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Dirac quasiparticles in the mixed state
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Energies and wave functions are calculated ford-wave quasiparticles in the mixed state using the formalism
of Franz and Tes˘anovićfor the low-lying energy levels. The accuracy of the plane-wave expansion is explored
by comparing approximate to exact results for a simplified one-dimensional problem, and the convergence of
the plane-wave expansion to the two-dimensional case is studied. The results are used to calculate the low-
energy tunneling density of states and the low-temperature specific heat, and these theoretical results are
compared to semiclassical treatments and to the available data. Implications for the muon spin resonance
measurements of vortex core size are also discussed.
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I. INTRODUCTION

The nature of the low-lying excitations in the mixed sta
of a d-wave superconductor is both an interesting quant
mechanics problem and important for understanding the
havior of high-temperature superconductors in a magn
field.1–5 Volovik1 first studied this problem in the semicla
sical limit, where the d-wave quasiparticles are Dopp
shifted by the local superfluid density. The shifting of qua
particle energies results in a nonzero density of states at
energy proportional to the square root of the magnetic fie
Volovik’s solution has been applied to calculations of t
specific heat,6–8 thermal conductivity,9,10 and nuclear mag-
netic relaxation rates.11,12 It has motivated useful discussion
of the scaling behavior of the specific heat by Simon a
Lee,13 Kopnin and Volovik,14 and others.

The presence of a magnetic field and its associated vo
lattice affects the motion of quasiparticles in four distin
ways. First, the quasiparticles, which carry current, move
the magnetic field that is approximately uniform for an e
treme type-II superconductor. Second, although the fiel
approximately uniform, it is not exactly so, and therefore
quasiparticles experience magnetic field gradients. Howe
the direct effect of these gradients is rather small. Th
there are supercurrents associated with the curl of the fi
and the quasiparticle energies are affected by the corresp
ing superfluid velocity through which they move. For a un
form superfluid-velocity field, the effect would be a simp
Doppler shift of the energies. However, for inhomogeneo
superfluid velocities the problem is more complicate
Fourth and finally, the magnitude of the superconducting
der parameter is inhomogeneous in the mixed state, altho
this is mainly apparent within a coherence length of ea
vortex core where this magnitude falls to zero. For an
treme type-II superconductor, this represents a very sm
fraction of the sample for fields well belowHc2.

Volovik’s approach neglects the magnetic field and
gradients as well as the inhomogeneous order parameter
plitude and focuses only on the local superfluid velocity
assumes that the quasiparticle wave function can be tho
of as a wave packet that is localized in a region over wh
the magnitude and direction of the superfluid velocity a
relatively uniform. The energy of a low-lying,d-wave qua-
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siparticle depends linearly onqW 5kW2kW n , where kW n is the
wave vector of the nearest node. If a quasiparticle is loc

ized in a region of size smaller than 1/uqW u, then the spread in
its energy will be larger than its average energy and the w
packet picture does not work. For the superfluid velocity
be relatively uniform in a region, the size of the region mu
be smaller than the distance to the nearest vortex core
certainly smaller thand, the distance between vortices. L
us apply the above considerations to the lowest-energy q
siparticle band. This corresponds to a quasiparticle, n
noden, with wave vectorqW perpendicular tokW n localized in
a region of sizel. For the wave packet picture to apply, th
energyE of the quasiparticle must be greater than\vDp/ l ,
wherevD is the quasiparticle velocity alongqW . However, for
the superfluid velocity to be uniform in the region of sizel it
is necessary thatl !d. Combining these two conditions w
obtain the requirement thatE@\vDp/d. For energies less
than this the wave packet picture breaks down and a
quantum-mechanical picture is needed. This energy rang
readily accessible via specific-heat measurements below
K in fields of one to several tesla. It is this energy region th
is the main focus of this paper.

Recently, Franz and Tes˘anović4 ~FT! have derived a
quantum mechanical theory of the mixed state of ad-wave
superconductor, which involves a singular gauge transfor
tion that maps the original problem of superconducting q
siparticles in a magnetic field onto an equivalent one of q
siparticles in a periodic potential. The latter problem may
solved using conventional band-structure methods.

In this paper, we investigate the low-energy properties
a d-wave superconductor in the mixed state using the the
derived by Franz and Tes˘anović.4 The most direct experi-
mental probes of these properties are the low-energy tun
ing density of states and the low-temperature specific hea
order to calculate these quantities reliably, we have inve
gated the numerical problem of Dirac quasiparticles in
periodic potential of the vortex lattice, focusing on the sim
plifications that result from the fact that the anisotropy of t
Dirac cones,aD5vF /vD@1. As discussed by Mel’nikov,15

such large anisotropy makes the problem approximately o
dimensional. Mel’nikov described how to obtain solutions
the one-dimensional problem, but he then confined his an
©2001 The American Physical Society02-1
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sis to the semiclassical versions of these solutions. We h
explicitly evaluated the quantum mechanical solutions in t
one-dimensional limit and used them as a test of the ac
racy of approximate plane-wave solutions. We then sh
how to improve on the one-dimensional solutions by inclu
ing a small number of plane-wave basis states for the tra
verse direction, and we study the convergence of this
proach.

The remainder of this paper is organized as follows. S
tion II addresses the computational problem of calculat
quasiparticle energies in the lowest bands in the magn
Brillouin zone, comparing exact and plane-wave-expans
solutions for the simplified one-dimensional~1-D! problem
and then comparing 1-D and 2-D plane wave expansion
lutions for various choices of plane waves. Section III p
sents results for the local tunneling density of states, Sec
reinterprets recent muon spin resonance measurements o
vortex core size in terms of a scaling picture, and Sec
presents calculations of the low-temperature specific h
comparing them to predictions based on Volovik’s approa
and to experimental data.

II. THE COMPUTATIONAL PROBLEM: CALCULATING
THE ENERGIES IN THE LOWEST BANDS IN THE

MAGNETIC BRILLOUIN ZONE

The quasiparticle wave functions are described by
BdG equations,Hc5ec wherec5(u(r ),v(r ))T, and

H5S Ĥe D̂

D̂* 2Ĥe*
D , ~1!

with He5(p2(e/c)A)22eF . The gauge invariant form o
the gap operator,D̂, for a d-wave superconductor can b
written as~see Ref. 16 for the details!

D̂5
1

pF
2
ˆ p̂x ,$ p̂y ,D~r !%‰2

i

4

1

pF
2

D~r !~]x]yw!, ~2!

where, for notational convenience, we have chosen to or
our axes along the directions of the gap nodes, at an ang
p/4 with respect to the orientation of the CuO2 planes.pF is
the Fermi momentum, andD(r )5uD(r )ueiw(r ) is the
Ginzburg-Landau order parameter. Since we are working
the intermediate field regime (Hc1&B!Hc2) of an extreme
type-II superconductor, we can assume that the magnitud
the gap is constant everywhere, except at the vortex co
and that the magnetic field distribution and local superfl
velocity can be described by the London model.17

In order to diagonalize the Hamiltonian in Eq.~1! one
would like to remove the order parameter phase from
off-diagonal components ofH. It is desirable to choose
transformation that is both single-valued and treats the
ticles and holes on an equal footing. This is accomplished
the bipartite, singular gauge transformation of FT:4

H→U21HU, U5S eiwA(r ) 0

0 e2 iwB(r )D , ~3!
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where wA(r )1wB(r )5w(r ), and wA(r ) and wB(r ) are the
contributions to the order parameter phase from theA andB
sublattices of the vortex lattice. The sublattices are chose
that there are equal numbers ofA and B vortices, with two
vortices per magnetic unit cell of the vortex lattice. The vo
tex lattice configuration analyzed in this paper is shown
Fig. 1. Note that the fact that thex andy axes of theA andB
sublattice unit cells are oriented along nodal directio
means that nearest-neighbor lines of vortices are orien
along thea andb axes of the underlying crystal lattice.

Under this transformationH becomes

HAB5S 1

2m
~p1mvs

A!22eF D̂

D̂ 2
1

2m
~p2mvs

B!21eF

D ,

~4!

where

D̂5
D0

pF
2 F p̂x1

m

2
~vsx

A 2vsx
B !G3F p̂y1

m

2
~vsy

A 2vsy
B !G , ~5!

with the superfluid velocities

vs
m~r !5

1

m S \¹wm2
e

c
AD , m5A,B. ~6!

Note thatvs
A(r )1vs

B(r )52vs(r ). Since the vortex lattice is
periodic, the superfluid velocities can be written as Four
sums

vs
m~r !5

2p\

md2 (
KÞ0

iK3 ẑ

K2
eiK•(r1dW m), ~7!

whereK5(2p/d)(mx ,my), d5A2F0 /B is the size of the
magnetic unit cell, anddW m56(d/4,d/4) is the displacemen
of A or B vortices from the center of the unit cell~see Fig. 1!.

Linearizing the Hamiltonian in Eq.~4! at the nodekW
5(kF,0) we find thatHAB.H01H8 with

FIG. 1. The square-vortex lattice, showing theA andB sublat-
tices and the corresponding unit cell. The edges of the unit cell
aligned with thex andy axes that are the nodal directions.
2-2
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DIRAC QUASIPARTICLES IN THE MIXED STATE PHYSICAL REVIEW B64 014502
H05S vFpx vDpy

vDpy 2vFpxD ~8!

and

H85mS vFvsx
A 1

2
vD~vsy

A 2vsy
B !

1

2
vD~vsy

A 2vsy
B ! vFvsx

B D , ~9!

wherevF is the Fermi velocity, andvD5D0 /pF is the slope
of the gap at the node.

At the nodekW5(kF,0) the free Dirac HamiltonianH0 has
the familiar Dirac cone spectrum

«.6\vFAkx
21ky

2/aD
2 , ~10!

where (kx ,ky)50 at the node. The quasiparticle momentu
along the nodal direction iskx;«/\vF with a corresponding
wavelength oflx;\vF /«. If the energy is low enough («
&\vF /r x), kx will be confined to the first magnetic Bril
louin zone~see Fig. 2! and the wavelengthlx will exceed the
intervortex distancer x , crossing the boundaries of sever
unit cells of the vortex lattice. For large values of the anis
ropy aD the momentum parallel to the Fermi surfaceky
;aDkx will be much larger than that along the nodal dire
tion. The quasiparticle wave function will thus be localiz
in the direction parallel to the Fermi surface, but will b
extended and will feel the average effect of the superfl
velocity fields of several vortices along the nodal directio

Since the potentialH8 is periodic we can expand the qu
siparticle wave function in the plane-wave basis:

Ck~r !5(
K

ei (k1K )•rcK~k!. ~11!

The periodic potential of the vortex lattice will be respo
sible for the interaction of the Fourier componentscK(k)
and cK8(k). If we are interested only in energies below
cut-off energy,Ec , for which the momentumkx lies well
within the first magnetic Brillouin zone~MBZ! we can make
the approximation that the quasiparticle wave function

FIG. 2. Constant-energy contours ofH0 and MBZ boundaries of
the A and B square sublattices ataD.5.
01450
l
-

d

s

one-dimensional and ignore the interaction of those Fou
components that are at different values ofKx . We therefore
write

Ck~r !.eikxx(
Ky

ei (ky1Ky)ycKy
~k!. ~12!

If, however,Ec is high enough thatkx exceeds the bound
aries of the first MBZ ~see Fig. 2! we can make the
assumption—since the Fourier sum is dominated by com
nents whose values ofK are bounded by the constant ener
contour atEc—that

Ck~r !.(
Ky

Kc

(
Kx

Kc /aD

ei (k1K )•rcK~k!, ~13!

whereKc is the cutoff wave vector along they direction.
Such plane-wave expansions can be computed num

cally to obtain the excitation spectrum for the quasipartic
in a periodic vortex lattice. The solution to the problem usi
Eq. ~11! has been studied in detail by FT,4 whereas Marinelli
and Halperin18 studied solutions toHAB defined in Eqs.~8!
and~9! in position space. Both groups found that the conv
gence of the plane-wave expansions was slow. Since we
specifically interested in the low-energy and low-temperat
properties that are largely determined by the lowest band
the excitation spectrum, we will focus next on obtaining
analytical solution to the linearized Hamiltonian with the a
proximation that, for largeaD , the quasiparticle wave func
tions are one-dimensional. Having obtained both analyt
and numerical solutions to this one-dimensional problem,
will then examine how adding more transverse wave vect
as in Eq.~13!, allows us to approach the exact numeric
two-dimensional result, using Eq.~11!.

A. The 1-D analytical solution

At low energies and for large values ofaD the wave
functions are localized in they direction and extended alon
the x direction.15 This suggests the following basis as a us
ful starting point:

Ck~r !5(
Kx

ei (kx1Kx)xc~kx1Kx ,y!. ~14!

As we shall see, the Fourier componentsc(kx1Kx ,y), for
different Kx , are spatially well separated in they direction.
Their interaction is consequently negligible, and we can
sume that the Hamiltonian is diagonal in the quantum nu
berKx . This allows us to replace the periodic potentialH8 in
Eq. ~9!, which in principle scatters quasiparticles betwe
states with different values ofKx , with its effective potential
averaged in thex direction that is diagonal inKx . The result
is
2-3
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H1-D5S qx
n

2
i

2paD

d

dz

2
i

2paD

d

dz
2qx

n D
1S FS z2

1

4D 0

0 FS z1
1

4D D , ~15!

where Hc5ec, e5E/E0 where E052p\vF /d, z5y/d,
andF(z)5z2(n1 1

2 ) wheren,z,n11. Note that in these
unitsn2 1

2 ,qx
n,n1 1

2 , whereqx
n5(d/2p)(kx1Kx). The po-

tential along they direction consists of two periodic sawtoo
functions with discontinuities lying along the averaged v
tex lines of theA and B sublattices. At sufficiently low en-
ergies the quasiparticles will be bound in they direction by
the potential barriers that lie at the discontinuities inF(z).
Our picture is thus one of quasiparticles that travel as pl
waves along the nodal direction but are bound within pot
tial wells—created by the averaged vortex lattice—in the
rection parallel to the Fermi surface. Note that, at low en
gies, the Fourier componentsc(kx ,y) and c(kx1Kx ,y)
have negligible overlap, as they lie inseparatepotential
wells along they direction.

By making the substitution

w~z!5 1
2 ~ ŝx1ŝz!c~z!,

Eq. ~15! can be rewritten as

H ŝzS 2
i

a

d

dzD1
F1~z!

2
2e1ŝxS qx

n1
F2~z!

2 D J w~z!50,

~16!

wherea52paD andŝ i are the Pauli matrices. The functio

F1~z!5F~z2 1
4 !1F~z1 1

4 !

is a sawtooth with a slope of12 and a period of 1/2, and th
function

F2~z!5F~z2 1
4 !2F~z1 1

4 !

is a step function that oscillates between21 and11 with a
period of 1. Since the potential is periodic we can solve
~16! within a unit cell and use Bloch’s theorem to extend t
solution over all ofz. The solution within a unit cell~see
Appendix A for the details! is given in terms of the paraboli
cylinder functionsDp(z):19
01450
-

e
-
-
r-

.

w1~z!5S Dia/2(q
x
n1 1/4)2@6A2iz1#

7Aia

2 S qx
n1

1

4DDia/2(q
x
n1 1/4)221@6A2iz1#

D
~17!

for n2 1
4 ,z,n1 1

4 and

w2~z!5S Dia/2(q
x
n2 1/4)2@6A2iz2#

7Aia

2 S qx
n2

1

4DDia/2(q
x
n2 1/4)221@6A2iz2#

D
~18!

for n1 1
4 ,z,n1 3

4 , with z15Aa(z2e2n) and z25Aa(z
2e2n2 1

2 ).
These solutions can be matched at the boundaries of

unit cell ~see Appendix B! to obtain an exact excitation spec
trum for the one-dimensional, averaged Hamiltonian. T
resulting spectrum for anisotropyaD57 is shown in Fig. 3.
It is useful to note that the energy scaleE0 is approximately
given byE0'185AB T21/2K.

B. Comparison of 1-D analytical and plane-wave expansion
results

Using the plane-wave expansion of Eq.~12! we can nu-
merically diagonalize the Hamiltonian to obtain an excitati
spectrum that can be compared with the analytical results
the numerical accuracy of the diagonalization, these t
methods yield identical results for the dispersion alongkx as
shown in Fig. 3, where 61 reciprocal lattice vectors~RLV’s!
have been kept in the plane-wave expansion.20 The disper-
sion alongky calculated from the 1-D plane-wave expansi
is also shown in Fig. 3. As discussed by Marinelli a
Halperin,18 the dispersion away from theG point alongky is
more strongly renormalized by the supercurrents, leading
an enhanced effectiveaD . For aD.10 there is essentially
no discernible dispersion alongky for the lowest bands~as

FIG. 3. A comparison of the 1-D analytical spectrum along t
kx axis (L) with the numerical 1-D plane-wave expansion~61
RLV’s! results (•) for aD57. The numerical 1-D results are als
shown for the spectrum along theky axis.
2-4
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DIRAC QUASIPARTICLES IN THE MIXED STATE PHYSICAL REVIEW B64 014502
calculated in either the 1-D or full 2-D plane-wave expa
sions!, further suggesting the validity of a one-dimension
approximation.

Since both the energy and momentum axes scale asAB
these spectra apply to all values of the magnetic field wit
Hc1!B!Hc2. As the anisotropy increases, the gap betwe
the lowest band of the spectrum and theE50 axis quickly
narrows. AtaD514 ~Fig. 4! the spectrum is close to formin
a line quasinode, in agreement with the results of FT,4 and of
Marinelli and Halperin,18 which suggest that a line quasinod
first appears ataD.15.

C. Comparison of 1-D and approximate 2-D plane-wave
calculations

The results of numerical diagonalization calculations
the excitation spectrum of the quasiparticles in the 1-D
eraged potential and the exact 2-D potential at different v
ues of the anisotropy are shown in Figs. 4 and 5. The
spectra show good qualitative agreement with the 2-D sp
tra, capturing the major features of the lowest bands, inc
ing the line quasinodes that form at large values ofaD .
However, the 1-D treatment is unable to accurately repres
quantitatively, the behavior of the full 2-D spectrum. In pa
ticular, as can be seen from Figs. 4 and 5, the 1-D appr

FIG. 4. A comparison of the 1-D plane-wave expansion~61
RLV’s! (s) with the 2-D plane-wave expansion (33333 RLV’s!
results (L) for aD514

FIG. 5. As in Fig. 4 foraD520
01450
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mation cannot be used to quantitatively determine the siz
the minigaps that lie along the line quasinodes. An analy
of the 1-D spectra for several values ofaD shows that the
size of the smallest minigap at fixedaD is dg}e2maD where
m'0.18. Unfortunately, the slow convergence of the 2
reciprocal lattice sums—due to the divergence of the sup
fluid velocity at the vortex cores~discussed in more detail b
Vafek et al.16!—makes it very difficult to accurately deter
mine the size of these minigaps in the full 2-D calculatio

Nonetheless, we believe that the 1-D treatment~which is
far less computationally intensive than the 2-D proble!
captures and elucidates the important physics of the low
bands of the quasiparticle excitation spectrum and is th
fore a useful tool that helps us understand the physical
havior of the quasiparticles in the mixed state. In particu
we will use the 1-D energies and wave functions to calcul
the local tunneling density of states and the specific hea

Next we compare the results of the 1-D calculations
finite 2-D plane-wave expansions using a grid ofNx3Ny
reciprocal lattice vectors. For example, in Fig. 6 results
shown foraD514, comparing the 1-D case,Nx51,Ny541,
to Nx55,9,13,21, and 29,Ny541. Similar results are shown
in Fig. 7 for aD520 andNy561. One of the most striking
features of both figures is the complete insensitivity of t
linear branch near theG point to the number of plane-wave

FIG. 6. The energy spectrum foraD514 andNy541 andNx

51 (n), 5(3), 9(d), 13(*), 21(j), and 29(s).

FIG. 7. As in Fig. 6 foraD520 andNy561.
2-5
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in the calculation. For this branch, it appears that the 1
energies are essentially exact. For other low-energy bran
and general points in the Brillouin zone, the plane-wave
pansion seems to converge smoothly. The only patholog
behavior occurs near the quasinodes, where both the p
tions and the values of the minima converge slowly.

III. LOCAL TUNNELING DENSITY OF STATES

In this section we show results of calculations of the lo
tunneling density of states~TDOS! of the quasiparticles in
the lowest band of the energy spectrum using the o
dimensional plane-wave expansion of Eq.~12!. The TDOS
is:21,22

N~r ,E!52
2

Nk
(

k,m,n
uuk,m,n~r !u2f 8~«k,m2E!

1uvk,m,n~r !u2f 8~«k,m1E!, ~19!

where f 8(x) is the derivative of the Fermi function,k is the
set of wave vectors in the magnetic Brillouin zone,m is the
set of energy bands~restricted in this case to the lowest pos
tive and negative energy bands!, and n is the set of four
Dirac nodes. The normalization factor 2/Nk is equal to the
number of spins divided by the number of wave vectors
the magnetic Brillouin zone.

The plane-wave expansion was done at the nodkW
5(kF ,0). It is easy to show that by taking«k,m→2«k,m in
Eq. ~19! one obtains the contribution from the opposite no
at kW5(2kF,0). Within the 1-D approximation, these tw
nodes give they dependence of the TDOS, and the other t
nodes atkW5(0,6kF) give thex dependence. They ~or x)
dependence of the TDOS at 1 K and at a field of 1 T, for t
different values of the anisotropyaD , and at three differen
energies is shown in Figs. 8 and 9.

One can see that the TDOS has the periodicity of, an
sharply peaked at, the vortex lines. The TDOS falls to
broad minimum in the regions between the vortices. T

FIG. 8. The contribution to the TDOS from the nodes atkW5
(6kF,0) at three different energies foraD514. The TDOS is nor-
malized as in Eq.~19!. d/2 is the separation, in they direction,
between lines of vortices. Note the shoulders forming on either
of the peaks as the energy is increased.
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shoulders on either side of the peaks come from the st
within the lines of quasinodes that form at large values
aD . At aD520, the size of the gap in the line quasinode h
decreased and a second line quasinode has started to a
~see Fig. 5!. Both these features contribute to the very d
tinct shoulders on either side of the peak in the TDOS in F
9.

Figure 10 shows the zero-bias two-dimensional TDOS
a sum over the four nodes. This result is in qualitative agr
ment with the semiclassical calculation of the TDOS
Mel’nikov.23 The vortex lattice geometry of our paper is,
Mel’nikov’s notation, a Type-II lattice withs51/2. This
gives a TDOS that is proportional to

F15UFS x

d/2D U1UFS y

d/2D U, ~20!

where F(z)52z2(2m11). The semiclassical TDOS o
Mel’nikov thus has the profile of a triangle wave along thex
and y directions. The fully quantum mechanical resu

e

FIG. 9. As in Fig. 8 foraD520. Note the now very distinct
shoulders that have formed on either side of the peaks.

FIG. 10. The zero-bias TDOS for the 1-D plane-wave expans
at aD520
2-6
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DIRAC QUASIPARTICLES IN THE MIXED STATE PHYSICAL REVIEW B64 014502
shown here follow this profile, but exhibit additional stru
ture that arises from the quasiparticle states near the qu
odes.

We note that only half of the bright spots in Fig. 10 lies
vortex positions while the other half lies halfway betwe
vortices. For example, in Fig. 10 the bright spots at the c
ners and at the center of the figure might correspond to
tex sites. The other bright spots are then the result of
overlap of the sharply peaked tunneling density of states
extends from each vortex, parallel to the four node dir
tions. It is an artifact of the 1-D model that, for the case o
square lattice, these overlaps have a peak tunneling de
of states equal to that of a vortex core. This artifact is l
evident in more general, centered rectangular lattices o
particular, for the hexagonal lattice.15,23

IV. MUON SPIN RESONANCE

Two important simplifying assumptions in this model a
that the superconducting coherence length is negligible
the penetration depth is large compared to the distance
tween vortices. As a consequence of these assumptions
intervortex spacing is the only length scale in the proble
This allows us to present results scaled to this length a
done above for the tunneling density of states.

In addition to calculating the tunneling density of state
one could also use the wave functions generated by th
calculations to compute the pattern of the two-dimensio
supercurrent density. This would, of course, not be a s
consistent result, but it would be an improvement over
initial form for the supercurrent density corresponding to E
~7!. Without actually doing this calculation, we know that th
resulting pattern would be a function ofr /d and hence tha
all lengths would scale as 1/AB.

This picture, in which the vortex lattice constant provid
the only length scale, is supported by the self-consistent
culations of Franz and Tes˘anović for a single d-wave
vortex.24 In Fig. 1 of Ref. 24 and the accompanying discu
sion, it is shown that, for systems with very short cohere
lengths, the spatial dependence of the gap function out
the core has a scale-independent power-law dependence
proaching its asymptotic value roughly as 1/r 2.

The above discussion provides a natural explanation
the muon spin resonance results of Sonier and co-worke25

who found that the vortex core radius, defined as the rad
at which the supercurrent density has its maximum, gro
large at low field. In fact, an excellent fit to their data can
obtained by assuming that the vortex core radius scale
1/AB, as is shown in Fig. 11. The coefficient of 1/AB from
the fit is r 0546.361.5 Å T1/2/AB. Since the vortex lattice
constantd for the A or B sublattices isd5632 Å T1/2/AB,
this maximum occurs at about 7% ofd or equivalently at
about 10% of the intervortex spacing. It would be interest
to test this result at higher fields to see if this scaling bre
down and if r 0 saturates at a constant value limited by t
coherence lengthj0 as one might expect.
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V. THE DENSITY OF STATES AND THE SPECIFIC HEAT

A. Semiclassical DOS

We start by calculating the density of states for the se
classical~SC! approximation, in which the energy is Dopple
shifted by the local superfluid velocityvs(r ):

E~k,r !5\kFx̂•vs~r !6A~\vFkx!
21~\vDky!2, ~21!

where the spectrum has been linearized around the nokW
5(kF,0).

The local superfluid velocity far from the vortex isvs(r )
5(\/2mr)f̂. In the commonly employed ‘‘single-vortex ap
proximation,’’ the associated density of states is

N~E!52
1

p l 2E0

l

rdrdwH V

~2p!2w
3E

0

Ec 2pede

\2vFvD

3dS E2
\2kF

2mr
sinw7e D J ~22!

where the factor of 2 accounts for spin degeneracy.V/w is
the total area of the CuO planes in the sample, whereV is the
volume of the sample andw is the average separation b
tween the planes, andp l 25F0 /B is the area of one unit cel
of the vortex lattice. The integral is overe
5A(\vFkx)

21(\vDky)
2.

In the absence of a magnetic field, with no Doppler sh

N0~E!5
V

p\2vFvDw
uEu. ~23!

Putting the magnetic field back in, the density of states
the intercept

N~0!5
2

p
N0S \vF

l D , ~24!

FIG. 11. A fit of the magnetic-field dependence of the vorte
core radius as determined from muon spin resonance to the 1AB
~Ref. 25! scaling expected from our analysis.
2-7
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DANIEL KNAPP, CATHERINE KALLIN, AND A. J. BERLINSKY PHYSICAL REVIEW B 64 014502
whereN0 is the zero-field density of states. For nonzeroE
we find that

N~«!5N~0!F6«A124«21~8«211!sin21~2«!

8« G ~25!

for 0<u«u,1/2, where«5El/\vF , and

N~«!5
p

2
N~0!S «1

1

8« D ~26!

for u«u>1/2. Note that this is the contribution to the tot
density of states for 2 spin states fromoneof the four nodes.

A more realistic calculation of the semiclassical DOS c
be made for a square vortex lattice if we write the superfl
velocity as the Fourier sum

vs~r !5
p\

ma2 (
QÞ0

iQ3 ẑ

Q2
eiQ•r, ~27!

whereQ52p(mx̂1nŷ)/a anda5AF0 /B. Note that we are
now orienting thex and y axes along the nearest-neighb
directions of the square vortex lattice. The correspond
density of states,

N~E!5
V/w

2p\2vFvDa2E0

aE
0

a

dxdyuE2\vs~r !•kFu,

~28!

can then be calculated numerically using this more accu
expression forvs . The semiclassical density of states,
calculated for both the single-vortex approximation and
square vortex lattice, is shown in Figs. 12 and 13. One
see that the square-lattice DOS is about 30% lower at z

FIG. 12. The total DOS in units ofN0(\vF / l ) for the nodekW

5(kF ,0) andaD514, scaled to show the correspondence with
SC calculation for the square-vortex lattice~solid line! and in the
single-vortex approximation~dashed line!. Note that both axes scal
as AB. The energy is in units ofEv5\vF / l . Also shown~thick
solid line! is the ‘‘averaged’’ quantum DOS, broadened with
Gaussian of full width 0.08Ev . The inset shows the low-energ
DOS compared to the SC approximations. The averaged quan
DOS is not shown in the inset.
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energy than that calculated using the single-vortex appr
mation. This lowering is caused by the disappearance
vs(r ) at high-symmetry points on the vortex-lattice unit-ce
boundary.26

B. Quantum DOS

The quantum density of states is calculated from the q
siparticle energy spectrum at the nodekW5(kF,0):

N~E!52
V

d2Nkw
(
nk

d~E2Enk!, ~29!

wheren labels the energy bands andk is a wave vector in the
magnetic Brillouin zone. The factor of 2 accounts for sp
degeneracy. In order to clarify the dimensional analysis,
have multiplied the usual expression by 15V/(wNkd

2),
where Nk is the number of wavevectors in the MBZ, an
V/w is the total area of the CuO planes in the sample. T
energy in this expression is in units of 2p\vF /d. In order to
compare this result with the semiclassical result we sim
write N(E) in units ofN0(\vF / l ) @see Eq.~23!#, noting that
l 5d/A2p. Results are shown in Figs. 12 and 13, whe
comparison is made to both the SC single-vortex approxim
tion and to the SC square-lattice DOS. Note that both a
scale as 1/l}AB. The dotted line shows the commonly em
ployed single vortex SC DOS to be roughly twice as large
the quantum 1-D DOS in the low-energy region. The qua
tum DOS rises more quickly with energy and the SC a
quantum DOS match up at higher energy and are indis
guishable for energies above 3EV . The discrepancy betwee
the SC square-lattice calculation and the quantum DOS
low energies is due to quantum effects that average over
rapid variations in the direction ofvs„r … near the vortex cores
as well as near the high-symmetry points on the unit-c
boundary. Of course, disorder effects on the vortex latt
and the quasiparticle energies will also affect the aver
magnitude of the low-energy DOS in both the SC and qu
tum cases.8,26

The 1-D calculation ofN(E) for aD520 ~Fig. 13! is in
good agreement with the corresponding 2-D calculation

e

m

FIG. 13. As in Fig.12 foraD520.
2-8
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DIRAC QUASIPARTICLES IN THE MIXED STATE PHYSICAL REVIEW B64 014502
FT,4 reproducing all of the major features at low energi
The overall magnitude of the 1-D DOS is slightly reduc
from the full 2-D calculation. The 1-D calculation, by esse
tially averaging in one direction, underestimates the effec
the supercurrents, which push states to lower energies, a
be seen from the band structures shown in Figs. 4 and 5.
full 2-D quantum DOS in Ref. 4 is about 10% higher
magnitude than the 1-D approximation but is still noticea
lower in magnitude than the SC square-vortex-lattice res

C. ScaledCv„T,B…

The heat capacity of a fermion gas is

C52bkB(
k

2
] f ~Ek!

]Ek
Ek

25
kB

b E
0

`

NT~u/b!
u2

11coshu
du.

~30!

This is the expression used to calculate the specific h
(Cv5C/V) from the total density of statesNT(E). The total
density of states in Eq.~30! is a sum over the density o
statesfor one spinat each of the four nodes. Thus,NT(E)
52 N(E) where N(E) is the semiclassical@Eqs. ~25! and
~26!# or quantum mechanical@Eq. 29!# density of states cal
culated in the previous section. Therefore, the specific he
constant volume is

Cv52
kB

2T

V E
0

`

N~u/b!
u2

11coshu
du. ~31!

The specific heat for the 1-D calculation is shown for vario
values ofaD in Fig. 14. Again, both theC/T axis and theT
axis scale asAB, in agreement with the general scaling pr
dictions of Volovik,1 and Simon and Lee.13 The Cv /T is
linear at higher temperatures, flattens out as the tempera
is decreased, and then increases to a peak at even lowT
before rapidly falling, with a tiny shoulder on the way dow
~see inset of Fig. 14!, to zero atT50. The large peak both
sharpens and moves closer to theT50 axis as the anisotrop
aD is increased. The behavior of this peak suggests tha

FIG. 14. The specific heatCv /T for aD511 ~solid line!, aD

514 ~dotted line!, aD517 ~dashed line!, and aD520 ~dash-dot
line!. The inset shows a magnification nearT50 of the same.
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presence is due to the low-energy peaks in the DOS, part
larly the van Hove singularities that occur just aboveEV
50.25 for aD514 as these contribute significant weight
the DOS. A narrow peak atE in the DOS will typically show
up as a peak in the specific heat nearE/2.29 Comparing the
1-D and 2-D dispersions and DOS, we expect this peak
shift to slightly lower energy and to sharpen in the full 2-
calculation of the specific heat.

The SC specific heat, for the square lattice and for
single-vortex approximation, is shown in Fig. 15, along w
the 1-D specific heat. The temperature is in units ofEv
5\vF / l andCv is in units of

kB
2

2p\vDw
A p

F0
AB. ~32!

Again, the main difference between the SC and quant
specific heat is that the SC specific heat is larger in mag
tude. Both exhibit the same scaling with magnetic field a
with aD . The quantum specific heat exhibits addition
structure at the lowest temperatures that is a reflection of
structure in the low-energy DOS.

In order to make comparisons with experimental resu
we use the numbers in Chiaoet al.27 for YBCO: vF.2.5
3107 cm/s,aD514, andw55.85 Å. The molar volume of
YBCO is VM5104.38 cm3/mol.28 With these numbers we
obtain an intercept for the SC single-vortex calculation
0.91 (mJ mol21) K22/T21/2 in seemingly excellent agree
ment with the experimental AB coefficient of
0.91 (mJ mol21) K22 of Moler et al.6 However, since this
approximation overestimates the zero-energy specific hea
roughly a factor of 2, this agreement is fortuitous. The qu
tum specific heat foraD514 flattens out at approximatel
0.5 (mJ mol21) K22/T1/2.

The Geneva group of Junod and co-workers has repo
a number of results7,30 for the specific heat of very high
quality YBCO crystals, grown in BaZrO3 crucibles and
doped to O7.00 so as to minimize the effects of oxygen cha

FIG. 15. The specific heat, scaled as 1/aD to show the corre-
spondence withCv /T calculated from the Doppler-shifted energ
spectrum. The inset shows the specific heat with the zero magn
field value subtracted as is done in Ref. 26.
2-9
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DANIEL KNAPP, CATHERINE KALLIN, AND A. J. BERLINSKY PHYSICAL REVIEW B 64 014502
vacancies. In the earlier of these, Revazet al.,7 the vortex
contribution to the specific heat was obtained by subtrac
C(B'c,T) from C(Bic,T), the idea being that both lattic
and magnetic impurity effects would cancel out in this su
traction and that the vortex contribution to the specific h
for B'c is small. In the more recent preprint by Wan
et al.,30 results are presented forC(B,T)2C(0,T) for Bic.
For our purposes, these data are more directly useful s
they involve only the single field direction that we have stu
ied. Furthermore, the results should be reliable, since
samples show very little sign of point magnetic impuritie
Wang et al.30 find a T→0 intercept for @C(B,T)
2C(0,T)#/T of 1.3460.04 ~mJ mol21) K22/T21/2.

In order to compare our theoretical results to theT andB
dependence found by Wanget al.,30 we need to subtract th
specific heat in zero field from that in a field. The result
shown in the inset of Fig. 15. It is interesting that the stru
ture that we find at the lowest temperatures could easily
attributed to Schottky-type anomalies in the data. In f
Wang et al.30 show figures with and without subtraction o
an assumed Schottky anomaly, and the latter better
sembles our theoretical results. It is tempting to suggest
the experimentally observed low-temperature structure
samples with the least magnetic impurities is actually due
the structure in the quasiparticle density of states. Howe
since the magnitutude of the observed field-dependent
cific heat is more than twice as large as the calculated va
such detailed comparisons between theory and experim
are probably premature. The effect of disorder on the qu
particles would likely increase the low-energy specific he
since it increases the low-energy DOS. On the other ha
disorder in the vortex lattice may equally well decrease
low-energy specific heat by reducing the local supercurr
velocity. Therefore, it is not obvious that disorder, in itse
can account for the differences between theory and exp
ment.

VI. CONCLUSIONS

By making the approximation, in the mixed state, that
low-energy quasiparticle states in the Dirac nodes are es
tially one-dimensional, we have been able to obtain anal
cal results for the quasiparticle wave functions and ene
spectra. The 1-D approximation to the FT Hamiltonian4 elu-
cidates the physics of the interaction of the quasiparticle
the lowest-energy bands with the vortex lattice: the quasip
ticles travel as plane-waves along the directions of the
nodes, and are confined by the periodic potential of the v
tex lattice in the direction of the Fermi surface. Using the
exact analytical results, we were able to show that the
proximate plane-wave solutions for the same problem c
verges rapidly. The 1-D approximation is able to reprodu
the important features of the 2-D plane-wave expansion
the lowest bands.

We have presented calculations of the tunneling den
of states, which are in qualitative agreement with the se
classical results of Mel’nikov23 but which also show spatia
structure due to the energy dispersion of the low-lying sta
The density of states at zero energy for the quantum prob
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is significantly lower~by a factor of 2! than the commonly
employed semiclassical result for a single circular vort
although this simple approximation overestimates the se
classical density of states for a square-vortex lattice confi
ration by roughly 30% at zero energy. Thus this reduct
arises from two sources: the larger area of low superfl
velocity in the Abrikosov lattice, compared to the case o
single vortex in a circular until cell of radiusl, and quantum
averaging of the superfluid velocity for quasiparticles in t
first magnetic Brillouin zone.

The specific heat has been calculated from the DOS of
1-D plane-wave expansion and found to exhibit a structur
low temperatures that is not present in the semiclassical
proximation. In addition, the magnitude of the low
temperature specific heat is reduced by quantum effe
Since the values of the specific heat measu
experimentally,6,7,30 for parametersvF and vD taken from
other experiments, are already larger than the semiclas
results, the disagreement in magnitude with the quantum
sults is even larger. One possibility is that the discrepanc
due to the effects of disorder which, to date, have not b
included in any quantum treatment of the specific heat. Ot
possibilities are that the anisotropyaD is substantially larger
than currently believed, or that there are additional lo
energy states not accounted for in the disorderedd-wave
model but which exhibit similar magnetic-field dependenc
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APPENDIX A: ANALYTICAL SOLUTION OF THE 1-D
PROBLEM

With the approximation that the potential is on
dimensional the quasiparticle Hamiltonian is

H1-D5S qx
n

2
i

2paD

d

dz

2
i

2paD

d

dz
2qx

n D
1S FS z2

1

4D 0

0 FS z1
1

4D D . ~A1!

The Hamiltonian can be rewritten as
2-10
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H1-D5ŝzqx
n1ŝxS 2

i

2paD

d

dzD1
F1~z!

2
1ŝz

F2~z!

2
,

~A2!

where F1(z)5F(z2 1
4 )1F(z1 1

4 ), and F2(z)5F(z2 1
4 )

2F(z1 1
4 ). Borrowing a trick from Mel’nikov,15 one can

insert I51/2(ŝx1ŝz)(ŝx1ŝz) betweenH1-D and c and
then multiply Eq. ~A2! on the left by 1/2(ŝx1ŝz). This
transformation takesŝx→ŝz and vice versa. We then write

w~z!51/2~ ŝx1ŝz!c~z!,

so that

H ŝzS 2
i

a

d

dzD1
F1~z!

2
2e1ŝxFqx

n1
F2~z!

2 G J w~z!50,

~A3!

wherea52paD . Writing w(z)5„f (z),g(z)…T we obtain the
following coupled first-order differential equations:

S 2
i

a

d

dz
1

F1~z!

2
2e D f ~z!1S qx

n1
F2~z!

2 Dg~z!50

S qx
n1

F2~z!

2 D f ~z!1S i

a

d

dz
1

F1~z!

2
2e Dg~z!50.

From these coupled equations we can derive a second-o
differential equation forf (z):

f 9~z!1a2F i

a
1S F1~z!

2
2e D 2

2S qx
n1

F2~z!

2 D 2G f ~z!

5
ia

2
@ f ~z!2g~z!#d@~z2n!1 1

4 #1
ia

2
@ f ~z!1g~z!#

3d@~z2n!2 1
4 # ~A4!

with delta functions at the boundaries and at the center of
unit cell. In the regions2 1

4 ,z2n, 1
4 and 1

4 ,z2n, 3
4 , the

second-order differential equation forf (z) is

f 9~z!1a2F i

a
1S F1~z!

2
2e D 2

2S qx
n1

F2~z!

2 D 2G f ~z!50.

~A5!

Since this differential equation is periodic inz, we can solve
it within a unit cell and use Bloch’s theorem to extend t
solution over all ofz. SinceF1(z) has a period of 1/2 and
F2(z) has a period of 1, we divide the unit cell into tw
regions ~taking n50 for simplicity!: 2 1

4 ,z, 1
4 and 1

4 ,z
, 3

4 . In these two regions

F1~z!5H 2z, 21/4,z,1/4

2z21, 1/4,z,3/4

and

F2~z!5H 11/2, 21/4,z,1/4

21/2, 1/4,z,3/4
.

01450
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Taking region 1 as2 1
4 ,z, 1

4 and region 2 as14 ,z, 3
4 we

can write

f 9~z!1a2S ~z2cj !
22bj

21
i

aD f ~z!50, ~A6!

where j 51,2 andb15qx
n1 1

4 , b25qx
n2 1

4 , c15e andc25e
1 1

2 . If we let t j5Aa(z2cj ) then

f 9~t j !1~t j
22abj

21 i ! f ~t j !50. ~A7!

This equation is solved by the parabolic cylinder functio
~see Gradshteyn and Ryzhik19!

f ~t j !5Dil j
@6~11 i !t j #, ~A8!

where l j5abj
2/2. The corresponding solution forg(z) is

easily obtained. We thus obtain the full solution forw(z)
shown in Eqs.~17! and ~18!.

APPENDIX B: SOLUTION OF THE BOUNDARY
CONDITIONS TO OBTAIN AN EXCITATION SPECTRUM

For convenience we rewrite Eqs.~17! and ~18! as

w1~z!5S Anf 1
1~z!1Bnf 1

2~z!

2Ang1
1~z!1Bng1

2~z!
D , ~B1!

for n2 1
4 ,z,n1 1

4 and

w2~z!5S Cnf 2
1~z!1Dnf 2

2~z!

2Cng2
1~z!1Dng2

2~z!
D , ~B2!

for n1 1
4 ,z,n1 3

4 .
Acceptable solutions must be continuous at the inte

point, z5n1 1
4 , and at the boundaries of the unit cell,z5n

2 1
4 . At z5n1 1

4 the boundary condition is

S Anf 1
1~n1 1

4 !1Bnf 1
2~n1 1

4 !

2Ang1
1~n1 1

4 !1Bng1
2~n1 1

4 !
D

5S Cnf 2
1~n1 1

4 !1Dnf 2
2~n1 1

4 !

2Cng2
1~n1 1

4 !1Dng2
2~n1 1

4 !
D ,

which can be rewritten as

M1S An

Bn
D 5M2S Cn

Dn
D . ~B3!

At z5n2 1
4 the boundary condition is

S f 1
1~n2 1

4 ! f 1
2~n2 1

4 !

2g1
1~n2 1

4 ! g1
2~n2 1

4 !
D S An

Bn
D

5S f 2
1~n1 3

4 ! f 2
2~n1 3

4 !

2g2
1~n1 3

4 ! g2
2~n1 3

4 !
D S Cn21

Dn21
D ,

or
2-11
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M3S An

Bn
D 5M4S Cn21

Dn21
D , ~B4!

where we have used the periodicity ofw2(z) on the right-
hand side of the above equation. From Eqs.~B3! and ~B4!
we can write

S Cn

Dn
D 5PS Cn21

Dn21
D , ~B5!

where

P5M2
21 M1 M3

21 M4 . ~B6!

Since the Hamiltonian is periodic the eigenvaluesp of P, an
operator that induces a translation of one period, must sa
the Bloch condition:

p65e62p iqy, ~B7!

where2 1
2 ,qy, 1

2 . The eigenvalues ofP are the roots of the
characteristic equation
a-
B

E

01450
fy

p22p Tr~P!1uPu50. ~B8!

Clearly

p65 1
2 ~Tr~P!6A@Tr~P!#224!, ~B9!

which implies that

p11p2

2
5cos~2pqy!5 1

2 Tr~P!. ~B10!

Sinceqy is real

Im$TR~P!%50 ~B11!

and

Re$TR~P!%52 cos~2pqy!. ~B12!

The energy spectrum can now be directly calculated us
this expression.
by

r,
R.
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24M. Franz and Z. Tesˇanović, Phys. Rev. Lett.80, 4763~1998!.
25J. E. Sonier, J. H. Brewer, R. F. Kiefl, G. D. Morris, R. I. Mille

D. A. Bonn, J. Chakhalian, R. H. Heffner, W. N. Hardy, and
Liang, Phys. Rev. Lett.83, 4156~1999!.

26I. Vekhter, P. J. Hirschfeld, and E. J. Nicol, cond-mat/00110
~unpublished!.

27M. Chiao, R. Hill, C. Lupien, L. Taillefer, P. Lamber, R. Gagno
and P. Fournier, Phys. Rev. B62, 3554~2000!.

28A. Simon, Solid State Chem.77, 200 ~1998!.
29See, for example, the discussion on Schottky anomalies in

Kittel, Thermal Physics~Wiley, New York, 1969!.
30Y. Wanget al., cond-mat/0009194~unpublished!.
2-12


