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O(n) quantum rotors close ton=2 andd=1
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We investigate the role of topological defects in the zero-temperature transitiomie@mponent quantum
rotor with ferromagnetic interaction ondadimensional lattice close t0=1,n=2. The topological defects in
the present problem are identified with higher-dimensional classical defects arising in the imaginary time
classical action of the quantum rotor. In the same spirit as in Cardy and HdRlmes. Rev. Lett45, 499
(1980], we use the analyticity of the renormalization-group equations. In ¢he)(plane, there is a line
passing through (1,2) across which the critical exponents are nonanalytic. As expected delebr 1)
correspondence is seen between the quantum and equivalent classical transitions.
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Long ago, Cardy and Hambediscussed the critical be- n-component quantum rotorévith ferromagnetic interac-
havior of the classicat-vector model ird spatial dimensions tion) close to the special poirt=1, n=2 that corresponds
in the vicinity of the speciatl=n=2, which corresponds to to the quantum Kosterlitz-Thouless transitiofihe topologi-
the Kosterlitz-Thoules$KT) transitiorf point. The physical cal defects in the present problem can be visualized by writ-
interpretation of defects is ambiguous whemd) #(2,2),  ing the quantum rotor Hamiltonian in the imaginary time
but they argued that it is connected with the compactness gfath-integral formalism and they clearly correspond to
the O(n) space. Cardy and Hamber assumed the analyticithigher-dimensional classical defects. We employ similar ar-
of the renormalization-group equationsrirandd and their  guments as in Ref. 1 to investigate the role of these topologi-
analysis suggests that there exists a line in @) plane  cal defects on the transition behavior of quantum rotors. We
[d=dc(n)] that passes through the point,{)=(2,2) and  assume the analyticity of renormalization-gro(®G) equa-
has the following property: fon>2, d>2, the topological tions inn andd and using the corresponding RG equations
defects play a crucial role in determining the nature of thewe locate the boundary in the(d) plane across which the
phase transition id=d.(n), and they are unimportant for exponents are nonanalytic and topological defects dominate.
d<d.(n). The calculations predict the slope of the lide The RG equations in the classical casee simply the
=dc(n) near (1,d)=(2,2) to be 4#2. Later, Kohringet al,’>  extension of Kosterlitz equatiohén d=2+ € andn=2+ 6
numerically investigated the role of vortex strings in theand reduce to the RG equations for the classical nonlinear-
order-disorder transition of a three-dimensiort@D) XY  sigma model (CNk)® when topological defects are ne-
model and concluded that the vortex strings are responsiblglected whereas far=2, they reduce to the RG equations of
for the phase transition. They also studied the phase structutge XY model ind= 2+ e dimensions® The analysis of the
for a generalized planar model with vortex suppression thafixed-point structure as discussed already, clearly indicates a
has the unusual feature of long-range order in a ground stategion where topological defects are dominant.
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with finite, disordering entropy. The prediction of Cardy and  To develop the similar renormalization-group equations in
Hamber implies that the point corresponding to tli2 @as-  the quantum case, let us look at the quantum rotor Hamil-
sical Heisenberg systems in timed plane (i.e., d=n=3)  tonian in the quantum nonlinear-sigma-model (QNLap-

lies in the region where topological defects are important angroach. The effective imaginary time Euclidean action of a
thus defects should explicitly be taken into considerationd-dimensional QNlr model at a finite temperatufis writ-
when describing the critical behavior of the 3D Heisenbergen ag!

model. The real-space renormalization-group calculations

on the O(n) model for 1<n<2 and 1<d<?2 support the 0 ~ 2
prediction of Cardy and Hamber regarding the importance of %f: &fﬁthf ddx i n(x,7)

defects in then=d=3 case. Lau and Dasguptaumerically o 2h ), c2| a7 ’
explored the role of topological point defects, namely, (h)
hedgehogs in the critical behavior in the above case and

found out that configurations containing defect pairs are necyjth |n(x,7)|2=1. Here,n(x,7) is the n-component vector
essary for the transition from the ferromagnetic to the paragger-parameter fieldp? is the bare stiffnessg, the bare
magnetic phase. The 5,“9965&6!“5 that the singular defects  gpin \wave velocity, and the spatial integrals have a short-
are not properly taken into consideration i©&3) nonlinear gjistance cutoffs ~*. The renormalization-group equations to
sigma model and hence exponents obtained from an extrapgs one-loop order are given as

lation of the e expansion do not agree well with those ob-

tained from the series results. dg K g

In this paper, we study the role of topological defects in 29 oy d 2 2
the quantum phase transitfch of d-dimensional, ar ~(1-dg+(n=2)7°g cotl-( Zt)’ @
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dt Kqg g d andn. The resultant RG equations thus obtained for quan-
a:(z—d)t+(n—2)7gtcotl-<2—t), (3)  tum rotors ind=1+€ andn=2+ 4 are
wheret=(kgTA%"2)/p° andg,=(AcA% 1)/p2 are dimen- dg_ _ 3.2
sionless temperature ;nd coupling scaleseirsisl the length dl €gt(n=2)i(g)+4my", ™
rescaling facto 5 *=29"17921(d/2). We shall now ana-
lyze these RG flow Eqg2) and(3) in d=1+ €. Clearly Eq. dy ™ g
(2) then suggests that there is a quantum critical poirk at dl \“ g y (8)

=0 atg.=(2/Ky)(d—1)/(n—2); but ford=1+¢, the RG . . ,
Eq. (3) shows that thermal fluctuations will grow and the These equations readlly' reduce to the RG equations of quan-
system will eventually flow to the infinite temperature fixed UM KT for n=2 and yield the QNkr-model results Eq.

. _ 2 _ .
point and thus one does not expect a thermal critical behay®] With f(9)=g%/(27) wheny=0, as discussed already.
ior. We shall henceforth look at the quantum critical behav-L€t US now explore the fixed-point structure of the above RG

ior in d=1+¢ and employ the flow equation for the cou- equations. The fixed points and the corresponding eigenval-
pling given as ues are fixed-point I:

_ flge) €
dg (n=2) , 9¢) _ . y*=0
m—_ég'f' 2 g, (4) Jc n—-2
with g.=2mel/(n—2), which separates the quantum ferro- N=—et(n=2)F"(ge)+- - -,

magnetic phase from the quantum paramagnetic state. Com-
paring with RG flow equations of the CNLmodel®2 one
finds that Eq.(4) really corresponds to a classical thermal
phase transition inl+ 1 dimensions. . )
It is clear thatg.=0 for d=1 and it is undetermined for fixed-point II:
d=1 andn=2, when the system undergoes a quantum KT
transition’ The continuum spin-wave theory discussed above g= K +0(e)
does not take into consideration the local topological defects 2 ’
[i.e., the vortices in the equivalent two-dimensioriaD)
classical picturgthat arise due to the lattice and thus fails to , A ) € T
capture the essential physics of the KT transition. The quan- y'=T570(€), A=—+(2- n)f(E)’
. - . . 4
tum rotor model withd=1 andn=1 in the naive continuum
limit is described by a massless theory that yields a power- (
I

2
N =4——+0(e).
Je

12
+0(e),

8A

law behavior of equal-time correlation functions. But the
continuum limit as already discussed does not take into con-
sideration tunneling events or the vortid@s the 2D classi-
cal picturg and the lattice Hamiltonian allows fors2 vorti- N = _(_A
ces. Considering these local defects, the quantum rotor e
Hamiltonian is described by a sine-Gordon action in the
presence of a cos) potential whereg is the dual field. Let us now assume théfg)/g is a monotonic function of
The corresponding action takes the same form as(Ex. 0. Fore<O (i.e.,d<<1) andn<2 neither of the fixed points
with an additional topological terny cos(2p). The corre- is stable and as expected from the Mermin-Wagner
sponding renormalization-group equations are writtéh as  theorem® no transition occurs. Fon<2, only the fixed-
point Il is real and this determines the nature of the transition
dy (2 W)y so that we find that the transition is topological fox 2. For

12
+0O(e).

) n>2 if A happens to be negative, Il is unphysical and the
critical behavior determined by fixed-point | is not of a to-
dg pological nature. This is the region where the QNmodel
—=—Ay?, (6)  results seem to hold true. For>2 andA >0, both the fixed
points are real, but | is an unstable one and Il determines the
whereg is the coupling as discussed in the QiNmodel and critical behavior, which is once again topological in nature.
y is the topological term that can be identified with the fugac-In this region, the QNkr-model predictions are not valid;
ity field of the vortices in the equivalent®2classical picture. rather one has to take into consideration the topological na-
Clearly Egs.(5) and (6) exhibit a quantum KT transition ture of transition. AtA=0, the fixed points coincide so that
from a gaplesgpower-law equal-time correlation behavior A/ and\| become marginal ang,=\,, . Across the bound-
to a gapped phagexponential equal-time correlation behav- ary, A=0; the exponents are continuous but nonanalytic.
ior) atg=#/2 andy=0. One can obtain the initial slope of this boundary. In general
In the same spirit as Cardy and Hamber, we shall nowt will be a curve in then-d plane as shown in Fig. 1. For
assume the analyticity of the RG equations written above il=1 andn<2 the leading and subdominant eigenvalues (
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which is rational for integen between—2 and +2 and
incorporates the branch point. Once again the conjecture is
that the exponent™'=4x/(1+x) (wherev is the correla-
tion length exponent related to the quantum transjtiso
that we obtain the exact exponert1 forn=1,d=1 (Ref.
8 andv=13 for n=—2 (quantum Gaussian transitjon

It is readily seen that th®(3) model ind=2 falls in the
| i region of Il, where topological effects are dominant, so the
| results for the QNI model ford=1+ e should not be ex-
| trapolated toe=1. One should also note that the boundary
| originates an=1 andd=0, since the lower critical dimen-

i

Component n
[ 53

0 1 5 sion of the quantum Ising model is 0 and it has a transition
whend= e. Similarly for 1<n<2, the lower critical dimen-
dimension d sion is between €d<1 and the transition is topological as

seen in Fig. 1. Fon<1, A’ is no longer a next-to-leading
FIG. 1. The schematic diagram of different regions in thd  ejgenvalue and thus the transition is not topological. As ex-

plane. In region |, results obtained from nonlinear-sigma-model calpected the phase boundary in thel plane is in agreement
cu_Iations are in good agreem_e_nt, in region I_I topological defectsyjith the standardl— (d+ 1) scenario.
drlve_t_he quantum phase transition, and in region Il quantum phase  gjmilar questions may be addressed regarding the finite
transitions are forbidden. temperature transition in these quantum models. The finite

temperature transition is essentiallg-@limensional classical
and\[1) correspond to different branches of the same anaffinite temperaturgtransition since critical fluctuations are
lytic function with a square-root branch pointdt1 and classical’® Thus we expect in the finite temperature transi-
n=2. One can similarly extend the classical Cardy-Hambetion that low-dimensional topological defects will come into
conjecture using an exact form of eigenvalues that can bplay and the classical picture of Cardy and Hamhvei be
described in terms of the quantity= (2/7)cos {(2+n)*?],  valid.
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