to introduce the sup
conducting order parameter fieldD̃5Deiw

expS lE dxc̄↑c̄↓c↓c↑ D
5F E D 2D̃e21/l*dxD2G21

3E D 2D̃e2*dx[(1/l)D21D̃c̄↑c̄↓1D̃* c↓c↑] , ~3!

where the first factor is for normalization and will not b
important in the following. As a result, the partition functio
now reads

Z5E D 2D̃E D 3AE DVD 2Ce(2S02E dxC̄G 21C),

S0@V,A,D#5E dxS E21B2

8p
1 ienV1

D2

l D , ~4!

where the Nambu spinor notation for the electronic fields a
the matrix Green function in Nambu space

C5S c↑

c̄↓
D , C̄5~ c̄↑ c↓!,

G̃21

5S ]t2 ieV1jS“2
ie

c
AD D̃

D̃* ]t1 ieV2jS“1
ie

c
AD D .
~5!
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has been introduced. After the Gaussian integral over
electronic degrees of freedom, we are left with the final
fective action

Seff52Tr ln G̃211S0@V,A,D#. ~6!

Here the trace Tr denotes both a matrix trace in Nambu sp
and a trace over internal coordinates or momenta and
quencies. In the following ‘‘tr’’ is used to denote a trace ov
internal coordinates only.

The gauge invariance of the theory enables us to rew
the action~6! in a different form, which is more convenien
for us,

Seff52Tr ln G 211S0@V,A,D#, ~7!

where

G 215S ]t1j~¹!2 ieF1
mvs

2

2
2

i

2
$¹,vs% D

D ]t2j~¹!1 ieF2
mvs

2

2
2

i

2
$¹,vs%

D , ~8!

and we have introduced the gauge invariant linear comb
tions of the electromagnetic potentials and the phase of
order parameter

F5V2
ẇ

2e
, vs5

1

2m S ¹w2
2e

c
AD . ~9!

The curly brackets$A,B% denote an anticommutator.

A. Perturbation theory

The action~7! cannot be evaluated exactly. Here we w
perform a perturbative expansion inF andvs . We will keep
the terms up to the second order in these values. This pe
bation theory is sufficient for nearly all practical purpose
because nonlinear electromagnetic effects~described by
higher order terms! are known to be usually very small in th
systems in question. Our general derivation holds for an
bitrary concentration and distribution of impurities as well
for arbitrary fluctuations of the order parameter field in spa
and time.

We split the inverse Green function~8! into two parts

G 0
215S ]t1j~¹! D

D ]t2j~¹!
D ~10!

and

G 1
21

5S 2 ieF1
mvs

2

2
2

i

2
$¹,vs% 0

0 ieF2
mvs

2

2
2

i

2
$¹,vs%

D .

~11!
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The logarithm in Eq.~7! can now be expanded in powers
G 1

21 and we get

Tr ln G 215Tr ln G 0
211Tr~G0G 1

21!2
1

2
Tr~G0G 1

21!2.

~12!

The Green functionG0 has the form

G05S G F

F Ḡ
D . ~13!

In Eq. ~13! we used the fact that the non-diagonal compon
D in the matrix G 0

21 is real. As a result we haveF̄5F,

F(x1 ,x2)5F(x2 ,x1), andḠ(x1 ,x2)52G(x2 ,x1).

B. Ward identities

The Green functionG0 satisfies an important identity
which is easy to check:

G 0
21x2xG 0

215
]x

]t
2H ¹,

¹x

2mJ s3 , ~14!

wherex is an arbitrary function of time and space, ands3 is
one of the Pauli matrices. Multiplying this matrix identity b
G from the left and from the right side and taking the dia
onal components of the resulting matrix equation we get t
identities

xG2Gx5GS ẋ2H ¹,
¹x

2mJ DG1FS ẋ1H ¹,
¹x

2mJ DF,

xḠ2Ḡx5FS ẋ2H ¹,
¹x

2mJ DF1ḠS ẋ1H ¹,
¹x

2mJ D Ḡ.

~15!

Below we will use these identities in order to decouple t
effective action of the BCS superconductor and to reduc
to a transparent and convenient form. It is important to e
phasize again that these identities are valid for any impu
distribution and for any time and spatial dependence of
order parameter field. It is also worth mentioning that t
Ward identity~14! is not the result of the gauge invariance o
the theory. It remains valid even for uncharged particles.

The Ward identity related to the gauge invariance of o
theory has a different form

G 0
21s3x2xs3G 0

215
]x

]t
s32H ¹,

¹x

2mJ 22is2Dx.

~16!

We will use this identity to transform the first order corre
tion to the action. It is interesting, that in the absence
superconductivity the identities~14! and ~16! are equivalent
because the inverse Green function commutes withs3 in this
case. For superconductors, however, these two identities
different.
4-3
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C. First order

The first order correction to the effective action is

S152Tr~G0G 1
21!

52trF S mvs
2

2
2 ieF D ~G2Ḡ!2

i

2
$¹,vs%~G1Ḡ!G .

~17!

With the aid of the Ward identity~16! it is easy to show tha
the phase of the order parameter drops out from the
order terms in the electromagnetic fields. The actionS1 can
therefore be rewritten as

S152tr~mvs
2G!2E dxS iene@D#V1

1

c
je@D#AD . ~18!

We note that in general the electron densityne@D# and the
current densityje@D# explicitly depend on the absolute valu
of the order parameter.

D. Second order

It is convenient to introduce the following notations:

u̇52eF, L5$¹,vs%. ~19!

In terms of these new variables the second order correc
to the action reads

S25
1

2
Tr~G0G 1

21!2

52
1

8
tr@Gu̇Gu̇1Ḡu̇Ḡu̇22F u̇F u̇1GLGL

1ḠLḠL12FLFL12Gu̇GL22Ḡu̇ḠL#. ~20!

Here we used the properties of the Green function~13!. The
form ~20! of the second order correction is not quite conv
nient, because it contains theu̇L terms. In order to separateu̇
andL we use the Ward identities~15!. We write

Gu̇G5uG2Gu1GH ¹,
¹u

2mJ G2FS u̇1H ¹,
¹u

2mJ DF,

Ḡu̇Ḡ5uḠ2Ḡu1ḠH ¹,
¹u

2mJ Ḡ2FS u̇2H ¹,
¹u

2mJ DF.

Inserting these expressions into Eq.~20! after some simple
transformations we rewrite the second order contribution
follows:

S252tr~G~vs¹u!!2
1

8
@GKGK1ḠKḠK

2GMGM1ḠMḠM2Gu̇Gu̇2Ḡu̇Ḡu̇

22FKFK22F u̇F u̇12FMFM14FLFL#. ~21!

Here we have introduced
01450
st

n

-

s

K5$¹,u%, M5H ¹,
¹u

2mJ ,

u5
¹u

2m
1vs5

e

m S E
2`

t

dt8@¹V~t8!#2
1

c
AD .

The valuesu̇ and vs are now almost decoupled. The term
containing both these values were transformed into the te
containing the linear combination of these valuesu which
does not depend on the phase of the order parameter fi
The action~21! can be simplified further. We rewrite the firs
term of Eq.~21! as follows:

2tr@G~vs¹u!#5trF S mvs
21

~¹u!2

4m
2mu2DGG .

Again we decoupleu and vs. Making use of the identities
~15! yet a couple of times we arrive at the final express
for the second order contribution to the effective action

S25tr~mvs
2G!2tr~mu2G!2

1

4
tr~G$¹,u%G$¹,u%!

1
1

4
tr~F$¹,u%F$¹,u%!1

1

2
tr~F u̇F u̇ !

2
1

2
tr~F$¹,vs%F$¹,vs%!. ~22!

E. Resulting action

Combining all contributions, we get the final result16

S5Ss@D,F,vs#1SN@D,V,A#1Sem@E,B#, ~23!

where

Ss5E dxS D2

l D2Tr ln G 0
21@D#1Tr ln G 0

21@D50#

1
1

2
tr~F u̇F u̇ !2

1

2
tr~F$¹,vs%F$¹,vs%!, ~24!

SN5E dxS 2 ie~ne@D#2n!V2
1

c
je@D#A1

mu2

2
ne@D# D

2
1

4
tr~G$¹,u%G$¹,u%!1

1

4
tr~F$¹,u%F$¹,u%!, ~25!

Sem5E dx
E21B2

8p
. ~26!

III. EFFECTIVE ACTION FOR ULTRA-THIN WIRES

A. Averaging over the electromagnetic field

The above expressions are complicated and in genera
hardly be evaluated in a closed form. In this section we w
focus our attention specifically on the case of quasi-o
dimensional superconducting wires and calculate the ef
4-4
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tive action performing several approximations. We will a
gue that our procedure allows us to evaluate the QPS ac
up to a numerical prefactor of order one.

If one assumes that deviations of the amplitude of
order parameter field from its equilibrium value are re
tively small, the above effective action can be significan
simplified. We expand the general effective action~23! in
powers ofdD(x,t)5D(x,t)2D ~hereD[DBCS) up to the
second order terms. The next step is to average over
random potential of impurities.16 After that the effective ac-
tion becomes translationally invariant both in space and
time. Performing the Fourier transformation we obtain

S5
s

2E dvdq

~2p!2 H uAu2

Ls
1

CuVu2

s
1xEuqV1

v

c
Au2

1xJUV1
iv

2e
wU2

1
xL

4m2 U iqw2
2e

c
AU2

1xAudDu2J .

~27!
:

or
p

01450
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Here L and C are, respectively, the inductance times u
length and the capacitance per unit length of the wire. T
functionsxE , xJ , xL , andxA , which depend both on the
frequencies and the wave vectors, are expressed in term
the averaged products of the Green functions appearin
the Eqs.~24!, ~25! ~see Ref. 16 for more details!. These
functions can be evaluated analytically for most limitin
cases. For the sake of completeness some explicit exp
sions are presented in the Appendix.

The voltageV and the vector potentialA enter the action
in a quadratic form and, hence, can be integrated out exa
After that the effective action will only depend onw anddD.
We find

S5
1

2E dvdq

~2p!2
$F~v,q!uwu21xAudDu2%, ~28!

where
F~v,q!5

S xJ

4e2
v21

xL

4m2
q2D S C

sL
1xEFCv21

q2

L G D1
xJxL

4m2 FCv21
q2

L G
S C

s
1xJ1xEq2D S 1

sL
1xEv21

e2

m2
xLD 2xE

2v2q2

. ~29!
ob-
The electromagnetic potentials are expressed as follows

V5

xJS 1

sL
1xEv21

e2

m2
xLD 1

e2

m2
xExLq2

S C

s
1xJ1xEq2D S 1

sL
1xEv21

e2

m2
xLD 2xE

2v2q2

3S 2 iv

2e
w D , ~30!

A5

e2

m2
xLS C

s
1xJ1xEq2D1xExJv

2

S C

s
1xJ1xEq2D S 1

sL
1xEv21

e2

m2
xLD 2xE

2v2q2

3S icq

2e
w D . ~31!

In most of the situations the wire inductance is not imp
tant and can be neglected. Therefore here and below we
L50. Then we get
-
ut

S5
s

2E dvdq

~2p!2

35 S xJ

4e2
v21

xL

4m2
q2D S C

s
1xEq2D1

xJxL

4m2
q2

C

s
1xJ1xEq2

3uwu21xAudDu26 ~32!

and

V5
xJ

C

s
1xJ1xEq2

S 2 iv

2e
w D , ~33!

A50. ~34!

Let us note that the Josephson relationV5ẇ/2e is in general
not satisfied. According to Eq.~33! this relation may ap-
proximately hold only in the limitxJ@C/s1xEq2. Making
use of the results presented in the Appendix one easily
4-5
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serves that in a practically important limit of small elas
mean free pathsl the latter condition is obeyed only at low
frequencies and wave vectorsv/D!1 and Dq2/D!1,
whereD5vFl /3 is the diffusion constant.

Let us now perform yet one more approximation and
pand the action in powers ofv andq2. Keeping the terms of
the orderq4 andv2q2 we find

S5
s

2E dvdq

~2p!2 H S C

s
v21psDq21

p2

8
sDq41

ps

8D
v2q2D

3U w

2eU
2

12N0S 11
v2

12D2
1

pDq2

8D D udDu2J . ~35!

The term}v4 turns out to be equal to zero. In Eq.~35! we
introduced the normal state conductance of the wires
52e2N0D. At even smaller wave vectorsDq2/2D
!2C/pe2N0s!1, we get

S5
1

2E dvdq

~2p!2 H ~Cv21psDsq2!U w

2eU
2

1sxAudDu2J .

~36!

Here we have assumedC/2e2N0s!1. This inequality is usu-
ally well satisfied for sufficiently good metals, perhaps e
cept for the case of some specially chosen substrates.
form of the action suggests the existence of the plas
modes which can propagate along the wire. These are
so-called Mooij-Scho¨n modes,23 the velocity of which is
given by the equation

c0.ApsDs

C
. ~37!

B. QPS action

One can show14 that for very long wires the action~36!
yields a QPS solution described by a simple form
w(x,t)52arctan(x/c0t). The long time behavior of this so
lution results in the logarithmic interaction between tw
phase slips (x1 ,t1) and (x2 ,t2):

Sint5
m

2
lnF ~x12x2!21c0

2~t12t2!2

j2 G , ~38!

where

m5
p

4aA sC

4plL
2
. ~39!

Herea.1/137 is the fine structure constant. In short wir
however, the above logarithmic interaction~38! does not
play an important role and can be essentially neglected.

Let us estimate the contribution of a single phase slip
the effective action. First we rewrite the action~35! in the
space-time domain dropping the unimportant term}(Dq2)2:
01450
-

-
he
a

he

,

o

S5
s

2E dxdtH C

4e2s
S ]w

]t D 2

1
psD

4e2 S ]w

]x D 2

1
ps

32e2D
S ]2w

]x]t D 2J
1sN0E dxdtH dD21

1

12D2 S ]dD

]t D 2

1
pD

8D S ]dD

]x D 2J .

~40!

Then we assume that the absolute value of the order
rameter is equal to zero at a timet50 and at a pointx50.
The size of the QPS core is denoted asx0, and its time
duration ist0. The amplitude of the fluctuating part of th
order parameter fieldudD(x,t)u can be approximately ex
pressed as follows:

udD~x,t!u5D exp~2x2/2x0
22t2/2t0

2!. ~41!

The QPS phase dependence onx and t should satisfy
several requirements. In a short wire and outside the Q
core the phasew should not depend on the spatial coordina
in the zero current bias limit. On top of that, atx50 andt
50 the phase should flip in a way to provide the change
the net phase difference across the wire by 2p. For concrete-
ness, let us present two different trial functions which ob
the above requirements. For instance, one may choose

w~x,t!52
p

2 cosh~t/t0!
tanhS x

x0 tanh~t/t0! D ~42!

or

w~x,t!52
p

2
tanhS xt0

x0t D . ~43!

Similar other trial functions can also be considered.
Substituting the trial functions~41!, ~42! @or ~41!, ~43!#

into the action~40! one arrives at the expression

S~x0 ,t0!5Fa1

C

e2
1a2sN0G x0

t0
1a3sN0DD

t0

x0

1a4

sN0D

D

1

x0t0
1a5sN0D2x0t01a6

C̃

e2t0

,

~44!

whereaj are numerical factors of order one which depend
the precise form of the trial functions,C̃5CX is the total
capacitance of the wire, andX is the wire length. Note tha
fictitious divergences emerging from a singular behavior
the functions~42!, ~43! at x5x0 and t5t0 are eliminated
since the order parameter vanishes inside the QPS core

Let us first disregard capacitive effects neglecting the
term in Eq.~44!. Minimizing the remaining action with re-
spect to the core parametersx0 andt0 and making use of the
inequalityC/e2N0s!1, we obtain
4-6
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x05S a3a4

a2a5
D 1/4AD

D
, t05S a2a4

a3a5
D 1/4 1

D
. ~45!

These values provide the minimum for the QPS action,
we find

SQPS52~Aa2a31Aa4a5!N0sADD. ~46!

One can also express Eq.~46! in the form convenient for
further comparison with experiments:

SQPS5A
Rq

R

X

j
. ~47!

HereA52(Aa2a31Aa4a5)/p, R is the total wire resistance
Rq5p\/2e256.453 kV is the resistance quantum, andj
5AD/D is the superconducting coherence length.

As it was already pointed out, the results~45! and ~46!
hold provided the capacitive effects are small. This is
case for relatively short wires

X!j
e2N0s

C
. ~48!

In the opposite limit the same minimization procedure of
action ~44! yields

x0;j, Dt0;AXC/je2N0s@1. ~49!

The QPS action again takes the form~47! with A
;AXC/je2N0s.

For the sake of clarity, let us summarize the approxim
tions performed in this section. As a first step, we expan
the action derived in Sec. II up to the second order
dD(x,t)5D(x,t)2D. Obviously this approximation is suf
ficient everywhere except inside the QPS core whereD(x,t)
is small. In these space- and time-restricted regions one
expand already inD(x,t) again arriving at Eq.~27! with
dD(x,t)→D(x,t) and with all thex functions defined in the
Appendix with D[0. Both expansions match smoothly
the scale of the core sizex0;j, t0;1/D. Hence, the ap-
proximation~27! is sufficient to obtain the correct QPS a
tion, perhaps up to a numerical prefactor of order 1.

In order to simplify our analysis further, in Eq.~35! we
expanded Eq.~27! in powers ofv/D andDq2/D. Again this
approximation is sufficient within the same accuracy. Inde
one can—even without performing this expansion
substitute the trial functions~41!, ~42! @or ~41!, ~43!# directly
into the action~32!. If the capacitive effects are neglecte
~48!, the resulting QPS action can be represented as a f
tion of the dimensionless parametersx0 /j and Dt0 only.
Making use of the general expressions for thex functions
collected in the Appendix and minimizing the QPS acti
with respect tox0 andt0 one again arrives at the result~47!
with A;1. If the inequality~48! is violated, the accuracy o
our expansion in powers ofv/D may only become bette
@see Eq.~49!#.

Finally, the particular choice of the trial functions@e.g.,
Eqs. ~41! and ~42!# describing the QPS event also appe
not to play any significant role as long as these trial functio
obey the general requirements formulated above. In addi
01450
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e
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to Eqs.~41!, ~42!, and~43! we have used several other tri
QPS functions. In all cases we have obtainedA within the
intervalA'0.8– 2.5. In a way our method can be regarded
a variational procedure. Therefore, even though the ex
value of a numerical prefactorA in Eq. ~47! cannot be estab
lished within our approach, we do not expectA to deviate
substantially from the above values.

Our last remark in this section concerns the role of dis
pation. From the form of the result~46! one could naively
assume that the correct QPS action could be guessed,
from a simple TDGL-based approach~or, alternatively, only
from the ‘‘condensation energy’’ term proportional toxA)
without taking into account dissipative and electromagne
effects. Indeed, minimization of the contribution;udDu2
@the last three terms in Eq.~40!# is formally sufficient to
arrive at the correct estimateSQPS;N0sADD. It is obvious,
on the other hand, that not only the amplitude but also
phase fluctuations of the order parameter are important
ing the QPS event. If the latter fluctuations are taken i
accountwithout including dissipative effects@this would cor-
respond to formally settings→0 in Eq. ~40!# the estimate
for the QPS actionSQPS;m would follow immediately. This
result would be parametrically different from Eq.~46!. Note,
however, that within our model the dissipative effects can
ignored only forC/e2N0s*1. Usually the latter condition
cannot be satisfied for metallic systems, perhaps excep
some specially chosen substrates. In the opposite—m
realistic—limit C/e2N0s!1 dissipation plays a dominan
role during the phase slip event, and the correct QPS ac
cannotbe obtained without an adequate microscopic desc
tion of dissipative currents flowing inside the wire.

IV. PRE-EXPONENT

The above results allow us to estimate the exponen
suppression of QPS in ultrathin superconducting wires
pending on thickness, impurity concentration, and other
rameters. These results, however, are not yet sufficien
evaluate the whole QPS rate which has the form

gQPS5B exp~2SQPS!. ~50!

The task at hand is to provide a reliable estimate for
pre-exponential factorB in Eq. ~50!. A general strategy to be
used for this purpose is well known.26 One can start, e.g.
from the expression for the grand partition function of t
wire

Z5E DDDw exp~2S! ~51!

and evaluate this path integral within the saddle point
proximation. The least action paths

dS/udDu50, dS/dw50 ~52!

determine all possible QPS configurations. Integrating o
small fluctuations around all QPS trajectories one repres
the grand partition function in terms of infinite series~each
term in such series corresponds to one particular QPS sa
point!. Then—at least if interaction between different qua
4-7
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tum phase slips is small and can be neglected—one can
ily sum these series and represent the final result in the f
of the exponent

Z5exp~2F/T!, ~53!

where a formal expression for the free energyF reads

F5F02T
E DdY exp~2d2S1@dY# !

E DdY exp~2d2S0@dY# !

exp~2SQPS!

[F02
gQPS

2
. ~54!

Here F0 is the free energy without quantum phase sli
dY5(dD,dw) denote the fluctuations of relevant coord
nates~fields!, d2S0,1@dY# are the quadratic indY parts of the
action, and the subscripts ‘‘0’’ and ‘‘1’’ denote the actio
respectively, without and with one QPS.

The integrals over fluctuations in Eq.~54! can be evalu-
ated exactly only in simple cases. Technically such a ca
lation can be quite complicated even if the saddle point
jectories can be determined explicitly. In our case
analytical expression for the QPS trajectory is not ev
known. Hence, an exact evaluation of the path integrals
Eq. ~54! is not possible.

Below we will present a simple approach which allows
establish the correct expression for the pre-exponentB up to
an unimportant numerical prefactor. Within our prese
analysis any attempt to find an explicit value for such a pr
actor would make little sense simply because the numer
value ofA in Eq. ~47! is not known exactly. Also for othe
problems numerical prefactors in the pre-exponent are u
ally of little interest. Therefore we believe that our approa
may be useful for various other situations because it allo
to establish the correct functional form of the pre-expon
practically without any calculation. If needed, with a litt
extra effort our method may also allow to approximate
evaluate a numerical coefficient in the pre-exponent.

In order to calculate the ratio of the path integrals in E
~54! let us introduce the basis in the functional spaceCk(z)
in which the second variation of the action around the inst
ton d2S1@dY# is diagonal. Here the basis functions depe
on a general vector coordinatez which is simplyz5(t,x) in
our case. The firstN functionsCk are the so-called ‘‘zero
modes’’ related to the invariance of the instanton action
der arbitrary shifts in certain directions in the function
space~in our case, shifts of the QPS position along the w
and in imaginary time, i.e.,N52). Let us denote an instan
ton solution asỸ(z). Then the zero mode eigenfunctions a
expressed as follows:Ck(X)5]Ỹ/]zk , wherek<N and the
number of zero modesN coincides with the dimension of th
vector z. An arbitrary fluctuationdY(z) can be represente
in terms of the Fourier expansion

dY~z!5 (
k51

N

dzk

]Ỹ~z!

]zk
1 (

k5N11

`

ukCk~z!. ~55!
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Then we get

d2S0@dY#5
1

2 (
k,n51

`

Aknukun* ,

d2S1@dY#5
1

2 (
k5N11

`

lkuuku2, ~56!

where fork<N the Fourier coefficientsuk[dzk are just the
shifts of the instanton position along thekth axis andlk are
the eigenvalues ofd2S1@dY#. Integrating over the Fourie
coefficients one obtains

E DdY exp~2d2S1@dY# !

E DdY exp~2d2S0@dY# !

5E
0

L1
ddx1•••E

0

LN
ddxNA detAkn

~2p!N )
k5N11

`

lk

,

~57!

whereLk is the system size in thekth dimension. The for-
mula ~57! is, of course, not at all new. It just represents t
standard ratio of determinants with excluded zero mode26

We will argue now, that with a sufficient accuracy in th
latter formula one can keep the contribution of only firstN
eigenvalues. Indeed, the contribution of the ‘‘fast’’eige
modes~corresponding to frequencies and wave vectors m
larger than the inverse instanton size in the correspond
dimension! is insensitive to the presence of an instanto
Hence, the corresponding eigenvalues are the same for
d2S0 andd2S1 and just cancel out from Eq.~57!. In addition
to the fast modes there are several eigenmodes with freq
cies ~wave vectors! of order of the inverse instanton size
The ratio between the product of all such modes ford2S1
and the product of eigenvalues ford2S0 with the same num-
bers is dimensionless and may only affect a numerical p
actor which is not interesting for us here. Dropping the co
tribution of all such eigenvalues one gets

E DdY exp~2d2S1@dY# !

E DdY exp~2d2S0@dY# !

'E
0

L1
ddx1•••E

0

LN
ddxNAdetAknuk,n<N

~2p!N
.

~58!

What remains is to estimate the parametersAkk for k<N.
For this purpose let us observe that the second variatio
the action becomes approximately equal to the instanton
tion, d2S15 1

2 Akkz0k
2 'SQPS, when the shift in thekth direc-

tion becomes equal to the instanton size in the same direc
dzk5z0k . Then we findAkk'2SQPS/z0k

2 and
4-8
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detAknuk,n,N')
k51

N

Akk'
~2SQPS!

N

)
k51

N

z0k
2

. ~59!

Finally, combining Eqs.~50!, ~54!, ~58!, and~59! we obtain

B5bTS )
k51

N
Lk

z0k
D S SQPS

p D N/2

. ~60!

Here b is an unimportant numerical prefactor. This res
demonstrates that the functional dependence of the
exponent can be determined practically without any calcu
tion. It is sufficient to know just the instanton action, th
number of the zero modesN and the instanton effective siz
z0k for each of these modes.

Let us also note that a similar observation has alre
been made26 for some local Lagrangians equal to the sum
kinetic and potential energies. Here we have shown that
result ~60! holds for arbitrary effective actions, includin
nonlocal ones. Hence, this result can be directly applied
our problem of quantum phase slips in thin superconduc
wires. In this case we haveL1[1/T, L2[X and Eq.~60!
yields

B'
SQPSX

t0x0
. ~61!

This equation provides an accurate expression for the
exponentB up to a numerical factor of order 1. As we hav
already discussed, such an accuracy is sufficient for our
poses. We also note that the result~61! is parametrically
different from previous results obtained within a TDGL typ
of analysis13 or suggested phenomenologically in Ref. 8.

Finally, it is worth mentioning that we have also com
pared our Eq.~60! with the exact results previously obtaine
for various other problems by means of different approach
Here we will briefly discuss three different examples for t
sake of illustration. The first example is the problem of
quantum particle in a cosine periodic potential. In this ca
an explicit expression for the interwell tunneling rate is w
known. If we apply our method and evaluate onlyA11, we
will obtain the tunneling rate which is;40% smaller than
the exact result. If we also evaluateA22 andl2 and include
their ratio into our formula, the result for the tunneling ra
will be only 10% smaller as compared to the exact one. T
example demonstrates that also a sufficient numerical a
racy in the pre-exponent can be achieved without a com
cated calculation of the ratio of the determinants.

Two other examples concern the systems with nonloca
time Lagrangians. Consider, e.g., the problem of quan
decay of a particle in the presence of dissipation.29 In the
limit of strong dissipation this problem was treated by Lark
and Ovchinnikov30 who found the exact eigenvalues an
evaluating the ratio of the determinants, obtained the pre
tor in expression for the decay rateB}h7/2/m2, whereh is
an effective friction constant andm is the particle mass. This
result would imply that the pre-exponential factor in the d
cay rate30 should be very large and may even diverge if o
formally setsm→0.
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Later it was realized31 that this divergence is artificial
Performing a simple one-loop perturbative calculation31 one
arrives exactly at the same high frequency divergence a
the result.30 It implies that this divergence has nothing to d
with tunneling, and it is regularized by means of a prop
renormalization of the bare parameters in the effective
tion. After that the high frequency contribution to the pr
exponent is eliminated and one finds31 B}1/Ah. @Note a
misprint in the power ofh in Eq. ~8! of Ref. 31.# This ex-
pression does not contain the particle massm at all. It also
allowed to fully resolve a discrepancy with th
experiments.32 Note that the result31 can also be expressed i
the formB;ASb/t0, whereSb}h is the instanton~bounce!
action andt0}h is its typical size. As we have already a
gued, the result in this form can be guessed from Eq.~60!
without any calculation.@For this particular problem our ap
proach allows one to even reproduce an exact numer
prefactor.#

The last example is the problem of Coulomb blockade
normal tunnel junctions in the strong tunneling limit. Th
problem was treated within the instanton technique in R
33. In this problem each instanton has two zero modes wh
correspond to its shifts in time and fluctuations of its fr
quencyV. The value of the instanton action is well know
and the parametersz01 and z02 for both zero modes can b
evaluated directly by means of the approach presen
above. Each of these parameters is found to depend on
of the zero modesV. However, the productz01z02 turns out
to be anV-independent constant. Making use of this fact a
integrating over the zero mode coordinates in Eq.~60!, we
arrive at the functional form of the pre-exponent derived
Eq. ~10! of Ref. 33 by means of an explicit calculation of th
fluctuation determinants, see also Ref. 22. The above
amples demonstrate that our approach allows to easily de
the functional form of the pre-exponent in a variety of pro
lems, including those where technically involved calcu
tions appear to be inevitable otherwise.

V. COMPARISON WITH EXPERIMENT

Now let us compare our results with experimental fin
ings. Recently Bezryadin, Lau, and Tinkham20 reported clear
experimental evidence for the existence of quantum ph
slips in ultrathin~with diameters down to 3 nm! and uniform
in thickness superconducting wires. Three out of eig
samples studied in the experiments20 showed no sign of su-
perconductivity even well below the bulk critical temper
tureTC . Furthermore, in the low temperature limit the res
tance of these samples was found to show a slight up
with decreasingT. In view of that one can conjecture tha
these samples may actually become insulating atT→0. The
resistance of other five samples20 decreased with decreasin
T. Also for these five samples no clear superconduct
phase transition was observed.

All three nonsuperconducting wires (i1, i2, andi3) had
the normal state resistance below the quantum unitRq , while
the normal state resistance of the remaining five ‘‘superc
ducting’’ samples was larger thanRq . This observation al-
lowed the authors20 to suggest that a dramatic difference
4-9
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the behavior of these two group of samples~otherwise hav-
ing similar parameters! can be due to the dissipative pha
transition~DPT! ~Refs. 15,21,22! analogous to that observe
earlier in Josephson junctions.27

Without going into details here, let us just point out th
DPT can be observed only provided quantum phase slips
easily created inside the wire. The results forgQPSderived in
the present paper allow us to estimate a typical average
within which one QPS event occurs in the sample. Mak
use of Eqs.~47!, ~50!, and~61! we performed an estimate o
such a timet051/gQPS for all eight samples studied in Re
20. In this experiment the samples were fabricated fr
Mo79Ge21 alloy. For our estimates we will use the value
the density of statesN051.8631013 sec/m3 for clean Mo,
which can be extracted from the specific heat data. The
sistivity of the material was measured to ber51.8 mV/m,
the superconducting critical temperature isTC.5.5 K. With
these numbers we obtain the coherence lengthj.7 nm in
agreement with the estimate.20 The results fort0 are summa-
rized in Table I. The actionS0 is defined by Eq.~47! with
A51. The typical QPS timet0

t05
j

XAS0D
exp~AS0!.

is very sensitive to the particular value of the factorA, there-
fore here we present two estimates corresponding toA51
andA52.

In spite of remaining uncertainty in the prefactors so
important conclusions can be drawn already from the ab
estimates. For instance, we observe that for bothA51 and
A52 the QPS rategQPS51/t0 is very high ~as compared,
e.g., to the typical experimental time scale;1 sec! in the
‘‘insulating’’ wires i1, i2, andi3. This fact is fully consis-
tent with the observations20: numerous quantum phase slip
occurring in these wires completely destroy the phase co
ence and, hence, superconductivity is washed out. Thus,
superconducting behavior of these three samples shoul
due to quantum phase slips.

On the other hand, the QPS rate is notably lower for
the ‘‘superconducting’’ wires.20 Possible interpretation of th
experimental results for the sampless1 –ss2 depends
strongly on the value ofA. For example, forA51 the QPS
rate is high enough practically in all samples. In this ca

TABLE I.

Sample R/d, kV/nm S0 t0uA51, sec t0uA52, sec

i1 0.122 7.8 10211 1028

i2 0.110 8.7 10211 1026

i3 0.079 12.7 1029 1024

s1 0.038 25.1 1024 106

s2 0.028 33.7 1 1014

s3 0.039 22.6 1025 105

ss1 0.054 15.4 1027 1021

ss2 0.044 19.6 1026 102
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quantum phase slips should in principle be important also
‘‘superconducting’’ wires.20 Then one can indeed relate th
behavior of these samples to DPT15, as a result of which
quantum phase slips are bound in pairs and, hence, qua
fluctuations are strongly suppressed.

If, however, one choosesA52 the QPS time for the
samples s1-ss2 turns out to be very long, much longer t
the experimental time. Then the QPS effects should be ir
evant, and one would expect these samples to show a su
conducting behavior, perhaps with the renormalized criti
temperature.28 This conclusion would also be consistent wi
the experimental observations.20

Finally, let us note that all the above estimates are p
formed in the limitT50. This is correct if temperature i
considerably belowTC . Otherwise the expression for th
QPS actionSQPS needs to be modified.

In conclusion, we have developed a detailed microsco
theory of quantum phase slips in ultrathin homogeneous
perconducting wires. We have derived the effective QPS
for such wires and evaluated this rate for the systems stu
in recent experiments.20 Our results are fully consistent with
the experimental findings20 which provide perhaps the firs
unambiguous evidence for QPS in mesoscopic meta
wires.

APPENDIX

Let us collect some rigorous expressions for the ‘‘susc
tibilities’’ xE , xJ , xL , andxA . In Ref. 16 these quantitie
have been related to the so-called polarization bubblesf 0 , g0

and h0. In the interesting for us diffusive limitD l /vF!1
these polarization bubbles are defined by the equations16

f 05T(
vn

E d3k

~2p!3
^F~v1vn ,q1k!F~vn ,k!&dis

5pN0T(
vn

D2

WW8~W1W81Dq2!
, ~A1!

g05T(
vn

E d3k

~2p!3
^G~v1vn ,q1k!G~vn ,k!&dis

52N01pN0T(
vn

WW82v~v1vn!

WW8~W1W81Dq2!
, ~A2!

h05T(
vn

E d3k

~2p!3
^G~v1vn ,q1k!Ḡ~vn ,k!&dis

52pN0T(
vn

WW81v~v1vn!

WW8~W1W81Dq2!
. ~A3!
4-10
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In these equations we use the notations

W5Avn
21D2, W85A~vn1v!21D2, ~A4!

vn5pT(2n11) andv52pTn, wheren andn are arbitrary
integers, and̂•••&dis implies disorder averaging.
01450
Let us start from the functionxE defined as

xE52
2e2

q2
~ f 01g0!. ~A5!

At T50 we find
xE55
s

D

1

2A11x2E0

1`

dt
12t21A~ t221!214t2/~11x2!

A~ t221!214t2/~11x2!~11t21A~ t221!214t2/~11x2!!
, y50,

s

D S 1

2y
2

p

4y
1

ln~y1Ay221!

2yAy221
D , x50, y.1,

s

D S 1

2y
2

p

4y
1

1

yA12y2
arctanSA12y

11yD D , x50, y,1.

~A6!

Here and below we setx5v/2D andy5Dq2/2D. In the limit uvu@2D we obtain

xE.
s

uvu1Dq2
. ~A7!

At small v andq we get

xE5
ps

8D F12
3

8 S v

2D D 2

2
8

3p

Dq2

2D G . ~A8!

It is also possible to evaluatexE at v50, q50, and arbitraryT:

xE~0,0!5
ps

8D S tanh
D

2T
2

D

2TS cosh
D

2TD 2D . ~A9!

For D!T we find

xE~0,0!5
psD2

96T3
. ~A10!

In this limit also a more general expression for arbitraryv andq can be obtained:

xE5
s

uvu1Dq2
1

4sD2Dq2

~v22D2q4!2

3FCS 1

2
1

uvu1Dq2

4pT D2CS 1

2D G2
2sD2~v21D2q4!

uvu~v22D2q4!2 FCS 1

2
1

uvu
2pTD2CS 1

2D G1
sD2

2pT~v22D2q4!
C8S 1

2
1

uvu
2pTD ,

~A11!

whereC(x) is the digamma function.
The remainingx functions are evaluated analogously. Consider the function

xJ54e2f 0 . ~A12!

After straightforward algebra we obtain
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xJ55
4e2N0

ln~ uxu1A11x2!

2uxuA11x2
, y50,

4e2N0S p

4y
2

ln~y1Ay221!

2yAy221
D , x50, y.1,

4e2N0S p

4y
2

1

yA12y2
arctanSA12y

11yD D , x50, y,1.

~A13!

In the limit of low frequencies and wave vectors one has

xJ52e2N0F12
2

3 S v

2D D 2

2
p

4

Dq2

2D G . ~A14!

At v50, q50 and for arbitraryT we get

xJ52pe2N0D2T(
vn

1

~vn
21D2!3/2

5H 2e2N0 , T!D,

7z~3!

2p2

e2N0D2

T2
, T@D,

~A15!

wherez(3).1.202. In the limitT@D andv5” 0 we find

xJ5
8e2N0D2

uvu~v22D2q4!
H uvuFCS 1

2
1

uvu1Dq2

4pT D2CS 1

2D G2Dq2FCS 1

2
1

uvu
2pTD2CS 1

2D G J . ~A16!

We proceed further with the function

xL5
8m2D2

q2 F 1

l
1h02S 11

v2

2D2D f 0G . ~A17!

First we consider the limitT50 and find

xL55
4m2DN0D

1

A11x2E0

1`

dt
1

A~ t221!214t2/~11x2!
, y50,

4m2DN0D
1

Ay221
ln~y1Ay221!, x50, y.1,

4m2DN0D
2

A12y2
arctanSA12y

11yD , x50, y,1.

~A18!

At low frequencies and wave vectors the above expressions yield

xL52pN0Dm2DF12
1

4 S v

2D D 2

2
2

p

Dq2

2D G . ~A19!

For high temperaturesT@D we obtain

xL5
4m2sD2

e2~v22D2q4!
H uvuFCS 1

2
1

uvu
2pTD2CS 1

2D G2Dq2FCS 1

2
1

uvu1Dq2

4pT D2CS 1

2D G J . ~A20!

In the limit of zero frequency and wave vectorsxL reduces to a very simple form
014504-12
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xL5
pm2sD2

2e2T
. ~A21!

Finally, let us evaluate the function

xA52S 1

l
1h01 f 0D . ~A22!

We obtain

xA55
2N0

A11x2

uxu
ln~ uxu1A11x2!, y50,

2N0S p

2y
1

Ay221

y
ln~y1Ay221! D , x50, y.1,

2N0S p

2y
2

2A12y2

y
arctanSA12y

11yD D , x50, y,1.

~A23!
PS
In the limit of high frequenciesuvu@D one finds

xA.2N0 ln
uvu1Dq2

D
. ~A24!

At low frequencies and wave vectors we derive

xA.2N0F11
1

3 S v

2D D 2

1
p

4

Dq2

2D G . ~A25!
et
.

s,
,

01450
In the high-temperature limitT@D we find

xA52N0F ln
T

TC
1CS 1

2
1

uvu1Dq2

4pT D2CS 1

2D G .
~A26!

The above expressions are sufficient to evaluate the Q
action practically in all interesting limiting cases.
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