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Topological interpretation of subharmonic mode locking in coupled oscillators with inertia
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A topological argument is constructed and applied to explain subharmonic mode locking in a system of
coupled oscillators with inertia. Via a series of transformations, the system is shown to be described by a
classicalXY model with periodic bond angles, which is in turn mapped onto a tight-binding particle in a
periodic gauge field. It is then revealed that subharmonic quantization of the average phase velocity follows as
a manifestation of topological invariance. Ubiquity of multistability and associated hysteresis are also pointed
out.
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In a nonlinear oscillator system driven periodically, the odic bond angles. Via mapping onto a tight-binding particle
competition between the natural frequency and the drivindn a periodic gauge field, subharmonic quantization of the
frequency in general leads to either an almost periodic moaveragegdc) phase velocity is revealed as a manifestation of
tion or a periodic one, depending on the parameter rangethe topological invariance. Also suggested is ubiquity of
The latter, called mode locking, is characterized by the quanmultistability, providing a natural explanation of the ob-
tization at rational values of the average phase velocity. Iiferved hysteresis due to the inertia. .
particular subharmonic mode locking, appearing in the pres- We begin with the set of equations of motion for a system
ence of the inertia term, results in the devil's staircase strucof N coupled oscillators
ture. One of the well-known examples is the Josephson junc-
tion driven by combined direct and alter;rinating currents, with N
the capacitance playing the role of inerti@Governed by the o 1 e A T
same equation of motion as a driven pendulum, it displays dc 121 [Mij -+ yMi b+ Jysin( i = &) =11, @
voltage plateaus in the current-voltage characteristics, known
as Shapiro stepsSimilar voltage quantization has also been )
observed in arrays of Josephson junctions, yielding integefNere ¢i represents the phase of ti oscillator,M;; the
giant Shapiro stefl$ and subharmonic stebaccording to  (rotationa) inertia matrix,y the damping parameter, adg
the absencel/presence of capacitive terms. Unfortunately, f€asures the coupling strength between the oscillatans!
spite of the deceptively simple equation of motion, even thd- The right-hand side describes the periodic driving with

singlejunction problem has resisted complete analytical sofrfequencyQ: 1;i=l; 4+1; 5 cos, wherel; 4 andl; , are
lutions, especially in the presence of the capacitive termthe amplitudes of the dc and ac components, respectively, of

except for the results mainly based on the circle fraap on _fhe driving on th_e' th oscillator. Th_ere are two cases de_pend-
the approximate analysis by means of expansion an#'d N the detailed form _of the inertia matrix. The S|mp!e
averaging® Accordingly, such mode-locking phenomena in ¢@s€ thaM;;=M &; describes the system of coupled oscil-
arrays have been demonstrated mostly by numerical simulal@tors, each of which possesses ineMaand suffers from
tions. On the other hand, the topological argument, proposeglissipation of strengtlyM under drivingl;. On the other
for the system without the capacitive tetfhreveals topo- hand, with ¢; denoting the phase of the superconducting
logical invariance of the system as the physical origin oforder parameter at sitie Eq. (1) describes the dynamics of
quantizationl.l As in the case of the quantum Hall effdét, the array of resistively a_nd capacmvely shuntet_j junctions
the topological argument does not provide quantitative infor{RCSJ$, where the combined Bdllsrect and alternating current
mation, e.g., on the locking structure. Nevertheless it noti iS fed into the grain at site™™" In this caseM;; corre-
only clarifies the nature of quantization but also provides a5Ponds to the capacitance matrix and assumes the ffgm
link between dynamics and statics by interpretidgnami- = CAj; with the junction capacitanc€ and the lattice La-
cal) mode locking in terms ofstatig topological invariance. ~PlacianA;;=z4;;— 6;;,, wherej’ represents the neighboring
In this work, we construct a topological argument for the sites ofj andz represents the number of such neighbors. The
system with inertia and apply the idea to Josephson-junctiofamping parametey is inversely proportional to the shunt
arrays or systems of coupled oscillators, with attention to théesistance of the junction. For simplicity, we henceforth con-
resulting subharmonic locking. For this purpose, we consideg€entrate on the casé; =M ¢;; since the generalization to
an appropriate canonical transformation of the dynamidhe case oM;;=CAj; is straightforward.
equations of motion and the corresponding Fokker-Planck Equation(1) may be written in the form of Hamilton’s
equation, the stationary solution of which gives the effectivecanonical equationse;=dJH/dp; and p;=—JH/d¢; with
Hamiltonian in the form of a classic®Y model with peri-  the Caldirola-Kanai Hamiltonidfi*®
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(7ij (1) i (1)) = 2yCkg T( 5k 8j — 8y Sj) S(t—t").
Motivated by the canonical transformation in the absence
(2) of noise, we write Eq(6) in the form
where (¢;,p;) are conjugate variables aq is the “gauge
charge” given byQ;e”"'=1; or

1
Hox=g57 2 (PiF Q)% 7'~ Jj cod g — gpe”,

'0i= M 71pi67 yt7

l; l; pi=— 2>, Jije”tsin(6,— 6;—a;)+ ne, 7
Qi='7'deyt+ —2J'r’i)2e7t(ycosﬂt+9 sinQt)+QY P 2 N "0~ 0= ay)*
4 wheref;,= ¢;+a; . The set of Langevin equatiofg) may be
transformed into the Fokker-Planck equatibn
with arbitrary constan®Q?. In this sense the classical me-

chanical system with dissipation, governed by the equations 9P~ < Pi 9P NN L

. ; y e €4 —= e — 4> J.esin(6,— 0 —a;)—
of motion (1), can be described by the Hamiltonian in Eq. 4t T M a6, 47 7Y 1 op,
(2).1¢ We then introduce new variable#,;(p;) according to )
pi=d®/a¢; and 6,=ad/Jp; with the generating function +yM kBTE eZytﬁ_F;' (8)
O({pi}.{#i})==Zipi( i +a;), whereMa;=—e "'Q;. Un- ! Ip;

der this canonical transformation, H@) yields, apartfroma \hich describes the time evolution of the probability distri-

constant term, the new Hamiltonian bution P({6,},{p;},t) of phases and momenta at tinie
Equation(8) yields the stationary solution valid in the limit

~ oD
HCKEHCK‘FE t_>m’
P{6;},{pi})oce Her/keT,
~2 _ where theeffectiveHamiltonian is given b
:m i pIZe Yt_i2<j Jije’/tcos(ﬂi— Bj—aij), 9 y

(4)

where p; (=p;) is conjugate tod;. In view of the RCSJ

array, where a uniform current is usually fed into the sitesyjth M=Me?'. It is thus concluded that the stationary dis-
along one edge and extracted from those along the oppositAbution has the form of a Gibbs measure, with the effective

edge, we consider the case that some oscillators are drivelamiltonian indeed corresponding to the energy of the sys-
by I =14+1,cosQt and some others by |. Then the bond ., Herr=e "Fcy)
e .

angle a;j=a;—a;, depending oni(j), either vanishes or

1
Heff:mzi: piz_i§<:j Jij cod 0, — 60— &) ©)

The first term in Eq(9) becomes vanishingly small in the

becomes stationary statet(—); it is further obvious that the kinetic
11 | energy in the above classical system decouples from the in-
— d a Y teraction energy. We thus obtain the classicAlY
ai=+F—|— —sin(t—cosQt 5 o
M|y y2+021Q ) © Hamiltoniart®

apart from an arbitrary constant. o o
Note that the energy of the system is given by Hxy= ‘]%‘3 cod 6 — 6 —aj).

— .15 : : R
e "Hck ;™ this also corresponds to the effective Hamil where the nearest-neighbor coupling;€J3;.) has been

tonian _descnblng the statistical mec_hamcs of the system. .Tgssumed for convenience. At zero temperature, which is our
see this, we for the moment consider the system at finite

concern, the system described by the Hamiltonia) is
equivalent to a tight-binding particléof chargee), with
2kgT/J taking the role of the energy eigenvaltie The
N Hamiltonian describing such a tight-binding system has the
'21 [M;; ('g,j +yM;; ¢j+3ij sin(¢i—¢))1=li+m, (6 position representation
| (i) =e "6, 1
where|i) is the position eigenket angl; may be viewed as
r1ige line integral of the appropriate gauge potentiala;;
=(elhc)[la-dl. Equation (5) shows that a;j, defined
(mi(t)m;(t"))=2yMKgT §; S(t—t") _rpodulo 2, is periodic in time with period-=27m/{) only

i

(10

temperatures and generalize the equations of mafipap-
propriately,

where 7; is the random(therma) noise acting on theth
oscillator. In the system of oscillators witl;;=M g;; , the
noise is characterized by the zero mean and the correlatio

at temperaturd. In the RCSJ array withM;; =CA;;, 7 is

) . : . s
given bx the sum qf the noise currents from neighboring ly=— yMQ) (12)
S|tes,77i—2j 7]” 5”! W|th m
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wherem ands are integers. _ _ g _ T s ~
When Eq.(12) is satisfied, the Hamiltoniafi1) as well as (p)=(0)+ == =(x)—Q+——=—Q0—F, (19

the gauge fielda;; has the periodicityr and the Floquet M YM m

theorem is applicable to the corresponding Sdhrger

equation for the wave functionV;=(i|¥), giving the

relatior?® which is precisely Eq(15). It is thus obvious that Eq16)

remains unchanged: Given subharmonic quantization can
\Pi(t+r)=e*iET\Ifi(t) (13) persist in the finite interval of the dc driving strengdhy
« ¢, thus generating the step structure in the appropriate re-
with the quasienergf. This imposes that, apart from the sponse characteristics. Since rational numbers form a dense
dynamical contributiorE 7, the corresponding change in the St this also indicates that there can exist multiple quantiza-
phase of the wave functiodr; should be an integer multiple tion states with different values offm in Eq. (16) for given
of 27, 6,(t+7) — 6,(t)=2n,7—Er, wheren, is an integer driving strengthl ;. However, some of those, corresponding

depending on the form @f; , i.e., of the driving, andE has to complex values of theoquasienerﬁywith nonzero imagi-
been assumed to be re@ke below. We thus have the ay- Nary parts are unstabé® and only stable state@vith real

erage change rate of the phase values ofE) among those determine the step structure in the
actual response characteristics. Although such information as
S % S ~ stability cannot be obtained by the topological argument, it is
(6)=—| dto=—Q—-E (14 : X .
7)o m certainly plausible to have two or more states stable in some

intervals of the driving strength. Such multistability in gen-
eral gives rise to hysteresis behavior in the response charac-
~ teristics, which has widely been observed in the oscillator
oy dd M systems with inertia ternfs>*"-?!Note also that the topologi-
(By=(b)+—m=—0-F, (15 ne ogi-
cal argument is in essence a zero-temperature analysis like in
~ . ) Refs. 10,12: At finite temperatures thermal fluctuations make
wherenj=n;=s or n; for driven (I; y==*14) or undriven  the mapping onto Eq11) and the following argument inex-
(1i,4=0) oscillators, respectively. Accordingly, the averageact. Nevertheless, at sufficiently low temperatures, the phase
change rate of the phase difference or the avefdgephase  gjippage induced by fluctuations should have an exponen-
velocity, which usually gives the appropriate physical quan+jaly low rate, hardly affecting the quantization itself deter-
tity, e.g., the voltage in the case of an RCSJ array, indeeghined by the winding number. On the other hand, it is ex-

or in terms of the original phasé; ,

displays subharmonic mode locking, pected that fluctuations tend to destabilize various
N quantization states, reducing the stability interval and the
V\=(d)— ()= —0 16 emergence of multistability. This is consistent with smooth-

Vip=(d) = (=1 (18 ing out of the step structutend suppression of hystere&fs,

) -~ ~ . . . . observed in the presence of noise.

with n=n;—n;. Note that for a given configuration of driv- |, symmary, we have constructed a topological argument
ing, the integem in Eq. (16) is determined by the winding - ¢4 sybharmonic mode locking in a driven system of coupled
numbern; , manifesting the topological nature of the mode yggijlators with inertia. Starting from the dynamic equations

locking. _ , _ of motion, we have derived the effective Hamiltonian for the
The subharmonic mode locking given by E@6) can system in the form of a classicXY model with periodic
persist even for th@lc) driving slightly off the condition in 5 angles, which in turn has been mapped onto a tight-
Eq. (12). To see this, we take binding particle in a periodic gauge field. It has then been
shown that subharmonic quantization of the averé&d®
=" 4 (17) phase velocity follows as a manifestation of topological in-
yMQ m variance, revealing the topological nature of the dynamical
for small e, which leads to the bond angle either zero Orir'glo?)er()l\?ifjiﬁ]r:ggé'ar\]l;&:zlvgi:)elgr:;titgr? gftshsébfjlgéSrt;ng;tf;?gl[
_ ~0— H 0 H H H ] -
ijo_ ?r‘]j%;%;:velt?h:‘h;m:; Sﬂ?g::no% ttl?s spirtlggl(;ssvr;;@s esis due to the inertia. In view of the fact that the set of
is iﬁ general not periodic. However, in tgrms of the Sﬁﬁedequations of motiori1) describes a prototype of oscillatory
i ’ system, we believe the result of this paper to be rather gen-

phasey;= 6, + ¢,Qt, wheree;=* € or O for driven or un- ; . ! .
driven oscillators, the Hamiltonian in E€L0) reads eral and applicable to a variety of oscillatory systems dis-
' playing mode locking phenomena.

| d S
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