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Topological interpretation of subharmonic mode locking in coupled oscillators with inertia
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A topological argument is constructed and applied to explain subharmonic mode locking in a system of
coupled oscillators with inertia. Via a series of transformations, the system is shown to be described by a
classicalXY model with periodic bond angles, which is in turn mapped onto a tight-binding particle in a
periodic gauge field. It is then revealed that subharmonic quantization of the average phase velocity follows as
a manifestation of topological invariance. Ubiquity of multistability and associated hysteresis are also pointed
out.
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In a nonlinear oscillator system driven periodically, t
competition between the natural frequency and the driv
frequency in general leads to either an almost periodic m
tion or a periodic one, depending on the parameter ran1

The latter, called mode locking, is characterized by the qu
tization at rational values of the average phase velocity
particular subharmonic mode locking, appearing in the pr
ence of the inertia term, results in the devil’s staircase str
ture. One of the well-known examples is the Josephson ju
tion driven by combined direct and alternating currents, w
the capacitance playing the role of inertia.2 Governed by the
same equation of motion as a driven pendulum, it displays
voltage plateaus in the current-voltage characteristics, kn
as Shapiro steps.3 Similar voltage quantization has also be
observed in arrays of Josephson junctions, yielding inte
giant Shapiro steps4,5 and subharmonic steps6 according to
the absence/presence of capacitive terms. Unfortunatel
spite of the deceptively simple equation of motion, even
single-junction problem has resisted complete analytical
lutions, especially in the presence of the capacitive te
except for the results mainly based on the circle map7 and on
the approximate analysis by means of expansion
averaging.8,9 Accordingly, such mode-locking phenomena
arrayshave been demonstrated mostly by numerical simu
tions. On the other hand, the topological argument, propo
for the system without the capacitive term,10 reveals topo-
logical invariance of the system as the physical origin
quantization.11 As in the case of the quantum Hall effect,12

the topological argument does not provide quantitative inf
mation, e.g., on the locking structure. Nevertheless it
only clarifies the nature of quantization but also provide
link between dynamics and statics by interpreting~dynami-
cal! mode locking in terms of~static! topological invariance.

In this work, we construct a topological argument for t
system with inertia and apply the idea to Josephson-junc
arrays or systems of coupled oscillators, with attention to
resulting subharmonic locking. For this purpose, we cons
an appropriate canonical transformation of the dynam
equations of motion and the corresponding Fokker-Pla
equation, the stationary solution of which gives the effect
Hamiltonian in the form of a classicalXY model with peri-
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odic bond angles. Via mapping onto a tight-binding partic
in a periodic gauge field, subharmonic quantization of
average~dc! phase velocity is revealed as a manifestation
the topological invariance. Also suggested is ubiquity
multistability, providing a natural explanation of the ob
served hysteresis due to the inertia.

We begin with the set of equations of motion for a syste
of N coupled oscillators

(
j 51

N

@Mi j f̈ j1gMi j ḟ j1Ji j sin~f i2f j !#5I i , ~1!

wheref i represents the phase of thei th oscillator,Mi j the
~rotational! inertia matrix,g the damping parameter, andJi j
measures the coupling strength between the oscillatorsi and
j. The right-hand side describes the periodic driving w
frequencyV: I i[I i ,d1I i ,a cosVt, where I i ,d and I i ,a are
the amplitudes of the dc and ac components, respectively
the driving on thei th oscillator. There are two cases depen
ing on the detailed form of the inertia matrix. The simp
case thatMi j 5Md i j describes the system of coupled osc
lators, each of which possesses inertiaM and suffers from
dissipation of strengthgM under driving I i . On the other
hand, with f i denoting the phase of the superconducti
order parameter at sitei, Eq. ~1! describes the dynamics o
the array of resistively and capacitively shunted junctio
~RCSJs!, where the combined direct and alternating curre
I i is fed into the grain at sitei.6,13 In this case,Mi j corre-
sponds to the capacitance matrix and assumes the formMi j
5CD i j with the junction capacitanceC and the lattice La-
placianD i j [zd i j 2d i j 8 , wherej 8 represents the neighborin
sites ofj andz represents the number of such neighbors. T
damping parameterg is inversely proportional to the shun
resistance of the junction. For simplicity, we henceforth co
centrate on the caseMi j 5Md i j since the generalization to
the case ofMi j 5CD i j is straightforward.

Equation~1! may be written in the form of Hamilton’s
canonical equations:ḟ i5]H/]pi and ṗi52]H/]f i with
the Caldirola-Kanai Hamiltonian14,15
©2001 The American Physical Society05-1
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HCK5
1

2M (
i

~pi1Qi !
2e2gt2(

i , j
Ji j cos~f i2f j !e

gt,

~2!

where (f i ,pi) are conjugate variables andQi is the ‘‘gauge
charge’’ given byQ̇ie

2gt5I i or

Qi5
I i ,d

g
egt1

I i ,a

g21V2
egt~g cosVt1V sinVt !1Qi

0

~3!

with arbitrary constantQi
0 . In this sense the classical me

chanical system with dissipation, governed by the equati
of motion ~1!, can be described by the Hamiltonian in E
~2!.16 We then introduce new variables (u i ,p̃i) according to
pi5]F/]f i and u i5]F/] p̃i with the generating function
F($ p̃i%,$f i%)[( i p̃i(f i1ai), where Mȧi[2e2gtQi . Un-
der this canonical transformation, Eq.~2! yields, apart from a
constant term, the new Hamiltonian

H̃CK[HCK1
]F

]t

5
1

2M (
i

p̃i
2e2gt2(

i , j
Ji j e

gtcos~u i2u j2ai j !,

~4!

where p̃i (5pi) is conjugate tou i . In view of the RCSJ
array, where a uniform current is usually fed into the si
along one edge and extracted from those along the opp
edge, we consider the case that some oscillators are dr
by I 5I d1I a cosVt and some others by2I . Then the bond
angle ai j [ai2aj , depending on (i , j ), either vanishes or
becomes

ai j 57
1

M F I d

g
t1

I a

g21V2 S g

V
sinVt2cosVt D G ~5!

apart from an arbitrary constant.
Note that the energy of the system is given

e2gtH̃CK ;15 this also corresponds to the effective Ham
tonian describing the statistical mechanics of the system
see this, we for the moment consider the system at fi
temperatures and generalize the equations of motion~1! ap-
propriately,

(
j 51

N

@Mi j f̈ j1gMi j ḟ j1Ji j sin~f i2f j !#5I i1h i , ~6!

where h i is the random~thermal! noise acting on thei th
oscillator. In the system of oscillators withMi j 5Md i j , the
noise is characterized by the zero mean and the correla

^h i~ t !h j~ t8!&52gMkBTd i j d~ t2t8!

at temperatureT. In the RCSJ array withMi j 5CD i j , h i is
given by the sum of the noise currents from neighbor
sites,h i5( jh i j d i j 8 with
01430
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^h i j ~ t !hkl~ t8!&52gCkBT~d ikd j l 2d i l d jk!d~ t2t8!.

Motivated by the canonical transformation in the absen
of noise, we write Eq.~6! in the form

u̇ i5M 21pie
2gt,

ṗi52(
j

Ji j e
gt sin~u i2u j2ai j !1h ie

gt, ~7!

whereu i[f i1ai . The set of Langevin equations~7! may be
transformed into the Fokker-Planck equation17

]P

]t
52(

i

pi

M
e2gt

]P

]u i
1(

i j
Ji j e

gtsin~u i2u j2ai j !
]P

]pi

1gMkBT(
i

e2gt
]2P

]pi
2

, ~8!

which describes the time evolution of the probability dist
bution P($u i%,$pi%,t) of phases and momenta at timet.
Equation~8! yields the stationary solution valid in the lim
t→`,

P~$u i%,$pi%!}e2He f f /kBT,

where theeffectiveHamiltonian is given by

He f f5
1

2M̃
(

i
pi

22(
i , j

Ji j cos~u i2u j2ai j ! ~9!

with M̃[Me2gt. It is thus concluded that the stationary di
tribution has the form of a Gibbs measure, with the effect
Hamiltonian indeed corresponding to the energy of the s
tem (He f f5e2gtH̃CK).

The first term in Eq.~9! becomes vanishingly small in th
stationary state (t→`); it is further obvious that the kinetic
energy in the above classical system decouples from the
teraction energy. We thus obtain the classicalXY
Hamiltonian18

HXY52J(
^ i , j &

cos~u i2u j2ai j !, ~10!

where the nearest-neighbor coupling (Ji j 5Jd i j 8) has been
assumed for convenience. At zero temperature, which is
concern, the system described by the Hamiltonian~10! is
equivalent to a tight-binding particle~of chargee), with
2kBT/J taking the role of the energy eigenvalue19. The
Hamiltonian describing such a tight-binding system has
position representation

^ i uHu j &5e2 iai j d i j 8 , ~11!

whereu i & is the position eigenket andai j may be viewed as
the line integral of the appropriate gauge potentiala: ai j

5(e/\c)* i
ja•dl. Equation ~5! shows that ai j , defined

modulo 2p, is periodic in time with periodt52pm/V only
if

I d5
s

m
gMV ~12!
5-2
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wherem ands are integers.
When Eq.~12! is satisfied, the Hamiltonian~11! as well as

the gauge fieldai j has the periodicityt and the Floquet
theorem is applicable to the corresponding Schro¨dinger
equation for the wave functionC i[^ i uC&, giving the
relation20

C i~ t1t!5e2 iẼtC i~ t ! ~13!

with the quasienergyẼ. This imposes that, apart from th
dynamical contributionẼt, the corresponding change in th
phase of the wave functionC i should be an integer multiple
of 2p, u i(t1t)2u i(t)52nip2Ẽt, whereni is an integer
depending on the form ofai j , i.e., of the drivingI i andẼ has
been assumed to be real~see below!. We thus have the av
erage change rate of the phase

^u̇ i&[
1

tE0

t

dt u̇ i5
ni

m
V2Ẽ ~14!

or in terms of the original phasef i ,

^ḟ i&5^u̇ i&1
I i ,d

gM
5

ñi

m
V2Ẽ, ~15!

where ñi5ni6s or ni for driven (I i ,d56I d) or undriven
(I i ,d50) oscillators, respectively. Accordingly, the avera
change rate of the phase difference or the average~dc! phase
velocity, which usually gives the appropriate physical qua
tity, e.g., the voltage in the case of an RCSJ array, ind
displays subharmonic mode locking,

^Vi j &[^ḟ i&2^ḟ j&5
n

m
V ~16!

with n[ñi2ñ j . Note that for a given configuration of driv
ing, the integern in Eq. ~16! is determined by the winding
numberni , manifesting the topological nature of the mo
locking.

The subharmonic mode locking given by Eq.~16! can
persist even for the~dc! driving slightly off the condition in
Eq. ~12!. To see this, we take

I d

gMV
5

s

m
1e ~17!

for small e, which leads to the bond angle either zero
ai j 5ai j

0 7eVt with ai j
0 representing the periodic part fore

50. In this case the Hamiltonian of the system as well asai j
is in general not periodic. However, in terms of the shift
phasex i[u i1e iVt, wheree i56e or 0 for driven or un-
driven oscillators, the Hamiltonian in Eq.~10! reads

HXY52J(
^ i , j &

cos~x i2x j2ai j
0 !, ~18!

where periodicity has been restored. Accordingly, the ar
ment leading to Eq. ~14! is applicable, giving ^ẋ i&
5(ni /m)V2Ẽ. This in turn leads to
01430
-
d
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^ḟ i&5^u̇ i&1
I i ,d

gM
5^ẋ i&2e iV1

I i ,d

gM
5

ñi

m
V2Ẽ, ~19!

which is precisely Eq.~15!. It is thus obvious that Eq.~16!
remains unchanged: Given subharmonic quantization
persist in the finite interval of the dc driving strengthdI d

}e, thus generating the step structure in the appropriate
sponse characteristics. Since rational numbers form a d
set, this also indicates that there can exist multiple quant
tion states with different values ofn/m in Eq. ~16! for given
driving strengthI d . However, some of those, correspondin

to complex values of the quasienergyẼ with nonzero imagi-
nary parts are unstable,8,20 and only stable states~with real

values ofẼ) among those determine the step structure in
actual response characteristics. Although such informatio
stability cannot be obtained by the topological argument, i
certainly plausible to have two or more states stable in so
intervals of the driving strength. Such multistability in ge
eral gives rise to hysteresis behavior in the response cha
teristics, which has widely been observed in the oscilla
systems with inertia terms.6,9,17,21Note also that the topologi
cal argument is in essence a zero-temperature analysis lik
Refs. 10,12: At finite temperatures thermal fluctuations m
the mapping onto Eq.~11! and the following argument inex
act. Nevertheless, at sufficiently low temperatures, the ph
slippage induced by fluctuations should have an expon
tially low rate, hardly affecting the quantization itself dete
mined by the winding number. On the other hand, it is e
pected that fluctuations tend to destabilize vario
quantization states, reducing the stability interval and
emergence of multistability. This is consistent with smoo
ing out of the step structure4 and suppression of hysteresis,22

observed in the presence of noise.
In summary, we have constructed a topological argum

for subharmonic mode locking in a driven system of coup
oscillators with inertia. Starting from the dynamic equatio
of motion, we have derived the effective Hamiltonian for t
system in the form of a classicalXY model with periodic
bond angles, which in turn has been mapped onto a tig
binding particle in a periodic gauge field. It has then be
shown that subharmonic quantization of the average~dc!
phase velocity follows as a manifestation of topological
variance, revealing the topological nature of the dynami
mode locking. Also revealed is the possibility of multistab
ity, providing a natural explanation of the ubiquity of hyste
esis due to the inertia. In view of the fact that the set
equations of motion~1! describes a prototype of oscillator
system, we believe the result of this paper to be rather g
eral and applicable to a variety of oscillatory systems d
playing mode locking phenomena.
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