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Theory of the anomalous Hall effect from the Kubo formula and the Dirac equation
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A model to treat the anomalous Hall effect is developed. Based on the Kubo formalism and on the Dirac
equation, this model allows the simultaneous calculation of the skew-scattering and side-jump contributions to
the anomalous Hall conductivity. The continuity and the consistency with the weak-relativistic limit described
by the Pauli Hamiltonian is shown. For both approaches, Dirac and Pauli, the Feynman diagrams, which lead
to the skew-scattering and the side-jump contributions, are underlined. In order to illustrate this method, we
apply it to a particular case: a ferromagnetic bulk compound in the limit of weak-scattering and free-electrons
approximation. Explicit expressions for the anomalous Hall conductivity for both skew-scattering and side-
jump mechanisms are obtained. Within this model, the recently predicted “spin Hall effect” appears naturally.
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. INTRODUCTION were solved through detailed calculatiéhs and
comparisong! It is now acceptetf that two mechanisms are
The Hall resistivity of magnetic materials, in addition to responsible for the anomalous Hall effect: the skew-
the normal part proportional to the magnetic field, contains scattering proposed by Srifitand the side-jump proposed by
supplementary part proportional to the magnetization, calledergert®

the anomalous Hall resistivity An illustrative picture of these mechanisms is given in
Fig. 1. Consider an incident plane wave characterized by a
pu=RoH+RgM, (1) wave vectork which is scattered by a central potential due,

for example, to impurity. In the presence of spin-orbit cou-
whereR, andRg are the normal and anomalous Hall coeffi- pling, the amplitude of the wave packet becomes anisotropic
cients, respectivelyii the magnetic field, ant¥ the magne- in the sense that it depends of the relative directions of the
tization. While the normal Hall effect results from the Lo- Scattered and incident waves and of the spin. After a succes-
renz force, the anomalous Hall effect is due to the spin-orbision of scattering events, the average trajectory of the elec-
coupling in the presence of spin polarization. Experimendron is deflected by a spin-dependent angle, which is typi-
tally, the normal and anomalous parts can be extracted bgally of order 102 rad. This first mechanism, depicted by
measuring the Hall resistivity as a function of the magneticdiagram(a) in Fig. 1, corresponds to the skew-scattering.
field. At high magnetic field, when the magnetic saturation isThe second mechanism corresponds to a lateral displace-
reached, we get a linear variation of the Hall resistivity with ment, 6~10~ 1'm, of the center of the wave-packet during
a slope related t&®, and an extrapolated value at zero mag-the scattering, which is also spin dependent. This mecha-
netic field related toRg. The normal and anomalous Hall nism, depicted by diagrartb) in Fig. 1, corresponds to the
coefficients have been determined for a large number of bulgide jump. In both cases, due to the spin-orbit coupling, the
alloys. These studiés’ reveal that the sign dRs can change effect is asymmetrical in respect to the spin state. The
according to the alloy composition and tHRM| is gener- ~ spin-up and spin-down currents are then different. In mag-
ally larger than|RoH| for typical values of the magnetic netic materials, this leads to a nonzero spin current and to a
field. transverse component in the charge current, which corre-

For different reasons, renewed attention to the anomalougponds to the anomalous Hall effect.

Hall effect is observed quite recently. It is not only due to the

increasing interest in spin-dependent transport phenomena é-'.\\\o

but also because of some particular and interesting behaviors O®H_|_|k|_|_|_{+l@%\*\f ________________ (a)
of the anomalous Hall resistivity obtained experimentally in ‘\‘\Qg’f’,’/

granular alloy$ in magnetic films, and multilayer$. In ad-

dition, the anomalous Hall effect is increasingly used as a

measurement tool to detect, for example, magnetizatibyn, @@ --------------- 2

namics of magnetic domaing, or perpendicular o1 ikl | N 2% (b)
anisotropy*! In addition, a new effect closely related to the FTTrrrT e = v
anomalous Hall effect, the “spin Hall effect,” has recently ® T

been predicted?
’ . 16
In the 1960's, a number of theoretical wotks'® at- FIG. 1. Schematic picture of the skew-scatteriagand side-
tempted to elucidate the phyS|Ca| mechanisms I’eS_pC_)nSIb|G f(j'mmp (b) mechanisms from a quantum point of view (Corre_
the anomalous Hall effect and to calculate an explicit expressponds to spin up ané to spin down. The bold curves represent

sion for the anomalous Hall resistivity. A series of the anisotropic enhancement of the amplitude of the wave-packet
controversie¥ ~1° arose from those pioneering works which due to spin-orbit coupling.
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The skew scattering and the side-jump mechanisms giveine this displacement. We start from the Pauli Hamiltonian

different contributions to the anomalous Hall resistivity. For 5

bulk material, it has been shown that, in certain limits, the _pP _
skew-scattering contribution is simply proportional to the H=5, ~ #e(0 Ber) + W=Ho+W, 3
resistivity**® while the side-jump contribution is propor-

where o is the Pauli matrixBg the effective magnetic field
due to exchange-correlation energy, akidhe total potential
including the spin-orbit coupling

tional to the square of the resistivit§ Then, we should have
the simple expression

- - ~ ~2
PH= Pyx=apxxT bpiy 2

which implies that the relative importance of these two con- W=V+ W(UXVV)'F" )

tributions depends both on the temperature and on the impu-

rity concentration. However, we show in this paper that,The state of the systetW, ) after scattering is given in the

even if the relation2) remains correct, the skew-scattering Born approximation by the Lippmann-Schwinger equa-

mechanism contributes also to the quadratic term in the cagen |¥ )= |k,s)+ =, |k’,s" )Go(k',s’,e3)(k’,s’|W|K,s),

of impurity scattering. Such behavior has already beemwheree; and G, are, respectively, the eigenvalues and the

shown by Kondorskiet al* Green’s function associated with,. The matrix elements of
The traditional way to calculate the anomalous Hall resisthe potential are

tivity is to include the contribution of spin-orbit coupling in

the transition probabilityit leads to the skew-scattering pro- - i%2

vided one goes beyond the Born approximaktiand in the (k',s'[WIk,8)=Vig| ds¢ + —(

velocity (it leads to the so-called anomalous velocity which amee

gives the side jump While the skew scattering can be ob- \hereV,, is the Fourier transform o¥.. As the spin-orbit

tained in a classical approach it is claimed that the side jumgerm is imaginary, it will influence the phase of the spherical

is a pure quantum effect. We shall discuss this point in thgyave. Thus, for small spin-orbit coupling, the wave function

Sec. Il of this paper. Most of the calculations of the anoma-y, (r)=(r|¥,.) which describes the wave after scattering
lous Hall resistivity are based on the Boltzmann equation andan pe expressed as

used severe approximations, in particular concerning the
side-jump contribution. Some calculatiéhare based on the

oo Xk')-k|, (5

ir-k Il \/ irl .k’
Kubo formalism, but surprisingly it is claimed that the side- Wy(r)oce” +k’z' 859 Go(k's" ep)Vigre''s ™, (6)
jump contribution vanishes, and only the skew-scattering s
contribution is calculated. where we have assumed that the effective magnetic field is

Although the anomalous Hall effect is an old phenomenalong thez direction. The center of the wave packet after
which has motivated a lot of experimental and theoreticacattering is given by
studies, a unified model, able to calculate the skew-scattering
and side-jump contributions on the same footing, was still
missing. In this paper, we propose such a model. It is based
on the Kubo formalism and has the peculiarity to be built
from the Dirac equation. The justification for such an ap-which is clearly spin dependent and means that the shift of
proach is given in Sec. Ill where we discuss in detail twothe center of the wave packet is different for spin up and spin
different approaches for solving the anomalous Hall effectdown. The lateral displacement, defined &&=r.—r, is
i.e., based on Dirac and Pauli equations, and study the comlken equal to
sistency in the weak-relativistic limit of the expressions of 5
the conductivity tensors obtained in these two approaches. In 55— >\_ (0.X D) %)
Sec. IV, we calculate the anomalous Hall conductivity of a a7, \ T P)

disordered ferromagnetic bulk compound. The results are . .
discussed in Sec. VQ_] P where we have introduced the lengttwhich corresponds to

the Compton wave length,=7%/mcin the case of free elec-
trons. In real materials, Bergérhas shown that the spin-
orbit coupling (i.e., \?) is renormalized by band structure
effects by a factorr=10". We then obtain a lateral displace-
It is often believed that the side-jump is a pure quantumment & which is independent of disorder and of order
effect and has no classical equivaléhiThe usual descrip- \2kg/d~ ax2kg/4~10"1 m, in agreement with experimen-
tion of the side jump is then based on a quantum pidisee  tal results. Identical expression férwas originally derived
Fig. 1(b)] of a plane-wave transformed by scattering in theby Lyo et al?
presence of spin-orbit coupling into a spherical wave whose In a pure classical picture, such a lateral displacement can
center is shifted in a lateral directidperpendicular to the be experienced by a particle with spin. As a simple example,
momentum and to the spinThe sign of the displacement is consider an electron with a charge(e<<0) subject to a
opposite for spin up =1) and spin down §=—1). A  uniform electric fieldE=Eu, (E>0) in the regionx>0;
simple calculation in terms of phase-shift allows to deter-there is no field in the regiox<<0. An incident electron

h2

risr+ ———(0osxXK), 7
S 4m2C2( SS )

II. COMMENTS ON THE PHYSICAL NATURE OF
THE SIDE-JUMP MECHANISM
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FIG. 2. Classical picture of the side-jump mechanism. The
dashed line corresponds to the nonrelativistic trajectory of the pa
ticle and the solid lines to the relativistic trajectories for spin up

PHYSICAL REVIEW B4 014416

2

L

> (12

pe(0-Ber) +V,

and H,. the first relativistic corrections to the Hamiltonian
(order 1£2?)

p4 h2
He=———=+——=(oXVV).p+ ——AV+H,,,
" 8mic?  4m2c? P 8m?c? e
(13
Which contains the relativistic mass correction, the spin-orbit

coupling, the Darwin term and the relativistic correction to

(©) and spin down €). the exchange couplingl,.. Since the effect we are inter-

ested in results from the spin-orbit coupling, we do not need
to give the explicit expression &éf,. (calculations and com-
ments on this term are presented in Ref. 34 this work, we

do not consider the contribution of the periodic part of the
spin-orbit coupling(i.e., due to the latticebut only the ape-
riodic part due to the presence of impurities. In the Pauli
approach, the velocity contains two parts. One resulting from

the nonrelativistic Hamiltonian=p/m and another one re-
sulting from the relativistic corrections

coming from the regiorx<0 is reflected by the field as
sketched in Fig. 2. The velocity is given by

eh
prerciCial

H p
V=5 m ©)
and therefore contains an anomalous contributigp=
—efi(oX E)/4m?c? arising from the spin-orbit interaction.
In the field region x>0), where the trajectory is parabolic,
the electronwe assume the spin to be along thaxis) has
an anomalous velocity along they axis, v}=
—efi(o,E)/4m?c?. The electron therefore emerges with a
shift alongy, proportional to its spirnr,. For an arbitrary
electric field, the shift due to the anomalous velocity can bewvherev,,. is the velocity related téd,,.. In this description,
easily calculated the spin-orbit contribution to the velocifgecond term in Eq.

(14)], the so-called anomalous velocity, appears in a natural

P
2m3c?

Vic= ——— (X VV)+ Ve, (14

4m?c?

+o +te efh and transparent way. When we insert this contribution in the
o= f_oc Vadt:_f_x —4m202("'>< E)dt, (100 Kubo formula, we obtain the side-jump contribution. It is
also possible to isolate the spin-orbit contribution in the
with eEdt=dp, so that Green'’s functiorG associated withd by making the follow-
ing expansion:
ho +oo No , o o ~ B
——4m202>< _, dp= 7 X (p=p"). (11 G=G+GH,.G+GH,.GH,.G+- - -, (15)

In the above derivation, we have assumed that the spin iwhere G is the nonrelativistic Green’s function associated

perpendicular to the scattering plane. The lateral displaceyith the nonrelativistic Hamiltoniafi. When we insert this
ment that we obtain is consistent with the one obtained in th%xpression in the Kubo formula and proceed beyond the
quantum picture. Indeed, the parallel can be simply done bgorn approximation, we obtain the skew-scattering contribu-
replacing in this classical calculation the momentum by &jon. Therefore, in the Pauli approach we get separately the
momentum operator and by making the angular average ov@kew-scattering and the side-jump contributions when the
the final momentunp’: thus Eq.(11) coincides with Eq(8).  Green’s functions and the velocities are respectively cor-
rected by the spin-orbit coupling.

One important problem in the Pauli approach is to treat
disorder. Actually, the spin-orbit coupling introduces two
. things: off-diagonal disorde(in the tight-binding approxi-
~ Generally, the calculations of the anomalous Hall conduCiyation and disorder in the velocity through the anomalous
tivity are based on the Pauli Hamiltonian. However, in ourye|ocity. The second consequence is critical because it is
modelization, i.e., within the framework of the Kubo formal- {hen, difficult to calculate precisely the vertex corrections and
ism, it appears to be simpler to adopt a relativistic approach ccqrdingly the anomalous Hall resistivity. To avoid these

based on the Dirac equation. To justify that, let us first re-)ropjems, we have chosen to base our model upon the Dirac
member the derivation of the skew scattering and the S'teéquation instead of the Pauli equation. In presence of an

jump contributions in the Pauli approach. In presence of aRxchange coupling, it has the foth?®
exchange coupling, the Pauli Hamiltonian ls=H +H,
whereH is the nonrelativistic Hamiltonian

IlI. COMPARISON OF THE DIRAC
AND PAULI APPROACHES

H=c(a:p)+Bmc+V—ugB(0 Bey), (16)
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where the first term is the kinetic energy, the second term thements of the conductivity tensor due to an abusive gener-
mass energy, the third term is the potential, and the last onalization of the Kubo-Greenwood formu_"i%.ln order to
the exchange coupling. From Ed.6), we see that the veloc- clarify the situation, we present in Appendix A the derivation

ity is simply of the conductivity tensor from the original Kubo forméfia
and summarize the different stages and approximations
oH 0 o which lead first to the Bastin formulaand finally to the
V=9 T % o) (17 streda formuld@® We show that the latter is a sum of two
_ . termso; andajj, respectively, given, in the limits of inde-
At this level, there appears an apparent contradiction be;g)endent electrons approximation, zero temperature and zero
tween the two approaches since, in the Dirac approach, co Fequency, by Eqs(A14) and (A15):

trary to the Pauli approach, we do not have any spin-orbit
contribution to the velocityanomalous velocity It is there-
fore not cleara priori whether the side-jump mechanism
would emerge from the Dirac approach. Actually, in the _, e’f N B B . . B

Dirac approach, the spin-orbit coupling, although it does not 9ij= mTf{Ui(G -G viG —viGv(GT=G))c,
appear explicitly, is properly taken into account. Therefore,

the conductivity should contain simultaneously the skew- -~ e? . -

scattering and side-jump contributions as well as higher or- o= 4iWQTf<(G —GO)(rivj—rjvi))e, (18

der contributions in ©?. However, the expressions of the

conductivity obtained in the Dirac and Pauli approachedvherei andj are the direction indice<) the volume of the
should coincide in the weak-relativistic limit. To check this, Sample(- - -). denotes the configurational average, &1d

we have calculated, in a formal manner, the weak-relativisti@nd G~ are the retarded and advanced Green’s functions at
limit up to order 1¢2 of the conductivity obtained from the the Fermilevels™=G(eg+i0)=(e=i0—H)™*. The pro-
Dirac equation and compared it with the conductivity ob-cedure that we follow is first to insert the Dirac velocity and
tained from the Pauli equation. The determination of the conDirac Green's function in Eq(18), next to perform a weak-
ductivity tensor is performed in the Kubo formalism. In cer- relativistic expansion otr;; and finally to compare it with
tain limits, the conductivity can be expressed as a product othe expression obtained in the Pauli approach. The Dirac
operators, namely, Green’s functions and velocities. Howvelocity is given by Eq(17) and for the Dirac Green'’s func-
ever, the formulations proposed in the literature are oftertion, we have used an exact expression derived fron{ .
confused or even wroig 28 concerning the off-diagonal el- and given in Ref. 31 by EqA3)

eENer: U'p[ — V- pug(o-B )]Di U'p’ét &= U'p(Qt)—lDiQi
2mc-°F KBl O Beff 2mc 2mc
G = D= o‘~péi 1 DO~ , 9
2mc 2mc? Q
|
where the operato®~ andQ~ are given by are exactly canceled by terms ar); [see Eq(B6) for order
) 1/c® and Eq.(B10) for order 1¢2]. The nonrelativistic limit
—V— .B - of the total conductivity obtained in the Dirac approach is
p=|1+0* [eF up( 0 Be) ] @0
2me ~o)_ & Pigr—g )P Pig-Pige_g
B T 4720\ m m m- m .
. (0-p)G~(0p)
Q7:1+T. (21 _ e? Tl (BB pj_ Pi 29
diza ¢ Nim ™" . (22)

The details of the calculations are presented in Appendix B. | . . .
The determination of the conductivity is done up to orderWhich corresponds exactly to the conductivity obtained from

1/c2. It is shown that the identification with the Pauli ap- EG. (18) when one inserts the nonrelativistic velocity
proach is successful only when one considers the total con=p/m and the nonrelativistic Green’s functida. The last
ductivity }ij :’(}:j +<~T” . Indeed, when we compare the ex- termin Eq.(22) is zero in absence of external magnetic field.
pression ofs!. obtained in the Dirac approagbee Eq(B5)  The fact that a supplementary termar(® is present in the

for order 1¢d and Eq.(B9) for order 1£2] to the one ob- Dirac approch and not in the Pauli approach has serious con-
tained in Pauli approach, we obtained different terms whiclsequences when one negIeEt#(o) because it leads to an
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additional contribution at order d9 to the off-diagonal con-

PHYSICAL REVIEW B4 014416

neously. Therefore, in a full relativistic Dirac description, it

ductivity which does not disappear in the nonrelativistic limit will be difficult to assess the importance of each contribu-

and thus would give unphysical results. At ordec?]/the

total conductivity obtained in the Dirac approach is

D=5+ o+l (23)
wherecr
tering
~ h _|p o= D=
ﬁs=4WQTr<—'(G+HrCG+—G HG )G
P~ _Pix_ ., =
+E'(G+—G )EJG H,.G
—&@Hme+ p’(é*—G*)
Pis Pj =i, =4 =_,, x=_
—E'G+EJ(G+HrCG+—G H.G)) , (29

C

o” J contains the terms which lead to the side jump

~ ’f ~. =~ Pi=
Oﬁj eWQTr<(Vrc)i(G+_G_)%G
(Vie)iGT (G =G)
F BB () B
Pi~ L=
— G (vio); (G'-G )>, (25
anda is equal to

e’ . =
O-?jr: - 4iﬂ_QTr<(G+_G_)[ri(vrc)j_rj(vrc)i]

+(G™H,.G" -G H,.G~ )(rlpJ r,%)> .
C

(26)

tions. However, this approach has a great advantage over the
Pauli approach: it allows a simpler treatment of the disorder
because, in contrast to the Pauli approach where both the
velocities and the Green’s functions contain disorder, the dis-
order is only present in the Green’s functions. It is thus pos-

contains the terms which lead to the skew scatsible to take one of the velocity operator outside of the con-

figurational average and to calculate precisely the vertex
corrections to the conductivity. For this reason, the Dirac

approach should be more efficient to calculate the anomalous
Hall resistivity.

In the next section, we present a direct application of our
model. In order to perform the analytical calculations, we
restrict ourselves to the weak-relativistic limit and to ap-
proximate calculations of the vertex corrections; then the re-
sults that we obtain can still be compared to the ones ob-
tained from the Pauli approach.

IV. ANOMALOUS HALL CONDUCTIVITY
OF A FERROMAGNETIC COMPOUND

In this section, we present the calculation of the anoma-
lous Hall conductivity of a ferromagnetic bulk compound
submitted to a potential. This calculation is done in both
Dirac and Pauli approaches in order to show the similarities
and the differences between these two approaches. We con-
sider a system with a cubic symmetry and a magnetization
along thez axis. Thus, the conductivity tensor has the form

’a'xx E'xy 0
g=| -0y o O |. (27)
0 0 ;'zz

We are only interested in the relativistic corrections to the
off-diagonal elements which correspond to the anomalous
Hall effect. We do not study the relativistic corrections to the
diagonal elements which correspond to the anisotropic mag-
netoresistancéAMR) and lead to a difference of orderct/

betweeno,, and o-,,. Thus, in this work, the diagonal ele-
ments are calculated at ordec4and by consequence are all
equal, while the off-diagonal elements are calculated at order
1/c?. To get analytical expressions, we have made several
approximations:  free-electron  approximation, weak-

In addition to the skew-scattering and side-jump contribu-Scattering limit and weak-relativistic limit for the Dirac ap-
tions to the anomalous Hall effect, we identify a new contri-proach. In Sec. lll, we have shown that the conductivity is

bution o of}" which is related to the orbital momentutn=r

X p. The expressiof23) of the conductivity corresponds ex-
actly to the one which is obtained from E@{.8) when one
inserts the first order corrections to the velogity and to the
Green functiorGH, .G wherev,, andH,. are given, respec-
tively, by Egs.(13) and (14). We have then proved in the
weak-relativistic limit(up to order 1¢?) the coincidence of

the conductivity in the two approaches.

equal to
~ e’
0= THvi(G" =G ;G ~viG v (G"=G7))
2
~ i (G =G =rw)e, (28)

where the Green’s functio®~ is associated with the total

In summary, from the Pauli Hamiltonian, we get the Hamiltonian: G*=(gg=i0—H) 1=(gg=i0—Ho—W) !
skew-scattering and the side-jump contributions separatelywhereHg is the nonperturbed Hamiltonian akdthe pertur-
while, from the Dirac Hamiltonian, we get the both contri- bation(equal to the potenti@V in the Dirac approach and to

butions and also higher order inc?/contributions simulta-

V+Hgg in the Pauli approach wheidgg is the spin-orbit
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+M®§+W®g+

FIG. 3. lllustration of the conductivity with the help of Feynman diagrams. The total conducthatghed diagraim expressed as an
infinite sum of diagrams involving the nondisordered Green'’s fundBgrithin curve ling, can be rewritten as an infinite sum of diagrams
involving the average Green’s functi@ (bold curve ling. The wave lines refer to the velocity and the dashed lines to the potential.

coupling. The explicit form of the potentiaV does not enter ladder diagrams. Weak-localization corrections to the
in the calculations, thus the results obtained below apply foanomalous Hall conductivity are discussed in a separate
both impurity scattering and phonon scattering in the adiapaper’> We introduce the configurational average Green's
batic approximation. We modelize the compound in the fol-function G=(G), which can be written with the help of the
lowing way: the total volume of the sample=L3 is divided  self- energyE (WGyW)+{(WGyWGyW).+--- since G
into N cells of volumeQo=a®. In each cell, the potential =(eg—Ho—3) *. When we neglect the crossed diagrams,
takes a constant valuéwith a probability distributiorP (V) Eq. (30) can be written as

which is characterized by its momertg™).= [P(V)V"dV.

A proper choice of the energy origin yield¥).=0. We - e%h

assume that there are no correlations in the value of the po- Tij=5 QTr<U G* viG e

tential in different cells. In this first approach, we neglect in

Eq. (28) the contribution of the terms which involves product ezﬁ . N

of two advancedor retardeyl Green’s functions. Such an o MG TGy G T'G )., (3D
approximation is justified in the weak-disorder lirffitin

Appendix B, we have shown that! , calculated in the Dirac  with T’ solution of T'=W+WGT'. The first term in the
approach, contains two parts, the first one related to the okight side hand is the so-called bubble termc(}’“bb'f) and

bital momentum, which is negligible in our model, and thethe second one corresponds to the vertex corrections
second one which is exactly compensated by termsjjn (= o}*"®). Within this transformation, the calculation of the
Then, we do not need to calculate this contribution. Theconductlwty is then reduced to two distinct problems: deter-

conductivity reduces to mination of the average Green’s functigne., the self-
o2 energy and calcu_latiqn pf the vertex corrections. Because of
'&ij 5 QTr(v G+ 0;G ). (29) the wgak-scatterlng I|m_|t,_ we keep in the self-energy and the
t matrix the lowest sufficient orders
We introduce first thé matrix T=W+WG,T which allows
one to write the Green’s function &= G+ GyT G, where 2 =(WGW)e, (32)
G, is the nonperturbed Green'’s function. Inserting this in Eq. T =W+WGW.
(29), we get
In thet matrix, we have to keep the terms up to the second
~ e?h order withV because it is necessary to go beyond the Born
7ii=5 QTr<U GgviGo e approximation to get the skew scatterifgrhe explicit cal-

5 culation of Eq.(31) in the approximation$32) for the Dirac
emn f and Pauli approaches is presented in the next two sections.

This equation can be illustrated with the help of Feynman A. Dirac approach

d|agrams as is done in F|g 3. The Conduc“wty repre- We assume free electrons in a uniform effective magnetic
sented by the full diagram, is then expressed as a sum of di¢ld B parallel to thez axis and submitted to a potential.
infinite number of diagrams. Only few of them are depictedThe nonperturbed part of the Hamiltonian is

in Fig. 3: diagram(a) which corresponds to the first term in

Eq. (30) and diagrams frontb)—(f) which are some repre- Ho=c(a-p)+(B—1)MC— ugBoBe, (33
sentative samples of the kind of diagrams which give the

second term in Eq(30). The main approximation done in and the perturbation part is simply the potenWéV. The
our calculation is to neglect the crossed diagrams which cormatrix elements of the average Green's function are
respond to weak-localization corrections, i.e., we neglect dlaék s|G*|k,s)=(ep—ep=ifil2ry) ~* where the eigenvalues
grams such asge) and (f) and we keep only the so-called e} of Eq. (33) are in the weak-relativistic limit equals to
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L _
? ' (34) X X

FIG. 4. Bubble diagram contributing to the diagonal conductiv-

ity ou. The signs+/— refer to the retarded/advanced average
Green’s functionG ™.

7%k
sizm —S/.LBBeff+ 0

for the upper band, and

1
gp=—2mc+0 —O>, (35
- c 273
~ bubble_ eh i kJ (40)
ij
for the lower band. The index refers to the spinsE& 1 for 2mm?Q ks (ep—e3)2+ ?
spin up ands= —1 for spin down, thek index refers to the koK 4(75)2

upper band and th& to the lower band. The lifetime}

which appears in the expression of the average Green’s func- . . . . .
tion is inD\I/Den by P 9 Fhe dispersion lave} given by Eq.(34) is isotropic at order

1/c°. Then, the angular dependence is entirely contained in
the factorkik; , which means that only diagonal components
of the conduct|V|ty are different from zero. To ordec%/the

—Im(k,s|2 *|k,s) = —Im(k,s|{VGg V)| k,s) vertex corrections to the diagonal components vanish, so that
Tk the total conductivityr;; is equal too2"*P'®, After integration
overk, we get
= 7 QN (Ve (36 ’

where; is the density of states of spaby unit volume. In . | L
the Dirac approach, the velocity is simply equal toca. Mog Mo 0

Because we have chosen to work in the basis where the T=e NT +teN, 3 =‘7XX+ Txx (42)
nonperturbed HamiltoniarH, (and by consequence the

Green'’s functionGy) is diagonal, we have to calculate the

L ) which corresponds to the Einstein relation with two spin
velocity in this basis, we get

channels wheré®*=v} 73 is the mean-free path,; and NV
are the velocity and the density of states by unlt volume at

1 1 the Fermi energy for spis, respectively(identical expres-
(k)+0( ) co+o —) sions are obtained fow,, and o,,). The diagram which
V= c? ¢ (37) gives this contribution is depicted on Fig. 4.
1 o ' The off-diagonal components of the conductivity arise
co+o <) o(c”) only when we take the vertex corrections into account. If we
expend thet matrix up to the second order M, from Eq.
. . (31), we get
whereu(k) is the (2x2) matrix
ﬁk 1 O vertex_ ezﬁ + + +
u(k)ZF(O 1). (39 aij 5 QTr<Ui9 (V+VG'V)G
_ _ XviGT(V+VG V)G ). (42
We have now all the ingredients to calculate the bubble term - -
in Eq. (31 - .
in Eq. (3 We then need the potential in the new basis
2
opPle= E (k.slvilk,s")(k,s"|G"|k,s")
o s s s s
" 2w0 B 1) #ek) (1
Uk,k"y+ol —|, —F&——+0o|—=
x(k,s'|v;|k,s)(k,s|G|k,s). (39 - c 2mc c?
- V=V(k'—k) '
) ) fi(o-k') 1 0
The configurational averagé - -). has been dropped be- 2—+0 — | o(c”)
L . L. . mc Cc
cause in the Dirac approach the velocity is a nondisordered
quantity. At order 1¢°, only the diagonal elements€s’, (43
no spin flip of the velocity and the particles in the upper
band contribute, then we have whereU (k,k") is the (2x2) matrix

014416-7
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B[ (K' —K)%+2i (k' XK) - &,] R2L (0~ ik K, — (k= iky ki (KX K) - (6~ i€))]
, - 8m?c? Am?2c2
e B2+ ik )k, — (ky ik ki (K XK) - (8] L WK =k 2i (k' XK) ¢
4m?2c? 8m?c?
(44)

and V(q)=fdre'9"V(r)/Q is the Fourier transform of the elements given by Eqs38) and (44) and perform the inte-
potential. When we study in detail all the diagrams includeddration overk, k’, andk”. The final contribution to the con-
in Eq. (42), we see that only two kind of diagrafdsontrib- ~ ductivity corresponding to the diagraif@) is a complex
ute to the conductivity at order &% These diagrams are dquantity. The calculation of the diagrafi) gives the conju-
depicted on Figs. 5 and @eft column. gated expression, then the total contribution due to the skew-
The first series of diagransee Fig. 5involves velocities ~ scattering mechanism is a real quantity equal to
at order 1¢°, Green’s functions at order &, which means
that only particles in the upper band contribute, and potential

2y 2 3
twice at order 1¢° and once at order ¢ which ensures a  5;Ss_ _ TMA” (Ve

_(NTQo}lx(U;T:)Z_Niﬂoaix(vé)z)

total order of 1¢2 for the conductivity. The diagrams of this 642 (V2),
first series correspond to the skew-scattering mechanism. ~ey . ~ss
The second series of diagranfleft column in Fig. 6 in- Eaxf“roxyl- (46)

volves one velocity at order 47 and one at ordec, three
Green'’s functions at orderdf and one at order &, which  \ye turn now our attention to the side-jump mechanism. Dia-
means that we have a transition of particles between the Upgram (a) of Fig. 6 gives

per and lower bands, and potential one time at ordet dnd

one time at order &/which ensures a total order ofc®/for

the conductivity. The diagrams of this second series corre-~(6a)_i

h
—o\(=1)/ — Kk —g\(2)
spond to the side-jump mechanism. In the following, we “xy ~ 2,0 2, ((ksluyk, =)k, — |G [k, —s)

.. . .. kk's
present the explicit calculation of the conductivity due to
these two series. Let us start with the skew scattering. We X (k,—s|V[k',s)(k’,s|G*[k',s)@
gir\?:Sent the calculation of the diagra@ in Fig. 5, which ><(k’,s|vy|k’,s)(°)<k’,s|§*|k’,s>(°)
2% X(k',s|V[k,5)*k,s|G~|k,5)@).. (47)
cr(fya)=27,—9 Z ((k,slvylk,s) O k,s|G*[k,s)(
kk'k"s In this mechanism, due to the presence of off-diagonal ele-
X (K,s|V|k',s)O(k’,s|G*|k’,s)© ments in the velocity37) and the potential43), a particle of

X<kr,S|V|k//,s>(0)<k//,s|9+|k//’S>(O)

('1) ) (a) (2)
><(k”,s|vy|k”,S>(O)<k”.S|§_|k”.5>(0) ) y X

X (K",s|V|k,s)?)(k,s|G~|Kk,s) D). (45)

) @ ) @ )
The number in bracket indicates the order with respectdo 1/ ®) a ®)
” X

@)

»
<

<

of the matrix elements like in Fig. 5 when the order is dif-

ferent than zero. We remark that for a total order’1df the

conductivity, the spin is conserved during the procéss N ©
spin-flip scattering We insert in this expression, the matrix x @ Y b'e

@

<

@
@)
y

FIG. 5. Diagrams contributing to the off-diagonal conductivity = FIG. 6. Diagrams contributing to the off-diagonal conductivity
?rxy through the skew-scattering mechanism in both Pauli and DiratfrXy through the side-jump mechanism in Dirac approéeft col-
approaches. The number in bracket indicates the order with respeamn) and Pauli approackright columr). The number in bracket
to 1/c of the matrix elements of the velocifyvave ling, average indicates the order with respect tacldf the matrix elements of the
Green'’s functionbold curve ling, and potentialdashed ling It is velocity (wave ling, average Green'’s functiotbold curve line,
omitted in case of zero order withcl/ and potentialdashed ling
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the upper band:} experiences a virtual transition in the the skew-scattering mechanism corresponds to the same
lower bande, * associated to the opposite spin. We performFeynman diagrams and gives the same final expregd@n
the integrations ovek andk’, add the contributions of Figs. as the weak-relativistic limit of the Dirac approach.

6(a)—6(d) and finally obtained Concerning the side jump, the correspondence between
the two approaches is not so simple. In the Dirac approach,

~sl_ 25%,@ 5 2510,1: _~s3 =S| we have seen that a virtual transition occurs from the upper
Oyy= € NTTJFe Ny 3 " Oxy TOxy band to the lower band. In the Pauli approach, no such a

(48  transition can take place because there is only one band.
. . o ) However, we have a supplementary part in the velocity, the
whered® is the transverse displacemebt side jump given  4nomalous velocity which is of orderc® and leads to the

by #ivg/4mc®=\?kE/4. The expression ofr,, for the side  side-jump mechanism. The corresponding diagrams are de-
jump is similar to the expressio@1) of o, but instead of picted on the right column of Fig. 6. For each diagram in the

the mean-free path we have 2. In contrast toosS, the left column(i.e., in the Dirac approaghwe have an equiva-

Xy ! . . . . . .
side-jump contribution to the off-diagonal conductivity is in- €Nt diagram in the right columfi.e., in the Pauli approagh

dependent of disorder. The change between the left and right column corresponds to
In the case of a parabolic band, the Einstein relati a vertex renormalization because the matrix elements of the
reduces to the Drude formula with two spin channels productvGV in the Dirac approach are equal to the matrix

elements ofv in the Pauli approach

1 |

~ n:r nr
Tyx= ez% +e2%, (49) hk
(k,s|v|k’,s")= 7 Ok Os
whereng=mN\g(v)?/3 is the electron density for spin s. The
skew-scattering46) and side-jumpg48) contributions yield 5 i%
+V(k'—Kk) ——= 059 X (k—Kk').

e\ wQo(VE), 4m?c?

~SS_ 2.1 _n2-l
Oyxy 27 7 (V2. (N{7e—n77E) (50 (53)
and Thus, when we calculate, for example, Figa'6
2y 2
~ (S
SJ
o=~ ——(n;—n)). (52 0, €%h
Ve o =5 2 ((kisloulk 5Pk s|GT[K' )
T35 kK's
B. Pauli approach ><(k’,s|vy|k’,s>(0)<k’,s|§*|k’,s>(o)
In the Pauli approach, the Hamiltonian given by E).is (K", s|Vk,s)O(k,s|G [k, $)@). (54)

the sum of a non-perturbed part and a perturbatibgiven

by Eg. (4) which contains the potential and the spin-orbit
coupling. The velocity associated with this Hamiltonian con-
sists of a normal part and an anomalous part due to the spi
orbit coupling

we obtain the same contribution than from the expression
47) of Fig. 6(a). The final result, after summation over Figs.
(@) to 6(d’), is then identical to Eq(48).

h
V= %+ —_(oXVV). 52 V. DISCUSSION
4m-c We now briefly discuss the influence of impurity scatter-

The spin-orbit coupling contribution to the life-time is not iNg and phonon scattering on the resistivity and on the
relevant, then the average Green’s functiofkiss|G*|k,s) ~ anomalous Hall resistivity, which are, in the limit <o
=(eg—ep+ihl27) " wherer; is given by Eq.(36). Asa  simply given byp,,=1/,, andpy=—p,,~ qu/aix. The
consequence, the derivation of the diagonal conductiviy ~ only terms which depend on the scattering in the expressions
is similar to the one done in the Dirac approach and weof oyy given by Eqs(46) and(48) and of o, given by (41),

obtain the expressiof#1). are the momentév?), and(V?).. Indeed, we have
The off-diagonal elements of the conductivity are ob-
tained from the vertex corrections. For the skew scattering,

the diagrams which contribute are exactly the same than in ( oo 1

the Dirac approaclisee Fig. 5 because the only matrix ele- > <V2>C’

ments of the potentia(44) which contribute in the Dirac 3

approach correspond precisely to the matrix elements of the \ 5SS, (Ve (55
potential in the Pauli approa¢kee Eq(5)]. The other terms Xy <V2>C’

in Eq. (44) are Darwin-like terms and do not contribute to ~sy.

the off-diagonal conductivity. Then, in the Pauli approach, ( 0y independent ofV")..
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Then, the variations with the moment¥?), and (V3), of ~ We insert expressiong6) and (48) of the skew-scattering

the resistivity and the anomalous Hall resistivity are similarand side-jump off-diagonal conductivities as well as expres-

10 Py (V) B§$M<V3>cv andEfjoc(V"Z)ﬁ. sion (41) of the diagonal conductivity and obtain for spin s
To illustrate the dependence with disorder in the case of

impurity scattering, we consider a binary alldyB,_, for 255 wm2\2 (V)

which 5 ~s| — + ——NQ(vE)?]. 61)
T e (v, R (
(VA e=x(1-x)(sa—£8)* (56)
and 6/, and 6}, are not only opposite in sign, they take distinct
absolute values due to spin polarization. As a consequence,
(V3 =x(1—x)(1—2x)(ep—ep)°, (57)  the spin currentj( —j') has a longitudinali.e., along thex

_ ) ) axig) and a transversg@.e., along they axis) component and
wheree 5 (g) is the value of the potential on siteA(B) and  the charge current {+j') acquires a transverse component
xis the concentration of sit¢s Keeping the lowest orders in \yhich corresponds to the anomalous Hall effect. In a para-

x (weak-disorder limit, we get magnetic material, Eq61) yields 6],= — 6}, and both the
- transverse component of the charge current and the longitu-
Pxx*X, dinal component of the spin current vanish. However, the
Zfsoc(x—3x2), (58) transverse co.mponent of the spin current remains. It corre-
Y sponds precisely to the “spin Hall effect” recently
Pryex?, proposed?

o i ) ) ) In the case of impurity scattering and in the weak-disorder
which is in agreement with the simple relation given by Eq.|imit, the magnitude of the Hall angle is determined mostly
(2) but in contradiction with the common belief that the qua-py the skew-scattering contribution. Indeed, in this limit we
dratic term would arise only from the side-jump mechanismy, e 933%25” ~103rad whereas 938% 7(1—2x%)(en

In fact, the skew-scattering mechanism, which is responsible_gB)SF/?)mCzW%SX1072 rad where we have takemh
for the linear term, gives also an important contribution t0_o90 A  x~02 s.—ga~2 eV. £.~10 eV. the band
the quadratic term, a result that Kondorsidial?® have al- .t W' 5 o 500 keV and a band factar~ 10"
ready obtained. In addition, our calculations specify all theg simplicity, v;/e have dropped the spin index. This order of
approximations which founded the relati(®) and show that magnitude is consistent with experimental restAtsVhen
it should not be valid in the general case, in particular fory, . yisorder increases. the mean-free-paticreases signifi-
high—disorder_ed system, high-relativistic limit, complex bandcantly which means, si'nce the quantdys disorder indepen-
StT“CF“re orin the case of heterogeneous systems, such 8ént, an increase in the side-jump contribution to the Hall
thin films or multilayers. . . angle. However, the skew-scattering contribution to the Hall
Something may also be said about phonon scattering. Dug, e increases in the same way. It is thus not possible to
to the.ﬂuctuatmg S'ggn of the potential generated by IOhononspredict in this first approach which contribution is dominant
the third moment V) can be expected to be very small and, the high-disorder regime. In the case of phonon scattering,
accordingly, the skew-scattering contributi@#) to the con-  the Hall angle contains mostly the side-jump contribution

ductivity is negligible’® We then have 6= 65’~26/1 which is of order~10"2 rad where we have
- X used 6~10 ' m and I|=rvr with a relaxation timer
Pxx (Ve ~10 s andvg~10° ms*.
755~0, (59) To summarize, we have, in this article, proposed a model
oo based on the Dirac equation and on the Kubo formalism
Py (V)2 which allows one to calculate on the same footing the

L anomalous Hall conductivity due to both skew-scattering and
which yields the simple relatiopxyocpf(x, in agreement with  side-jump mechanisms. The consistency of this approach
experimental result® with the one based on the Pauli equation has been studied in

The Hall angle, which corresponds to the angle betweenletail in the weak-relativistic limit. In particular, we have
the electric field and the charge current, is an importanshown that in order to calculate the anomalous Hall conduc-
quantity. For an applied electric field in thedirection and tivity one has to consider in the Dirac approach the total

an effective magnetic field in the direction, we have conductivity o}, + o} , otherwise unphysical results are ob-

t9(0n)=]Jy/ix=0oyxlox. The conductivity elementsr,,  tained. Next, we applied our model to treat a disordered fer-
and }yx are in a first approximation the sums of contribu- romagnetic bulk compoun_d submitted to a _potential in the
tions due to spins up and down. We can thus define a spirfree electron approximation, weak-scattering and weak-

dependent Hall angle relativistic limits. By these means, we have obtained explicit
expressions for the anomalous Hall conductivity for both
ji - Fih skew-scattering and side-jump mechanigmiven by Egs.
tg(ol()="2 =T (60)  (46) and (48)]. In addition, we have highlighted the differ-

J'J(m UJ&U ence concerning the Feynman diagrams describing the side-
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jump mechanism in the Dirac and Pauli approaches and have _ . _ flem)—f(epn)
shown that it corresponds to different vertex renormaliza-  oij(@)=iAQ lim X (ot (en—er—fhwtis)
tions. s—ot M LTER EmAEnEm
><<m|3,-|n><n|3i|m>> : (AS)
APPENDIX A: FROM THE KUBO FORMULA TO c

THE STREDA FORMULA

. N We shall now make some transformations of this expression
In the linear response approximation, Kubo has shown .
. : in order to get the Bastin formula.
that the conductivity tensor is related to a two currents cor- ; S
We restrict our derivation to zero frequen@dyom now,

. ucti
relation functior} we drop the w variable. After inserting the identity
J*Zde8(e—H)=1 in Eq.(A5), we obtain
~ B e ' .
gij(w)=Q lim f d)\j dielit’i)(—hw+is)
o Jo

50" ~ . - A
oij=ihQ lim de >,

f(e)d(e—em)
(eqp—e)(en—etis)

XTr(podj(0)Ji(t+iAN))c, (A1) s-0t 7 MM
f(e)d(e—e,) ~ ~
where it is assumed that the applied field leads to _(8_8m)(8_8m+is) (m|Jj|n>(n|Ji|m> '
a time-dependent perturbation of the forni’(t) ¢
=Hjexdit/h(—hw+is)]. Q is the volume of the sample, (AB)

B=1/kgT, pg is the density matrix in equilibrium in absence

of perturbationJ; is thei component of the current density We remark that
operator in the Heisenberg representation, é4nd ). de-

notes the configurational average. Following Luttingfene 1

1
ini i i i lim —=|lim —| —|;
obtain in the independent electrons approximation S 0+(£n—£)(8n—8+ls) 0+ds (sn—s-i-ls)'

(A7)
<n|Ji(t+ih)\)|m>=e(”")(”‘“)(Sn’sm)(nlji|m>, (A2)
then we have

where we have usedl=3.s,aa, and defined] as the

. . g . _ + 00
cur.rent density op.erator in th+e Sc+l1roger representation. iy =—ihQ lim f def(s)
Using the relation Tipoamand, agl= dmednpf (em)[1 s0td =
—f(en)] where f(g) is the Fermi-Dirac distribution func- q 1
tion, we get AP 5 _
X% <<m|JJ|n>d8(S—Sn—is><n|Jl|m>5(8 e€m)
Gi(0)=0Q |i fﬁdx “Menmem) Ji|n) & J d !
Uij(w)_ SLT* 0 € <m| j|n> (8 8n)<n| i|m>d8 8_8m+iS Cv
e (A8)
xfo At (f(em) (1= F(en))
which can be expressed as
Xe(it/h)(fhw+is+anfam)<m|jj|n><n|ji|m>>c.
~ ie*h [+=
(A3) i~ | . def(e)
The integration over N leads to a factor (1
—e Plenem) /(g —ey) which can be simplified with 4G (e) 4G (&)
f(em)[1—T(e,)] as XTr vid—vjﬁ(s—H)—vié(s—H)vj g ,
& & c
1—e Blen—em f(em) —f(en) (A9)
Wf(sm)[l_f(‘?n)]:ﬁ-

(Ad)  where we have introduced the Green’s functiG (e)
=limg_o+(e—H=is)~! and the velocity through the rela-

Inserting this in Eq(A3) and performing the integration over tion J=—ev/{). This expression for the conductivity was
t, we obtain first obtained by Bastiet al® but in the particular case of a
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SChI;'Gjinger Hamiltonian and made eXpIiCit use of the form For the diagona| components of the Conductivity tengd)}r,

taken by the velocity operator in the Sctinger case. The s equal to zero and we obtain the Kubo-Greenwood
present derivation is more general in the sense that it is infggrmula2®

dependent of the explicit form of the velocity operator and is

therefore valid both for the Schdinger, Pauli, and Dirac

cases. The only restriction is the independent electrons ap-

proximation. This formula, called Bastin formula, is interest- ~ et [+
ing because it expresses the conductivity as a product of Uii:mﬁw de
velocities and Green'’s functions. However, it is still difficult

to calculate because of the integration over the enerdy Xvi(GT(e)=G (g)))c- (A13)
making an integration by parts, a factdf(e)/de appears

instead of the factof (&) and the integration interval will be

df(e)
d

&

Tr(vi(G"(e)—G ()

thus reduced. o At zero temperature, the factaif(¢)/de is equal to— 5(e
In Eq. (A9), we express the delta function in terms of —&p), only electrons at the Fermi level contribute to the
Green's  functions using &(e—H)=—-(G"(¢)  conductivity (for both diagonal and off-diagonal compo-

—G7(&))/2im. We keep one half of this expression and nenty. In conclusion, atw=0 and T=0, the conductivity
make an integration by parts on the second half, then we 98Lnsor can be expressed as a sum of two t

dims !
+o] with
~ e’ (+= df(e) "
Uij:_4ﬂ'ﬂf_w de d: Tr{vi(G" (&)
~ ’h
—G (£))vjG (&)~ viG (e)vj(G'(e) =G (¢)))c a},-:f THvi(GT—G ;G —v,GTv;(GT—G)),
()
e2h [+ dG (e) (A14)
+_47TQ B def(e)Tr Vi e v;G (&)
B dG (e) . dG*(e) and
-v;iG (S)UjT+UiG (8)v; de
dG*(s)
U e viG (8)>' (A10) ~1 e’ -
c o= Tr((G"=G )(rjv;—rjvi))e, (Alb)

" 4i Q)
The second term in this expression can be simplified by us-

. . + _ + 2 H .

ng e Telalons 00 ()16 ()] a0 141 uher we rave ropped h enery rferngty o

tegration by parts. Finally, the conductivity can be written as'ﬂ?ogkf(frffg_sgl;%“ons at the Fermi levei™=G(er
_— - F_ .

a sum of two termsr;; = o, + o] where

APPENDIX B: STREDA FORMULA IN

1 e’fi J'+mdsdf(8)-|—l’<v (G (s) THE WEAK-RELATIVISTIC LIMIT
ij— i
AT ) de In this appendix, we give the detail of the calculation
~G (e))v;G ()~ viG*(e)v:(G* (&) =G (£)))e concerning the weak-relativistic expansion of the Streda con-
' ! ductivity starting from the Dirac equation. From E@\14),
(ALD) we see tha?r:j is a combination of terms such as
and
et
~, € [+= df(e) Aij(z1,29) = mTr<UiG(Zl)UjG(Zz)>c, (B1)
Uij_4i7‘rQJ_m T de

+ —_— - . . — . .
XTr((G"(e) =G (e))(rivj—rjvi))c. (Al2) wherez; andz, are equals tazr*+i0. When we insert the

Dirac velocity (17) and the Dirac Green’s functiofil9) in
Equations(A11l) and (A12) correspond to the formula ob- Eg.(B1), make the explicit product of the four operators and
tained by Stred® in the Schrdinger case. The present deri- take the trace over the lower and upper components of the
vation shows that it holds also in the Pauli and Dirac casesvave function, we obtain the general form
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e’h p
Aij(z1,25) = P QTr<(T|D(21) (Zl)UJD(Zz) G(Zz)

~ o-P 1 ~ og-p —1
+ UiG(Zl)ﬁQ (Zl)D(Zl)Q(Zl)U]‘G(ZZ)%Q (22)D(22)Q(z2)

a-p P~
[22-V~ (o BeﬁﬂD(zz)mG(zz))

2mc
o P o-p
%G@%»C-

(B2)

o P~ o-p
+0iD(zy) ﬁﬁLﬁG(ZDZ ) ( G(z,)—G(z)5—

+ 0| B(2)~ B(2) 5 [ 21~V (0 Beg) ID(21) 5 G(21) | o

D(z,)

2m

Similarly, when we insert Eqg17) and (19) in Eq. (A15),  (ojo;—0jo;)=2igjoy. The first term on the right hand

we get side corresponds exactly to the contribution that we get in a
nonrelativistic description because in this case the velocity is
5 - v=p/m and the Green’s function is simply the nonrelativis-
ali=— v QTr<(G*2—p(Q+)1D+Q++D+2—p(~3+ tic Green’s functionG. In contrast, the second term is not
b m m present in the Pauli approach and should not appear when we
take the non-relativistic limit in the Dirac approach. In fact,
~OP yv-1p-0-—p- T Pe- we show below that this term is exactly cancelled by an
(Q7)" D' Q" -D 5 G |(rjoj—rjoy)
m m c opposite term ino{ (). ReplacingD by 1 in Eq.(B3), we
~ll O
(B3) getoy; at order 1¢
ExpressiongB2) and(B3) are exact expressions without any )
assumption on the value af We will now calculate the ~10)_ _ Tl (BB pj Pi
weak-relativistic expansion of these expressions at orders 7ij 4i Q) i ( ) fim ~fim
1/c® and 1£2 in order to compare them with the expression ¢
obtained from the Pauli approach. 2 .
|Jk4 mQTr<O'k(G G )>C! (BG)

1. Dirac conductivity at order 1/c°

In the nonrelativistic limit,D is simply equal to the unit \yhere we have used the relations-@) (o~ B) = (A-B)

matrix [see Eq.(20)], thus Eq.(B2) can be rewritten as +io(AXB) and[r;,p;]=ihd;. The second term in the
02 right hand side cancels the supplementary term in(B§)
Ai(jO)(erZZ): QTr<—G(zl) —B(z,) zi?c(i)we obtain finally for the total Dirac conductivity at order
c
+ o (01038(20)+ 010, ))>
5 =(0i0iG(Z2y) +0,06(Z;1 , - - -
2m- o . D=5+ Gl
(B4) ezﬁ - - Pi~
. . =T — (G -GG
where we have used the fact that(o-p)+ (o p)o; 470 \'m m
=2p;. When we insert this expression in EGA14), the
conductivity o; at order 1¢° is _Piz+ &(é+_é)>
m- m .
~ Pi ~ Pi=_ Pix, Pj
10—~ Oa-_Ig+d
7 _4wﬂTr<m(G T B e L] DS
4i7Q) ‘m Im/ /.

- e’h o=
-G7) +8”k4| Tr(a'k(G -G7))e,
¢ which corresponds exactly to the total conductivity obtained
(B5  from Egs.(A14) and(A15) when we insert the nonrelativis-

wheree;;, =1 if {i,j,k}={x,y,z} or cyclic permutations and tic Pauli velocity v=p/m and the nonrelativistic Pauli
&ijk=0 otherwise. This factor is introduced through the termGreen’s functiorG.
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2. Dirac conductivity at order 1/c?

To get?rij at order 1¢2, it is necessary to take into account the next terms in the expansi@ngien by Eq.(20):
D(2)~1—Q(2)[z—V— ug(0o-Bex) ]/2mc. Thus, from Eq(B2), we get

ezh i~ ~ ~ - i~ - ~
AP 21,2,)= 4WQTr< D8 (20) () B(22) + (Vo) B(20) 2B 2) + EB(20) B 2)H oG 22)

Pi~ ~ Pj~ 1 ~ _
+EG(21)HrcG(Zl)EJG(ZZ)_W{Uiaje(zz)a'p[ZZ_V_MB(a'Beﬁ)]G' pPG(z,)
1
+0,0iG(21) 0 p[ 2~ V— pg( 0 Beg) Jo- pG(29) } — e ——Pip(G(z1)+G(2,))
oLV us(e Bei) 101G (22) + [ 25— V— up( 0 Ber) 107G (21)}

(21-2)((PX 0);G(21)p;G(2) — piG(z) (pX U)jé(zz))> . (B8)

c

i
4m3c?

whereH,. andyv,, are the relativistic corrections at ordecito the Hamiltonian and the velocity respectively given by Egs.

(13) and(14). The last term on the right-hand side does not contribute becaysef) — 0. Inserting the expressiqiB8) in
the conductivity(A14), we getoy; at order 1¢2

2

h ~_ Pix Pi _
A= T (v (BT -8 )DE — (v BT LG -8 )+ (@B ) (%),
Pi = P e e Pl P o P e
— G (V)i (BT =G+ _(BTHG -G H G ) G+ (G"-G7) G H,G
—&G HrcG+pJ( é‘)—%@+%(G+H,C(~3+—(~3‘H,Cé‘)>
Cc

2

eh - - - -
— i —=—— 5 TK{G" o pler—V—pp(0 Ber) o pG* — G o ple—V— pp(0- Beg) 10 pG }oi)e
16i mm°c<()

2
+ ———Tr(GT =G ){o[er—V—ug(0:Bex)]oi— oi[er—V— (- Ber) ] }e . (B9)
167m2c20) <( Noiler ma( eff) ] i j[ F ma( eff) ] |}>c
The first term corresponds exactly to the relativistic corrections that we get at adein the Pauli approch. The two last
terms are supplementary terms which should not appear. We show that they are cancelled by&ﬁt‘ﬁ’\s indeed, when we
expandD up to the second order inclin the expressioriB3) of o” , we obtain

o2
- SO B A R
O g E M B -E S B B -5 >[ri<vm>1—r,-<v,c>i]>c
eh - . -
teijk 55 T({G o pler—V—up(0-Bet) o pG" ~ G~ 0 plep—V— up(0-Ber) Jo- pG~ }oi)e
16i mm°c-Q)
2 ~ ~
_—l%mZCZQTr<(G+—G_){Ui[SF_V_,u,B(0'~Beﬁ)]O'j_O'j[SF—V—MB(O-.Beﬁ)]o-i}>0. (BlO)

The two last terms on the right-hand side cancel the supplementary terms B®dand we obtain finally for the total
conductivity at order 1?

014416-14



THEORY OF THE ANOMALOUS HALL EFFECT FROM . .. PHYSICAL REVIEW B4 014416

~(2)_U|(2)+Un(2)_

e’ +_omPix =P =, +_R- -
Tr<(vrc)(G —G) G (V)i E(G -G~ )+—(G —G7) (V)G

pi P, pj Pi~, ~_ P, ~_
——'G (Vo) (GT—G )+E'(G+HrCG+ G H,.G~ )niG +E'(G+—G )E'G H,.G
—&G TH,G* pJ(G —é—)—&é+%(é+Hmé+—é—Hmé—)>
Cc
e ce =g o= o= B P = =
_4i7TQTr (G HrcG -G HrcG ) r r]E +(G -G )[ri(vrc)j_rj(vrc)i] . (Bll)
Cc

This expression corresponds exactly to the one that we get from the Pauli approach when we report the Pauli velocity at order
1/c?, v, , and the Pauli Hamiltonian at orderc#/ H,., in Egs.(A14) and(A15). For higher order termé&ay of order 1¢2"

with n>1), we can predict that similar cancellations occur when we consider the total condueffdity+ oji ® . We have

thus proved in this appendix the consistency between the Pauli conductivity and the weak-relativistic limit of the Dirac

conductivity.
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