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Dirac quasiparticles in the mixed state
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Energies and wave functions are calculateddfevave quasiparticles in the mixed state using the formalism
of Franz and Teanovicfor the low-lying energy levels. The accuracy of the plane-wave expansion is explored
by comparing approximate to exact results for a simplified one-dimensional problem, and the convergence of
the plane-wave expansion to the two-dimensional case is studied. The results are used to calculate the low-
energy tunneling density of states and the low-temperature specific heat, and these theoretical results are
compared to semiclassical treatments and to the available data. Implications for the muon spin resonance
measurements of vortex core size are also discussed.

DOI: 10.1103/PhysRevB.64.014502 PACS nuniber74.20-z

. INTRODUCTION siparticle depends linearly og=k—k,, wherek, is the

wave vector of the nearest node. If a quasiparticle is local-

The nature of the low-lying excitations in the mixed state, o4 in a region of size smaller thada-l/, then the spread in

of aﬁ'w.a"e suglercondgqtor IS bOtrf] an w:jterestn:jg quimlé”i’ts energy will be larger than its average energy and the wave
mechanics problem and important for understanding the bes, o o picture does not work. For the superfluid velocity to

havior of high-temperature superconductors in a magnet e relatively uniform in a region, the size of the region must

field.=° Volovik? first studied this problem in the semiclas- )
) o o be smaller than the distance to the nearest vortex core and
sical limit, where the d-wave quasiparticles are Doppler

shifted by the local superfluid density. The shifting of GIuaSi_certaunly smaller tham, the distance between vortices. Let

particle energies results in a nonzero density of states at zet apply the ahove considerations to the lowest-energy qua-

energy proportional to the square root of the magnetic field.sIpartICIe band. This corresponds to a quasiparticle, near

Volovik's solution has been applied to calculations of thenodew, with wave vectorq perpendicular td, localized in
specific heaf;® thermal conductivity;'® and nuclear mag- & region of sizd. For the wave packet picture to apply, the
netic relaxation rate¥:!2 It has motivated useful discussions €nergyE of the quasiparticle must be greater thiao, /I,
of the scaling behavior of the specific heat by Simon andvherev, is the quasiparticle velocity alorgy However, for
Lee!® Kopnin and Volovik!* and others. the superfluid velocity to be uniform in the region of slze

The presence of a magnetic field and its associated vorteg necessary thdt<d. Combining these two conditions we
lattice affects the motion of quasiparticles in four distinctobtain the requirement th&>#v,w/d. For energies less
ways. First, the quasiparticles, which carry current, move irthan this the wave packet picture breaks down and a full
the magnetic field that is approximately uniform for an ex-quantum-mechanical picture is needed. This energy range is
treme type-Il superconductor. Second, although the field iseadily accessible via specific-heat measurements below 10
approximately uniform, it is not exactly so, and therefore theK in fields of one to several tesla. It is this energy region that
guasiparticles experience magnetic field gradients. Howevers the main focus of this paper.
the direct effect of these gradients is rather small. Third, Recently, Franz and Tesovi¢ (FT) have derived a
there are supercurrents associated with the curl of the fieldjuantum mechanical theory of the mixed state a-wave
and the quasiparticle energies are affected by the corresponsidperconductor, which involves a singular gauge transforma-
ing superfluid velocity through which they move. For a uni- tion that maps the original problem of superconducting qua-
form superfluid-velocity field, the effect would be a simple siparticles in a magnetic field onto an equivalent one of qua-
Doppler shift of the energies. However, for inhomogeneousiparticles in a periodic potential. The latter problem may be
superfluid velocities the problem is more complicated.solved using conventional band-structure methods.
Fourth and finally, the magnitude of the superconducting or- In this paper, we investigate the low-energy properties of
der parameter is inhomogeneous in the mixed state, althoughd-wave superconductor in the mixed state using the theory
this is mainly apparent within a coherence length of eaclderived by Franz and Tesovic* The most direct experi-
vortex core where this magnitude falls to zero. For an eximental probes of these properties are the low-energy tunnel-
treme type-ll superconductor, this represents a very smalhg density of states and the low-temperature specific heat. In
fraction of the sample for fields well belot .. order to calculate these quantities reliably, we have investi-

Volovik's approach neglects the magnetic field and itsgated the numerical problem of Dirac quasiparticles in the
gradients as well as the inhomogeneous order parameter amperiodic potential of the vortex lattice, focusing on the sim-
plitude and focuses only on the local superfluid velocity. Itplifications that result from the fact that the anisotropy of the
assumes that the quasiparticle wave function can be thougBtirac conesap=vg/v,>1. As discussed by Mel'niko¥’
of as a wave packet that is localized in a region over whictsuch large anisotropy makes the problem approximately one-
the magnitude and direction of the superfluid velocity aredimensional. Mel'nikov described how to obtain solutions to
relatively uniform. The energy of a low-lyingl-wave qua- the one-dimensional problem, but he then confined his analy-
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sis to the semiclassical versions of these solutions. We have d
explicitly evaluated the quantum mechanical solutions in this
one-dimensional limit and used them as a test of the accu- ®
racy of approximate plane-wave solutions. We then show
how to improve on the one-dimensional solutions by includ- - - ,- -—f--- ’- ---
ing a small number of plane-wave basis states for the trans- . |
verse direction, and we study the convergence of this ap- ® I ® I ®

| |

1 I

proach.

The remainder of this paper is organized as follows. Sec- <
tion Il addresses the computational problem of calculating - -,-------k\ unit
guasiparticle energies in the lowest bands in the magnetic . | cell
Brillouin zone, comparing exact and plane-wave-expansion ® i ® ' ®
solutions for the simplified one-dimensiond-D) problem
and then comparing 1-D and 2-D plane wave expansion so- giG, 1. The square-vortex lattice, showing thendB sublat-

lutions for various choices of plane waves. Section Il pre-tices and the corresponding unit cell. The edges of the unit cell are
sents results for the local tunneling density of states, Sec. I\ligned with thex andy axes that are the nodal directions.

reinterprets recent muon spin resonance measurements of the

vortex core size _in terms of a scaling picture, and_ Sec. Myhere @a(r) + @g(r)=¢(r), and pA(r) and eg(r) are the
presents calculations of the low-temperature specific heapontributions to the order parameter phase fromAtend B
comparing them to predictions based on Volovik's approachsypiattices of the vortex lattice. The sublattices are chosen so

and to experimental data. that there are equal numbers Afand B vortices, with two
vortices per magnetic unit cell of the vortex lattice. The vor-
Il. THE COMPUTATIONAL PROBLEM: CALCULATING tex lattice configuration analyzed in this paper is shown in
THE ENERGIES IN THE LOWEST BANDS IN THE Fig. 1. Note that the fact that theandy axes of theA andB
MAGNETIC BRILLOUIN ZONE sublattice unit cells are oriented along nodal directions

means that nearest-neighbor lines of vortices are oriented

The quasiparticle wave functions are described by thealong thea andb axes of the underlying crystal lattice.

BdG equationsHy= ey wherey=(u(r),v(r))", and Under this transformatioft{ becomes

e e & = ()2 ‘

A _7_,\{; ) ﬁ(p+mvs) —€p D
Has= 1 )
with H.=(p— (e/c)A)?>—er. The gauge invariant form of D _ —(p—mv§)2+ €r
the gap operatorA, for a d-wave superconductor can be 2m 4
written as(see Ref. 16 for the detajls )
where

~ 1 . . i1
A= APt Py, A= 7 S AN (0dye), () A
PE PF D=2
2
where, for notational convenience, we have chosen to orient F
our axes along the directions of the gap nodes, at an angle With the superfluid velocities
/4 with respect to the orientation of the Cu@lanes.pg is
the Fermi momentum, andA(r)=|A(r)|e'*" is the
Ginzburg-Landau order parameter. Since we are working in VE(r)=
the intermediate field regimeH(;<B<H,) of an extreme
type-ll superconductor, we can assume that the magnitude Note thatv@(r)+v§(r):2vs(r). Since the vortex lattice is

the gap is constant everywhere, except at the vortex cores, .~ .. . o . .
and that the magnetic field distribution and local superfluidBerIOdIC’ the superfluid velocities can be written as Fourier

velocity can be described by the London motfel. sums

In order to diagonalize the Hamiltonian in E@l) one ) o
would like to remove the order parameter phase from the VE(r) = @ E KXz
off-diagonal components dft. It is desirable to choose a S md? K7zo K?
transformation that is both single-valued and treats the par-
ticles and holes on an equal footing. This is accomplished byhereK = (27/d)(m,,m,), d=y2®,/B is the size of the

m
A B
pX+ E(USX_USX) X

E>y+§<v§y—v5y>}, ®)

e
a ﬁV(pM— EA), ,L,LZA,B. (6)

eiK-(r+¢§f‘)' @)

the bipartite, singular gauge transformation of ¥T: magnetic unit cell, and* = * (d/4,d/4) is the displacement
oa(r) of A or B vortices from the center of the unit céflee Fig. 1
H—U"1HU U= e .0 ) 3 Linearizing the Hamiltonian in Eq(4) at the nodek
’ 0 eles) =(kg,0) we find thatH,g="Hy+H' with
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FIG. 2. Constant-energy contoursf, and MBZ boundaries of
the A and B square sublattices @y=5.

UEPx  vaPy
Ho= UAPy —UEPx (8)
and
VEUEy sva(vg—vg)
H'=m 1 , (9

A__ B B
EUA(Usy_vsy) URUsey

wherev is the Fermi velocity, and y=Aq/pg is the slope
of the gap at the node.

At the nodeIZ=(k,:,0) the free Dirac Hamiltoniafi{, has
the familiar Dirac cone spectrum

£= iﬁv,:\/kx2+ kyzlazD,

(10
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one-dimensional and ignore the interaction of those Fourier
components that are at different valueskgf. We therefore
write

W) =€, el My (k). (12)

y

If, however, E. is high enough thak, exceeds the bound-
aries of the first MBZ (see Fig. 2 we can make the
assumption—since the Fourier sum is dominated by compo-
nents whose values & are bounded by the constant energy
contour atE.—that

Ko Kelap

wk(m:; ; el Ty (), (13
y X

whereK_. is the cutoff wave vector along thedirection.

Such plane-wave expansions can be computed numeri-
cally to obtain the excitation spectrum for the quasiparticles
in a periodic vortex lattice. The solution to the problem using
Eq.(11) has been studied in detail by Fyhereas Marinelli
and Halperif® studied solutions td,g defined in Eqs(8)
and(9) in position space. Both groups found that the conver-
gence of the plane-wave expansions was slow. Since we are
specifically interested in the low-energy and low-temperature
properties that are largely determined by the lowest band of
the excitation spectrum, we will focus next on obtaining an
analytical solution to the linearized Hamiltonian with the ap-
proximation that, for largexp, the quasiparticle wave func-
tions are one-dimensional. Having obtained both analytical

where K, ,k,) =0 at the node. The quasiparticle momentumand numerical solutions to this one-dimensional problem, we

along the nodal direction is,~¢/hvg with a corresponding
wavelength of\,~%vg/e. If the energy is low enoughs(

will then examine how adding more transverse wave vectors,
as in Eq.(13), allows us to approach the exact numerical

<hvelry), ke will be confined to the first magnetic Bril- two-dimensional result, using E¢L1).

louin zone(see Fig. 2and the wavelength, will exceed the

intervortex distance,, crossing the boundaries of several

unit cells of the vortex lattice. For large values of the anisot-

ropy ap the momentum parallel to the Fermi surf At low energies and for large values ofy the wave

~ apk, will be much larger than that along the nodal direc- functions are localized in thg direction and extended along

tion. The quasiparticle wave function will thus be localized the x direction® This suggests the following basis as a use-

in the direction parallel to the Fermi surface, but will be ful starting point:

extended and will feel the average effect of the superfluid

velocity fields of several vortices along the nodal direction.
Since the potentigh’ is periodic we can expand the qua-

siparticle wave function in the plane-wave basis:

A. The 1-D analytical solution

wk(r>=K2 e KXk + Ky y). (14)

As we shall see, the Fourier componeiit&k, + K, ,y), for
differentK,, are spatially well separated in tlyedirection.
Their interaction is consequently negligible, and we can as-
The periodic potential of the vortex lattice will be respon- sume that the Hamiltonian is diagonal in the quantum num-
sible for the interaction of the Fourier componetg(k) berK, . This allows us to replace the periodic potentiél in

and ¢ (k). If we are interested only in energies below a Eq. (9), which in principle scatters quasiparticles between
cut-off energy,E., for which the momentunk, lies well  states with different values &, , with its effective potential
within the first magnetic Brillouin zonéVBZ) we can make averaged in the direction that is diagonal iK, . The result
the approximation that the quasiparticle wave function isis

‘Ifk(r>=; e Ty (k). (11)
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N i d

9x a 2map dz
0= i d .
B 2map dz Gx

1
CI)(Z— Z) 0
K (15
0 P Z+Z
where Hy= ey, e=EIEy where Eq=2mhve/d, z=yl/d, 0

and®(z)=z—(n+3) wheren<z<n+ 1. Note that in these Y
H 1 n 1 n_

unlt§n— §<qx<n4_- 2 \(vhereqxl— (d72am) (k- I.(X).' The po- FIG. 3. A comparison of the 1-D analytical spectrum along the

tentla}l along they dlrec'glon consists of two periodic sawtooth k, axis (¢) with the numerical 1-D plane-wave expansisl

funC'_[lons with discontinuities 'Y'”g along t_he_ averaged VOI"RLV’s) results ¢) for ap=7. The numerical 1-D results are also

tex_llnes of theA anql B sub!attlces. At s_ufﬂmently I_ow eN- shown for the spectrum along the axis.

ergies the quasiparticles will be bound in thelirection by

the potential barriers that lie at the discontinuitiesdifz).

Our picture is thus one of quasiparticles that travel as plane Diarz(@)+ 1747l = V2iz,]

waves along the nodal direction but are bound within poten- (z)= .

. - . . P 1a 1

tial wells—created by the averaged vortex lattice—in the di- T\ 5| O+ = | Do+ 1rap—al = \2iz4]
rection parallel to the Fermi surface. Note that, at low ener- 2 4 X

gies, the Fourier componentg(k,,y) and ¢(k,+K,,y) (17)

have negligible overlap, as they lie iseparatepotential
wells along they direction.
By making the substitution

for n—3<z<n+3 and

Dia/z(qQ— 1yl £ \2iz,]

1 .
3|0 sap

(18

+

@(2)=3(ox+ ) (2), ¢a(2)= \[a
2

Eq. (15) can be rewritten as

for n+i<z<n+2, with z,=\a(z—e—n) and z,= Ja(z

. —e—n-1).
- : i + ©4(2) et ol g+ ®2(2) 2)=0 These solutions can be matched at the boundaries of the
z d 2 X qX 2 (P( ) 1 . . . . .
aadz unit cell (see Appendix Bto obtain an exact excitation spec-

(16 trum for the one-dimensional, averaged Hamiltonian. The
resulting spectrum for anisotropy, =7 is shown in Fig. 3.
It is useful to note that the energy scélg is approximately

herea=2 ando; are the Pauli matrices. The function .
W Teo S ! I HNCION iven by Eg~185(B T~ 2K.

D (2)=P(z—3)+P(z+3) B. Comparison of 1-D analytical and plane-wave expansion
results

is a sawtooth with a slope of 2 and a period of 1/2, and the ~ USing the plane-wave expansion of E42) we can nu-
function merically diagonalize the Hamiltonian to obtain an excitation

spectrum that can be compared with the analytical results. To
the numerical accuracy of the diagonalization, these two
P(2)=D(z— 1) —P(z+1) methods yield identical results for the dispersion al&p@s
shown in Fig. 3, where 61 reciprocal lattice vect@ri.V'’s)
have been kept in the plane-wave expansfofihe disper-
is a step function that oscillates betweerl and+1 witha  sion alongk, calculated from the 1-D plane-wave expansion
period of 1. Since the potential is periodic we can solve Eqis also shown in Fig. 3. As discussed by Marinelli and
(16) within a unit cell and use Bloch’s theorem to extend theHalperin!® the dispersion away from the point alongk, is
solution over all ofz The solution within a unit cel(see  more strongly renormalized by the supercurrents, leading to
Appendix A for the detailsis given in terms of the parabolic an enhanced effectivey. For ap>10 there is essentially
cylinder functionst(z):19 no discernible dispersion alorlg, for the lowest bandsas
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FIG. 4. A comparison of the 1-D plane-wave expansiéi
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results (¢) for ap=14

siong, further suggesting the validity of a one-dimensional

approximation.

Since both the energy and momentum axes scal¢Bas

X
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FIG. 6. The energy spectrum far, =14 andN,=41 andN,
=1 (4), 5(X), 9(@), 13(*), 21(M), and 290).

o mation cannot be used to quantitatively determine the size of
calculated in either the 1-D or full 2-D plane-wave expan-ihe minigaps that lie along the line quasinodes. An analysis

of the 1-D spectra for several values @f shows that the
size of the smallest minigap at fixed is ;€™ "“0 where
m~0.18. Unfortunately, the slow convergence of the 2-D

these spectra apply to all values of the magnetic field withineciprocal lattice sums—due to the divergence of the super-
Hci<B<Hg,. As the anisotropy increases, the gap betweenyig velocity at the vortex core@iscussed in more detail by

the lowest band of the spectrum and the 0 axis quickly

Vafek et al!®—makes it very difficult to accurately deter-

narrows. Atap = 14 (Fig. 4) the spectrum is close to forming mjne the size of these minigaps in the full 2-D calculation.

a line quasinode, in agreement with the results of efig of

Nonetheless, we believe that the 1-D treatm@vitich is

Marinelli and Halperin'® which suggest that a line quasinode far |ess computationally intensive than the 2-D problem

captures and elucidates the important physics of the lowest
bands of the quasiparticle excitation spectrum and is there-
fore a useful tool that helps us understand the physical be-
havior of the quasiparticles in the mixed state. In particular

first appears atvp=15.

C. Comparison of 1-D and approximate 2-D plane-wave

calculations

The results of numerical diagonalization calculations o
the excitation spectrum of the quasiparticles in the 1-D av
eraged potential and the exact 2-D potential at different val-
ues of the anisotropy are shown in Figs. 4 and 5. The 1-

swe will use the 1-D energies and wave functions to calculate
the local tunneling density of states and the specific heat.
Next we compare the results of the 1-D calculations to
dinite 2-D plane-wave expansions using a grid Mfx N,

spectra show good qualitative agreement with the 2-D Sped’_eciprocal lattice vectors. For example, in Fig. 6 results are

tra, capturing the major features of the lowest bands, inclu
ing the line quasinodes that form at large valuesagf.

However, the 1-D treatment is unable to accurately represen
guantitatively the behavior of the full 2-D spectrum. In par-

dghown forap =14, comparing the 1-D casbl,=1,N,=41,

to N,=5,9,13,21, and 29\, =41. Similar results are shown
igj Fig. 7 for ap=20 andN,=61. One of the most striking
features of both figures is the complete insensitivity of the

ticular, as can be seen from Figs. 4 and 5, the 1-D aploroXiljnear branch near thE point to the number of plane-waves
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FIG. 7. As in Fig. 6 forap=20 andN,=61.
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. . | . 12 T T '
l‘l E=
10 L P E=0.01E,
6 ]

1 I 1
0
%% 0 an ) 0 an

FIG. 8. The contribution to the TDOS from the nodeskat FIG. 9. As in Fig. 8 forap=20. Note the now very distinct
(=kg,0) at three different energies far, =14. The TDOS is nor- shoulders that have formed on either side of the peaks.
malized as in Eq(19). d/2 is the separation, in thg direction, ) ]
between lines of vortices. Note the shoulders forming on either sidghoulders on either side of the peaks come from the states
of the peaks as the energy is increased. within the lines of quasinodes that form at large values of

ap . At ap=20, the size of the gap in the line quasinode has
in the calculation. For this branch, it appears that the 1-Ddecreased and a second line quasinode has started to appear
energies are essentially exact. For other low-energy branchésee Fig. % Both these features contribute to the very dis-
and general points in the Brillouin zone, the plane-wave extinct shoulders on either side of the peak in the TDOS in Fig.
pansion seems to converge smoothly. The only pathologicad.
behavior occurs near the quasinodes, where both the posi- Figure 10 shows the zero-bias two-dimensional TDOS as

tions and the values of the minima converge slowly. a sum over the four nodes. This result is in qualitative agree-
ment with the semiclassical calculation of the TDOS by
IIl. LOCAL TUNNELING DENSITY OF STATES Mel'nikov.?® The vortex lattice geometry of our paper is, in

) ) ) Mel'nikov’s notation, a Type-II lattice witho=1/2. This
In this section we show results of calculations of the localgives a TDOS that is proportional to

tunneling density of state€fDOY) of the quasiparticles in

the lowest band of the energy spectrum using the one- X y
dimensional plane-wave expansion of E#2). The TDOS F1=‘CI> —)‘4“@(—)‘ (20
ig:21.22 d/2 d/r2
) where ®(z)=2z—(2m+1). The semiclassical TDOS of
__ < 267 . Mel'nikov thus has the profile of a triangle wave along the
N(r.E) Ny kZW |uk*W(r)| (e, —B) and y directions. The fully quantum mechanical results

+|vk,,u,v(r)|2f,(8k,p,+E)l (19) d

wheref’(x) is the derivative of the Fermi functiok, is the
set of wave vectors in the magnetic Brillouin zonejs the
set of energy bandsestricted in this case to the lowest posi-
tive and negative energy bandsnd v is the set of four
Dirac nodes. The normalization factorNg/is equal to the
number of spins divided by the number of wave vectors in
the magnetic Brillouin zone.
The plane-wave expansion was done at the néde
=(kg,0). It is easy to show that by taking, ,— — &, in
Eqg. (19 one obtains the contribution from the opposite node
at IZ=(—kF,O). Within the 1-D approximation, these two
nodes give the dependence of the TDOS, and the other two
nodes atk=(0,=kg) give thex dependence. Thg (or x) N ‘
dependence of the TDOS at 1 K and at a field of 1 T, for two S/ INANN J ”
d
2

o — \

LDOS

different values of the anisotropyy, and at three different -
energies is shown in Figs. 8 and 9.

One can see that the TDOS has the periodicity of, and is
sharply peaked at, the vortex lines. The TDOS falls to a FIG. 10. The zero-bias TDOS for the 1-D plane-wave expansion
broad minimum in the regions between the vortices. Theat ap=20

2 q
2
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shown here follow this profile, but exhibit additional struc- 150
ture that arises from the quasiparticle states near the quasin-
odes.

We note that only half of the bright spots in Fig. 10 lies at
vortex positions while the other half lies halfway between 100
vortices. For example, in Fig. 10 the bright spots at the cor-
ners and at the center of the figure might correspond to vor-
tex sites. The other bright spots are then the result of the
overlap of the sharply peaked tunneling density of states that 50
extends from each vortex, parallel to the four node direc-
tions. It is an artifact of the 1-D model that, for the case of a
square lattice, these overlaps have a peak tunneling density
of states equal to that of a vortex core. This artifact is less 0o !
evident in more general, centered rectangular lattices or, in
particular, for the hexagonal latti¢ce?® HoH (D)

1, )

Y =
'S
ol
=)

FIG. 11. A fit of the magnetic-field dependence of the vortex-
core radius as determined from muon spin resonance to @ 1/
IV. MUON SPIN RESONANCE (Ref. 25 scaling expected from our analysis.

Two important simplifying assumptions in this model are
that the superconducting coherence length is negligible an
the penetration depth is large compared to the distance be- A. Semiclassical DOS

tween vortices. As a consequence of these assumptions, the \ye start by calculating the density of states for the semi-

intervortex spacing is the only length scale in the prOblemclassical(SC) approximation, in which the energy is Doppler
This allows us to present results scaled to this length as igpified by the local superfluid velocity(r):

done above for the tunneling density of states.
In addition to calculating the tunneling density of states,
one could also use the wave functions generated by these

calculations to compute the pattern of the two-dimensionaw1ere the spectrum has been linearized around the Rode
supercurrent density. This would, of course, not be a self_ ke,0).

_cqr_13istent result, but it would be an improvemenF over the ‘The |ocal superfluid velocity far from the vortex (r)

initial form for the supercurrent density corresponding to Eq.

(7). Without actually doing this calculation, we know that the

resulting pattern would be a function ofd and hence that

all lengths would scale as B. 1
This picture, in which the vortex lattice constant provides N(E)zz_f rdl‘d(p[

the only length scale, is supported by the self-consistent cal- ml?Jo

culations of Franz and Taesovic for a single d-wave

vortex?* In Fig. 1 of Ref. 24 and the accompanying discus- s

sion, it is shown that, for systems with very short coherence

lengths, the spatial dependence of the gap function outside

the core has a scale-independent power-law dependence, é[ﬁhere the factor of 2 accounts for spin degeneradyv is

proaching its asymptotic value roughly as2/ the total area of the CuO plapes in the sample, wh’egafthe
The above discussion provides a natural explanation oyolume of the samplezanw is the average separation be-

the muon spin resonance results of Sonier and co-wdkerseen the planes, anal “=®,/B is the area of one unit cell

who found that the vortex core radius, defined as the radiu€’ _the v2<)rtex |at'[2IC€. The integral is overe

at which the supercurrent density has its maximum, grows_ V(hvek)?+ (hv k)% o i ,

large at low field. In fact, an excellent fit to their data can be N the absence of a magnetic field, with no Doppler shift,

obtained by assuming that the vortex core radius scales as

1/\/B, as is shown in Fig. 11. The coefficient ofyB from No(E)= v E| 23

the fit isro=46.3+1.5A TY%/B. Since the vortex lattice ° Th20Ev AW

constantd for the A or B sublattices isdl=632 A 1Y% B,

this maximum occurs at about 7% dfor equivalently at Puttjng the magnetic field back in, the density of states has

about 10% of the intervortex spacing. It would be interestingth€ intercept

to test this result at higher fields to see if this scaling breaks

down and ifr, saturates at a constant value limited by the

coherence lengtl§, as one might expect.

a/. THE DENSITY OF STATES AND THE SPECIFIC HEAT

E(k,r)=7ikex-Vs(r) = (o gk 2+ (o k)2, (21)

=(h/2m r)<}5. In the commonly employed “single-vortex ap-
proximation,” the associated density of states is

\Y JECZ’TTEdE

2m2w  Jo h%vpv,

E ke o 22
—msmcp+6 ( )

2 ﬁUF
N(O)=;N0(|—), (24
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FIG. 12. The total DOS in units dfly(%v/1) for the nodek FIG. 13. As in Fig.12 forap = 20.

=(kg,0) andap= 14, scaled to show the correspondence with the
SC calculation for the square-vortex latticsolid line) and in the ~ energy than that calculated using the single-vortex approxi-
single-vortex approximatiofdashed ling Note that both axes scale mation. This lowering is caused by the disappearance of
as \B. The energy is in units oE,=%v/l. Also shown(thick  V(r) at high-symmetry points on the vortex-lattice unit-cell
solid line) is the “averaged” quantum DOS, broadened with a boundaryz.6
Gaussian of full width 0.0&, . The inset shows the low-energy
DOS compared to the SC approximations. The averaged quantum B. Quantum DOS
DOS is not shown in the inset. . .

The quantum density of states is calculated from the qua-
whereN, is the zero-field density of states. For nonz&o siparticle energy spectrum at the ndde (kg,0):
we find that

N(E)=2 v > S(E—Epy), (29)

— 2 Pl
6e\1—4e°+(8e“+1)sin ~(2¢) (25 d2N,w

8¢

for 0<|e|<1/2, wheres=El/fvg, and

N(e)=N(0)

wheren labels the energy bands akds a wave vector in the
magnetic Brillouin zone. The factor of 2 accounts for spin
- 1 degeneracy. In order to clarify the dimensional analysis, we
N(e)= EN(o)(gJr 8—) (26) have multiplied the usual expression by=¥/(wN,d?),
€ where Ny is the number of wavevectors in the MBZ, and
for |¢|=1/2. Note that this is the contribution to the total V/w is the total area of the CuO planes in the sample. The
density of states for 2 spin states frameof the four nodes. energy in this expression is in units ofizve /d. In order to
A more realistic calculation of the semiclassical DOS cancompare this result with the semiclassical result we simply
be made for a square vortex lattice if we write the superfluidvrite N(E) in units of No(%ve /1) [see Eq(23)], noting that
velocity as the Fourier sum |=d/\27. Results are shown in Figs. 12 and 13, where
comparison is made to both the SC single-vortex approxima-
tion and to the SC square-lattice DOS. Note that both axes
scale as 1#<\B. The dotted line shows the commonly em-
ployed single vortex SC DOS to be roughly twice as large as
whereQ=27-r(m3<+ n§/)/a anda= \/m_ Note that we are the quantum 1-D DOS in the low-energy region. The quan-
now orienting thex andy axes along the nearest-neighbor tum DOS rises more quickly with energy and the SC and
directions of the square vortex lattice. The correspondingluantum DOS match up at higher energy and are indistin-
density of states, guishable for energies abové&3. The discrepancy between
the SC square-lattice calculation and the quantum DOS at
afa low energies is due to quantum effects that average over the
fo fo dxdY E—vg(r)-Kel, rapid variations in the direction of(r) near the vortex cores
29) as well as near the high-symmetry points on the unit-cell
boundary. Of course, disorder effects on the vortex lattice
can then be calculated numerically using this more accuratend the quasiparticle energies will also affect the average
expression forvg. The semiclassical density of states, asmagnitude of the low-energy DOS in both the SC and quan-
calculated for both the single-vortex approximation and theum case$§:*
square vortex lattice, is shown in Figs. 12 and 13. One can The 1-D calculation oN(E) for ap=20 (Fig. 13 is in
see that the square-lattice DOS is about 30% lower at zergood agreement with the corresponding 2-D calculation of

Ve(N=—5 > iQﬁe‘Q'r, 27)

V/iw

27h?vEv,a®

N(E)
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FIG. 14. The specific heat, /T for ap=11 (solid line), ap FIG. 15. The specific heat, scaled agg3/to show the corre-
=14 (dotted ling, ap=17 (dashed ling and ap=20 (dash-dot spondence withC, /T calculated from the Doppler-shifted energy
line). The inset shows a magnification néla= 0 of the same. spectrum. The inset shows the specific heat with the zero magnetic

field value subtracted as is done in Ref. 26.
FT,* reproducing all of the major features at low energies.
The overall magnitude of the 1-D DOS is slightly reducedpresence is due to the low-energy peaks in the DOS, particu-
from the full 2-D calculation. The 1-D calculation, by essen-larly the van Hove singularities that occur just abdzg
tially averaging in one direction, underestimates the effect of=0.25 for ap =14 as these contribute significant weight to
the supercurrents, which push states to lower energies, as ctire DOS. A narrow peak & in the DOS will typically show
be seen from the band structures shown in Figs. 4 and 5. Thep as a peak in the specific heat n&42.2° Comparing the
full 2-D quantum DOS in Ref. 4 is about 10% higher in 1-D and 2-D dispersions and DOS, we expect this peak to
magnitude than the 1-D approximation but is still noticeablyshift to slightly lower energy and to sharpen in the full 2-D
lower in magnitude than the SC square-vortex-lattice resultcalculation of the specific heat.
The SC specific heat, for the square lattice and for the

C. ScaledC,(T,B) single-vortex approximation, is shown in Fig. 15, along with

the 1-D specific heat. The temperature is in unitsEQf

The heat capacity of a fermion gas is —#ve/l andC, is in units of

af(Ey)

kg [* u?
C=2pkozs ~ g, ™ 5, VA Tigogm v sehe s Vool (32
(30) A 0

This is the expression used to calculate the specific heat Again, the main difference between the SC and quantum
(C,=CIV) from the total density of statd$;(E). The total ~ specific heat is that the SC specific heat is larger in magni-
density of states in Eq30) is a sum over the density of tude. Both exhibit the same scaling with magnetic field and
statesfor one spinat each of the four nodes. Thud;(E)  With «ap. The quantum specific heat exhibits additional
=2 N(E) where N(E) is the semiclassicdlEgs. (25 and  structure at the lowest temperatures that is a reflection of the
(26)] or quantum mechanic@Eq. 29] density of states cal- structure in the low-energy DOS. _

culated in the previous section. Therefore, the specific heat at In order to make comparisons with experimental results,

constant volume is we use the numbers in Chiagt al?’ for YBCO: vg=2.5
X 10" cm/s,ap=14, andv=5.85 A. The molar volume of
KT (= u? YBCO is Vyy=104.38 cmi/mol.?® With these numbers we
CUZZTJO N(U/B) T coshy 94 (3D obtain an intercept for the SC single-vortex calculation of

0.91 (mJ mot?!) K~2/T 2 in seemingly excellent agree-
The specific heat for the 1-D calculation is shown for variousment  with the experimental VB  coefficient of
values ofap, in Fig. 14. Again, both the/T axis and theT  0.91 (mJ mof') K2 of Moler et al® However, since this
axis scale as/B, in agreement with the general scaling pre- approximation overestimates the zero-energy specific heat by
dictions of Volovik! and Simon and Le& The C,/T is  roughly a factor of 2, this agreement is fortuitous. The quan-
linear at higher temperatures, flattens out as the temperatutem specific heat forxp =14 flattens out at approximately
is decreased, and then increases to a peak at even ower0.5 (mJ moll) K~2/TY2,
before rapidly falling, with a tiny shoulder on the way down  The Geneva group of Junod and co-workers has reported
(see inset of Fig. 14 to zero atT=0. The large peak both a number of resulfs for the specific heat of very high
sharpens and moves closer to e 0 axis as the anisotropy quality YBCO crystals, grown in BaZrQ crucibles and
ap is increased. The behavior of this peak suggests that itdoped to Q oo SO as to minimize the effects of oxygen chain
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vacancies. In the earlier of these, Rewtzl,’ the vortex s significantly lower(by a factor of 2 than the commonly
contribution to the specific heat was obtained by subtractingmployed semiclassical result for a single circular vortex,
C(BLc,T) from C(B|c,T), the idea being that both lattice although this simple approximation overestimates the semi-
and magnetic impurity effects would cancel out in this sub-classical density of states for a square-vortex lattice configu-
traction and that the vortex contribution to the specific heatation by roughly 30% at zero energy. Thus this reduction
for BLc is small. In the more recent preprint by Wang arises from two sources: the larger area of low superfluid
et al,* results are presented f@(B,T)—C(0,T) for Bllc.  velocity in the Abrikosov lattice, compared to the case of a
For our purposes, these data are more directly useful sincgingle vortex in a circular until cell of radius and quantum
they involve only the single field direction that we have stud-averaging of the superfluid velocity for quasiparticles in the
ied. Furthermore, the results should be reliable, since th&rst magnetic Brillouin zone.
samples show very little sign of point magnetic impurities.  The specific heat has been calculated from the DOS of the
Wang etal®*® find a T—O intercept for [C(B,T) 1-D plane-wave expansion and found to exhibit a structure at
—C(0,T)]/T of 1.34+0.04 (mJ mol'!) K=2/T~ 2, low temperatures that is not present in the semiclassical ap-
In order to compare our theoretical results to ThandB ~ proximation. In addition, the magnitude of the low-
dependence found by Wareg al.*° we need to subtract the temperature specific heat is reduced by quantum effects.
specific heat in zero field from that in a field. The result isSince the values of the specific heat measured
shown in the inset of Fig. 15. It is interesting that the struc-experimentally’,”* for parameters)r and v, taken from
ture that we find at the lowest temperatures could easily bether experiments, are already larger than the semiclassical
attributed to Schottky-type anomalies in the data. In factesults, the disagreement in magnitude with the quantum re-
Wanget al*° show figures with and without subtraction of sults is even larger. One possibility is that the discrepancy is
an assumed Schottky anomaly, and the latter better redue to the effects of disorder which, to date, have not been
sembles our theoretical results. It is tempting to suggest thancluded in any quantum treatment of the specific heat. Other
the experimentally observed low-temperature structure irpossibilities are that the anisotropy, is substantially larger
samples with the least magnetic impurities is actually due téhan currently believed, or that there are additional low-
the structure in the quasiparticle density of states. Howevegnergy states not accounted for in the disordedeslave
since the magnitutude of the observed field-dependent sp@&odel but which exhibit similar magnetic-field dependence.
cific heat is more than twice as large as the calculated value,
such detailed comparisons between theory and experiment
are probably premature. The effect of disorder on the quasi- ACKNOWLEDGMENTS

p_articlles. would likely increase the low-energy specific heat, \ye would like to thank Marcel Franz, Peter Hirschfeld,
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By making the approximation, in the mixed state, that the
low-energy quasiparticle states in the Dirac nodes are essen-APPENDIX A: ANALYTICAL SOLUTION OF THE 1-D
tially one-dimensional, we have been able to obtain analyti- PROBLEM
cal results for the quasiparticle wave functions and energy With the approximation that the potential is one-
spectra. The 1-D approximation to the FT Hamiltoffiatu- dimensional the quasiparticle Hamiltonian is
cidates the physics of the interaction of the quasiparticles in
the lowest-energy bands with the vortex lattice: the quasipar-
ticles travel as plane-waves along the directions of the gap i d
nodes, and are confined by the periodic potential of the vor- Ax T oma- dz
tex lattice in the direction of the Fermi surface. Using these Hip= ) P
exact analytical results, we were able to show that the ap- ! i
proximate plane-wave solutions for the same problem con- 2map dz
verges rapidly. The 1-D approximation is able to reproduce
the important features of the 2-D plane-wave expansion in @( 1) 0
the lowest bands.

We have presented calculations of the tunneling density + 1) . (A1)

—ay

of states, which are in qualitative agreement with the semi- 0 0]
classical results of Mel'nika¥ but which also show spatial

structure due to the energy dispersion of the low-lying states.

The density of states at zero energy for the quantum problermihe Hamiltonian can be rewritten as
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A i d) @20 . Py2) Taking region 1 as- <z<j and region 2 ag<z<3 we
Hyp= 005+ Ux( T 2mag dz 5 T can write
(A2) i
" 2 —
where ®;(2)=®(z— )+ ®(z+ 1), and d,(2)=d(z— 1) f"(z)+a% (z=c)*~bi+ Z|f(2)=0,  (A6)

—®d(z+1). Borrowing a trick from Mel'nikov!® one can

insert | =1/2(o+ 0,) (04 + 0,) between™; p and ¢ and whlerej=1,2 andby=qy+3, by=0y—3, ci=e€ andc, =€
then multiply Eq.(A2) on the left by 1/2f.+4,). This T2+ !f we let7j=ya(z—c;) then

transformation takes,— o, and vice versa. We then write f"(Tj)+(TjZ_abj2+i)f(7-j):0_ (A7)
<P(Z)=1/2(<}x+ &Z) W(2), This equation is solved by the parabolic cylinder functions
(see Gradshteyn and Ryzhik
so that
f(r)=Dj\ [£(1+i)7], (A8)
- i d d4(2) A @a(2) :
%2 T34z 5 etoy Ot ——|1e(2)=0, where \;j=ab?/2. The corresponding solution fay(z) is

(A3)  easily obtained. We thus obtain the full solution fp(z)

. ) shown in Eqs(17) and(18).
wherea=2map . Writing ¢(z) = (f(2),9(z))" we obtain the

following coupled first-order differential equations: APPENDIX B: SOLUTION OF THE BOUNDARY

CONDITIONS TO OBTAIN AN EXCITATION SPECTRUM

I PO D) P
adz 2 €|f(z Ax 2 9(2)= For convenience we rewrite Eq4.7) and (18) as
+ -
D,(2) i d @y (2) Anfi(2)+Byf1(2)
n .2 _ - = , B1
(qx+ > )f(z)+ ST o €/9@=0. e1(2) A (2)+B,g; (2) (B1)
From these coupled equations we can derive a second-ordar n—3<z<n+3; and
differential equation forf (z):
( Caf3(2)+Dnf5 (2) ) .
i (D 2 ) 2 P2(2)= _ b B2
(z)+a? %+ 12(2)—6) —(q;‘+ 22(2)) }f(z) ? —Cn9, (2)+Dyg; (2)

_ _ for n+3<z<n+3.

1a 1a Acceptable solutions must be continuous at the interior
= — — 194~
2 [1(2)=g(2)]ol(z=n)+3]+ 2 [1(2)+9(2)] point, z=n+ %, and at the boundaries of the unit cakn

. — 1. At z=n+ 3 the boundary condition is
Xd[(z—n)—3 (A4)

with delta functions at the boundaries and at the center of the
unit cell. In the regions- 3 <z—n<3 and;<z—n<32, the
second-order differential equation fb¢z) is

Afi(n+3)+B.fr(n+1) )

_Angf(n"_%)'*'Bngl_(n—f_%)

+ 1 — 1
N )2 : @Z(z))zf . _| Cofz{ntDFDafa (n+) )
(@radati—z ¢ Tlar ) [fe=0 ~Cog3 (n+£)+Dyg; (n+3)
(A5) . .
which can be rewritten as

Since this differential equation is periodic Znwe can solve

it within a unit cell and use Bloch’s theorem to extend the A, Ch

solution over all ofz. Since®,(z) has a period of 1/2 and Ml( Bn) = 2( Dn)' (B3)

®,(z) has a period of 1, we divide the unit cell into two
regions (taking n=0 for simplicity): —3<z<3 and <z At z=n-—3 the boundary condition is
<2 In these two regions

2z,  —14<z<l1/4 ( fi(n-2 fi(n=9) An)
q)l(z):iZZ—l, 1/4<z<3/4 -g;(n—%) gi(n—%)/\Bn
and _( fi(n+32) f2_(”+z3'1))(cn_1)
+1/2, —1/4<z<1/4 "\ —gi(n+d) gyn+2))\Dn)’
$22)= [ ~12,  ldcz<3/4 or
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A, Cn1 p?—p Tr(P)+|P|=0. (B8)
M3 g | =Ml : (B4)
n n-1 Clearly
where we have used the periodicity @5(z) on the right-
hand side of the above equation. From E@S) and (B4) p.=3(Tr(P)=\[Tr(P)]*~4), (B9)
we can write L
which implies that
[orltor) :
D, Dy’ %qos{zwqy):% Tr(P). (B10)
where
Sinceq, is real
P=M,* M; M;' M,. (B6) %
Since the Hamiltonian is periodic the eigenvalpesf P, an IM{TR(P)}=0 (B11)
operator that induces a translation of one period, must satisfgnd
the Bloch condition:
p. =e*2mdy (B7) Re[TR(P)}=2 cog2mqy). (B12)
where—%<qy<%. The eigenvalues d® are the roots of the The energy spectrum can now be directly calculated using

characteristic equation this expression.
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