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Total-energy method based on the exact muffin-tin orbitals theory
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I present a total-energy method based on the exact muffin-tin orbitals~EMTO! theory and the full charge
density~FCD! technique. The FCD-EMTO method combines the accuracy of the full-potential method and the
efficiency of the muffin-tin potential method. The one-electron Kohn-Sham equations are solved exactly for the
overlapping muffin-tin potential and from the self-consistent solutions the full charge density is constructed.
The EMTO kinetic energy, combined with the Coulomb and exchange-correlation terms calculated from the
total density, yields the FCD-EMTO total energy. The accuracy of the FCD-EMTO method is demonstrated
through several test calculations.
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I. INTRODUCTION

Attempts to develop new total energy calculation metho
based on the density functional theory1,2 and to improve on
the existing ones have been amongst the most challen
campaigns of the computational materials science.3–15 Dur-
ing the last decade the very efficient and widespread mu
tin or atomic sphere approximation related methods h
been overshadowed by the more accurate, and at the s
time more demanding full-potential techniques. According
the density functional theory,1 any reasonably accurate tria
density is suitable to determine the total energy of the sys
within an error which is second order in the error of t
charge density. This positiveness has been recognized
several groups of researchers14–19 and it led to the elabora
tion of the full charge density~FCD! technique14,15 as an
alternative to the full-potential methods. The FCD techniq
was designed to maintain the efficiency of the muffin-
methods and give total energies with the accuracy of
full-potential methods. Though, the original implementati
of this technique,20,21in connection with the linear muffin-tin
orbitals~LMTO! method,7,22 proved highly promising in the
case of close packed metals,20,21 for systems of low symme
try it had serious shortcomings due to the inappropriate tr
ment of the kinetic energy term.14 In order to increase the
accuracy different corrections had to be included14,22–25and,
therefore, the FCD-LMTO method loses its efficiency.

In the framework of the recently developed exact muffi
tin orbitals ~EMTO! theory3–5 the one-electron states, an
consequently the one-electron kinetic energies, are calcul
exactly for the muffin-tin potential. Within this formalism, i
contrast to the usual muffin-tin based KKR~Korringa-Kohn-
Rostoker! methods,17,26 large overlapping potential sphere
can be used for accurate representation of the exact
electron potential.4,27 Therefore, the EMTO theory provide
an ideal ground for developing an accurate and efficient F
based method.

In the present paper, starting from the self-consist
implementation of the EMTO theory28 I put forward the
FCD-EMTO total energy calculation method. In Sec. II
review the EMTO theory,3,4 and the FCD technique.14,15 In
Sec. III some important details of the self-consistent pro
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dure and of the total energy calculation technique are
cussed. Finally, I establish the accuracy of the FCD-EM
method by performing test calculations for some syste
where reliable full-potential and experimental data are av
able.

II. THE FCD-EMTO METHOD

The self-consistent solution of the one-electron Koh
Sham equations2 involves two main problems:~i! the solu-
tion of the Schro¨dinger equation for the effective potentia
and ~ii ! the solution of the Poisson equation for the to
electronic and protonic charge densities. In this section I
plicate these two problems within the context of the EMT
formalism, and I give a short overview of the FCD tec
nique.

A. The one-electron equations

In the EMTO theory3–5 the one-electron Kohn-Sham
equations

@2“

21v~r !#C j~r !5e jC j~r !, ~1!

are solved within the muffin-tin approximation for the effe
tive potential

v~r !'vmt~r ![v01(
R

@vR~r R!2v0#, ~2!

whereR runs over the lattice sites,vR(r R) are spherical po-
tentials, which become equal tov0 outside the potentia
spheres of radiisR . For accurate representation of the fu
potential theses spheres should overlap.4,27 Here and in the
following rR[r2R, and throughout in the paper the atom
Ry units are used.

In order to solve the Schro¨dinger equation~1! for the
muffin-tin potential ~2! the wave function is expanded i
terms of a complete basis set

C j~r !5(
RL

c̄RL
a ~e j ,rR!vRL, j

a , ~3!
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L. VITOS PHYSICAL REVIEW B 64 014107
whereL stands for (l ,m), andc̄RL
a are the muffin-tin orbitals

defined for each siteR. In Eq. ~3! the l summation usually
includes terms up tol max53, i.e., thes,p,d and f orbitals.
The coefficientsvRL, j

a are determined from the condition th
the expansion~3! should be solution of Eq.~1! in the entire
space. This condition leads to the kink cancellation
screened KKR equation.17,26

In the interstitial region, where the potential is appro
mated byv0, it is customary to use as basis functions t
solutions of the wave equation

@¹21k2#cRL
a ~k,rR!50, where k2[e2v0 . ~4!

Within the EMTO formalism thecRL
a (k,rR) functions are

referred to as the screened spherical waves.3 The boundary
conditions for Eq.~4! are given in conjunction with nonover
lapping spheres centered at all sitesR with radii aR . The
screened spherical waves on their owna spheres behave as
pure spherical harmonicYL( r̂ R), while theYL8( r̂ R8) projec-
tions on all the othera spheres, i.e., forR8ÞR, vanish.3 With
these energy independent boundary conditions fork2 below
the bottom of thea2spheres continuum, the screen
spherical waves have short range and week ene
dependence.3 They form a complete basis set in th
a-interstitial region and may be expanded in spherical h
monicsYL8( r̂ R8) around any siteR8, as

cRL
a ~k,rR!5 f Rl

a ~k,r R!YL~ r̂ R!dRR8dLL81(
L8

gR8 l 8
a

~k,r R8!

3YL8~ r̂ R8!SR8L8RL
a

~k!, ~5!

where f Rl
a (k,r R) andgRl

a (k,r R) are linear combinations28 of
spherical Bessel, j l(kr R), and Neumann, nl(kr R),
functions.29 The expansion coefficients,SR8L8RL

a (k), are the
elements of theslope matrix, which is related to the bare
KKR structure constant matrix through the inhomogene
Dyson equation3

SR8L8RL
a

~k!5D$ j l~kaR!%2
1

aR8 j l 8~kaR8!

3F2B~k!1k
n~ka!

j ~ka! G
R8L8RL

21 1

j l~kaR!
,

where D denotes the logarithmic derivative, i.e.,D$ j l(r )%
[r @] j l(r )/]r #/ j l(r ). The bare KKR structure constants a
defined as the expansion coefficients of theknL(k,rR)
[knl(kr R)YL( r̂ R) functions around siteR8 in terms of the
j L8(k,rR8)[ j l 8(kr R8)YL8( r̂ R8) functions, i.e. knL(k,rR)
5(L8 j L8(k,rR8)BR8L8RL(k), with

BR8L8RL~k![4p(
L9

CLL8
L9 i 2 l 1 l 82 l 9knL9~k,R82R!,

and whereCLL8
L9 are the real harmonic Gaunt coefficients.

In Eq. ~5! l< l max, and thel 8 summation is infinite, which
in practice is truncated atl max

h '8212. Terms withl max, l 8
01410
r

y

r-

s

< l max
h are called ‘‘highers.’’ Forl< l max the f Rl

a (k,r R) and
gR8 l 8

a (k,r R8) functions satisfy the following boundary cond
tions at thea-spheres:f a(a)51,] f (a)/]r 50,ga(a)50, and
]ga(a)/]r 51/a, where for simplicity the indices have bee
omitted. Forl 8. l max the tail function reduces to the Bess
function, i.e., gR8 l 8

a (k,r R8)52 j l(kr R8). The screened
spherical waves have no pure (lm) character,30 and they are
irregular at the origin.

For spherically symmetric potentialsvR(r R), i.e., close to
the lattice sites, the basis functions are chosen to have
( lm) character, and the radial parts are the regular soluti
of the radial Schro¨dinger equation

]2@r RfRl~e,r R!#

]r R
2

5F l ~ l 11!

r R
2

1vR~r R!2eG r RfRl~e,r R!.

~6!

The partial waves,fRl(e,r R), are defined for any real o
complex energye. Because a screened spherical wave
haves asYL( r̂ R) only on its own a sphere, the matching
condition betweencRL

a (k,rR) and fRl(e,r R)YL( r̂ R) should
be set up at this sphere. The connection onto the pote
sphere, which is usually larger than thea sphere, is done by
introducing a free electron solution from the potential sph
back to thea sphere, which joins continuously and differe
tiable to the partial wave atsR and continuously to the
screened spherical wave ataR . The radial part of the back
wards extrapolated free-electron solution can be written
the form3

wRl
a ~e,r !5 f Rl

a ~k,r !1gRl
a ~k,r !DRl

a ~e!,

whereDRl
a (e)[D$wRl

a (e,aR)% is the logarithmic derivative
of wRl

a (e,r ) calculated at thea sphere. The exact muffin-tin
orbitals are constructed as the superposition of the three b
functions, i.e.,

c̄RL
a ~e,rR!5cRL

a ~k,rR!1NRl
a ~e!fRl~e,r R!YL~ r̂ R!

2wRl
a ~e,r R!YL~ r̂ R!, ~7!

where the last two terms are truncated outside thes spheres.
The normalization function,NRl

a (e), and the logarithmic de-
rivative,DRl

a (e), are determined from the matching conditio
betweenfRL(e,r R) andwRL

a (e,r R) at r R5sR
28, viz.,

1

NRl
a ~e!

5
fRl~e,sR!

f Rl
a ~k,sR!

D$fRl~e,sR!%2D$gRl
a ~k,sR!%

D$ f Rl
a ~k,sR!%2D$gRl

a ~k,sR!%

and

DRl
a ~e!52

f Rl
a ~k,sR!

gRl
a ~k,sR!

D$fRl~e,sR!%2D$ f Rl
a ~k,sR!%

D$fRl~e,sR!%2D$gRl
a ~k,sR!%

.

Using the exact muffin-tin orbitals~7! the wave function~3!
will be a solution of Eqs.~1! and ~2!, if inside thes spheres
the l< l max components of the screened spherical wav
7-2
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TOTAL-ENERGY METHOD BASED ON THE EXACT . . . PHYSICAL REVIEW B 64 014107
multiplied by the expansion coefficients, are cancelled
actly by wRl

a (e,r R)YL( r̂ R)vRL, j
a , i.e., if thekink cancellation

equation

(
RL

KR8L8RL
a

~e j !vRL, j
a [(

RL
aR8@SR8L8RL

a
~k j !

2dR8RdL8LDRl
a ~e j !#vRL, j

a 50,

~8!

is satisfied for allR8 andl 8< l max. Here and in the following
k j

2[e j2v0. For energiese j , for which Eq.~8! is fulfilled,
the wave function inside the potential sphere atR reduces to

C j~rR!5(
L

NRl
a fRl~e j ,r R!YL~ r̂ R!vRL, j

a

1 (
L8

l 8. l max

gRl8
a

~k j ,r R!YL8~ r̂ R!

3(
R8L

SRL8R8L
a

~k j !vR8L, j
a , ~9!

i.e., the l 8. l max components ofcRL
a (k j ,rR) penetrate into

the spheres. However, for largel, due to the centrifugal term
in the radial Schro¨dinger equation~6!, the partial waves tend
towards Bessel functions, i.e. towards the second term f
the right hand side of Eq.~9!.

The solutions of Eq.~8! are the one-electron energies a
wave functions. Alternatively, these solutions may be o
tained from the poles of the path operatorgR8L8RL

a (z) defined
for a complex energyz by

(
R9L9

KR8L8R9L9
a

~z!gR9L9RL
a

~z!5dR8RdL8L .

Using the residue theorem and the expression of the ove
matrix of the exact muffin-tin orbitals3

E c̄R8L8
* ~z,r !c̄RL~z,r !dr5K̇R8L8RL

a
~z!, ~10!

where theover dotdenotes the energy derivative, the to
number of states below the Fermi energyeF can be obtained
as

N~eF!5
1

2p i ReF

G~z!dz, ~11!

where

G~z![ (
R8L8RL

gR8L8RL
a

~z!K̇RLR8L8
a

~z!

2(
RL

S ḊRl
a ~z!

DRl
a ~z!

2(
eRl

D

1

z2eRl
D D , ~12!
01410
-

m

-
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with l ,l 8< l max. The energy integral from Eq.~11! is per-
formed on a complex contour that cuts the real axis be
the bottom of the valence band and ateF . The first term
from the right hand side of Eq.~12! may include the un-

physical poles ofḊRl
a (z), which, however, are cancelled b

the second term.eRl
D denote the zeros of the logarithmic d

rivative function,DRl
a (e). Note that the second term from th

right hand side of Eq.~12! gives no contribution ifḊRl
a (z) is

analytic function ofz inside the complex energy contour.
In Eq. ~10! the negligible terms due to the overlap b

tween potential spheres have been omitted.4 Aside from
these terms,N(eF) gives the exact number of states at t
Fermi level for the muffin-tin potential~2!.

B. The full charge density

The electron density is given in terms of Kohn-Sham on
electron wave functions2

n~r !5 (
j

e j<eF

uC j~r !u2,

where the summation includes the states below the Fe
level. From the expansion~3! of C j (r ) one obtains a multi-
center form for the charge density, which, according to E
~9!, can be transformed into one-center form around e
site, i.e.,

n~r !5(
R

nR~rR!5(
RL

nRL~r R!YL~ r̂ R!. ~13!

Inside the Wigner-Seitz cell atR the partial components o
the charge densitynR(rR) can be expressed as

nRL~r R!5
1

2p i ReF
(

L9L8
CL9L8

L ZRl9
a

~z,r R!g̃RL9RL8
a

~z!

3ZRl8
a

~z,r R!dz, ~14!

where thel 9 and l 8 summations include thehigher terms as
well. In Eq. ~14! the following notations have been intro
duced:

ZRl
a ~z,r R!5H NRl

a ~z!fRl~z,r R! if l< l max and r R<sR ,

wRl
a ~z,r R! if l< l max and r R.sR ,

2 j l~kr R! if l . l max for all r R

and
7-3
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g̃RL8RL
a

~z![5
gRL8RL

a
~z!1

dL8L

aRḊRl
a ~z! S ḊRl

a ~z!

DRl
a ~z!

2(
eRl

D

1

z2eRl
D D if l ,l 8< l max,

(
R9L9

gRL8R9L9
a

~z!SR9L9RL
a

~k! if l 8< l max and l . l max,

(
R9L9R-L-

SRL8R9L9
a

~k!gR9L9R-L-
a

~z!SR-L-RL
a

~k! if l 8,l . l max.
th
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In the last two equationsk2[z2v0. The high-low and the
low-high sub-blocks of the slope matrix are calculated by
blowing-up technique.31 The charge density computed fro
Eqs.~13! and~14! is normalized within the unit cell, and fo
reasonable largel max

h it is continuous at the cell boundaries
In the case of translation symmetry in Eq.~8! R and R8

run over the atoms in the primitive cell only, and the slo
matrix, the kink matrix, and the path operator depend on
Bloch vectork from the first Brillouin zone.

C. The one-electron potential

Equations~8!, ~11!, and ~14! constitute the basis of th
method used to solve the Schro¨dinger equation~1!. In order
to perform a self-consistent calculation one constructs
electron density from the solutions of the kink cancellati
equation and calculates the new one-electron poten
Within the EMTO theory this latter procedure involves tw
consecutive steps:32 the calculation of the full potential an
the construction of the optimized overlapping muffin-t
wells. The first step, using the one-center formalism for
charge density and potential, is very demanding and i
inaccurate in the corners of the unit cell. However, within t
spherical cell approximation~SCA!,28 employed in the
present implementation of the EMTO theory, the overla
ping muffin-tin potential depends only on the spherical p
of the full-potential, which can be computed efficiently a
with high accuracy.

In the SCA the Wigner-Seitz cells are substituted
spherical cells with volumes equal to the volumes of the r
cells. If VR denotes the volume of the Wigner-Seitz c
centered atR then VR5VwR

[(4p/3)wR
3 , wherewR is the

atomic sphere radius.
The spherical symmetric potentialsvR(r R) have to be

chosen in a way that, together with the parameterv0, to give
the best approximation to the full potentialv(r ). The idea
from Ref. 32 is to minimize the mean of the squared dev
tion between the left and the right hand side of Eq.~2!. This
leads to a set of integral or differential equations forvR(r R)
andv0. In the nonoverlapping muffin-tins case the equat
for vR(r R) reduces to the well known expression

vR~r R!5
1

4pE v~r !dr̂R , ~15!

andv0 reduces to the muffin-tin zero, i.e., to the average
the full potential calculated in the interstitial region. F
01410
e

e

e

l.

e
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-
t

l

-

n

f

overlapping muffin tins the equation forvR(r R) involves
terms coming from the overlapping region, which give ri
to kink of vR(r R) when r R touches other muffin-tin
spheres.32 Here, instead of solving this equation, I fix th
vR(r R) function to the spherical average of the full potent
given by Eq. ~15!. In this case, using the SCA for th
Wigner-Seitz cell, the parameterv0 has the following simple
expression:32,28

v05(
R

E
sR

wR
r R

2F E v~r !dr̂RGdrR Y (
R

@4p~wR
32sR

3 !/3#.

~16!

Therefore, both of thevR(r R) function and thev0 parameter
are given in terms of the spherical symmetric part of the f
potential. The motivation of the present choice forvR(r R) is
given in Sec. III B. In the following I show how*v(r )dr̂R is
computed within the FCD-EMTO method.

The electrostatic potential of the electronicn(r ) and pro-
tonic ZRd(r R) charge densities, i.e.,

2E n~r 8!

ur2r 8u
dr 82(

R

2ZR

r R
,

can be divided into components due to the charges fr
inside and from outside of the potential sphere. The spher
symmetric part of the former component, calculated arou
site R, can be obtained as

vR
I ~r R!58p

1

r R
E

0

r R
r R8

2nR(0,0)~r R8 !drR8

18pE
r R

sR
r R8nR(0,0)~r R8 !drR82

2ZR

r R
. ~17!

The effect of charges from the outside of the potential sph
is taken into account by the usual Madelung potential, wh
spherical symmetric part is given by

vR
M5

1

w (
R8L8

MR(0,0)R8L8QR8L8
SCA , ~18!

whereMRLR8L8 are the elements of the Madelung matrix,w
is the average atomic radius. The multipole momentsQRL

SCA

are calculated within the SCA
7-4
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QRL
SCA5

A4p

2l 11E0

wRS r R

w D l

nRL~r R!r R
2drR

2ZRdL,(0,0)1dSCAdL,(0,0) . ~19!

Since the integral from Eq.~19! is performed over the spher
cal cell rather than over the unit cell, the monopole mome
have to be renormalized within the unit cell.28 The site inde-
pendent constantdSCA is determined from the condition o
charge neutrality.

The number of electrons inside thes sphere, denoted by
Q(sR), is usually different from the number of electrons i
side the cellQR(0,0)

SCA 1ZR . This difference contributes with a
constant shiftDvR

M to the spherical potential. In the FCD
EMTO method this extra or missing charge is redistribu
equally on theNNN nearest neighbor cells, i.e.,

DvR
M5

1

w (
RNN

MR(0,0)RNN(0,0)DQRNN
, ~20!

whereDQRNN
[(1/NNN)@QR(0,0)

SCA 1ZR2Q(sR)#.
The total potential within the potential sphere is obtain

as the sum of Eqs.~17!, ~18!, and ~20! and the spherica
symmetric exchange-correlation potential, namely,

vR~r R!5vR
I ~r R!1vR

M1DvR
M1mxcR~r R!. ~21!

If the spherical symmetric part of the exchange-correlat
potential, calculated within the local density or a gradie
level approximation, is approximated bymxcR@nR(0,0)(r R)#
aside from the higher order multipole moments from E
~18!, which in many cases can be neglected, all of the po
tial components from Eq~21! depend only on the spherica
symmetric densitynR(0,0)(r R). Except the small approxima
tions made in the Madelung terms, i.e., in Eqs.~18! and~20!,
the expression~21! gives the exact spherical part of the fu
potential inside thes sphere.

The best representation of the full potential by the ov
lapping muffin-tin potential can be achieved by choos
large overlapping spheres of radiisR .32 For an optimal
choice of the potential spheres the potentials atsR should be
the same, i.e.vR(sR)'const for eachR, and this const
should have the maximum possible value for linear overl
below 30-40 %.

D. The total energy functional

Within the FCD-EMTO method the kinetic energy is d
termined from the one-electron equations~1! as

T@n#5
1

2p i ReF

zG~z!dz2(
R

E
VR

vmt~rR!nR~rR!drR ,

~22!

where the first term from the right hand side is the sum of
one-electron energies andG(z) is given by Eq.~12!. The
second term is calculated within the unit cell andvmt(r ) is
the muffin-tin potential from Eq.~2!.

The Coulomb and exchange-correlation parts of the t
energy functional are calculated within the Wigner-Se
01410
ts

d

d

n
t

.
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-

s
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cells using the shape function technique.15,20,33By means of
the shape function, which is defined asone inside the cell
and zero otherwise, any integral over the cell can be tran
formed into an integral over the sphere of radiuswR

c which
circumscribes the cell. Consequently, the three dimensio
~3D! Coulomb integrals reduce to one-dimensional~1D! in-
tegrals, which can be written in terms of

ñRL~r R!5 (
L8,L9

CL8L9
L nRL8~r R!sRL9~r R!, ~23!

where sRL9(r R) are the partial components of the sha
function.15 In Eq. ~23! the l 9 summation is truncated atl max

s .
The total electrostatic contribution belonging to the cell

R is the sum of the intracell and intercell or Madelung en
gies. The intracell energy is given by

FR
intra@nR#5

A4p

w (
L
E

0

wR
c

ñRL~r R!F S r R

w D l

PRL~r R!

1S r R

w D 2 l 21

QRL~r R!G r R
2drR , ~24!

where

PRL~r R![
A4p

2l 11Er R

wR
c

ñRL~r R8 !S r R8

w D 2 l 21

~r R8 !2drR8 ~25!

and

QRL~r R![
A4p

2l 11E0

r R
ñRL~r R8 !S r R8

w D l

~r R8 !2drR82dL,(0,0)ZR .

~26!

The intercell energy has the following form:15,34

FR
inter@n#52

1

2w (
L

(
R8ÞR

1

2l 11 S bRR8
w D l

YL~bRR8
ˆ !

3 (
L8,L9

QRL8

4p~2l 921!!!

~2l 21!!! ~2l 821!!!
CL8L9

L d l 9,l 1 l 8

3(
L-

SRL9;R81bRR8L-QR8L- , ~27!

whereSRL;R8L8 is the conventional LMTO structure consta
and QRL5QRL(wR

c ). The displacement vectorbRR8 , intro-
duced in Ref. 35, is proportional with the linear overlap
the circumscribed spheres to the cells atR and R8. A rea-
sonable choice forbRR8 is described in Refs. 15,34.

The exchange-correlation energy belonging to the cel
R is calculated as the integral over the Wigner-Seitz cell
the exchange-correlation energy densityexc@n(r )#. For
charge densities which deviate weakly from spherically sy
metry the exchange-correlation energy density may be
resented by a Taylor series around the spherically symme
charge density,14 and, therefore, the 3D integral can be r
duced to 1D integral. However, for strongly anisotropic ele
tron densities, like in the case of surfaces, the Taylor exp
7-5
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L. VITOS PHYSICAL REVIEW B 64 014107
sion is not convergent. In this case the exchange-correla
energy is evaluated by a direct 3D integration over the
cumscribed sphere, i.e.,

ExcR@n#5E
0

2pE
0

pE
0

wR
c

exc@n~r !#(
L

l max
s

sRL~r R!YL~ r̂R!r R
2drR

3sinududf. ~28!

III. DISCUSSION

A. Slope matrix

The screened spherical waves, for energies below the
tom of thea-sphere continuum, have short range and, the
fore, the slope matrix can be calculated in real space. It
shown in Ref. 3 that the shortest range of the scree
spherical waves can be achieved for nonoverlapping sph
with radii equal with 0.5020.85wi , wherewi is the radius of
inscribed or touching sphere, depending on the maximal
bital quantum numberl of the partial waves explicitly in-
cluded in the formalism.

In Fig. 1 I plotted the diagonal elements of the fcc slo
matrix ~symbols! calculated at the center of the Brilloui
zone as a function of the dimensionless energy param
(kw)2. For this test the real space calculation ofSa(k) was
performed on five coordination shells plus the central s
using thes,p, and d orbitals and 0.77wi for the a-sphere
radius. The figure demonstrates the weak and smooth en
dependence of the slope matrix up to (kw)2'6. Therefore in
the practical solution of the kink cancellation equation~8!
the slope matrix can be estimated using a Taylor expan
around a fixed energyk0

2,

FIG. 1. The diagonal elements of the fcc slope matrix in thek
5(0,0,0) point from the Brillouin zone versus (kw)2. The numbers
in parenthesis denote the (l ,m) quantum numbers. The Taylor ex
pansion included terms up to the fourth order energy derivative
01410
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SR8L8RL
a

~k!5SR8L8RL
a

~k0!1
1

1!
ṠR8L8RL

a
~k0!~k22k0

2!1••• .

~29!

The first and higher order energy derivatives are calcula
analytically as described in Ref. 36. In Eq.~29! k2 is a com-
plex energy not too far fromk0

2. In Fig. 1 the solid lines were
calculated with a fourth order expansion aroundk050. As
one can observe, this expansion gives highly accurate en
dependence of the slope matrix over an energy range of
proximately (28,18)/w2 Ry aroundv0. This energy win-
dow, usually, covers the whole occupied part of the vale
electron spectra. However, in the case of semicore states
ing far below the Fermi level, a second Taylor expans
aroundk0

2'220/w2 Ry is needed.

B. Optimized overlapping muffin-tin wells

In this section through a simple model potential I demo
strate how the full potential is represented by the overlapp
muffin-tins, and I set out the advantages and shortcoming
the SCA used in Eq.~16!. I model a general 3D full potentia
by a cosine potential in a simple cubic lattice, i.e.,

vc~r !52cosS 2p

a
xD2cosS 2p

a
yD2cosS 2p

a
zD23,

~30!

with the reference level in the corner of the Wigner-Se
cell. For this potential, following the idea from Ref. 32,
minimize the mean of the squared deviation between
overlapping muffin tins andvc(r ). The results obtained fo
potential sphere radii from 0.8a/2 to 1.7a/2 are shown in Fig.
2, wherea denotes the cubic lattice constant. The three s
of results correspond to the following cases:~a! fully opti-
mized overlapping muffin-tins calculated within the Wigne
Seitz cells ~solid line!, ~b! fully optimized overlapping
muffin-tins calculated within the spherical cells~dotted line!,
and~c! the spherical potentialv(r ) fixed to the spherical par
of the full potential andv0 optimized for thisv(r ) ~dashed
line!, i.e., Eqs.~15! and ~16!.

In the upper panel of Fig. 2 I plotted the integrated loca
deviation ofvc(r ) and overlapping muffin tins. The percen
error in the case of~a! decreases continuously, and arou
30% linear overlap between the potential spheres it falls
low half of the error observed for touching spheres. In t
second case the error first decreases, at;15% overlap is
starts to increase and at large overlaps it diverges. In the t
case for overlappings spheres there is a moderate improv
ment of the muffin-tin approach relative to the nonoverla
ping situation, but above 30% overlap the integrated lo
deviation shows no significant dependence on the radiu
the potential spheres.

The error in the one-electron energies, due to the ove
between thes spheres, is proportional4 to the square of the
muffin-tin discontinuity@v(s)2v0#. This quantity is plotted
in the middle panel of Fig. 2. With increasing overlap b
tween thes spheres@v(s)2v0# converges smoothly to zer
in the case of~a! and it diverges in the case of~b!. Whenv0
is calculated from Eq.~16!, with v(r ) fixed to the spherical
7-6
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part of the full potential@v(s)2v0# approaches zero alread
at small overlaps and it remains close to zero up to lin
overlaps of 60–70 %. Consequently, in the third case
one-electron energies of monoatomic systems will dep
negligible on the overlap between the potential spheres.28

In order to get well localized slope matrices for energ
around the Fermi level, where (kFw)25(eF2v0)w2*5,
one prefers to havev0 close toeF . For the cosine potentia
~30! v0 is plotted in the lower part of Fig. 2. In the case of~a!
v0 increases withs and it reaches the zero potential level
;60% overlap. When the muffin-tins are fully optimize
inside the spherical cellv0 decreases withs for overlaps
larger than;15%. In the third casev0 increases slightly
with the overlap but it always remains well bellow its op
mal value, i.e., the one from the first case.

From these results one clearly sees that the accurac
the overlapping muffin-tin approximation to the full pote
tial, as far as the optimization is performed within th
Wigner-Seitz cells, can be improved substantially by incre
ing the overlap between the potential spheres. However,
ing the spherical cell model, due to the improper descript
of the full potential, the fully optimized overlapping muffin

FIG. 2. Overlapping muffin-tin potential approximation to th
cosine potential in cubic lattice~shown on the top of the figure,a
denotes the lattice constant!. Upper panel: integrated local deviatio
of the full-potential @vc(r )# and overlapping muffin-tins~in %).
Middle panel: muffin-tin discontinuity~in arbitrary units!. Lower
panel: muffin-tin zero~relative to the zero potential level, in arb
trary units!. Solid line: fully optimized overlapping muffin-tins cal
culated in the Wigner-Seitz cells; dotted line: fully optimized ove
lapping muffin-tins calculated in the spherical cells; dashed li
spherical potential fixed to the spherical part of the full-poten
and muffin-tin zero optimized for this spherical potential, i.e., E
~15! and ~16!. The radius corresponding to the touching sphere
marked by vertical lines.
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tin approximation breaks down for linear overlaps larg
than 10–15 %. One possibility to overcome this problem
given by the third case~c!, which is adopted in the presen
implementation of the EMTO method as well.

C. The Exc†n‡ energy term

The convergence properties of the electrostatic ene
components presented in Sec. II D have been studied in
tails in Refs. 20,34. Here I discuss the convergence pro
ties of the exchange-correlation energy term, calculated fr
Eq. ~28!. The surface integral overu and f is performed
using the two dimensional~2D! Gaussian integration
method. In Fig. 3 I plotted the exchange-correlation ener
of fcc Cu, relative to its converged value, in terms ofl max

s .
Different symbols correspond to three different sets of
mesh points. It is seen that no convergence can be achi
for a small number of points (Nu511,Nf521). By doubling
the number of 2D mesh points the converged value is rec
ered already forl max

s 58210, but for l max
s .16218 the en-

ergy starts to oscillate and it diverges. Only for very lar
number of mesh points the summation from Eq.~28! be-
comes absolutely convergent. This behavior is connec
with the fact that for largel values, which are important fo
the proper mapping of the shape of the Wigner-Seitz cell,
spherical harmonics have more and more structure, and
can not be correctly described unless the surface integr
carried out with very high accuracy.

IV. APPLICATIONS

The FCD-EMTO total energy calculation method h
been applied to different systems including bulk metals a
semiconductors,37,38 oxides,39,40 monoatomic strings,41

dimers,37 etc. Here I present result obtained for bulk solid
monovacancies in fcc Al, and magnesium silicate pero
kites. Through these examples I intend to demonstrate

:
l
.
is

FIG. 3. Convergence test for the exchange-correlation energ
fcc Cu as function of the maximall values used in Eq.~28!. The
energies are plotted relative to the converged result. The numbe
parenthesis denote the total number ofu and f Gaussian mesh
points on the spherical surface.
7-7
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TABLE I. Theoretical equilibrium atomic radii (S in Bohr! and bulk moduli (B in GPa! for some selected
solids. The present calculations have been performed for crystallographica phases, and the results obtaine
by the full-potential linearized augmented plane-wave~LAPW! method and the experimental values are fro
Ref. 45.De andDLAPW denote the mean absolute values of the relative deviations relative to the experim
values and to the LAPW results, respectively.

FCD-EMTO Full-potential Experimental
SLDA SGGA BLDA BGGA SLDA SGGA BLDA BGGA S B

Na 3.769 3.916 8.2 7.6 3.77 3.91 9.2 7.6 3.936 6.
Al 2.947 2.989 81.2 75.2 2.94 2.98 84.0 77.3 2.991 77
Fe 2.565 2.645 253 178 2.56 2.64 259 198 2.667 17
Cu 2.602 2.684 193 137 2.60 2.68 191 139 2.658 13
Pd 2.846 2.916 235 184 2.84 2.91 226 174 2.873 18
W 2.929 2.977 312 292 2.92 2.96 335 298 2.940 31
Pt 2.888 2.943 304 244 2.88 2.93 312 247 2.892 28
Au 2.998 3.081 194 134 2.99 3.07 195 142 2.997 17
Si 3.163 3.198 100 92.8 3.17 3.21 97.0 89.0 3.182 98
Ge 3.303 3.384 71.6 61.2 3.30 3.38 71.2 59.9 3.318 76
GaAs 3.296 3.375 73.0 62.0 3.29 3.37 74.3 60.7 3.312 74
NaCl 3.202 3.346 32.9 23.0 3.21 3.34 32.2 23.4 3.306 24

De 1.48 % 1.28 % 17.2 % 9.2 % 1.63 % 1.19 % 19.1 % 9.9 %
DLAPW 0.20 % 0.27 % 3.3 % 3.3 %
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accuracy of the present method for simple and transi
metals, semiconductors, strongly inhomogeneous dens
occurring near the vacancies and in open structures,
pressure properties, etc. First I describe the most impor
numerical details and after I analyze the FCD-EMTO resu
comparing them to the available full-potential and expe
mental data.

A. Numerical details

The one-electron equations were solved within the sca
relativistic approximations and the core states were reca
lated after each iteration. In the EMTO basis set I includ
s,p, and d orbitals for simple metals, semiconductors a
perovskites ands,p,d, and f orbitals for transition metals
For the exchange-correlation term I used the local den
approximation ~LDA ! with the Perdew-Wang
parametrization42 of the results of Ceperley and Alder.43 The
kink matrix and path operator were calculated for 16232
complex energy points, depending on the system, and
were distributed exponentially on a semicircular conto
Thek-point sampling was performed on a uniform grid in t
Brillouin zone.

In the one-center expansion of the full charge density,
~13!, I including terms up tol max

h 58. The shape functions

were generated forl max
s 530, and the functionsñRL(r R) with

l . l max
s were neglected. For Wigner-Seitz cells with nonov

lapping circumscribed spheres the displacement vector
set to zero, and the two remainingl 9 and l- summmations
from Eq. ~27! were truncated atl max

m 58. Using the full
charge density, in addition to the LDA energy, I calculat
the total energy within the generalized gradient approxim
tion ~GGA! ~Ref. 44! as well.
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The radii of the potential spheres, except in the case
magnesium silicate perovskites, were fixed to the radii of
atomic spheres, i.e.sR5wR . In the perovskites structures th
overlap between the atomic spheres is 32–34 %, and
muffin-tin discontinuities vary between20.13 and 0.11 Ry.
In order to minimize the overlap error in the kinetic energ
I decreased the radii of the potential spheres around the
gen atoms to 0.8wO . With this choice the largest linear ove
lap is around 19–20 %, and the error in the kinetic energ
of order of 1m Ry.

B. Equilibrium volumes and bulk moduli of solids

As a first test of the FCD-EMTO method I have calc
lated the atomic volumes and bulk moduli of several met
and semiconductors in their observed low temperature c
tal structures. The results obtained within the LDA and GG
are presented in Table I, where, for comparison, I have
cluded the full-potential45 and experimental values as we
The full-potential calculation was performed with the line
augmented plane wave method46 and it employed the sam
LDA and GGA exchange-correlation energy functionals
those from the present calculation. The mean deviations
tween the present atomic radii and bulk moduli and those
Ref. 45 are shown at the bottom of the table. The agreem
between the two sets of data is very satisfactory. The clo
ness of the mean absolute relative differences in the L
and GGA shows that the present method performs equ
well for the local and nonlocal exchange-correlation fun
tionals.

C. Vacancy formation energies

The vacancy in fcc Al has been used several times a
benchmark of the total energy calculation methods.47–49 Us-
7-8
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ing supercell geometries of 16 and 32 atoms I have ca
lated the formation energies of mono vacancies in Al and
results are listed in Table II. I found that increasing the s
of the supercell beyond 32 atoms, as long as the proper
vergence of the Brillouin zone sampling was ensured, had
significant effect on the formation energy. The present un
laxed values were obtained for ideal fcc based superc
while the relaxed values correspond to the radial relaxa
of the nearest neighbors~NN! of the vacancy. The change
of the vacancy formation energies with the NN distances
shown in Fig. 4.

The unrelaxed and relaxed FCD-EMTO energies for
atoms supercell agree very well with the pseudopotential
sults from Refs. 47,48, but they are with 13 and 6 %, resp
tively, larger than those obtained using the full-potent
KKR method.49 This difference might be assigned to the fa
that in Ref. 49 the relaxation of the potential beyond t
nearest neighbors to the vacancy was neglected. The F

TABLE II. Theoretical ~LDA ! and experimental formation en
ergies (Ev in eV! and the relaxation of the first nearest neighbo
(dNN in %! of a vacancy in fcc Al. The present calculations ha
been performed on 16~numbers in parenthesis! and 32 atoms su-
percells.

FCD-EMTO Full-potential Experimenta

Ev , unrelaxed 0.84~0.89! 0.82a,0.73b

Ev , relaxed 0.66~0.64! 0.66,a,0.62b,0.66c 0.6760.03d

dNN 21.41~21.58! 21.50b

aReference 47.
bReference 49.
cReference 48.
dReference 55.

FIG. 4. Formation energies~in mRy! as functions of the neares
neighbor~NN! distance of a vacancy in fcc Al. The energy minim
correspond to21.58 and21.41 % inward relaxation of the firs
coordination shell around the vacancy in 16 and 32 atoms su
cells, respectively.
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EMTO method gives a small inward relaxation of the N
lattice sites, in good accordance with the full-potential KK
results.49

D. Ground state properties of MgSiO3 perovskites

The MgSiO3 is the most abundant mineral of the Earth
lower mantle. The knowledge of the exact behavior of t
perovskite under high pressures and temperatures is una
able in advanced seismic research. Here, using the F
EMTO method, I study the orthorhombic and cubic phas
of MgSiO3, and compare the present results with the av
able full-potential calculations.50,51

In the orthorhombic structure withPbnm symmetry the
magnesium and four oxygen atoms occupy the (4c) posi-
tions. The four silicon atoms are in the (4b) positions, and
the rest of the oxygen atoms are situated in the general (d)
positions. The cubic perovskite structure hasPm3̄m symme-
try and the Mg cation is situated in the center of the cu
defined by eight corner sharing SiO6 octahedra. According to
high pressure and high-temperature measurements on sil
perovskite,52 the orthorhombic distortion away from the cu
bic symmetry remains nearly constant with the pressu
Therefore, in the present study for each volume I used
experimental structural parameters from Ref. 53.

The FCD-EMTO total energies per atoms forPbnmand
Pm3̄m phases as functions of the average atomic radii
plotted in Fig. 5. The equations of state were derived
fitting the energy versus volume curves to a Morse form.54 In
Table III the present zero pressure volumes, bulk moduli a
structural energy difference are compared to the fu
potential results from Refs. 50,51. The agreement betw
the theoretical results, in view of the fact the full-potent
techniques have their own numerical approximations, m
r-

FIG. 5. Calculated total energies~per atom! of orthorhombic
and cubic MgSiO3 as functions of the average atomic radius. T
energies are plotted relative to the orthorhombic ground state
energy. The symbols denote the results obtained with the F
EMTO method and the connecting line is a Morse-type fit~Ref. 54!.
In the insert the equation of state of orthorhombic phase is c
pared to theab initio molecular dynamics calculation~Ref. 51!.
7-9
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TABLE III. Comparison of the theoretical~LDA ! and experimental equilibrium atomic radii (S in Bohr!,
bulk moduli (B in GPa! and structural energy difference (DE in mRy/atom! of MgSiO3 perovskite in

orthorhombic (Pbnm) and cubic (Pm3̄m) phases.

FCD-EMTO Full-potential Experimental

Structure S B DE S B DE S B

Pbnm 2.358 253 2.349a,2.333b 266a,259b 2.357b 261b

Pm3̄m 2.394 258 23.3 2.381b 258b 20 a,22.1b

aReference 50.
bReference 51.
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be considered very satisfactory. It is seen from Fig. 5 that
stability of orthorhombic phase with respect to the cu
phase increases with the pressure from 23.3 mRy/atom
zero pressure to;48 mRy/atom at 150 GPa. This observ
tion compares well with theab initio molecular dynamics
~MD! results from Ref. 51, where at 150 GPa pressure
increase with;30 mRy/atom, relative to the zero pressu
value, of the stability of thePbnmphase with respect to th
Pm3̄m phase was reported. In the insert of Fig. 5 I compare
the present pressure-volume equation of state with theab
initio MD results.51 The two sets of data are very close, a
the slightly increasing deviation between them at large p
sures might be assigned to the lattice relaxation neglecte
the present study.

V. CONCLUSIONS

I have presented and tested a full charge density techn
based on the exact muffin-tin orbitals theory. The EMT
kinetic energy, determined exactly for the optimized overla
ping muffin-tin potential, is combined with the Coulomb an
, G

49

, O
-

01410
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-

exchange-correlation energies calculated from the t
charge density using the shape function technique. The F
EMTO method has been tested on different system, wh
the conventional methods based onspherical approximations
fail, and the inclusion of correction terms into these metho
is unavoidable. The general good agreement between
present total energy results and those obtained using
potential techniques clearly demonstrates that the FC
EMTO method has the accuracy of the full-potential tec
niques. Concerning the efficiency of the prese
implementation of the method, a self-consistent FCD-EMT
calculation needs about three times more computer time
the LMTO based FCD method.
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