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Total-energy method based on the exact muffin-tin orbitals theory
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| present a total-energy method based on the exact muffin-tin origdlg O) theory and the full charge
density(FCD) technique. The FCD-EMTO method combines the accuracy of the full-potential method and the
efficiency of the muffin-tin potential method. The one-electron Kohn-Sham equations are solved exactly for the
overlapping muffin-tin potential and from the self-consistent solutions the full charge density is constructed.
The EMTO kinetic energy, combined with the Coulomb and exchange-correlation terms calculated from the
total density, yields the FCD-EMTO total energy. The accuracy of the FCD-EMTO method is demonstrated
through several test calculations.
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[. INTRODUCTION dure and of the total energy calculation technique are dis-
cussed. Finally, | establish the accuracy of the FCD-EMTO
Attempts to develop new total energy calculation methodsnethod by performing test calculations for some systems
based on the density functional thebf’ya_nd to improve on where reliable full-potential and experimental data are avail-
the existing ones have been amongst the most challengir@ple.
campaigns of the computational materials scieh¢gDur-
ing the last decade the very efficient and widespread muffin- II. THE ECD-EMTO METHOD
tin or atomic sphere approximation related methods have ] )
been overshadowed by the more accurate, and at the same The self-consistent solution of the one-electron Kohn-
time more demanding full-potential techniques. According toSham equatiorisinvolves two main problemsti) the solu-
the density functional theoryany reasonably accurate trial fion of the Schrdinger equation for the effective potential
density is suitable to determine the total energy of the syster@nd (i) the solution of the Poisson equation for the total
within an error which is second order in the error of the €lectronic and protonic charge densities. In this section | ex-
several groups of researchérd® and it led to the elabora- formalism, and | give a short overview of the FCD tech-
tion of the full charge densityFCD) techniqué*!® as an  Nique.
alternative to the full-potential methods. The FCD technique
was designed to maintain the efficiency of the muffin-tin A. The one-electron equations
methods gnd give total energies Wlth _the accuracy of_the In the EMTO theoryS the one-electron Kohn-Sham
full-potential methods. Though, the original |mplementat|one uations
of this techniqué®2Lin connection with the linear muffin-tin <0
orbitals (LMTO) method’'?? proved highly promising in the w2 _
case of close packed metdts! for systems of low symme- [=VoHu()]¥;(r)=€¥;(r), @
try it had serious shortcomings due to the inappropriate treatyre solved within the muffin-tin approximation for the effec-
ment of the kinetic energy terfi.In order to increase the tive potential
; ; ; -25
accuracy different corrections had to be inclutf and,
therefore, the FCD-LMTO method loses its efficiency.
~ Inthe framework of the recently developed exact muffin- (D ~vm(N=vo+ 2, [Vr(rr)—vol, (2
tin orbitals (EMTO) theor)?‘5 the one-electron states, and R
consequently the one-electron kinetic energies, are calculat(-\szhereR runs over the lattice sitesg(r ) are spherical po-
exactly for the muffin-tin potential. Within this formalism, in tential hich become eaual ,RoRt e tr?e otenr'z'al
contrast to the usual muffin-tin based KKRorringa-Kohn- lais, which qual 1o, outsi ne p :
Rostoke methodst’-2® large overlapping potential spheres sphergs of radisg. For accurate repres7entat|0n of'the full
can be used for accurate representation of the exact on pllten'glal thezse:_slghere(;st?]houldhovte_rlé{i. Here ar:ﬁ n tthe-
electron potential?” Therefore, the EMTO theory provides '0'0WING r'r=r—rR, and throughout in the paper the atomic

) X - y units are used.
Elg;ggarlngertcr)ltér&d for developing an accurate and efficient FCO® In order to solve the Schdinger equation(1) for the

In the present paper, starting from the self—consisten[ﬂUﬁin'tifn potentlial (22) th_e wave function is expanded in
implementation of the EMTO theo® | put forward the (©/™MS Of & complete basis set
FCD-EMTO total energy calculation method. In Sec. Il |
review the EMTO theory;* and the FCD techniqu¥:*® In V(=S T2 (e ra)p?
’ . = - v - 3
Sec. Ill some important details of the self-consistent proce- (") g& Vr(€ TRIVRL ®
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whereL stands for [,m), and¢&, are the muffin-tin orbitals slﬂqax are called “highers.” Forl <I ,, the f&(«,rg) and
defined for each sit®. In Eq. (3) the| summation usually g7, ,(k,rg:) functions satisfy the following boundary condi-
includes terms up tdyq,=3, i.e., thes,p,d andf orbitals.  tions at thea-spheresf?(a)=1,f(a)/dr=0,g%(a)=0, and
The coefficients;gL’j are determined from the condition that gg2(a)/dr = 1/a, where for simplicity the indices have been
the expanhsior(3) Sdh0U|d Ibe golutionhof iqi) in the ”entire omitted. Forl’>1,,., the tail function reduces to the Bessel
space. This condition leads to the kink cancellation or i i a = —ij Y
screened KKR equatio?° function, i.e., gg//(k,Ir/) jilkrg). The screened
In the interstitial region, where the potential is approxi-
mated byv,, it is customary to use as basis functions the
solutions of the wave equation

spherical waves have no puren) character’ and they are
irregular at the origin.
For spherically symmetric potentialk(rg), i.e., close to
the lattice sites, the basis functions are chosen to have pure
24 21,2 _ 2y (Im) char{acter, qnq the radlal_parts are the regular solutions
[VE+ <Tiru(k,rR) =0, where k"=e—vo. () tipe adial Schidinger equation

Within the EMTO formalism they, («,rg) functions are

referred to as the screened spherical wavi€ee boundary Prrorerg)] [1(1+1)
conditions for Eq(4) are given in conjunction with nonover- or2 T2 +oR(rr) ~ €|TRORIETR)-
R R

lapping spheres centered at all siRswith radii agr. The 6)
screened spherical waves on their cavgpheres behave as a

pure spherical harmoni¥, (1), while theY|,(rr/) projec-  The partial wavesgg(e,rg), are defined for any real or
tions on all the othea spheres, i.e., foR’' # R, vanish® With ~ complex energye. Because a screened spherical wave be-
these energy independent boundary conditions<fobelow  haves asY,(rg) only on its owna sphere, the matching
the bottom of thea—spheres continuum, the screenedcondition betweenj («,rg) and ¢g (e,rg)Y (rr) should
spherical waves have short range and week energye set up at this sphere. The connection onto the potential
dependencg. They form a complete basis set in the sphere, which is usually larger than thesphere, is done by
arinterstitial region and may be expanded in spherical harintroducing a free electron solution from the potential sphere

monicsY, (rr/) around any sit®R’, as back to thea sphere, which joins continuously and differen-
tiable to the partial wave asg and continuously to the
a FoY=f2 (kro)Y (F S L screened spherical wave @& . The rad|e_1l part of the b_ack- _
YRk, TR)=fRi(k,FR)YL(rR) SRR SLL %: Orrir (K0T Rr) wards extrapolated free-electron solution can be written in
A the forn?
XYL’(rR’)Sg’L’RL(K)’ (5)

a _ fa a a
wheref(x,rg) andg(«,rg) are linear combinatioR of erilen) =frlx )+ grlxr)Dr(e),
spherical Bessel, j|(«rg), and Neumann, n(«rg), whereDg (€)=D{¢g(€,ar)} is the logarithmic derivative
functions®® The expansion coefficientSg,, g (), are the  of o3 (e,r) calculated at the sphere. The exact muffin-tin
elements of theslope matrix which is related to the bare orbitals are constructed as the superposition of the three basis
KKR structure constant matrix through the inhomogeneougunctions, i.e.,
Dyson equatioh

YR(e,1R) = Y& (K,TR)+NZ () pri(€,TR)YL(TR)

Srur (0 =DlikaR)} - o — Q3 rRYL(TR), @
n(xa)] 1 where the last two terms are truncated outsidestepheres.
X|— B(K)+Kj(Ka) i (xan)’ The normalization functionN (€), and the logarithmic de-
RIL!RL I R

rivative, D} (¢€), are determined from the matching condition

where D denotes the logarithmic derivative, i.){j,(r)}  betweendg (e.rg) andei (e,rg) atrg=sg®®, viz.,
=r[dj(r)/ar]lj,(r). The bare KKR structure constants are

defined as the expansion coefficients of tke (x,rg) 1 ¢riesr) D{¢pri(€,Sr)} —Di{g&(k,Sr)}
= k() YL(Fg) functions around sit®’ in terms of the N&(e) fai(x,Sr) D{fRi(x,Sr)}—D{g&(x,Sr)}
ju(k,rr)=ji(«rr) Y (rg) functions, i.e. kn («,rg)
=2 (K, rr)Brrrri(x), with and
4 ’ ” a — a
BRILIRL(K)E47TE CtLri_H—l - KnLr!(K;R,_R)r g|(6):_ Rl(K,SR) D{¢R|(€’SR)} D{fRI(K’SR)}

L" gRi(&,SR) D{¢R|(€1SR)}_D{9?¢|(K,SR)}.

and WhereCtL, are the real harmonic Gaunt coefficients.  Using the exact muffin-tin orbital€’) the wave function(3)
In Eq. (5) <l a, and thd’ summation is infinite, which  will be a solution of Eqs(1) and(2), if inside thes spheres
in practice is truncated aﬁjast—lz. Terms withl <1 the I=<I,.x components of the screened spherical waves,
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multiplied by the expansion coefficients, are cancelled exwith I,1'<I,,,. The energy integral from Ed11) is per-

actly by Qogl(eer)YL(FR)U?QL,j . i.e., if thekink cancellation formed on a complex contour that cuts the real axis below

equation the bottom of the valence band and et. The first term
from the right hand side of Eq12) may include the un-

physical poles ob?u(z), which, however, are cancelled by

REL Krrurdl fj)ng,jE% ag/[SgrLri(Kj) the second termep, denote the zeros of the logarithmic de-
rivative function,D&,(¢€). Note that the second term from the
- 5R'R5L'LDE|(51)]U§LJ:0’ right hand side of Eq(12) gives no contribution iD3,(2) is

(8) analytic function ofz inside the complex energy contour.

In Eqg. (10) the negligible terms due to the overlap be-
tween potential spheres have been omiftetlside from
these termsN(eg) gives the exact number of states at the
Fermi level for the muffin-tin potential2).

is satisfied for alR’ andl’ <l ,,.. Here and in the following
szEej—vo. For energies;, for which Eq.(8) is fuffilled,
the wave function inside the potential spher&katduces to

\I';(rR)=2 N§|¢R|(€j arR)YL(FR)U?{L,j B. The full charge density

The electron density is given in terms of Kohn-Sham one-
electron wave functioffs

’
"> hax

+ > QEV(KJ TRYL(TR)
L’

eJ-éEF
><R2L SruriL(KDVRIL (9) nn= > |¥,n2
J
i.e., thel’>1,,, components oﬁpﬁL(Kj ,Fr) penetrate into
the spheres. However, for largiedue to the centrifugal term here the summation includes the states below the Fermi
in the radial Schrdinger equatior{6), the partial waves tend |oyel. From the expansiof8) of ¥;(r) one obtains a multi-
towards Bessel functions, i.e. towards the second term frorganter form for the charge density, which, according to Eq.

the right hand side of Eq(9). _ (9), can be transformed into one-center form around each
The solutions of Eq(8) are the one-electron energies and site, i.e.,

wave functions. Alternatively, these solutions may be ob-
tained from the poles of the path operag@t;L,RL(z) defined
for a complex energy by

n<r>=; nR<rR>=R2L NrU(rR)YL(TR)- (13)

Z” K;/L/R//L//(Z)gg//LNRL(Z):5R/R5L/L .
RIL Inside the Wigner-Seitz cell & the partial components of
Using the residue theorem and the expression of the overldje charge densityg(rg) can be expressed as

matrix of the exact muffin-tin orbitafs

— _ . 1 ~

f Ve (2D PRUZDAN =K 1 (2), (10) RUTR)=5— P 2 Clu Zap(ZTRIGrurmy (2)

EFL"L!
where theover dotdenotes the energy derivative, the total X Z2 (z,rp)dz, (14)
number of states below the Fermi enekgycan be obtained Rl
as
1 where thel” andl’ summations include thkigherterms as
N(ep)==— fﬁ G(2)dz, (11) well. In Eqg. (14) the following notations have been intro-
2mi Je duced:
where
N&(2) pri(z,rr)  if I<Ilpa and rg<sg,
G(Z)ER%:RL IrLrU(DKRLrL(2) Z2(zrp)=1 er(zrr) if 1<l and rg>sg,

—ji(krg) If >l forall rg

_2 (DRI(Z)_E 1 ), (12)
RL

D
DR(2) ep 2T €RI

| and
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¢
5L’L

arD3((2)

DR(2)

A 5 if 1<l a0
rRI(Z) B Z—€g

JaLrrU(D) T

. .
BLr2={ 2 BLr(DSm(0) i 1<l and 11,
R//LII

S;L/R”L"( K)g;//LNRmLm(Z)%///L///RL( K) |f I ! ,l > | max-

R/L"R"L™
\

In the last two equationg?=z—uv,. The high-low and the overlapping muffin tins the equation farg(rg) involves
low-high sub-blocks of the slope matrix are calculated by theerms coming from the overlapping region, which give rise
blowing-up techniqué! The charge density computed from to kink of vg(rg) when rg touches other muffin-tin
Egs.(13) and(14) is normalized within the unit cell, and for spheres? Here, instead of solving this equation, | fix the
reasonable Iargé‘nax it is continuous at the cell boundaries. vg(rg) function to the spherical average of the full potential
In the case of translation symmetry in E§) R andR’ given by Eg.(15). In this case, using the SCA for the

run over the atoms in the primitive cell only, and the slopeWigner-Seitz cell, the parameteg has the following simple
matrix, the kink matrix, and the path operator depend on th@xpressiori??

Bloch vectork from the first Brillouin zone.
WR ~
_ 2 33
C. The one-electron potential UO_; LR R fv(r)drR drR/ ; [4m(WR=SR)/3].
Equations(8), (11), and (14) constitute the basis of the (16)

fo porior a sel-consistent caleuiation ane Consircs thd"eTE1e: both o ther(s) funciion and tha, parameter
P Gre given in terms of the spherical symmetric part of the full

electron density from the solutions of the kink cancellation otential. The motivation of the present choice f(r ) is
equation and calculates the new one-electron potentiaﬁ o , P R
Within the EMTO theory this latter procedure involves two 9iven in Sec. ll B. In the following | show hoyu (r)drg is
consecutive step the calculation of the full potential and c0Mputed within the FCD-EMTO method.

the construction of the optimized overlapping muffin-tin 1N electrostatic potential of the electromi¢r) and pro-
wells. The first step, using the one-center formalism for thd@nic Zrd(rg) charge densities, i.e.,
charge density and potential, is very demanding and it is

inaccurate in the corners of the unit cell. However, within the ZJ ner' 2Zp

spherical cell approximationSCA),?® employed in the
present implementation of the EMTO theory, the overlap-

ping muffin-tin potential depends only on the spherical part.an pe divided into components due to the charges from
of the full-potential, which can be computed efficiently andnsige and from outside of the potential sphere. The spherical

with high accuracy. _ _ symmetric part of the former component, calculated around
In the SCA the Wigner-Seitz cells are substituted bygite R can be obtained as

spherical cells with volumes equal to the volumes of the real
cells. If Qg denotes the volume of the Wigner-Seitz cell 1 (s
centered aR then QR=QWRE(477/3)W§, wherewy, is the U'R(rR)zsq-;r—f féan(o,O)(fk)dfée
atomic sphere radius. RJO

The spherical symmetric potentialsz(rg) have to be SR 27Zr
chosen in a way that, together with the parametgrto give +87Tf FRNREo(FRIATR— —— (17
the best approximation to the full potentia(r). The idea R R
from Ref. 32 is to minimize the mean of the squared devia-T
tion between the left and the right hand side of E). This
leads to a set of integral or differential equationsd@frg)
anduv,. In the nonoverlapping muffin-tins case the equation
for vg(rg) reduces to the well known expression

[r—r’] R I'r

he effect of charges from the outside of the potential sphere
is taken into account by the usual Madelung potential, whose
spherical symmetric part is given by

1

M_
UR—W

SCA
2 MR(O,O)R’L’QRrLr ) (18)
R’L’

1 A
oalte)= 2= | v, s
whereMg r ' are the elements of the Madelung matmx,
andv, reduces to the muffin-tin zero, i.e., to the average ofis the average atomic radius. The multipole momepEs”
the full potential calculated in the interstitial region. For are calculated within the SCA

014107-4



TOTAL-ENERGY METHOD BASED ON THE EXAQ ... PHYSICAL REVIEW B 64 014107

son VAT [wr(rg)' , cells using the shape function techniddé®**By means of
S ol +1f0 (W> NRrL(rR)TRArR the shape function, which is defined ase inside the cell

and zero otherwise, any integral over the cell can be trans-
—Zrdy 00+ 5SCA5L,(0,0)- (19) fqrmed into an integral over the sphere of radius \'NhICh.
circumscribes the cell. Consequently, the three dimensional

Since the integral from Eq19) is performed over the spheri- (3D) Coulomb integrals reduce to one-dimensioffD) in-
cal cell rather than over the unit cell, the monopole momentsegrals, which can be written in terms of

have to be renormalized within the unit c&IThe site inde-

pendent constansS“” is determined from the condition of - .

charge neutrality. NrU(TR)= 2 Cluru(TR)IORUATR), (23
The number of electrons inside tisesphere, denoted by LoL”

Q(sgr), is usually different from the number of electrons in- where o »(rg) are the partial components of the shape

side the cellQRg )+ Zr. This difference contributes with a function!® In Eq. (23) thel” summation is truncated &}

constant shiffAvy to the spherical potential. In the FCD-  The total electrostatic contribution belonging to the cell at

EMTO method this extra or missing charge is redistributedR is the sum of the intracell and intercell or Madelung ener-

equally on theNyy nearest neighbor cells, i.e., gies. The intracell energy is given by
1 : \ 41 C . I’R l
Avgzv—v REN:N M R(0,0)Ry (0,02 QRyyy (20) FR'ANnR]= W 2 JOWRnRL(rR) (W) Pru(rr)
whereAQg, =(1Nn)[ QR o)t Zr— Q(SR) - r| 't
" + = 2d (24)
The total potential within the potential sphere is obtained W Qru(rr) |FRArR,
as the sum of Eqs(17), (18), and (20) and the spherical
symmetric exchange-correlation potential, namely, where
VR(rR)=UR(TR)+UR +AUR + pxelTR).  (21) _ VAT fwee TRV
PRL(rR)Zm NrL(rR) W (rp)drg (25

If the spherical symmetric part of the exchange-correlation R
potential, calculated within the local density or a gradientgng

level approximation, is approximated Qy,.q Nr(,0)(rR)]

aside from the higher order multipole moments from Eq. VAT (ree re
(18), which in many cases can be neglected, all of the poten- Qg (rr)= 2141, nRL(rﬁ)(

|
W) (rR)drr— 4L (0.0ZR-
tial components from E@§21) depend only on the spherical

symmetric densityng 0)(rg). Except the small approxima- (26)
tions made in the Madelung terms, i.e., in EG$) and(20),  The intercell energy has the following forti®*
the expressiori21) gives the exact spherical part of the full |
potential inside thes sphere. int 1 [brr _

The best representation of the full potential by the over- Fr[n]=~ 2w ; 2 21+1! w Y1 (brr)
lapping muffin-tin potential can be achieved by choosing RZR
large overlapping spheres of radii.®? For an optimal 47(21"— 1) .
choice of the potential spheres the potentialsrashould be X > Qgur D2l — Dl CLinOimisr
the same, i.evg(Sgr)~const for eachR, and this const L'L" (2=nrEr-ni
should have the maximum possible value for linear overlaps
beIOW 30'40 %. >< E SRL!I;R!+bRR,LIIIQRIL!!/ y (27)

L/H
D. The total energy functional whereSg g/, + is the conventional LMTO structure constant

Within the FCD-EMTO method the kinetic energy is de- and Qr.=Qr(Wg). The displacement vectdigg , intro-

termined from the one-electron equatidis as duced in Ref. 35, is proportional with the linear overlap of

the circumscribed spheres to the cellsRaendR’. A rea-
1 sonable choice fobgg is described in Refs. 15,34.
Tin]=5— % ZG(Z)dZ—ER jﬂ vmi(FRINR(rR)r R, The exchange-correlation energy belonging to the cell at
F R 22 R is calculated as the integral over the Wigner-Seitz cell of
the exchange-correlation energy densigy/n(r)]. For
where the first term from the right hand side is the sum of thecharge densities which deviate weakly from spherically sym-
one-electron energies ar@(z) is given by Eqg.(12). The metry the exchange-correlation energy density may be rep-
second term is calculated within the unit cell angy(r) is  resented by a Taylor series around the spherically symmetric
the muffin-tin potential from Eq(2). charge density? and, therefore, the 3D integral can be re-
The Coulomb and exchange-correlation parts of the totatluced to 1D integral. However, for strongly anisotropic elec-
energy functional are calculated within the Wigner-Seitztron densities, like in the case of surfaces, the Taylor expan-
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- . * S;'L'RL(K):Sg'L'RL(KO)+FS;’L'RL(KO)(K2_K3)+ o
4 | —— (0,0) solid lines : Taylor expansion :
3 —4— (1,0) symbols : exact results (29)
—_ i - (2-2) ] The first and higher order energy derivatives are calculated
S 2 i analytically as described in Ref. 36. In H89) «? is a com-
Il —*= (2,0) plex energy not too far from(z). In Fig. 1 the solid lines were
~ calculated with a fourth order expansion aroue=0. As
"E one can observe, this expansion gives highly accurate energy
= dependence of the slope matrix over an energy range of ap-
NCD'_E proximately (—8,+8)/w? Ry aroundv,. This energy win-

dow, usually, covers the whole occupied part of the valence
electron spectra. However, in the case of semicore states lay-
ing far below the Fermi level, a second Taylor expansion
aroundk3~ —20M? Ry is needed.

B. Optimized overlapping muffin-tin wells

In this section through a simple model potential | demon-
strate how the full potential is represented by the overlapping
muffin-tins, and | set out the advantages and shortcomings of

FIG. 1. The diagonal elements of the fcc slope matrix inkhe € SCA used in Eq16). | model a general 3D full potential
=(0,0,0) point from the Brillouin zone versus\{)2. The numbers DY & cosine potential in a simple cubic lattice, i.e.,
in parenthesis denote thé,ifn) quantum numbers. The Taylor ex-

pansion included terms up to the fourth order energy derivative. ve(r)=— cos( %TX) _ cos( %Ty) _ cos( %TZ) -3,

Energy :w?

sion is not convergent. In this case the exchange-correlation
energy is evaluated by a direct 3D integration over the Cirith the reference level in the corner of the Wigner-Seitz

cumscribed sphere, i.e., cell. For this potential, following the idea from Ref. 32, |
minimize the mean of the squared deviation between the
overlapping muffin tins and.(r). The results obtained for
ExerlN]= f f f Exc[n(r)]E or(rR)Y (TR)r3drg  potential sphere radii from 0a@2 to 1.7/2 are shown in Fig.
2, wherea denotes the cubic lattice constant. The three sets
; of results correspond to the following caséa) fully opti-
X sin6dgde. 8 mized overlapping muffin-tins calculated within the Wigner-
Seitz cells (solid line), (b) fully optimized overlapping
I1l. DISCUSSION muffin-tins calculated within the spherical celtiotted ling,
and(c) the spherical potential(r) fixed to the spherical part
of the full potential and optimized for thisv(r) (dashed
The screened spherical waves, for energies below the boline), i.e., Eqs.(15) and(16).
tom of thea-sphere continuum, have short range and, there- In the upper panel of Fig2 | plotted the integrated local
fore, the slope matrix can be calculated in real space. It wadeviation ofv(r) and overlapping muffin tins. The percent
shown in Ref. 3 that the shortest range of the screenedrror in the case ofa) decreases continuously, and around
spherical waves can be achieved for nonoverlapping spher@9% linear overlap between the potential spheres it falls be-
with radii equal with 0.56-0.85n', wherew!' is the radius of  low half of the error observed for touching spheres. In the
inscribed or touching sphere, depending on the maximal orsecond case the error first decreases;-a6% overlap is
bital quantum numbel of the partial waves explicitly in- starts to increase and at large overlaps it diverges. In the third
cluded in the formalism. case for overlapping spheres there is a moderate improve-
In Fig. 1 | plotted the diagonal elements of the fcc slopement of the muffin-tin approach relative to the nonoverlap-
matrix (Symbolg calculated at the center of the Brillouin ping situation, but above 30% overlap the integrated local
zone as a function of the dimensionless energy parametefeviation shows no significant dependence on the radius of
(xw)?. For this test the real space calculationS3{«) was  the potential spheres.
performed on five coordination shells plus the central site The error in the one-electron energies, due to the overlap
using thes,p, and d orbitals and 0.7%' for the a-sphere  between thes spheres, is proportiorfato the square of the
radius. The figure demonstrates the weak and smooth energyuffin-tin discontinuity[v(s)—vo]. This quantity is plotted
dependence of the slope matrix up ter)2~6. Therefore in  in the middle panel of Fig. 2. With increasing overlap be-
the practical solution of the kink cancellation equati@®  tween thes sphere§v(s) —vy] converges smoothly to zero
the slope matrix can be estimated using a Taylor expansioim the case ofa) and it diverges in the case df). Whenv,
around a fixed energyé, is calculated from Eq(16), with v(r) fixed to the spherical

A. Slope matrix
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v (r)=-[cos(2rx/a)+cos(2ny/a)+cos(2nz/a)+3] 16

s 25
=2 . 12 |
NRLRE ] _
G 10 [ . e 87
o £
L 5 B T o’
2 4
Q o E

3 1 T T I/ g

2 .' -~ uor

>~ |
? 1 | A—a(11,21)
— | -4t —u(21,41)
0 *—e(41,81)
> 8 . . . . .
6 10 14 18 22 26 30
-

FIG. 3. Convergence test for the exchange-correlation energy of
fcc Cu as function of the maximdlvalues used in Eq28). The
energies are plotted relative to the converged result. The numbers in
parenthesis denote the total number ébfand ¢ Gaussian mesh

_ , i . “y . points on the spherical surface.
0.6 0.8 1.0 1.2 1.4 1.6 1.8
potential sphere radius (a/2) tin approximation breaks down for linear overlaps larger

than 10-15%. One possibility to overcome this problem is
given by the third caséc), which is adopted in the present
implementation of the EMTO method as well.

FIG. 2. Overlapping muffin-tin potential approximation to the
cosine potential in cubic latticesshown on the top of the figure,
denotes the lattice constant/pper panel: integrated local deviation
of the full-potential[v.(r)] and overlapping muffin-tingin %).
Middle panel: muffin-tin discontinuityin arbitrary unit3. Lower C. The E,[n] energy term

panel: muffin-tin zerdrelative to the zero potential level, in arbi- The convergence properties of the electrostatic energy
trary unit9. Solid line: fully optimized overlapping muffin-tins cal- components presented in Sec. Il D have been studied in de-

Cumed n th'f:' ngner-Seltz Ce".s; dotted “n?: fully Op.t'm'ZEd over- tails in Refs. 20,34. Here | discuss the convergence proper-
lapping muffin-tins calculated in the spherical cells; dashed line;

. - ; ._ties of the exchange-correlation energy term, calculated from
spherical potential fixed to the spherical part of the fuII-potentlaIE 28 Th f int | ovef and & i f d
and muffin-tin zero optimized for this spherical potential, i.e., Egs. q. (28). € surface integral ove§ and ¢ is performe

(15) and(16). The radius corresponding to the touching spheres ié’smg the tyvo dimensional(2D) = Gaussian in'tegration
marked by vertical lines. method. In Fig 3 | plotted the exchange-correlation energy

of fcc Cu, relative to its converged value, in termsIf,.
part of the full potentia[v(s) —v,] approaches zero already Different symbols correspond to three different sets of 2D
at small overlaps and it remains close to zero up to lineamesh points. It is seen that no convergence can be achieved
overlaps of 60—70%. Consequently, in the third case théor a small number of pointsN,=11N,=21). By doubling
one-electron energies of monoatomic systems will depenthe number of 2D mesh points the converged value is recov-
negligible on the overlap between the potential sph&tes. ered already fot; . =8-10, but forl},,>16—18 the en-

In order to get well localized slope matrices for energiesergy starts to oscillate and it diverges. Only for very large
around the Fermi level, wherexfw)?=(er—vo)W?=5, number of mesh points the summation from E#8) be-
one prefers to have, close toeg. For the cosine potential comes absolutely convergent. This behavior is connected
(30) v, is plotted in the lower part of Fig. 2. In the case(af ~ with the fact that for largé values, which are important for
v, increases witts and it reaches the zero potential level atthe proper mapping of the shape of the Wigner-Seitz cell, the
~60% overlap. When the muffin-tins are fully optimized spherical harmonics have more and more structure, and this
inside the spherical celh, decreases witls for overlaps can not be correctly described unless the surface integral is
larger than~15%. In the third case, increases slightly —carried out with very high accuracy.
with the overlap but it always remains well bellow its opti-
mal value, i.e., the one from the first case.

From these results one clearly sees that the accuracy of
the overlapping muffin-tin approximation to the full poten- The FCD-EMTO total energy calculation method has
tial, as far as the optimization is performed within the been applied to different systems including bulk metals and
Wigner-Seitz cells, can be improved substantially by increassemiconductord’®®  oxides®**° monoatomic  stringé!
ing the overlap between the potential spheres. However, uslimers3’ etc. Here | present result obtained for bulk solids,
ing the spherical cell model, due to the improper descriptiormonovacancies in fcc Al, and magnesium silicate perovs-
of the full potential, the fully optimized overlapping muffin- kites. Through these examples | intend to demonstrate the

IV. APPLICATIONS
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TABLE I. Theoretical equilibrium atomic radii§in Bohr) and bulk moduli B in GP3 for some selected
solids. The present calculations have been performed for crystallogragitiases, and the results obtained
by the full-potential linearized augmented plane-wév&PW) method and the experimental values are from
Ref. 45.A, andA  5py denote the mean absolute values of the relative deviations relative to the experimental
values and to the LAPW results, respectively.

FCD-EMTO Full-potential Experimental
SLDA SGGA BLDA BGGA SLDA SGGA BLDA BGGA S B

Na 3.769 3.916 8.2 7.6 3.77 3.91 9.2 7.6 3.936 6.9
Al 2.947 2.989 81.2 75.2 2.94 2.98 84.0 77.3 2991 773
Fe 2.565 2.645 253 178 2.56 2.64 259 198 2.667 172
Cu 2.602 2.684 193 137 2.60 2.68 191 139 2.658 138
Pd 2.846 2.916 235 184 2.84 291 226 174 2873 181
w 2.929 2.977 312 292 2.92 2.96 335 298 2.940 310
Pt 2.888 2.943 304 244 2.88 2.93 312 247 2.892 283
Au 2.998 3.081 194 134 2.99 3.07 195 142 2.997 172
Si 3.163 3.198 100 92.8 3.17 3.21 97.0 89.0 3.182 98.8
Ge 3.303 3.384 71.6 61.2 3.30 3.38 71.2 59.9 3.318 76.8
GaAs 3.296 3.375 73.0 62.0 3.29 3.37 74.3 60.7 3312 748
NaCl 3.202 3.346 32.9 23.0 3.21 3.34 32.2 234  3.306 245
Ag 148% 128% 17.2% 92% 163% 119% 191% 99%

Aispw 020% 027% 33% 33%

accuracy of the present method for simple and transition The radii of the potential spheres, except in the case of
metals, semiconductors, strongly inhomogeneous densitigaagnesium silicate perovskites, were fixed to the radii of the
occurring near the vacancies and in open structures, higatomic spheres, i.sg=wg. In the perovskites structures the
pressure properties, etc. First | describe the most importardverlap between the atomic spheres is 32-34%, and the
numerical details and after | analyze the FCD-EMTO resultanuffin-tin discontinuities vary between 0.13 and 0.11 Ry.
comparing them to the available full-potential and experi-In order to minimize the overlap error in the kinetic energy,
mental data. | decreased the radii of the potential spheres around the oxy-
gen atoms to 0\85 . With this choice the largest linear over-
lap is around 19-20 %, and the error in the kinetic energy is
of order of 1u Ry.

The one-electron equations were solved within the scalar-
relativistic approximations and the core states were recalcu-  B. Equilibrium volumes and bulk moduli of solids
lated after each iteration. In the EMTO basis set | included as 3 first test of the FCD-EMTO method | have calcu-

s,p, andd orbitals for simple metals, semiconductors andjated the atomic volumes and bulk moduli of several metals
perovskites ands,p,d, andf orbitals for transition metals. and semiconductors in their observed low temperature crys-
For the exchange-correlation term | used the local densityy) structures. The results obtained within the LDA and GGA
approximation ~(LDA)  with  the  Perdew-Wang gare presented in Table I, where, for comparison, | have in-
parametrizatioff of the results of Ceperley and Ald€tThe  cjuded the full-potenti4f and experimental values as well.
kink matrix and path operator were calculated for-13  The full-potential calculation was performed with the linear
complex energy points, depending on the system, and theyygmented plane wave mettbend it employed the same
were distributed exponentially on a semicircular contour._ pA and GGA exchange-correlation energy functionals as
Thek-point sampling was performed on a uniform grid in the those from the present calculation. The mean deviations be-
Brillouin zone. tween the present atomic radii and bulk moduli and those of

In the one-center expansion of the full charge density, EQRef. 45 are shown at the bottom of the table. The agreement
(13), I including terms up td,,=8. The shape functions petween the two sets of data is very satisfactory. The close-
were generated fdr,..= 30, and the functiongg, (rg) with  ness of the mean absolute relative differences in the LDA
I>1% . were neglected. For Wigner-Seitz cells with nonover-and GGA shows that the present method performs equally
lapping circumscribed spheres the displacement vector Wagell for the local and nonlocal exchange-correlation func-
set to zero, and the two remainif and!” summmations tionals.

from Eq. (27) were truncated atp.,=8. Using the full

A. Numerical details

charge density, in addition to the LDA energy, | calculated C. Vacancy formation energies
the total energy within the generalized gradient approxima- The vacancy in fcc Al has been used several times as a
tion (GGA) (Ref. 44 as well. benchmark of the total energy calculation meth®/d4® Us-
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TABLE II. Theoretical (LDA) and experimental formation en- 150 T T T T T
ergies €, in eV) and the relaxation of the first nearest neighbors 1.0 ‘ '
(6w In %) of a vacancy in fcc Al. The present calculations have —— FCD-EMTO
been performed on 1Gumbers in parenthegisnd 32 atoms su- AVD |
percells.
- 100 1
FCD-EMTO Full-potential Experimental % ]
E,, unrelaxed  0.840.89 0.8220.73° Py
E, . relaxed 0.60.64 0.66,20.62°,0.66° 0.67+0.03¢ G 50| 50 100 150 200
S P (GPa)
SaN —1.41—1.58 —-1.50° Pbnm
%Reference 47.
bReference 49. ol |
‘Reference 48. . : : . :
dReference 55. 210 220 230 240 250 2.60

average atomic radius (Bohr)

ing supercell geometries of 16 and 32 atoms | have calcu- F|G. 5. Calculated total energidger atom of orthorhombic
lated the formation energies of mono vacancies in Al and th@nd cubic MgSiQ as functions of the average atomic radius. The
results are listed in Table II. | found that increasing the sizeenergies are plotted relative to the orthorhombic ground state total
of the supercell beyond 32 atoms, as long as the proper coenergy. The symbols denote the results obtained with the FCD-
vergence of the Brillouin zone sampling was ensured, had nBMTO method and the connecting line is a Morse-typéRif. 54.
significant effect on the formation energy. The present unret the insert the equation of state of orthorhombic phase is com-
laxed values were obtained for ideal fcc based supercellgared to theab initio molecular dynamics calculatiofRef. 5J).
while the relaxed values correspond to the radial relaxation
of the nearest neighbo(®N) of the vacancy. The changes EMTO method gives a small inward relaxation of the NN
of the vacancy formation energies with the NN distances aréattice sites, in good accordance with the full-potential KKR
shown in Fig. 4. results?®

The unrelaxed and relaxed FCD-EMTO energies for 32
atoms supercell agree very well with the pseudopotential re-
sults from Refs. 47,48, but they are with 13 and 6 %, respec-
tively, larger than those obtained using the full-potential The MgSiQ; is the most abundant mineral of the Earth’s
KKR method?® This difference might be assigned to the factlower mantle. The knowledge of the exact behavior of this
that in Ref. 49 the relaxation of the potential beyond theperovskite under high pressures and temperatures is unavoid-
nearest neighbors to the vacancy was neglected. The FC@ble in advanced seismic research. Here, using the FCD-
EMTO method, | study the orthorhombic and cubic phases
of MgSiQO;, and compare the present results with the avail-
able full-potential calculation®->*
vacancy in fcc Al In the orthorhombic structure witRbnm symmetry the
magnesium and four oxygen atoms occupy the)(posi-
e tions. The four silicon atoms are in the l{} positions, and
200 | \\ @16 atoms supercell | the rest of the oxygen atoms are situated in the genedjl (8

B 32 atoms supercell positions. The cubic perovskite structure fs3m symme-
try and the Mg cation is situated in the center of the cube
defined by eight corner sharing §jOctahedra. According to
high pressure and high-temperature measurements on silicate
| perovskite>? the orthorhombic distortion away from the cu-
bic symmetry remains nearly constant with the pressure.
Therefore, in the present study for each volume | used the
experimental structural parameters from Ref. 53.

The FCD-EMTO total energies per atoms ®bnmand

Pm3m phases as functions of the average atomic radii are
plotted in Fig. 5. The equations of state were derived by
fitting the energy versus volume curves to a Morse fotim

FIG. 4. Formation energig@n mRy) as functions of the nearest- Table Il the present zero pressure volumes, bulk moduli and
neighbor(NN) distance of a vacancy in fcc Al. The energy minima Structural energy difference are compared to the full-
correspond to—1.58 and—1.41% inward relaxation of the first potential results from Refs. 50,51. The agreement between
coordination shell around the vacancy in 16 and 32 atoms supethe theoretical results, in view of the fact the full-potential
cells, respectively. techniques have their own numerical approximations, may

D. Ground state properties of MgSiO; perovskites

300 T T T T T

E,(NN) (mRy)

0 L L 1 L
-6 -4 -2 0 2

NN relaxation (%)
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TABLE lIl. Comparison of the theoreticdLDA) and experimental equilibrium atomic rads {n Bohr),
bulk moduli (B in GPa and structural energy differencdE in mRy/atom) of MgSiO; perovskite in
orthorhombic Pbnm) and cubic Pm3m) phases.

FCD-EMTO Full-potential Experimental
Structure S B AE S B AE S B
Pbnm 2.358 253 2.3482.333" 2662259P 2.357°  261P
Pm3m 2.394 258 233 2.381 258" 20222.1°

8Reference 50.
bReference 51.

be considered very satisfactory. It is seen from Fig. 5 that thexchange-correlation energies calculated from the total
stability of orthorhombic phase with respect to the cubiccharge density using the shape function technique. The FCD-
phase increases with the pressure from 23.3 mRy/atom &MTO method has been tested on different system, where
zero pressure te-48 mRy/atom at 150 GPa. This observa- the conventional methods basedspherical approximations
tion compares well with theb initio molecular dynamics fail, and the inclusion of correction terms into these methods
(MD) results from Ref. 51, where at 150 GPa pressure ais unavoidable. The general good agreement between the
increase with~30 mRy/atom, relative to the zero pressurepresent total energy results and those obtained using full-
value, of the stability of th bnmphase with respect to the potential techniques clearly demonstrates that the FCD-
Pm?m phase was reported_ In the insert of F!j'g| compare EMTO method has the accuracy of the fU”-pOtential tech-
the present pressure-volume equation of state withathe niques. Concerning the efficiency of the present
initio MD results® The two sets of data are very close, andimplementation of the method, a self-consistent FCD-EMTO
the slightly increasing deviation between them at large prescalculation needs about three times more computer time than
sures might be assigned to the lattice relaxation neglected #e LMTO based FCD method.

the present study.
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