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Viscoelastic response of sonic band-gap materials
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The effect of viscoelastic losses in a high-density contrast sonic band-gap material of close-packed rubber
spheres in air is discussed. The scattering properties of such a material are computed with an on-shell multiple-
scattering method, properties which are compared with the lossless case. The existence of an appreciable
omnidirectional gap in the transmission spectrum, when losses are present, is also reported.
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The problem of elastic-wave propagation in inhomog
neous media is of great importance in many branches
physics, mathematics, and engineering. In particular, ma
such as the localization of classical waves1 and the formation
of spectral gaps in periodic elastic composites2,3 have drawn
the attention of researchers over the last decade. In par
lar, phononic or sonic crystals are composite materials wh
consist of homogeneous particles~solid or fluid inclusions
the dimensions of which are large enough in order fo
macroscopic description of their elastic properties to
valid! distributed periodically in a host medium characte
ized by different mass density and Lame´ coefficients. With
an appropriate choice of the parameters involved one m
obtain sonic crystals with absolute frequency gaps~omnidi-
rectional sonic gaps!.

Among the various methods available for the calculat
of the elastic properties of phononic crystals, the traditio
band-structure methods mainly deal with periodic, infini
and nondissipative structures. However, in an experim
one deals with finite-size slabs and the measured quan
are, usually, the transmission and reflection coefficie
Apart from that, realistic structures are dispersive and h
losses. This limitation of traditional band-structure calcu
tions was noticed in a theoretical study of colloidal cryst
with ultrasound.4 We remember that the usual band-structu
calculation proceeds with a given wave vectork and com-
putes the eigenfrequencies within a wide frequency ra
together with the corresponding eigenmodes. On the c
trary, on-shell methods proceed differently: the frequency
fixed and one obtains the eigenmodes of the crystal for
frequency. These methods are ideal when one deals
dispersive materials~with or without losses!. Moreover, on-
shell methods are computationally more efficient than tra
tional band-structure methods.5 Psarobaset al. have recently
developed an on-shell method for phononic crystals,6 which
applies to systems which consist of nonoverlapping homo
neous spherical particles arranged periodically in a host
dium characterized by different elastic coefficients. T
method provides the complex band structure of the infin
crystal associated with a given crystallographic plane,
also the transmission, reflection, and absorption coefficie
of an elastic wave incident at any angle on a slab of
crystal, parallel to a given plane, of finite thickness.

The present work introduces the effect of viscoelastic
in a sonic band-gap material. For this purpose, a binary
tem of close-packed rubber spheres in air is chosen.
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viscoelastic response of the system is accounted for
means of the Kelvin-Voigt model,7 which is well suited for
materials and ultrasonic frequencies of major interest. T
problem of acoustic-wave scattering by a single viscoela
sphere of radiusShas been adequately addressed in the p7

according to the Kelvin-Voigt viscoelastic model. In such
case the sphere is considered to be elastic with modi
shear and compressional complex wave numbers, the im
nary parts of which represent a measure of the loss. In
ticular, for an absorbing sphere in an inviscid fluid bac
ground, the complex compressional and shear wave num
are conveniently defined as

qsl5
cl

csl

ql

A12 i @~a12b!/rscsl
2 #

,

qst5
cl

cst

ql

A12 i ~b/rscst
2 !

, ~1!

whereql5v/cl refers to the fluid environment withv being
the angular frequency andcl the respective speed of soun
The real parts of the complex Lame´ parameters of the sphere
ls5lse2 ilsv andms5mse2 imsv , combined with the den-
sity rs yield the compressional- and shear-wave speeds
spectively:

csl5A~lse12mse!/rs, cst5Amse/rs. ~2!

The imaginary parts of the Lame´ parameters are connected
the viscous lossesa12b and b of the sphere as follows
a5vlsv , b5vmsv . The problem of elastic scattering by
solid sphere in an inviscid fluid11 is described by the scatter
ing transition matrix, the elements of which, in the angu
momentum representation (l ,m) ~see the Appendix!, connect
the spherical-wave expansion coefficients6 of the scattered
field to those of the incident.

Multiple-scattering effects within planes of spheres, so
crystals, and slabs of the same are taken into account by
method described in Ref. 6. This method views the crysta
a sequence of planes of spheres parallel to a given surfa
crystallographic plane described by a two-dimensional~2D!
lattice $Rn%. The corresponding 2D reciprocal lattice we d
note by$g%. In the host region between thenth and the (n
11)th planes, a Bloch-wave solution for the displacem
field ~harmonic time dependence is assumed!, corresponding
to a given frequencyv and a given reduced wave vectorki
©2001 The American Physical Society03-1



e
tw
t,
e
c

in
s

av
o

c

fo

ve

e

iti
ns

ce
ic
2
b
th
ng
ca
c

o
o

as
f
e

sp
s-
re

s

er-

ll
stic

ted

the
the
atter-

if-

vel
uen-
vel
ant

a

al
-
of

The

in

er
sses
rent
able.

The
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within the surface Brillouin zone~SBZ! of the given surface,
can be expanded into plane waves propagating~or decaying!
to the left and to the right, as follows:

u~v;ki!5(
g

$ugn
1 exp@ i Kgl

1
•~r2An!#

1ugn
2 exp@ i Kgl

2
•~r2An!#% , ~3!

where

Kgl
65„ki1g, 6@~v/cl !

22~ki1g!2#1/2
… ~4!

andAn is a point between thenth and (n11)th planes. We
note that the separation of two successive planes of sph
need only be larger than the radii of the spheres of the
planes~see p. 86 of Ref. 8!. It should be also noted tha
although both shear and compressional modes are consid
within the spheres and enter the calculation through the s
tering transition matrix~see the Appendix!, only longitudinal
waves exist in the host~air! region @see Eq.~3!#. As a con-
sequence of that, in a binary composite of nonoverlapp
solid spheres in a fluid host, such as the one being inve
gated in this paper, there are no propagating shear w
because the solid component does not form a continu
network.

A generalized, i.e., propagating or evanescent, Blo
wave satisfies the equation

ugn11
6 5exp~ ik•a3!ugn

6 , ~5!

where a35An112An and k5„ki ,kz(v;ki)… is the Bloch
wave vector. There are infinitely many such solutions
given ki and v, corresponding to different values of thez
component,kz(v;ki), of the reduced wave vectork, but in
practice one needs to calculate only a finite number~a few
tens at most! of these generalized Bloch waves. We ha
propagating waves@for thesekz(v;ki) is real# which consti-
tute the normal modes of the infinite crystal, and evanesc
waves@for thesekz(v;ki) is imaginary# which do not repre-
sent real waves, but they are useful mathematical ent
which enter into the evaluation of the reflection and tra
mission coefficients of a wave, with the samev and ki ,
incident on a slab of the crystal parallel to the given surfa
The transmission and reflection matrices for a slab wh
consists of a stack of layers of spheres with the same
periodicity parallel to a given plane of the crystal are o
tained from the transmission and reflection matrices of
individual layers in the manner described in Ref. 6. Knowi
the transmission and reflection matrices for the slab we
readily obtain the transmission, reflection, and absorption
efficients of a plane acoustic wave incident on the slab.

The system which will be examined here is a crystal
rubber spheres in air. The physical parameters entering
calculations are taken from Ref. 7. In particular, the m
density of air israir51.2 kg/m3 and its respective speed o
soundcair5334 m/s. The rubber spheres have a mass d
sity rs51130 kg/m3, and cls51400 m/s andcts594 m/s
are the compressional and shear speeds of sound, re
tively. In addition, according to Ref. 7, three different vi
coelastic levels are considered for the rubber sphe
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namely, lossless spheres (a5b50), a low viscous level
(a low50.5 MPa, b low50.01 MPa), and a high viscou
level (ahigh55 MPa, bhigh50.1 MPa). The viscoelastic
properties used in this study are typical values for comm
cial rubbers, the variety of which is quite extensive9 and
frequency dependent at high ultrasonic frequencies.10

Before dealing with the main object of this work, it wi
be useful to state briefly certain basic features of the acou
scattering problem by a viscoelastic sphere.7 These features
will be used extensively in what follows. These are presen
in Fig. 1, obtained with an angular momentum cutoffl max
55, which yields an accuracy of better than 0.001% in
given frequency range. At first sight, one may observe
disappearance of the sharp modal resonances in the sc
ing cross section of the sphere~see the Appendix!, when
viscoelasticity is turned on. Also, there is no significant d
ference between the two viscous levels~low and high! in
scattering. On the contrary absorption~see the Appendix!
seems to be different for the two cases. The low viscous le
induces resonant absorption exactly at the resonant freq
cies of the lossless case, while the higher viscous le
washes everything out as if there were no inner reson
structure in the system.

We next consider an fcc crystal of close-packed~almost
touching! rubber spheres in air. We view the crystal as
succession of planes of spheres parallel to the~111! fcc sur-
face. Figure 2~a! shows the frequency band structure norm
to the fcc~111! plane (ki50) and the corresponding trans
mission spectrum for waves incident normally on a slab
the crystal consisting of 16 layers of lossless spheres.
results are obtained with an angular momentum cutoffl max
57 and 55g vectors~the established convergence is with
an accuracy of better than a tenth of a percent!. One ob-

FIG. 1. ~a! Normalized total scattering cross section of a rubb
sphere in air. The solid line corresponds to a sphere with no lo
and the shaded curve to a sphere with losses. The two diffe
viscous levels used here, for the sphere, are hardly distinguish
The resonance with the arrow extends twice as high.~b! Normal-
ized absorption cross section of a viscoelastic rubber sphere.
dotted~solid! line corresponds to the low~high! viscous level used
here.
3-2
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BRIEF REPORTS PHYSICAL REVIEW B 64 012303
serves, besides a large Bragg gap extending fromvS/cair
51.223 to vS/cair52.065, a number of flat bands whic
derive from the interacting sharp resonant modes locali
on the individual rubber spheres~see Fig. 1!. Because these
bands are so narrow in the present case, they are ha
observable, except that they introduce small gaps, above
below the main gap, which result from the hybridization
these flat bands with the broadbands corresponding to ne
free propagating waves. These narrow gaps are seen
clearly in the transmission spectrum@Fig. 2~b!#. Within the
main gap these flat bands manifest themselves as sharp p
in the transmission spectrum. The long-wavelength limit
represented by the linear segments of the dispersion cu
of Fig. 2~a!, the slopes of which determine the propagati
velocity of acoustic waves (c̄l51.54cair) in a corresponding
effective medium. The oscillations in the transmission co
ficient, over the allowed regions of frequency, are due
interference effects resulting from multiple reflection at t
surfaces of the slab of the crystal~Fabry-Perot-type oscilla
tions!. When losses are present in the system, there ar
true propagating waves and the band structure of the infi
lossless crystal is not of any help; therefore, the effect of
low viscous level is shown in the transmission spectr
@Fig. 2~c!#. As expected from the results of the single sphe
the sharp peaks and dips of the resonant states disappea
we obtain a ‘‘clean’’ sonic gap without any resonant mod
within it. The existence of the frequency gap means t
sound does not propagate through the crystal when its
quency lies within the gap~the intensity of the wave decay
exponentially into the crystal for these frequencies!, and if it
cannot enter into the crystal, it cannot be absorbed eit
This is shown in Fig. 3.

The close relation between absorption and transmissio
demonstrated in Fig. 3 for slabs consisting of 8 and 32~111!
planes of spheres and for normal incidence. The solid li
correspond to the lower viscous level and the shaded cu

FIG. 2. The sonic band structure at the center of the SBZ o
~111! surface of an fcc crystal of close-packed lossless rub
spheres in air~a!. The corresponding transmittance curve of a s
of 16 layers parallel to the same surface is given in~b!. In ~c! the
same transmittance curve is presented but with spheres of the
viscous level.d is the distance between successive~111! planes of
the fcc crystal under consideration.
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to the higher one. A relatively large transmission coefficie
implies that a correspondingly large fraction of sound h
gone through the slab, with a consequent higher probab
of being absorbed. However, since losses are due to the
ber spheres, absorption mainly occurs about the freque
regions where the modes of the acoustic field are mo
localized in the spheres. This explains why, outside the
regions, absorption takes place essentially about the freq
cies of the flat bands.

In Fig. 4, the projection of the frequency band structu
on the SBZ of the~111! plane of the fcc crystal along its
symmetry lines is shown. This is obtained, for a givenki , as
follows: the regions of frequency over which there are
propagating states in the infinite crystal@the corresponding

a
r

ow

FIG. 3. Absorbance and transmittance curves of slabs of
rubber sonic crystal described in Fig. 2~a! consisting of 8@~a!,~c!#
and 32 @~b!,~d!# planes of spheres, respectively. The black li
~shaded curve! corresponds to the low~high! viscous level.

FIG. 4. Projection of the frequency band structure on the SBZ
the ~111! surface of the fcc sonic crystal described in the caption
Fig. 2. The white areas show the frequency gaps in the consid
frequency region. The dashed lines map the omnidirectional
quency gap in the transmission spectrum of a slab of the cry
with losses, of finite thickness. Finally, the inset shows the SBZ
the fcc ~111! surface.
3-3
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BRIEF REPORTS PHYSICAL REVIEW B 64 012303
values of all kz(v,ki) are complex# are shown in white,
against the shaded areas which correspond to regions
which propagating states do exist@for a givenv there is at
least one solution corresponding tokz(v,ki) real#. One
clearly sees here how the resonances on spheres lead to
row hybridization gaps above and below the main gap,
flat bands in the gap regions. When losses are present
crystal under investigation exhibits an appreciable omn
rectional sonic transmission gap extending fromvS/cair
51.595 up to 1.946. Finally, we note that the results o
tained depend on the ratiol0 /S (l0 is the wavelength of the
incident sound wave! and are therefore applicable over di
ferent ranges of frequencies, provided that the viscoela
properties of the spheres do not vary significantly with t
frequency.

This work has been supported by the Institute of Comm
nication and Computer Systems~ICCS! of the National
Technical University of Athens. Support from the Univers
of Athens is also acknowledged.

APPENDIX

Applying the proper boundary conditions at the interfa
between the surrounding fluid and the sphere,11 and requiring
the continuity of the radial component of the displacem
field and the surface traction, along with the requirement t
there be no tangential component of the surface tractio
the interface, we can determine the scattering matrix wh
connects the incident with the scattered field. Here for r
sons of completeness, along the lines of the formalism es
lished in Ref. 6, the nonzero elements of theT matrix for a
solid sphere in a fluid host are

Tlm; l 8m8
LL

5
Wl

LL

Dl
d l l 8dmm8 , l ,l 8>0 , ~A1!

with zl5Sql referring to the fluid andxn5Sqsn , with n
5 l ,t to the sphere. The superscriptsLL refer to the case of
scattering in a fluid host, since incident and scattered wa
areL-type compressional waves. The 333 determinantsDl

andWl
LL are given by
*
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Dl5Ud22 d23 d24

d32 d33 d34

d42 d43 d44

U , Wl
LL5 2Ud2

L d23 d24

d3
L d33 d34

d4
L d43 d44

U ,

~A2!

where

d225zlhl
18~zl !, d235 l ~ l 11! j l~xt!,

d245xl j l8~xl !, d3250,

d335@ l ~ l 11!212xt
2/2# j l~xt!2xt j l8~xt!,

d345xl j l8~xl !2 j l~xl !,

d4252xt
2rhl

1~zl !/~2rs!, d435 l ~ l 11!@xt j l8~xt!2 j l~xt!#,

d445@ l ~ l 11!2xt
2/2# j l~xl !22xl j l8~xl !,

d2
L5zl j l8~zl !, d3

L50, d3
L52xt

2r j l~zl !/~2rs!.
~A3!

j l8 andhl
18 denote the first derivatives of the spherical Bes

and Hankel functions, respectively. TheT matrix, because of
spherical symmetry, is diagonal inl and independent ofm.

The exact form of the aboveT matrix allows us to com-
pute the normalized total scattering cross section of an ela
sphere~scattering cross section overpS2) in a fluid host,

s total5
4

zl
2 (

l 50
~2l 11!uTlm; lm

LL u2. ~A4!

In addition the normalized absorption cross section is gi
by

sabs52
4

zl
2 (

l 50
~2l 11!$uTlm; lm

LL u21Re@Tlm; lm
LL #%.

~A5!
on
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