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Viscoelastic response of sonic band-gap materials
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The effect of viscoelastic losses in a high-density contrast sonic band-gap material of close-packed rubber
spheres in air is discussed. The scattering properties of such a material are computed with an on-shell multiple-
scattering method, properties which are compared with the lossless case. The existence of an appreciable
omnidirectional gap in the transmission spectrum, when losses are present, is also reported.
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The problem of elastic-wave propagation in inhomoge-viscoelastic response of the system is accounted for by
neous media is of great importance in many branches ofeans of the Kelvin-Voigt modélwhich is well suited for
physics, mathematics, and engineering. In particular, matter®aterials and ultrasonic frequencies of major interest. The
such as the localization of classical wavaad the formation ~ problem of acoustic-wave scattering by a single viscoelastic
of spectral gaps in periodic elastic compositésave drawn  sphere of radiuS has been adequately addressed in the’ past
the attention of researchers over the last decade. In partic@ccording to the Kelvin-Voigt viscoelastic model. In such a
lar, phononic or sonic crystals are composite materials whicl§ase the sphere is considered to be elastic with modified
consist of homogeneous particlésolid or fluid inclusions —shear and compressional complex wave numbers, the imagi-
the dimensions of which are large enough in order for ahary parts of which represent a measure of the loss. In par-
macroscopic description of their elastic properties to beicular, for an absorbing sphere in an inviscid fluid back-
valid) distributed periodically in a host medium character-ground, the complex compressional and shear wave numbers
ized by different mass density and Laroeefficients. With ~ are conveniently defined as
an appropriate choice of the parameters involved one may
obtain sonic crystals with absolute frequency gépsnidi- _G q
rectional sonic gaps Gsi Csi V1—i[(a+2B)/pLc?]

Among the various methods available for the calculation
of the elastic properties of phononic crystals, the traditional c
band-structure methods mainly deal with periodic, infinite, S 1)

S . . Ost M_iin/~ o2y’
and nondissipative structures. However, in an experiment, Cst V1= (B/psCsy
one deals with finite-size slabs and the measured quantiti%

are, usually, the transmission and reflection coefficients hereq, = /¢, refers to the fluid environment with being
Apart from that, realistic structures are dispersive and havthe angular frequency ang the respective speed of sound,

L " The real parts of the complex Larparameters of the sphere
losses. This limitation of traditional band-structure CaICUIa_Rf?\se—i)\sv and o= pteg— i f1e, , combined with the den-

tions was noticed in a theoretical study of colloidal crystalsSit ield th moressional- and shear-wav ds. re-
with ultrasound’ We remember that the usual band-structure> > Ps ye. € compressional- and shear-wave sSpeeds, re
. . . spectively:

calculation proceeds with a given wave veckoand com-
putes the eigenfrequencies within a wide frequency range =V Naot 21200/ pe N B
together with the corresponding eigenmodes. On the con- Co1= V(hset 2usellpsr - Cot= Vbtsel Ps: @
trary, on-shell methods proceed differently: the frequency isThe imaginary parts of the Lanparameters are connected to
fixed and one obtains the eigenmodes of the crystal for thighe viscous lossea+28 and 3 of the sphere as follows:
frequency. These methods are ideal when one deals with=w\g,, B=wus, . The problem of elastic scattering by a
dispersive materialéwith or without losses Moreover, on-  solid sphere in an inviscid flutdis described by the scatter-
shell methods are computationally more efficient than tradiing transition matrix, the elements of which, in the angular
tional band-structure method$sarobagt al. have recently momentum representatioh, {n) (see the Appendjx connect
developed an on-shell method for phononic crystaidiich  the spherical-wave expansion coefficiénté the scattered
applies to systems which consist of nonoverlapping homogefield to those of the incident.
neous spherical particles arranged periodically in a host me- Multiple-scattering effects within planes of spheres, sonic
dium characterized by different elastic coefficients. Thecrystals, and slabs of the same are taken into account by the
method provides the complex band structure of the infinitenethod described in Ref. 6. This method views the crystal as
crystal associated with a given crystallographic plane, ané sequence of planes of spheres parallel to a given surface: a
also the transmission, reflection, and absorption coefficientsrystallographic plane described by a two-dimensid@al)
of an elastic wave incident at any angle on a slab of thdattice {R,}. The corresponding 2D reciprocal lattice we de-
crystal, parallel to a given plane, of finite thickness. note by{g}. In the host region between timh and the (

The present work introduces the effect of viscoelasticity+ 1)th planes, a Bloch-wave solution for the displacement
in a sonic band-gap material. For this purpose, a binary sydield (harmonic time dependence is assuimedrresponding
tem of close-packed rubber spheres in air is chosen. Thi a given frequency and a given reduced wave vector
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within the surface Brillouin zon€SBZ2) of the given surface,

can be expanded into plane waves propagdiimglecaying 4 B
to the left and to the right, as follows: scat 3

. 2 -

u(w;k“):g {ugexdi Kg - (r—Ap)] i

1
tugeli Ky (=AY, @ o [@)

where ‘1317,:10-3 B

Kgi=(kj+g, =[(w/c)*~(k+9)%]"?) @ a0t [

andA, is a point between thath and g+ 1)th planes. We 1x10°
note that the separation of two successive planes of sphere - (b)
need only be larger than the radii of the spheres of the twa 000 '

planes(see p. 86 of Ref. B It should be also noted that,
although both shear and compressional modes are considere
within the spheres and enter the calculation through the scat-
tering transition matrixsee the Appendijx only longitudinal

FIG. 1. (a) Normalized total scattering cross section of a rubber

- - . _ sphere in air. The solid line corresponds to a sphere with no losses
waves exist in the hoggir) region[see Eq(3)]. As a con and the shaded curve to a sphere with losses. The two different

Seﬁ(l;en(;]e of that, IfT % tr)]lnatry cohmpostl';]e of nogo.verlf’ippmt%iscous levels used here, for the sphere, are hardly distinguishable.
SOlid Spheres In a Tuid host, such as the oneé being INVeSty, o \oqynance with the arrow extends twice as highNormal-

gated in this paper, there are no propagating shear WaveRd absorption cross section of a viscoelastic rubber sphere. The

befauske the solid component does not form a Continuo%tted(soli® line corresponds to the lowhigh) viscous level used
network.

he
A generalized, i.e., propagating or evanescent, Bloch

wave salishies the equation namely, lossless spheresv€£ 3=0), a low viscous level

* (5) (a10w=0.5 MPa, B),,w=0.01 MPa), and a high viscogs
o level (anigh=5 MPa, Bhigh=0.1 MPa). The viscoelastic
where ag=A,,1— A, and k= (k| ,k,(w;k)) is the Bloch  properties used in this study are typical values for commer-
wave vector. There are infinitely many such solutions forcial rubbers, the variety of which is quite extensiand
given k; and », corresponding to different values of tze frequency dependent at high ultrasonic frequentdes.
componentk,(w;k;), of the reduced wave vectdr, but in Before dealing with the main object of this work, it will
practice one needs to calculate only a finite numisefew  be useful to state briefly certain basic features of the acoustic
tens at mostof these generalized Bloch waves. We havescattering problem by a viscoelastic spheféhese features
propagating wavefor thesek,(w;k|) is real which consti-  will be used extensively in what follows. These are presented
tute the normal modes of the infinite crystal, and evanescerih Fig. 1, obtained with an angular momentum cutff,,
waves|for thesek,(w;k|) is imaginary which do not repre- =5, which yields an accuracy of better than 0.001% in the
sent real waves, but they are useful mathematical entitiegiven frequency range. At first sight, one may observe the
which enter into the evaluation of the reflection and trans-disappearance of the sharp modal resonances in the scatter-
mission coefficients of a wave, with the sameand k|, ing cross section of the sphefeee the Appendjx when
incident on a slab of the crystal parallel to the given surfaceviscoelasticity is turned on. Also, there is no significant dif-
The transmission and reflection matrices for a slab whicHerence between the two viscous levélsw and high in
consists of a stack of layers of spheres with the same 2Bcattering. On the contrary absorpti¢see the Appendix
periodicity parallel to a given plane of the crystal are ob-seems to be different for the two cases. The low viscous level
tained from the transmission and reflection matrices of thénduces resonant absorption exactly at the resonant frequen-
individual layers in the manner described in Ref. 6. Knowingcies of the lossless case, while the higher viscous level
the transmission and reflection matrices for the slab we cawashes everything out as if there were no inner resonant
readily obtain the transmission, reflection, and absorption costructure in the system.
efficients of a plane acoustic wave incident on the slab. We next consider an fcc crystal of close-pacKatinost

The system which will be examined here is a crystal oftouching rubber spheres in air. We view the crystal as a
rubber spheres in air. The physical parameters entering owuccession of planes of spheres parallel to(iHel) fcc sur-
calculations are taken from Ref. 7. In particular, the masgace. Figure £a) shows the frequency band structure normal
density of air isp,;,=1.2 kg/n? and its respective speed of to the fcc(111) plane k =0) and the corresponding trans-
soundc,;,; =334 m/s. The rubber spheres have a mass denwission spectrum for waves incident normally on a slab of
sity ps=1130 kg/mi, and c,s=1400 m/s ancc,s=94 m/s the crystal consisting of 16 layers of lossless spheres. The
are the compressional and shear speeds of sound, respeesults are obtained with an angular momentum cutgff,
tively. In addition, according to Ref. 7, three different vis- =7 and 55g vectors(the established convergence is within
coelastic levels are considered for the rubber spheresn accuracy of better than a tenth of a perce®ne ob-

+ .
Ugn+ 1= EXPIK-a3)u
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FIG. 2. The sonic band structure at the center of the SBZ of a FIG. 3. Absorb dt it f slabs of th
(111) surface of an fcc crystal of close-packed lossless rubber bb T sort alm(;:e ar_lb dr?‘”SF”.“ tance gutry es (f) stabs ot the
spheres in aifa). The corresponding transmittance curve of a slap"PPET Sonic crystal described In igaP consisting of §(a).(c)]

of 16 layers parallel to the same surface is giveribn In (c) the and 32[(b),(d)] planes of spheres, r(_espec_tively. The black line
same transmittance curve is presented but with spheres of the IO\(ﬁhadEd curvecorresponds to the loghigh) viscous level.

viscous leveld is the distance between successi¥&1) planes of ) ] o o
the fce crystal under consideration. to the higher one. A relatively large transmission coefficient

implies that a correspondingly large fraction of sound has
serves, besides a large Bragg gap extending feefic,;;  gone through the slab, with a consequent higher probability
=1.223 to wS/c,;,=2.065, a number of flat bands which of being absorbed. However, since losses are due to the rub-
derive from the interacting sharp resonant modes localize@er spheres, absorption mainly occurs about the frequency
on the individual rubber spherésee Fig. 1 Because these regions where the modes of the acoustic field are mostly
bands are so narrow in the present case, they are hardiycalized in the spheres. This explains why, outside the gap
observable, except that they introduce small gaps, above anggions, absorption takes place essentially about the frequen-
below the main gap, which result from the hybridization of cies of the flat bands.
these flat bands with the broadbands corresponding to nearly |n Fig. 4, the projection of the frequency band structure
free propagating waves. These narrow gaps are seen mog@ the SBZ of the(111) plane of the fcc crystal along its
clearly in the transmission spectruig. 2(b)]. Within the  symmetry lines is shown. This is obtained, for a gikgn as
main gap these flat bands manifest themselves as sharp peakows: the regions of frequency over which there are no

in the transmission spectrum. The long-wavelength limit iSpropagating states in the infinite crysféihe corresponding
represented by the linear segments of the dispersion curves

of Fig. 2a), the slopes of which determine the propagation o Slc

velocity of acoustic wavesc(=1.54c,;,) in a corresponding a
effective medium. The oscillations in the transmission coef- 25 = —
ficient, over the allowed regions of frequency, are due to L
interference effects resulting from multiple reflection at the 20 L =
surfaces of the slab of the crystd@abry-Perot-type oscilla- '
tions). When losses are present in the system, there are n L .
true propagating waves and the band structure of the infinite 15 = ]
lossless crystal is not of any help; therefore, the effect of the B i
low viscous level is shown in the transmission spectrum 1.0 = =
[Fig. 2(c)]. As expected from the results of the single sphere, -
the sharp peaks and dips of the resonant states disappeara g5 L
we obtain a “clean” sonic gap without any resonant modes
within it. The existence of the frequency gap means that 0.0
sound does not propagate through the crystal when its fre U= = . T
quency lies within the gafthe intensity of the wave decays r K M
exponentially into the crystal for these frequengjesd if it FIG. 4. Projection of the frequency band structure on the SBZ of
cannot enter into the crystal, it cannot be absorbed eithethe (111) surface of the fcc sonic crystal described in the caption of
This is shown in Fig. 3. Fig. 2. The white areas show the frequency gaps in the considered
The close relation between absorption and transmission igequency region. The dashed lines map the omnidirectional fre-
demonstrated in Fig. 3 for slabs consisting of 8 andB2l)  quency gap in the transmission spectrum of a slab of the crystal,
planes of spheres and for normal incidence. The solid linewith losses, of finite thickness. Finally, the inset shows the SBZ of
correspond to the lower viscous level and the shaded curvase fcc(111) surface.
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values of allk,(w,k|) are complex are shown in white, dy, dyz dyy d'g dyz dyy
against the shaded areas which correspond to regions over _ dus dus d L b des d

which propagating states do ex[$or a givenw there is at Dj=|0s2 O3 Cagf, W= —|0s O3z Caa,
least one solution corresponding tg(w,k)) reall. One dap dgz dag di duz dus
clearly sees here how the resonances on spheres lead to nar- (A2)

row hybridization gaps above and below the main gap, and
flat bands in the gap regions. When losses are present, ti§1€re
crystal under investigation exhibits an appreciable omnidi- . )
rectional sonic transmission gap extending fran®/c,;, do=2hy"(z)),  das=1(1+1)ji(x0),
=1.595 up to 1.946. Finally, we note that the results ob-
tained depend on the rathq, /S (A is the wavelength of the dos=Xj{ (%)), dg=0,
incident sound waveand are therefore applicable over dif-
ferent ranges of frequencies, provided fcha_t_the viSC(_)eIastic das=T1(l +1)_1_Xt2/2]j|(xt)_thl,(Xt)l
properties of the spheres do not vary significantly with the
frequency. da=Xii{ (X))~ 11(%),

This work has been supported by the Institute of Commu-
nicatio_n and_ Computer System$CCS) of the Nati_onal_ da=—X2ph; (2)/(2ps), das=1(1+D)[ x| (x)—i1(x0)],
Technical University of Athens. Support from the University
of Athens is also acknowledged. daa=[1(1+ 1) = x2/21],(x) — 2%, (X)),

APPEND ds=z(z), d5=0, di=—xpji(2)/(2py).

Applying the proper boundary conditions at the interface (A3)
between the surrounding fluid and the sphérand requiring , n i o ,
the continuity of the radial component of the displacementi @ndh;"" denote the first derivatives of the spherical Bessel
field and the surface traction, along with the requirement tha@nd Hankel functions, respectively. Thematrix, because of
there be no tangential component of the surface traction &Pherical symmetry, is diagonal irand independent af.
the interface, we can determine the scattering matrix which The exact form of the abové matrix allows us to com-
connects the incident with the scattered field. Here for reaPute the normalized total scattering cross section of an elastic
sons of completeness, along the lines of the formalism estal§Phere(scattering cross section overS?) in a fluid host,
lished in Ref. 6, the nonzero elements of thenatrix for a

solid sphere in a fluid host are 4
Tiota= =5 2 (21+ )| Thml (A4)
Wll_L z; =0
T:_rrl;;l’m’:D_lgll"smm” |,|’>O , (Al)

In addition the normalized absorption cross section is given

b
with z,=Sq referring to the fluid andx,=Sq;,, with v y

=|,t to the sphere. The superscrifitk refer to the case of 4

scattering in a fluid host, since incident and sca_ttered waves ;. o—_ - 2 (21 + 1){|T|Lr#;|m|2+ RG[T:_rrI;;Im]}-
areL-type compressional waves. Thex3 determinant®, zo 1=

andW" are given by (A5)
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