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Noncollinear amplitude-modulated magnetic order in Gd compounds
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In the present work a model within the mean-field theory is developed in order to analyze the specific heat
of magnetically ordered systems. This model allows to draw conclusions about the type of magnetic structure
from the specific heat near the magnetic transition. The known description of collinear amplitude-modulated
and equal-moment magnetism has been extended to account for noncollinear amplitude-modulated~NCAM!
antiferromagnetic order by introducing an anisotropic exchange interaction. Experimental evidence for NCAM
order is expected from measurements of the specific-heat anomaly at the ordering temperature and from
magnetic scattering experiments. The specific heat of GdCu2 was measured and analyzed within the model and
a good agreement is reached. Furthermore, the specific heat of other noncollinear Gd antiferromagnets near the
ordering temperature has been calculated and is compared to available experimental data.
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I. INTRODUCTION

In 1991 a mean-field~MF! model has been developed fo
the magnetic order in compounds with negligible single-
anisotropy.1 There the exchange interaction was assume
be isotropic. Within this description, equal-moment~EM!
magnetic structures have been analyzed and the specific
has been calculated. By taking into account some weak
isotropy of the exchange coupling or crystal field the sta
lization of collinear amplitude-modulated~AM ! magnetic
structures with regard to other possible states with equal
ments ~e.g., helical or cycloidal! could be shown. It was
found that the specific-heat discontinuity at the ordering te
perature is reduced for AM compounds relative to that
pected in the case of EM magnetism. In addition, a conn
tion between the shape of the specific-heat curves and
exchange constants was predicted. The results of the m
were compared to specific-heat measurements on a nu
of Gd compounds (GdCu2Si2, GdNi2Si2, GdGa2, GdCu5).

The purpose of this paper is to develop a theoret
model for noncollinear amplitude-modulated~NCAM! sys-
tems. Such intermediate behavior is expected if the ani
ropy of the exchange interactions is includedexplicitly into
the theory. AM and EM order are derived as special case
this model. To keep the formalism self-contained the st
dard MF treatment of the Hamiltonian is rewritten followin
the notation in Ref. 1 and extending it where necessary.
results of the model are compared to experimental spec
heat data of a number of Gd compounds. For this purpose
specific heat of GdCu2 was measured additionally and an
lyzed in detail. Other available experimental data are d
cussed within the framework of the generalized model.

II. FORMALISM

The subsequent analysis is based on an anisotropic b
ear two-ion exchange interactionJ% ( i j ) between the tota
angular momentaJ( i ) of the rare-earth atoms at differen
0163-1829/2001/64~1!/014402~8!/$20.00 64 0144
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sitesi and j. It must be emphasized that in general the ma
netic exchange is anisotropic, for instance due to the class
dipole-dipole interaction. In our notation two lines~5! above
a symbol denote a tensor and ( )T denotes the transpositio
of a vector~bold-faced symbols denote vectors!. Then the
Hamiltonian of the magnetic interaction can be written as

H52
1

2 (
i , j 51
~ iÞ j !

N

JT~ i !J% ~ i j !J~ j !. ~1!

This approach is only valid, when crystal field, multi-io
and higher-order interactions can be neglected. Theref
Gadolinium and its compounds are good candidates to ch
the theoretical model~see below!. We will use a MF theory
and thereby neglect magnetic fluctuations above the orde
temperatureTN . Except for the critical region this is a valid
approximation,2 because Gd31 has a large spin moment an
in most cases the exchange is of long range. Introduc
thermal averages of the magnetic moment of the rare e
^M ( i )&5gJmB^J( i )& we may define the following effective
exchange field

Hex~ i !5~gJmB!22 (
j ~Þ i !

J% ~ i j !^M ~ j !&. ~2!

Note that in Eq.~2! the multiplication of the interaction
tensorJ% ( i j ) with the moment vector̂ M ( j )& results in a
vector that contributes to the exchange fieldHex( i ). In a MF
theory the Hamiltonian~1! is approximated by~compare
Ref. 1!

H;HMF52(
i

MT~ i !Hex~ i !1
1

2 (
i

^MT~ i !&Hex~ i !.

~3!
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We now introduce Fourier transforms of the mome
^M ( j )&, the exchange fieldsHex( i ), and of the exchange
tensorJ% ( i j ) by

MnQ5
1

N (
i

^M ~ i !&e2 inQRi, ~4!

HnQ5
1

N (
i

Hex~ i !e2 inQRi, ~5!

J% ~nQ!5(
j

J% ~ i j !e2 inQ~Ri2Rj !, ~6!

whereQ is the propagation vector of the magnetic structu
under consideration. The magnetic moments can be wri
as

^M ~ i !&5 (
n~Þ0!

MnQeinQRi. ~7!

Note, thatn runs from2` to 1` in the sum in Eq.~7! if
the propagationQ is incommensurate. IfQ is commensurate
n numbers all nonequivalent wave vectorsnQ. Using the
Fourier transforms~4!–~6! Eq. ~2! becomes

HnQ5~gJmB!22J% ~nQ!MnQ . ~8!

We may write the internal energy per ion~which is equal
to the thermal average ofH!3

U5
^HMF&

N
52

1

2
~gJmB!22 (

n~Þ0!
M2nQ

T J% ~nQ!MnQ.

~9!

III. BEHAVIOR OF THE SPECIFIC HEAT NEAR THE
NÉEL TEMPERATURE TN

In the following, the MF approach is taken as a reas
able interpolation near the Ne´el temperatureTN . This results
in a model that can be solved and compared to experime
results~keeping in mind that within the critical region fluc
tuations will be present!. The behavior of the specific hea
may be obtained analytically by using an expansion of
magnetic moment on each sitei as a function of the corre
sponding exchange field and the reduced variablet5
(12T/TN)1/2 ~a ‘‘∧’’ on top of a vector denotes the corre
sponding unit vector!
01440
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^M ~ i !&5Ĥex~ i !gJmBJBJ~gJmBHex~ i !/kBT!

5
C~1!

T
Hex~ i !1

C~3!

T3 Hex~ i !@Hex~ i !#21¯

5
C~1!

TN
Hex~ i !~11t21t41¯ !1

C~3!

TN
3 Hex~ i !

3@Hex~ i !#2~113t216t41¯ !1¯ . ~10!

HereBJ(x) is the Brillouin function and theC(n) are the
Curie constants ofnth order ~for Gadolinium J57/2, gJ
52), see Ref. 1:

C~1!5~gJmB!2J~J11!/~3kB!, ~11!

C~3!52~gJmB!4J~J11!~2J212J11!/~90kB
3 !.

The expansion~10! is possible, because near the orderi
temperatureT;TN all magnetic moments are expected to
much smaller than the saturation moment. Therefore also
exchange fieldsHex( i ) will be smaller thankBT/gJmB ~in a
limited temperature range nearTN).

Replacinĝ M ( i )& andHex( i ) in Eq. ~10! by their Fourier
expansion@Eqs.~4! and~5!#, substitutingHnQ by Eq.~8! and
identifying the corresponding Fourier components on b
sides of the equation provides a nonlinear system of eq
tions inMQ ,M3Q ,... . This system can be solved by expan
ing theMnQ’s in ascending~odd! powers oft and by identi-
fying the corresponding terms int,t3,..., i.e., the nth
harmonicMnQ is expanded as

MnQ5Mn1t1Mn3t31Mn5t51¯ . ~12!

For n51 and first order int the following eigenvalue
problem ofJ% (Q) is derived:4

J% ~Q!M115
~gJmB!2TN

C~1! M11. ~13!

Given the exchangeJ% (Q), this eigenvalue problem ma
be solved for different wave vectorsQ. Maximizing the larg-
est eigenvaluel(Q) with respect toQ gives the ordering
wave vectorQ0 of the system, the ordering temperatureTN

5l(Q0)C(1)/(gJmB)2 and the eigenvectorM11.5 The com-
ponents of this eigenvector determine the type of magn
structure just below the ordering temperature. However,
using the first-order terms int, only the direction ofM11 can
be calculated@by solving the eigenvalue problem~13!# but
not its length.

The length ofM11 is found to be characteristic for th
discussed type of magnetic order~AM, NCAM, and EM! and
can be calculated by comparing the components of third
der in t ~see the Appendix!, the result is
2-2
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uM11u255
2~C~1!!3

C~3!@21uM̂11
T M̂11u2#

Q0Þ0,¹BZB,

2~C~1!!3

C~3!
Q050 or Q0PBZB.

~14!

Equation~14! shows, that the length ofM11 ~i.e., the mag-
nitude of the ordered moment just belowTN) is determined
by the Curie constantsC(1),C(3) and the productuM̂11

T M̂11u,
which may vary between 0~EM order! and 1 ~AM order!
depending on the~real and imaginary! components ofM̂11 as
determined by the eigenvalue problem~13!. In general the
order will be NCAM ~see the examples given in Sec. IV an
V!. In Eq. ~14! the ferromagnetic case~i.e., Q050) and the
simple antiferromagnetic case~i.e., Q0PBZB, BZB
5@symmetry points on the Brillouin zone boundary#! have
been treated separately, because in these cases the AM
EM ~and NCAM! description of the ordering process
equivalent.6

In addition to Eq.~14! the third-order terms int provide
s
o

it
-
t

-

01440
and

an expression for the third harmonic of the magnetic mom
~for Q0Þ0, ¹ BZB, see the Appendix!:

M3Q0
5t3S 12

C~1!

TN~gJmB!2 J% ~3Q0! D 21

M11

3
C~3!

@C~1!#3 ~M11
T M11!. ~15!

Equation~15! shows that the size of the third harmon
depends also on the productuM̂11

T M̂11u and becomes zero fo
EM order. Therefore, any deviation from EM order can
determined by measuring the intensity on the third harmo
in a magnetic scattering experiment. However, such m
surements are very difficult, since the magnetic moment n
the ordering temperature is usually very small and at low
temperatures the moments tend to saturate thereby des
ing NCAM order.

Using Eqs.~9!, ~13!, and~14! the magnetic contribution to
the specific heat for temperatures just belowTN can be cal-
culated as
CmagU
T→TN

5
]U

]T
U

T→TN

5

¦

2
M211

T J% ~Q0!M111M11
T J% ~2Q0!M211

2~gJmB!2

]t2

]T
U

T→TN

5
uM11u2

C~1!

Q0Þ0,¹BZB

5
1

C~1! F ]uMQ0
u

]t
U

T→TN

G 2

5
2~C~1!!2

C~3!@21uM̂11
T M̂11u2#

2
M211

T J% ~Q0!M11

2~gJmB!2

]t2

]T
U

T→TN

5
uM11u2

2C~1!
5

1

2C~1! F ]uMQ0
u

]t
U

T→TN

G 2

52
~C~1!!2

2C~3! Q050

2
M11

T J% ~Q0!M111M11
T J% ~2Q0!M211

4~gJmB!2

]t2

]T
U

T→TN

5
uM11u2

2C~1!

Q0PBZB

5
1

2C~1! F ]uMQ0
u

]t
U

T→TN

G 2

52
~C~1!!2

2C~3!
.

~16!
or-

e

ex-
ole
n-
The specific heat near the ordering temperature show
discontinuity that corresponds to the size of the derivative
the ordered magnetic moment with respect tot. The jump in
the molar heat capacitycmag ~cmag5NACmag, NA56.0221
31023/mol denotes the Avogadro constant! at TN may
vary between @2(C(1))2/3C(3)#NA513.43 J/K mol and
@2(C(1))2/2C(3)#NA520.15 J/K mol@corresponding to AM
and EM magnetic structures, respectively—calculated w
J57/2 using Eq.~11!#. Using high-quality specific-heat mea
surements it is therefore possible to estimate the size of
magnetic contribution atTN and attempt to obtain informa
a
f

h

he

tion about the type of magnetic structure just below the
dering temperature from the size of the productuM̂11

T M̂11u2.
In the following part of this paper some examples will b
given.

Note that in Eq.~16! the ferromagnetic (Q050) and
simple antiferromagnetic case (Q0PBZB) give specific-heat
values as expected for EM order~although the AM and EM
descriptions are equivalent for these special values ofQ0).
Furthermore, it is worth considering the case where the
change anisotropy is only due to the classical dipole-dip
interaction: if the basis of the crystallographic structure co
2-3
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TABLE I. Magnetic contribution to the molar heat capacity near the magnetic ordering temperature for some Gd compoun
propagation vector and the moment direction derived from magnetic-scattering experiments is given for comparison. The las
contains the type of magnetic order as suggested by these experiments~see text!.

cmaguT→TN
@J/K mol#

Moment
direction Q0 Type

Gd 15–25@Ref. 13# @001# ~0 0 0! →EM5NCAM5AM
GdCu2Si2 15–18@Ref. 14# @010# (1/2 0 1/2)PBZB →EM5NCAM5AM @Ref. 15#
GdCu2 20 @x0z# ~2/3 1 0! EM
GdCu2Ge2 18–22@Ref. 7#, @Ref. 16# EM
GdBa2Cu3O72d 14–22@Ref. 17# @001# (1/2 1/2 1/2)PBZB →EM5NCAM5AM @Ref. 18#
GdAg 19–21 @001# (1/2 1/2 0)PBZB →EM5NCAM5AM @Ref. 19#
GdCo2Si2 19–20@Ref. 7# EM
GdS 17–20@Ref. 20# NCAM
GdAu2Si2 14–18@Ref. 7# NCAM
GdCo2Ge2 16–17@Ref. 16# NCAM
GdPd2Ge2 14–16@Ref. 7# NCAM
GdNi2B2C 12–16~at 20 K! @Ref. 21#, @Ref. 22#

1 ~at 14 K!
@010# ~0.55 0 0! @Ref. 23# AMa

GdNi2Ge2 12–14~at 28 K! @Ref. 16#
3 ~at 15 K! @Ref. 16#

AM

GdAuGe 10~at 17 K! @Ref. 24#
3 ~at 15 K!

AM

GdRu2Ge2 7–9 ~at 32 K! @Ref. 25#
3 ~at 28 K!

AM

GdAg2Si2 6–7 ~at 17 K! @Ref. 7#
6–7 ~at 11 K!

AM

GdMg 7–9~at 105 K! @Ref. 26#
4–6 ~at 90 K!

AM

GdCu5 3–4 @Ref. 14# ~1/3 1/3 0.223!
Gd2PdSi3 4–6 @Ref. 27#, @Ref. 28#
GdGa2 13–14@Ref. 14# ~0.39 0.39 0! AM
GdNi2Si2 10–11@Ref. 14# @010# ~0.207 0 0.903! @Ref. 15# AM
GdFe2Ge2 14–15@Ref. 16# AM
GdPt2Ge2 10–13@Ref. 7# AM
GdNi2Sn2 10–15@Ref. 7# AM
GdPd2In 11 @Ref. 29#, @Ref. 30# AM
GdCu2In 9–11 @Ref. 29#, @Ref. 30# AM

aNote that belowTR;0.7TN there is a spin reorientation into a NCAM state.
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sists only of one Gd atom, thenJ% ~Q! is real for anyQ and
therefore either AM or~if Q050 or Q0PBZB) simple col-
linear EM order is predicted.

It has been pointed out that the analysis of specific h
may lead to important conclusions about the magnetic st
ture near the ordering temperature. However, in many ca
critical fluctuations make it difficult to obtain reliable M
values forCmaguT→TN

. In addition, the sample quality is a
important issue since impurities and microstrains may lea
changes of the specific heat near the magnetic ordering
perature. In Sec. V the specific heat is discussed for some
compounds.

For Gd the conclusions from specific-heat data are
some respect as important as results from scatte
experiments.1,7 Candidates for NCAM order are proposed f
further study.
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IV. THE CASE OF GdCu 2

To give an example of how NCAM order might occur, th
case of GdCu2 is discussed in more detail. Up to now
seems to be the only Gd compound exhibiting EM order t
is noncollinear~compare Table I!. Recent neutron-scatterin
experiments on GdCu2 indicate a noncollinear magneti
structure.8 The heat capacity has been measured
polycrystals9 and single crystals.10 For cGdCu2

mag uT→TN
at the

ordering temperature a value of 15 J/K mol has been repo
in Refs. 1 and 9 and was taken as evidence for an AM m
netic structure. However, from more recent measurement
a single crystal a larger value of 20 J/K mol can
estimated.10 Therefore, the heat capacity has been rem
sured on a high quality single crystal with the aim to g
additional reliable data and compare it to the model. T
single crystal was produced by a Bridgeman method, det
2-4
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are given in Refs. 8 and 11. Heat capacity was measure
a conventional quasiadiabatic heat-pulse technique. The
lar heat capacitycP of GdCu2 is shown in Fig. 1 in compari-
son with the data of YCu2. One peak has been observed at
K corresponding to the Ne´el temperature in accordance wi
measurements on polycrystals.12 Taking into account the par
caused by critical fluctuations aroundTN we estimate from
these data a MF heat capacity jump of 20 J/K mol, appro
mately, confirming the results of Ref. 10.

It has been shown8 in a simple model of GdCu2 with a
propagation vectorQ05(2/3 1 0), that the eigenvector corre
sponding to possible magnetic structures is given by

M115uM11u~212sA11s212s2!21/2S i
0

s1A11s2
D .

~17!

Heres is a parameter that denotes the ratio of some
diagonal and diagonal components of the exchange te

FIG. 2. Types of moment propagation for different values of
parameters ~see text!.

FIG. 1. Molar heat capacitycP of a GdCu2 single crystal in zero
magnetic field in comparison with the isostructural nonmagn
reference compound YCu2. The inset shows the magnetic contrib
tion cmag ~circles! as derived from these data in comparison w
results of a numerical calculation~full line! described in the text.
01440
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~see Ref. 8 for details!. For the magnetic structure corre
sponding to this eigenvector, the magnitude of the magn
moment varies with its angle according to an ‘‘elliptic’’~i.e.,
NCAM! propagation~see Fig. 2, the magnetic structu
shown in Fig. 3 corresponds tos50). By inserting the ei-
genvector~17! into Eqs.~14!–~16! it is possible to calculate
the magnitude of the linear term in the expansion of
magnetic moment~12!

uM11u25
2~C~1!!3

C~3!@21g2#
with g2[uM̂11

T M̂11u25
s2

11s2 .

~18!

Consequently the magnetic contribution to the spec
heat atTN is then calculated from Eq.~16! to be

CmaguT→TN
5

2~C~1!!2

C~3!@21g2#
~19!

For usu!1 the eigenvector (i 0 1) corresponds to the cy
cloidal propagation~shown in Fig. 2, bottom!. For this eigen-
vector the productM̂11

T M̂11 is zero and the anomaly in th
molar heat capacity atTN is calculated to be

cGdCu2
mag uT→TN

5NACmaguT→TN

5
2~C~1!!2

2C~3! NA520.15 J/mol K. ~20!

This result is expected for EM structures@compare the
discussion of Eq.~16! and Ref. 1# and is in accordance with
our experimental data of the heat capacity.

The proposed cycloidal propagation (s50) is in accor-
dance with neutron-scattering experiments performed aT
54 K.8 The corresponding magnetic structure of GdCu2 is

FIG. 3. Magnetic structure of GdCu2. The filled and open circles
denote two different neighboringac planes showing the antiferro
magnetic propagation inb direction. For simplicity the copper at
oms are not shown. The magnetic structure can be viewed
superposition of three simple antiferromagnetic lattices as indica
by the numbers.

c

2-5



a

ft
a

e

f
e
er
sid

m
g
ird

m

en
te

b

ca
s
a
th
tu
th

m
o
e

ur
f

en

ti-

nd
en
e-
le

f
mo-
or-

-
7

w
avior
s.

-

e-
for

ese
nd
n-
a-
se
ri-
the
ps

for
he
een
ata.
g-
eri-
ture
on.
d

gin
ds

he
-
-

.
ns

M. ROTTERet al. PHYSICAL REVIEW B 64 014402
shown in Fig. 3. This type of ordering can be viewed as
antiferromagneticmodulation of the moments inb direction
and acycloidal EM propagation ina direction with a pitch
angle of 120°. The propagation vector isQ05(2/3 1 0).
There are two different domains possible, one with a le
handed and another with a right-handed cycloid. The m
netic unit cell consists of three structural unit cells alonga
direction. From the projection into theac plane the cycloidal
propagation ina direction can be seen.

Assuming that the magnetic structure is the same~EM! at
all temperatures the specific heat can be calculated num
cally at all temperatures belowTN by solving self-
consistently Eqs.~4!–~10!. In the inset of Fig. 1 the result o
such a calculation is shown by the full line. It compares w
to the experimental data except for the critical region, wh
strong critical fluctuations are present, which are not con
ered in the MF model.

Moreover, considering temperatures nearTN the neutron
technique at present is not sensitive enough to detect a s
amplitude modulationsÞ0 of the magnetic moment. Usin
Eq. ~15! it is possible to calculate the magnitude of the th
harmonic. The terms linear int are zero

uM31u250 ~21!

and therefore the third harmonic increases asM3Q0
5M33t

3

with M33iM11 and

uM33u25UF12
C~1!

TN~gJmB!2 J% ~3Q0!G21

M̂11U2

3
g@C~1!#6

~21g2!3/2A2C~3!
. ~22!

It might be possible to determine a small deviation fro
the cycloidal EM propagation nearTN by measuring the in-
tensity on the third harmonic in a synchrotron experim
using the high sensitivity of resonant magnetic x-ray scat
ing techniques.

At present it is not clear, what is the reason for the o
served anisotropy in the exchange interactions of GdCu2. A
numerical calculation of the anisotropy of the classi
dipole-dipole exchange indicates degenerate eigenvalue
Eq. ~13!. Probably this degeneracy is lifted by some sm
additional interaction, which has not been included in
current model and stabilizes the observed magnetic struc
We strongly suggest further theoretical investigations on
subject.

V. DISCUSSION OF OTHER Gd COMPOUNDS

In Table I the heat-capacity data for several Gd co
pounds are compiled in combination with available data
the magnetic structure. In some cases such as Gd m
strong critical fluctuations near the ordering temperat
make it difficult to estimate correctly the MF value o
cmaguT→TN

and therefore a reliable interval of values is giv
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instead of an accurate value in Table I.
Most compounds exhibiting EM order show strong cri

cal fluctuations~such as Gd, GdS, GdCu2Ge2, GdCu2Si2)
and order in a simple collinear structure. No Gd compou
with a single Gd ion in the crystallographic basis has be
reported to show noncollinear EM order. This is in agre
ment with the predictions of classical dipole-dipo
exchange.31

Numerical calculations32 showed that the anisotropy o
the classical dipole-dipole exchange fails to describe the
ment direction in the case of Gd whereas it describes it c
rectly in the cases of GdAg, GdCu2Si2, GdBa2Cu3O72d ,
GdNi2Si2, and GdNi2B2C.

In the case of GdAg2Si2 the ordering process is very com
plex leading to two relatively small discontinuities of 6 and
J/K mol at 11 and 17 K, respectively.7 A similar behavior is
found for GdMg, GdAuGe, GdRu2Ge2, and GdNi2Ge2. Also
in GdNi2B2C and GdPd2Ge2 a second phase transition belo
the ordering temperature has been reported. Such a beh
has been attributed to higher-order exchange interaction26

GdCu5 does not exhibit any anomaly atTN , but a broad
maximum at aboutTN/2. Also in Gd2PdSi3, GdNi2Si2 and
GdGa2 there is nosharp transition at the ordering tempera
ture.

Ignoring for the moment these difficulties in the interpr
tation of specific-heat data, we find strong candidates
NCAM order—GdAu2Si2, GdCo2Ge2, and GdPd2Ge2. We
strongly suggest to perform scattering experiments on th
compounds in the vicinity of the ordering temperature to fi
more evidence for the formation of NCAM structures. Co
sidering the experimental difficulties in finding small devi
tions from an EM structure~as described above for the ca
of GdCu2) and that only in a few cases scattering expe
ments have been reported, it is possible, that in many of
mentioned cases NCAM order might be found, perha
within a small temperature region.

VI. SUMMARY

We have proposed anisotropic exchange as a reason
the formation of NCAM structures in Gd compounds. T
specific heat of noncollinear Gd antiferromagnets has b
calculated and compared to available experimental d
Some candidates for the formation of NCAM order are su
gested and proposed for further study by scattering exp
ments. The magnetic structure near the ordering tempera
is very sensitive to small details of the exchange interacti
A complete set of precise diffraction data for several G
compounds is necessary to clarify what might be the ori
of anisotropy in the exchange interaction of Gd compoun
and if classical dipole-dipole exchange can describe it.
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APPENDIX

Here the derivation of Eq.~14! is discussed in detail. In
troducing the Fourier transforms@Eqs. ~4! and ~5!# in Eq.
~10! and comparing the components of third order int results
in the following system of equations~for n51,3,5,7,...)
ly

01440
d
. Mn35

C~1!

TN~gJmB!2 J% ~nQ0!~Mn11Mn3!1
C~3!

TN
3 ~gJmB!6

3 (
m,r 561

J% ~@n2m2r #Q0!M ~n2m2r !1

3@Mm1
T J% T~mQ0!J% ~rQ0!M r1#. ~A1!

Note that the sum in Eq.~A1! contains only one term if
Q050 and a prefactor of14 has to be added to this sum
Q0PBZB. For n51 Eq. ~A1! may be rewritten using Eq
~13!:
n

S 1% 2
C~1!

TN~gJmB!2 J% ~Q0! DM1355
M11F11

2C~3!

@C~1!#3 ~M211
T M11!G1

C~3!

@C~1!#3 M211~M11
T M11! Q0Þ0,¹BZB

M11F11
C~3!

@C~1!#3 ~M211
T M11!G Q050

M11F11
C~3!

2@C~1!#3 ~M211
T M11!G1

C~3!

4@C~1!#3 ~M111M211!~M11
T M11! Q0PBZB.

~A2!

Comparing the left side of this vector equation to the eigenvalue problem~13! the bracket is equivalent to the projectio
operatorP% (Q0) into the plane normal to the eigenvectorM11.

P% ~Q0!5S 1% 2
J% ~Q0!

l~Q0!
D . ~A3!

Therefore, the left side vanishes if Eq.~A2! is multiplied byM11
† 5M211

T leading to33

055
uM11u2F11

2C~3!

@C~1!#3 uM11u2G1
C~3!

@C~1!#3 uM11u4uM̂11
T M̂11u2 Q0Þ0,¹BZB

uM11u2F11
C~3!

@C~1!#3 uM11u2G Q050

uM11u2F11
C~3!

2@C~1!#3 uM11u2G1
C~3!

2@C~1!#3 uM11u4 Q0PBZB.

~A4!

The nonzero solution of this equation corresponds to the momentuM11u2 for T,TN as given in Eq.~14!. Note that in
generalM11

T M11 is not equivalent touM11u2 (uM11u25M11
† M11), becauseM11 is a complex vector.

For n53 in Eq. ~A1! we get the following expression for the third harmonic of the magnetic moment~here Q0
Þ0,¹BZB)

M335
C~3!

@C~1!#3 P% 21~3Q0!M11~M11
T M11! ~A5!

from which Eq.~15! can be deduced.
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e
-
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