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Noncollinear amplitude-modulated magnetic order in Gd compounds
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In the present work a model within the mean-field theory is developed in order to analyze the specific heat
of magnetically ordered systems. This model allows to draw conclusions about the type of magnetic structure
from the specific heat near the magnetic transition. The known description of collinear amplitude-modulated
and equal-moment magnetism has been extended to account for noncollinear amplitude-médaAfed
antiferromagnetic order by introducing an anisotropic exchange interaction. Experimental evidence for NCAM
order is expected from measurements of the specific-heat anomaly at the ordering temperature and from
magnetic scattering experiments. The specific heat of Gd@s measured and analyzed within the model and
a good agreement is reached. Furthermore, the specific heat of other noncollinear Gd antiferromagnets near the
ordering temperature has been calculated and is compared to available experimental data.
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[. INTRODUCTION sitesi andj. It must be emphasized that in general the mag-
netic exchange is anisotropic, for instance due to the classical

In 1991 a mean-fieldMF) model has been developed for dipole-dipole interaction. In our notation two linés) above
the magnetic order in compounds with negligible single-iona symbol denote a tensor and'(Jenotes the transposition
anisotropy* There the exchange interaction was assumed tof a vector (bold-faced symbols denote vectpr3hen the
be isotropic. Within this description, equal-momeiiM) Hamiltonian of the magnetic interaction can be written as
magnetic structures have been analyzed and the specific heat
has been calculated. By taking into account some weak an- N
isotropy of the exchange coupling or crystal field the stabi- H=— l ITHTDIG). 1)
lization of collinear amplitude-modulateAM) magnetic 2
structures with regard to other possible states with equal mo-
ments (e.g., helical or cycloidal could be shown. It was
found that the specific-heat discontinuity at the ordering tem- This approach is only valid, when crystal field, multi-ion
perature is reduced for AM compounds relative to that exand higher-order interactions can be neglected. Therefore,
pected in the case of EM magnetism. In addition, a connecGadolinium and its compounds are good candidates to check
tion between the shape of the specific-heat curves and tHbe theoretical modelsee below. We will use a MF theory
exchange constants was predicted. The results of the modahd thereby neglect magnetic fluctuations above the ordering
were compared to specific-heat measurements on a numb@mperaturel . Except for the critical region this is a valid
of Gd compounds (GdG8i,, GdNi,Si,, GdGg, GACu,). approximatiorf, because Gt has a large spin moment and

The purpose of this paper is to develop a theoreticaln most cases the exchange is of long range. Introducing
model for noncollinear amplitude-modulatéCAM) sys-  thermal averages of the magnetic moment of the rare earth
tems. Such intermediate behavior is expected if the anisotM(i))=g;ug(J(i)) we may define the following effective
ropy of the exchange interactions is includexplicitly into ~ exchange field
the theory. AM and EM order are derived as special cases in
this model. To keep the formalism self-contained the stan-
dard MF _tregtment of the Hamilto_niar_1 is rewritten following Heﬁi):(gJMB)iz_E f7(ij HM(j)). (2
the notation in Ref. 1 and extending it where necessary. The i(#0)
results of the model are compared to experimental specific-
heat data of a number of Gd compounds. For this purpose the Note that in Eq.(2) the multiplication of the interaction
specn‘l_c heat _of Gdczuwas_measured a_lddltlonally and ana- tensor 7(ij) with the moment vectofM(j)) results in a
lyzed in Qe'gall. Other available experlment.al data are disyector that contributes to the exchange fiBlg(i). In a MF
cussed within the framework of the generalized model. theory the Hamiltonian(1) is approximated by(compare

Ref. 1)
IIl. FORMALISM

The subsequent analysis is based on an anisotropic bilin- T 1 T, .
- ~ =— M (IHg i)+ = MT(1))Hex(1).
ear two-ion exchange interactioi(ij) between the total T e Z (DHedD) ZEi (M) He1)
angular momenta(i) of the rare-earth atoms at different (©)]
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We now introduce Fourier transforms of the moments

<M(j)>,_ the exchange fieldsl (i), and of the exchange
tensor7(ij) by

1 :
Mao= 2 (M())e™"%%, (@)

1 _
Hag=y 2 Hedile "%, (5)
JinQ)=3 Jijje "R, ©®

whereQ is the propagation vector of the magnetic structure
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(M(i))=Flex(i)938IB5(9smaHex(i)/KpT)

C(l) C(3)
= THex(i)+ ?Hex(i)[Hex(i)]er"'

C(l) C(3)
= T—Hex(i)(1+t2+t4+'“)+ T—sHex(i)
N N

X[Hey()12(1+3t2+6t4+- )+ -+ . (10)

Here B;(x) is the Brillouin function and th&€™ are the
Curie constants ohth order (for Gadolinium J=7/2, g;
=2), see Ref. 1:

CW=(gyup)2I(I+1)/(3kg), (11)

CO=—(gyup)*I(I+1)(23%+23+1)/(90k3).

under consideration. The magnetic moments can be written

as

(M())= 2 MR, (7)
n(#0)

Note, thatn runs from—c to + in the sum in Eq(7) if
the propagatiof is incommensurate. [ is commensurate,
n numbers all nonequivalent wave vectar®. Using the
Fourier transformg4)—(6) Eq. (2) becomes

Hno=(gs18) 2T(NQ)IM o . (8)

We may write the internal energy per iéwhich is equal
to the thermal average 6{)°

(Hne) 1 - 7
u= N Z_E(gJMB) 2n(#0) MIan(nQ)M”Q'

9

Ill. BEHAVIOR OF THE SPECIFIC HEAT NEAR THE
NEEL TEMPERATURE Ty

The expansioril0) is possible, because near the ordering
temperaturd ~ Ty, all magnetic moments are expected to be
much smaller than the saturation moment. Therefore also the
exchange field$l,(i) will be smaller tharkgT/g;ug (in a
limited temperature range nedy).

Replacing{M(i)) andH,(i) in Eq. (10) by their Fourier
expansioriEgs.(4) and(5)], substitutingH,,q by Eq.(8) and
identifying the corresponding Fourier components on both
sides of the equation provides a nonlinear system of equa-
tions inMq,M3q,... . This system can be solved by expand-
ing theM,o’s in ascendingodd powers oft and by identi-
fying the corresponding terms in,t3,..., i.e., the nth
harmonicM ¢ is expanded as

Mpo=M it +Mst3+Mst>+--- . (12

For n=1 and first order int the following eigenvalue
problem of 7(Q) is derived?

(gJMB)ZTN

T QM ;= My;. (13

Given the exchangg/(Q), this eigenvalue problem may
be solved for different wave vecto. Maximizing the larg-
est eigenvalue\(Q) with respect toQ gives the ordering
wave vectorQ, of the system, the ordering temperatdig

In the following, the MF approach is taken as a reason=\(Q)C™"/(g;ug)? and the eigenvectdvl;;.°> The com-

able interpolation near the ktemperaturd . This results

ponents of this eigenvector determine the type of magnetic

in a model that can be solved and compared to experimentatructure just below the ordering temperature. However, by
results(keeping in mind that within the critical region fluc- using the first-order terms ity only the direction oM ; can
tuations will be preseint The behavior of the specific heat be calculatedby solving the eigenvalue problefi3)] but
may be obtained analytically by using an expansion of thenot its length.

magnetic moment on each sites a function of the corre-
sponding exchange field and the reduced variabte

(1-T/Ty)Y? (a “" on top of a vector denotes the corre-

sponding unit vector

The length ofM4; is found to be characteristic for the
discussed type of magnetic ordé&M, NCAM, and EM) and
can be calculated by comparing the components of third or-
der int (see the Appendix the result is
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_(C(l))3
P Qo#0,¢ BZB,
M 2= CO[2+ MM 1y?]
11 _(C(l))3
W 0=0 or QyeBZB.

(14

Equation(14) shows, that the length &fl 1, (i.e., the mag-
nitude of the ordered moment just beldw) is determined

by the Curie constant€®,C®) and the productM],M |,
which may vary between (EM ordep and 1(AM order)

depending on th&eal and imaginarycomponents oM 1188

determined by the eigenvalue problddB). In general the
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an expression for the third harmonic of the magnetic moment
(for Qu#0, ¢ BZB, see the Appendjx

C(l) _ -1
——F /3
TN(QJMB)2 J3Q0)

c®
XW(M 1M 11).

M3Q0=t3 1 Mll

(15

Equation(15) shows that the size of the third harmonic

depends also on the proddﬁﬂlﬁl 11] and becomes zero for
EM order. Therefore, any deviation from EM order can be
determined by measuring the intensity on the third harmonic

order will be NCAM (see the examples given in Sec. IV andin a magnetic scattering experiment. However, such mea-

V). In Eq. (14) the ferromagnetic casge., Q;=0) and the
simple antiferromagnetic casdi.e., Q,eBZB, BZB
=[symmetry points on the Brillouin zone bound§rpave

surements are very difficult, since the magnetic moment near
the ordering temperature is usually very small and at lower
temperatures the moments tend to saturate thereby destroy-

been treated separately, because in these cases the AM andg NCAM order.

EM (and NCAM) description of the ordering process is

equivalenf
In addition to Eq.(14) the third-order terms it provide

Using Egs(9), (13), and(14) the magnetic contribution to
the specific heat for temperatures just beldy can be cal-
culated as

( _M-Ellu:ﬂQO)Mll_{'M-{lj(_QO)Mflliz IMyyf?
2(gyup)? Tl . CcW
N
Qo#0,¢ BZB
_ 1 | Mg . —(cy?
) B ST
CHVL ot e, COL2+|MIMyy?]
Cma% _ _< _MI11~=7(Q0)M11£2 :|M11|2: 1 | Mg :_(C(l))2 0y=0
oy Tl 2(qme)?  aT|, . 2c® 2P| at | 2c® 0
_MLj(Qo)MlﬁMIlj(_Qo)M711£2 CIMy?
4(g;pp)? aT|. . 2c®
—IN
QoeBZB
1 | IMg o (cW)?
~oc Coc®
\ 2c®| ot |, 2C
(16)

The specific heat near the ordering temperature shows t@#on about the type of magnetic structure just below the or-
discontinuity that corresponds to the size of the derivative ofiering temperature from the size of the pdeMtIN 1>

the ordered magnetic moment with respect.tdhe jump in
the molar heat capacitg™? (c™%=N,C™ N,=6.0221
X 10%mol denotes the Avogadro constarat Ty may

In the following part of this paper some examples will be
given.
Note that in Eq.(16) the ferromagnetic @,=0) and

vary between [—(C®)2/3C®IN,=13.43J/Kmol and simple antiferromagnetic cas@§e BZB) give specific-heat

[ —(C™)2/2C®]N,=20.15 J/K mol[corresponding to AM  values as expected for EM ord@ithough the AM and EM
and EM magnetic structures, respectively—calculated wittdescriptions are equivalent for these special valueQg)f
J=7/2 using Eq(11)]. Using high-quality specific-heat mea- Furthermore, it is worth considering the case where the ex-
surements it is therefore possible to estimate the size of thehange anisotropy is only due to the classical dipole-dipole
magnetic contribution afy and attempt to obtain informa- interaction: if the basis of the crystallographic structure con-

014402-3



M. ROTTERet al. PHYSICAL REVIEW B 64 014402

TABLE I. Magnetic contribution to the molar heat capacity near the magnetic ordering temperature for some Gd compounds. The
propagation vector and the moment direction derived from magnetic-scattering experiments is given for comparison. The last column
contains the type of magnetic order as suggested by these experisentext

Moment
¢y, [J/Kmoll direction Qo Type

Gd 15-25[Ref. 13 [001] (000 —EM=NCAM=AM
GdCuSi, 15-18[Ref. 14 [010]  (1/20 1/2)e BZB —EM=NCAM=AM [Ref. 15
GdCw 20 [x0z] (21310 EM
GdCuGe, 18-22[Ref. 7], [Ref. 16 EM
GdBaCw0O, 5  14-22[Ref. 17 [001] (1/21/21/2BZB —EM=NCAM=AM [Ref. 1§
GdAg 19-21 [001] (1/21/20)BzB —EM=NCAM=AM [Ref. 19
GdCoSi, 19-20[Ref. 7] EM
GdS 17-20Ref. 20 NCAM
GdAWSH, 14—-18[Ref. 7] NCAM
GdCoGe, 16-17[Ref. 16 NCAM
GdP4Ge, 14-16[Ref. 7] NCAM
GdNi,B,C 12-16(at 20 K) [Ref. 21], [Ref. 27 [010]  (0.55 0 O [Ref. 23 AM?

1(at14 K
GdNi,Ge, 12-14(at 28 K) [Ref. 16| AM

3 (at 15 K) [Ref. 1§
GdAuGe 10(at 17 K) [Ref. 24 AM

3(at 15 K
GdRuGe, 7-9(at 32 K) [Ref. 25 AM

3 (at 28 K)
GdAQ,Si, 6—7 (at 17 K) [Ref. 7] AM

6-7(at 11 K
GdMg 7-9(at 105 K [Ref. 26§ AM

4—6 (at 90 K
GdCuy 3-4[Ref. 14 (1/3 1/3 0.223
Gd,PdSk 4-6[Ref. 27, [Ref. 28
GdGa 13-14[Ref. 14 (0.39 0.39 0 AM
GdNi,Si, 10-11[Ref. 14 [010]  (0.207 0 0.90B[Ref. 15  AM
GdFeGe, 14-15[Ref. 16 AM
GdPtGe, 10-13[Ref. 7] AM
GdNi,Sn, 10-15[Ref. 7] AM
GdPgIn 11[Ref. 29, [Ref. 30 AM
GdCuln 9-11[Ref. 29, [Ref. 30 AM

Note that belowT g~ 0.7T there is a spin reorientation into a NCAM state.

sists only of one Gd atom, thefi (Q) is real for anyQ and IV. THE CASE OF GdCu

therefore either AM of(if Qu=0 or Q,e BZB) simple col- To give an example of how NCAM order might occur, the
linear EM order is predicted. case of GdCyis discussed in more detail. Up to now it
It has been pointed out that the analysis of specific heageems to be the only Gd compound exhibiting EM order that
may lead to important conclusions about the magnetic struds noncollinearfcompare Table)l Recent neutron-scattering
ture near the ordering temperature. However, in many casesxperiments on GdGuindicate a noncollinear magnetic
critical fluctuations make it difficult to obtain reliable MF structure® The heat capacity has been measured on

values forCma%TéTN. In addition, the sample quality is an polycrystal€ and single crystal¥ For cggg%hﬂ at the

important issue since impurities and microstrains may lead terdering temperature a value of 15 J/K mol has been reported
changes of the specific heat near the magnetic ordering tenm Refs. 1 and 9 and was taken as evidence for an AM mag-
perature. In Sec. V the specific heat is discussed for some Guktic structure. However, from more recent measurements on
compounds. a single crystal a larger value of 20 J/Kmol can be
For Gd the conclusions from specific-heat data are irestimated® Therefore, the heat capacity has been remea-
some respect as important as results from scatteringured on a high quality single crystal with the aim to get
experiments:’ Candidates for NCAM order are proposed for additional reliable data and compare it to the model. The
further study. single crystal was produced by a Bridgeman method, details
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FIG. 3. Magnetic structure of GdguThe filled and open circles
denote two different neighboringc planes showing the antiferro-
magnetic propagation ib direction. For simplicity the copper at-
oms are not shown. The magnetic structure can be viewed as a
superposition of three simple antiferromagnetic lattices as indicated
T[K] by the numbers.

FIG. 1. Molar heat capacityp of a GdCy single crystal in zero
magnetic field in comparison with the isostructural nonmagnetiqsee Ref. 8 for details For the magnetic structure corre-
reference compound YGuThe inset shows the magnetic contribu- sponding to this eigenvector, the magnitude of the magnetic
tion ¢™ (circles as derived from these data in comparison with moment varies with its angle according to an “ellipti¢i’e.,
results of a numerical Calculatidlfu” |ine) described in the text. NCAM) propagat|0n(see F|g 2’ the magnet|c structure

shown in Fig. 3 corresponds ®=0). By inserting the ei-

. . ) genvector(17) into Egs.(14)—(16) it is possible to calculate
are given in Refs. 8 and 11. Heat capacity was measured Qje magnitude of the linear term in the expansion of the
a conventional quasiadiabatic heat-pulse technique. The MGragnetic moment12)
lar heat capacitgp of GACuw, is shown in Fig. 1 in compari-
son with the data of YCu One peak has been observed at 42

K corresponding to the N temperature in accordance with —(C1)3 ' S 2

measurements on polycrystafsTaking into account the part |M11|2:W with y?=[M M yy|*= 132

caused by critical fluctuations aroufig, we estimate from Y (18)

these data a MF heat capacity jump of 20 J/K mol, approxi-

matel nfirming the results of Ref. 10. . I o
ately, co g the results of Ref. 10 Consequently the magnetic contribution to the specific

It has been shovfnin a simple model of GdGuwith a i
propagation vecto®,=(2/3 1 0), that the eigenvector corre- heat afTy is then calculated from Eq16) to be
sponding to possible magnetic structures is given by

_ (C(l))Z
ma —
i C g1T—>TN— CO2+ 7 (19
M11:|Mll|(2+20-\ 1+U'2+20'2)71/2 0
o+ 1+ o2 For |o|<1 the eigenvectori(0 1) corresponds to the cy-

(17) cloidal propagatiorishown in Fig. 2, bottom For this eigen-
vector the product 1M, is zero and the anomaly in the

Here o is a parameter that denotes the ratio of some offmolar heat capacity afy is calculated to be
diagonal and diagonal components of the exchange tensor

- mag — ma
—> - = == AM CGdCLb|T—>TN_NAC Yo7,

_(C(l))Z

@ ® @ 6<0  NCAM =WNA=20.15 JimolK. (20

c o=0 EM This result is expected for EM structur@sompare the
discussion of Eq(16) and Ref. 1 and is in accordance with
. our experimental data of the heat capacity.
The proposed cycloidal propagation£€0) is in accor-
FIG. 2. Types of moment propagation for different values of thedance with neutron-scattering experiments performed at

parameteio (see text =4 K.® The corresponding magnetic structure of Gg@u
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shown in Fig. 3. This type of ordering can be viewed as arinstead of an accurate value in Table I.
antiferromagnetianodulation of the moments il direction Most compounds exhibiting EM order show strong criti-
and acycloidal EM propagation ina direction with a pitch  cal fluctuations(such as Gd, GdS, Gdg@ae,, GdCuySi,)
angle of 120°. The propagation vector @,=(2/310). and order in a simple collinear structure. No Gd compound
There are two different domains possible, one with a left-with a single Gd ion in the crystallographic basis has been
handed and another with a right-handed cycloid. The magreported to show noncollinear EM order. This is in agree-
netic unit cell consists of three structural unit cells aleng ment with the predictions of classical dipole-dipole
direction. From the projection into thee plane the cycloidal exchangé?
propagation ima direction can be seen. Numerical calculation® showed that the anisotropy of
Assuming that the magnetic structure is the sdE) at  the classical dipole-dipole exchange fails to describe the mo-
all temperatures the specific heat can be calculated numenirent direction in the case of Gd whereas it describes it cor-
cally at all temperatures belowly by solving self- rectly in the cases of GdAg, Gdgsi,, GdBaCu0;_ 5,
consistently Eqs(4)—(10). In the inset of Fig. 1 the result of GdNi,Si,, and GdN}B,C.
such a calculation is shown by the full line. It compares well In the case of GdASI, the ordering process is very com-
to the experimental data except for the critical region, whereplex leading to two relatively small discontinuities of 6 and 7
strong critical fluctuations are present, which are not considd/K mol at 11 and 17 K, respectivefyA similar behavior is
ered in the MF model. found for GdMg, GdAuGe, GdRGe,, and GdN}Ge,. Also
Moreover, considering temperatures n&arthe neutron in GdNi,B,C and GdPgGe, a second phase transition below
technique at present is not sensitive enough to detect a smalie ordering temperature has been reported. Such a behavior
amplitude modulationr#0 of the magnetic moment. Using has been attributed to higher-order exchange interactfons.
Eqg. (15) it is possible to calculate the magnitude of the third GdCu;, does not exhibit any anomaly at,, but a broad

harmonic. The terms linear inare zero maximum at aboull\/2. Also in GgPdSE, GdNi,Si, and
GdGg there is nosharptransition at the ordering tempera-
ture.
2_ . ipes . . .
[M3y|*=0 (21) Ignoring for the moment these difficulties in the interpre-

tation of specific-heat data, we find strong candidates for
and therefore the third harmonic increaseSVb§Q0=M33t3 NCAM order—GdAuySi,, GdCagGe,, and GdP¢Ge,. We
with M3g|M; and strongly suggest to perform scattering experiments on these
compounds in the vicinity of the ordering temperature to find
more evidence for the formation of NCAM structures. Con-

) ch 1o sidering the experimental difficulties in finding small devia-
Mg “=|| 1- Wﬂwo) M1, tions from an EM structuréas described above for the case
of GdCuw) and that only in a few cases scattering experi-
y[CP1® ments have been reported, it is possible, that in many of the
><(2+72)3,2m- (22) mentioned cases NCAM order might be found, perhaps

within a small temperature region.

It might be possible to determine a small deviation from
the cycloidal EM propagation nediy by measuring the in- VI. SUMMARY
tensity on the third harmonic in a synchrotron experiment

using the high sensitivity of resonant magnetic x-ray scatter- W& have proposed anisotropic exchange as a reason for
ing techniques. the formation of NCAM structures in Gd compounds. The

At present it is not clear, what is the reason for the ob-SPecific heat of noncollinear Gd antiferromagnets has been
served anisotropy in the exchange interactions of Gd®u calculated and compared to available experimental data.
numerical calculation of the anisotropy of the classical>0me candidates for the formation of NCAM order are sug-
dipole-dipole exchange indicates degenerate eigenvalues §¢Sted and proposed for further study by scattering experi-
Eq. (13). Probably this degeneracy is lifted by some smallMents. The magnetic structure near the ordering temperature
additional interaction, which has not been included in the!S Very sensitive to small details of the exchange interaction.
current model and stabilizes the observed magnetic structuré, complete set of precise diffraction data for several Gd

We strongly suggest further theoretical investigations on thi§ompounds is necessary to clarify what might be the origin
subject. of anisotropy in the exchange interaction of Gd compounds

and if classical dipole-dipole exchange can describe it.

V. DISCUSSION OF OTHER Gd COMPOUNDS
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APPENDIX

Here the derivation of Eq.14) is discussed in detail. In-
troducing the Fourier transforn{€gs. (4) and (5)] in Eq.
(10) and comparing the components of third ordet rasults

Qo

Qo=

PHYSICAL REVIEW B 64 014402
cw c®

Mps= )Jon)(MnﬁMnsH

Tn(9ams TX(gaue)®

x > J([n m—r1Qo)M (n-m-1)1

m,r==

X[M 1 TT(MQg) A(rQu)M,41. (A1)

Note that the sum in Eq/Al) contains only one term if
0 and a prefactor of has to be added to this sum if
e BZB. Forn=1 Eq. (Al) may be rewritten using Eq.

in the following system of equatior(§or n=1,3,5,7,...) (13):
J
( c® c®
- (MT — T 0, BZB
My 1+ [C(l)]S(M—llMll) + [C(l)]3M—11(M 1M1 Qo#0,¢
_ c® _ c® . }
1-———J Miz=§ M1y 1+ —5=(M_ ;M Qu=0
To(0apin)’ J(Qo) [M13 1 [C(1)]3( 1M 1) 0
c® c®
\Mll 2[CT ]3(M 1M1y |+ 4[0(1>]3(M11+M 1 (M{;Myy)  QoeBZB.

(A2)

Comparing the left side of this vector equation to the eigenvalue prot&nthe bracket is equivalent to the projection

operator’ﬁ(Qo) into the plane normal to the eigenvectdr; .

- - i(%))
Therefore, the left side vanishes if E@2) is multiplied byMI,=MT ., leading t&®
( 2c® c® -
|M11|2 1+ WlMlﬂz + W|M11|4|M11M11|2 Qo#0,¢BZB
: c®
0={ Myl 1+ W“\Mﬂz} Qo=0 (A4)
. c® 3)
IMyy|? 1+W|M11|2 +W|M”|4 QoeBZB.
\ L

The nonzero solution of this equation corresponds to the
generalM ;M 4, is not equivalent tdM ;4| (|[M14|%=

momhpd? for T<Ty as given in Eq(14). Note that in

MI,M;), becauseM; is a complex vector.

For n=3 in Eg. (A1) we get the following expression for the third harmonic of the magnetic morffesrte Qg

+0,& BZB)

c®

rcopE P H(3Q0)

M33:[

from which Eq.(15) can be deduced.

M13(M1;M 1) (A5)

*Electronic address: rotter@physik.tu-dresden.de
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13 145(1991).
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3Note: if the reduced wave vector correspondingi@ lies on the
zone boundary of the first Brillouin zone, it contributes only
partly to the sum in Eqg.7) and (9).
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“For |n|>1 and first order int the Eq. J(NQ)M,

=[(g,1)2Tn/CMIM,,; is derived. For arbitrary7(nQ) and

Ty calculated by Eq(13) only the solutionM ;=0 is possible.
However, if for some special reason such as symmetry the ei-
genvalue problem of som&nQ) leads to the same eigenvalue
as Eq.(13), multiple Q structures or frustration is the conse-
guence. In this article we will neglect this possibility and assume
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