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O„n… quantum rotors close tonÄ2 and dÄ1
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We investigate the role of topological defects in the zero-temperature transition in ann-component quantum
rotor with ferromagnetic interaction on ad-dimensional lattice close tod51,n52. The topological defects in
the present problem are identified with higher-dimensional classical defects arising in the imaginary time
classical action of the quantum rotor. In the same spirit as in Cardy and Hamber@Phys. Rev. Lett.45, 499
~1980!#, we use the analyticity of the renormalization-group equations. In the (d,n) plane, there is a line
passing through (1,2) across which the critical exponents are nonanalytic. As expected a cleard→(d11)
correspondence is seen between the quantum and equivalent classical transitions.
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Long ago, Cardy and Hamber1 discussed the critical be
havior of the classicaln-vector model ind spatial dimensions
in the vicinity of the speciald5n52, which corresponds to
the Kosterlitz-Thouless~KT! transition2 point. The physical
interpretation of defects is ambiguous when (n,d)Þ(2,2),
but they argued that it is connected with the compactnes
the O(n) space. Cardy and Hamber assumed the analyti
of the renormalization-group equations inn andd and their
analysis suggests that there exists a line in the (d,n) plane
@d5dc(n)# that passes through the point (n,d)5(2,2) and
has the following property: forn.2, d.2, the topological
defects play a crucial role in determining the nature of
phase transition ifd>dc(n), and they are unimportant fo
d,dc(n). The calculations predict the slope of the lined
5dc(n) near (n,d)5(2,2) to be 4/p2. Later, Kohringet al.,3

numerically investigated the role of vortex strings in t
order-disorder transition of a three-dimensional~3D! XY
model and concluded that the vortex strings are respons
for the phase transition. They also studied the phase struc
for a generalized planar model with vortex suppression
has the unusual feature of long-range order in a ground s
with finite, disordering entropy. The prediction of Cardy a
Hamber implies that the point corresponding to the 3D clas-
sical Heisenberg systems in then-d plane ~i.e., d5n53)
lies in the region where topological defects are important
thus defects should explicitly be taken into considerat
when describing the critical behavior of the 3D Heisenb
model. The real-space renormalization-group calculatio4

on theO(n) model for 1,n,2 and 1,d,2 support the
prediction of Cardy and Hamber regarding the importance
defects in then5d53 case. Lau and Dasgupta5 numerically
explored the role of topological point defects, name
hedgehogs in the critical behavior in the above case
found out that configurations containing defect pairs are n
essary for the transition from the ferromagnetic to the pa
magnetic phase. The suggestion1,6 is that the singular defect
are not properly taken into consideration in aO(3) nonlinear
sigma model and hence exponents obtained from an extr
lation of thee expansion do not agree well with those o
tained from the series results.

In this paper, we study the role of topological defects
the quantum phase transition7,8 of d-dimensional,
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n-component quantum rotors~with ferromagnetic interac-
tion! close to the special pointd51, n52 that corresponds
to the quantum Kosterlitz-Thouless transition.7 The topologi-
cal defects in the present problem can be visualized by w
ing the quantum rotor Hamiltonian in the imaginary tim
path-integral formalism and they clearly correspond
higher-dimensional classical defects. We employ similar
guments as in Ref. 1 to investigate the role of these topolo
cal defects on the transition behavior of quantum rotors.
assume the analyticity of renormalization-group~RG! equa-
tions in n and d and using the corresponding RG equatio
we locate the boundary in the (n,d) plane across which the
exponents are nonanalytic and topological defects domin

The RG equations in the classical case1 are simply the
extension of Kosterlitz equations2 in d521e andn521d
and reduce to the RG equations for the classical nonlin
sigma model (CNLs)9 when topological defects are ne
glected whereas forn52, they reduce to the RG equations
the XY model ind521e dimensions.10 The analysis of the
fixed-point structure as discussed already, clearly indicat
region where topological defects are dominant.

To develop the similar renormalization-group equations
the quantum case, let us look at the quantum rotor Ham
tonian in the quantum nonlinear-sigma-model (QNLs) ap-
proach. The effective imaginary time Euclidean action o
d-dimensional QNLs model at a finite temperatureT is writ-
ten as11
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dtE ddxFU¹n̂~x,t!U2

1
1

co
2Un̂~x,t!

]t
U2G ,

~1!

with un̂(x,t)u251. Here,n̂(x,t) is the n-component vector
order-parameter field,rs

o is the bare stiffness,co the bare
spin-wave velocity, and the spatial integrals have a sh
distance cutoffL21. The renormalization-group equations
the one-loop order are given as

dg

dl
5~12d!g1~n22!

Kd

2
g2 cothS g

2t D , ~2!
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dt

dl
5~22d!t1~n22!

Kd

2
gt cothS g

2t D , ~3!

where t5(kBTLd22)/rs
o and go5(\cLd21)/rs

o are dimen-
sionless temperature and coupling scales andel is the length
rescaling factorKd

2152d21pd/2G(d/2). We shall now ana-
lyze these RG flow Eqs.~2! and~3! in d511e. Clearly Eq.
~2! then suggests that there is a quantum critical point aT
50 at gc5(2/Kd)(d21)/(n22); but for d511e, the RG
Eq. ~3! shows that thermal fluctuations will grow and th
system will eventually flow to the infinite temperature fixe
point and thus one does not expect a thermal critical beh
ior. We shall henceforth look at the quantum critical beha
ior in d511e and employ the flow equation for the cou
pling given as

dg

dl
52eg1

~n22!

2p
g2, ~4!

with gc52pe/(n22), which separates the quantum ferr
magnetic phase from the quantum paramagnetic state. C
paring with RG flow equations of the CNLs model,9,12 one
finds that Eq.~4! really corresponds to a classical therm
phase transition ind11 dimensions.

It is clear thatgc50 for d51 and it is undetermined fo
d51 andn52, when the system undergoes a quantum
transition.7 The continuum spin-wave theory discussed abo
does not take into consideration the local topological defe
@i.e., the vortices in the equivalent two-dimensional~2D!
classical picture# that arise due to the lattice and thus fails
capture the essential physics of the KT transition. The qu
tum rotor model withd51 andn51 in the naive continuum
limit is described by a massless theory that yields a pow
law behavior of equal-time correlation functions. But t
continuum limit as already discussed does not take into c
sideration tunneling events or the vortices~in the 2D classi-
cal picture! and the lattice Hamiltonian allows for 2p vorti-
ces. Considering these local defects, the quantum r
Hamiltonian is described by a sine-Gordon action in
presence of a cos(2f) potential wheref is the dual field.7

The corresponding action takes the same form as Eq.~1!
with an additional topological termy cos(2f). The corre-
sponding renormalization-group equations are written as7

dy

dl
5S 22

p

g D y, ~5!

dg

dl
52Ay2, ~6!

whereg is the coupling as discussed in the QNLs model and
y is the topological term that can be identified with the fuga
ity field of the vortices in the equivalent 2D classical picture.
Clearly Eqs.~5! and ~6! exhibit a quantum KT transition
from a gapless~power-law equal-time correlation behavio!
to a gapped phase~exponential equal-time correlation beha
ior! at g5p/2 andy50.

In the same spirit as Cardy and Hamber, we shall n
assume the analyticity of the RG equations written above
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d andn. The resultant RG equations thus obtained for qu
tum rotors ind511e andn521d are

dg

dl
52eg1~n22! f ~g!14p3y2, ~7!

dy

dl
5S 22

p

g D y. ~8!

These equations readily reduce to the RG equations of q
tum KT for n52 and yield the QNLs-model results@Eq.
~4!# with f (g)5g2/(2p) when y50, as discussed already
Let us now explore the fixed-point structure of the above R
equations. The fixed points and the corresponding eigen
ues are fixed-point I:

f ~gc!

gc
5

e

n22
; y* 50,

l I52e1~n22! f 8~gc!1•••,

l I8542
2p

gc
1O~e!.

fixed-point II:

g5
p

2
1O~e!,

y25
D

4p3
1O~e2!, D5

ep

2
1~22n! f S p

2 D ,

l II 5S 8D

p D 1/2

1O~e!,

l II8 52S 8D

p D 1/2

1O~e!.

Let us now assume thatf (g)/g is a monotonic function of
g. For e,0 ~i.e., d,1) andn,2 neither of the fixed points
is stable and as expected from the Mermin-Wag
theorem12 no transition occurs. Forn,2, only the fixed-
point II is real and this determines the nature of the transit
so that we find that the transition is topological forn,2. For
n.2 if D happens to be negative, II is unphysical and t
critical behavior determined by fixed-point I is not of a t
pological nature. This is the region where the QNLs-model
results seem to hold true. Forn.2 andD.0, both the fixed
points are real, but I is an unstable one and II determines
critical behavior, which is once again topological in natu
In this region, the QNLs-model predictions are not valid
rather one has to take into consideration the topological
ture of transition. AtD50, the fixed points coincide so tha
l I8 andl II8 become marginal andl I5l II . Across the bound-
ary, D50; the exponents are continuous but nonanaly
One can obtain the initial slope of this boundary. In gene
it will be a curve in then-d plane as shown in Fig. 1. Fo
d51 andn<2 the leading and subdominant eigenvaluesl I
1-2
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andl I8I ) correspond to different branches of the same a
lytic function with a square-root branch point atd51 and
n52. One can similarly extend the classical Cardy-Ham
conjecture using an exact form of eigenvalues that can
described in terms of the quantityx5(2/p)cos21@(21n)1/2#,

FIG. 1. The schematic diagram of different regions in then-d
plane. In region I, results obtained from nonlinear-sigma-model
culations are in good agreement, in region II topological defe
drive the quantum phase transition, and in region III quantum ph
transitions are forbidden.
m

01210
-

r
e

which is rational for integern between22 and 12 and
incorporates the branch point. Once again the conjectur
that the exponentn2154x/(11x) ~wheren is the correla-
tion length exponent related to the quantum transition! so
that we obtain the exact exponentn51 for n51,d51 ~Ref.
8 andn5 1

2 for n522 ~quantum Gaussian transition!.
It is readily seen that theO(3) model ind52 falls in the

region of II, where topological effects are dominant, so
results for the QNLs model ford511e should not be ex-
trapolated toe51. One should also note that the bounda
originates atn51 andd50, since the lower critical dimen
sion of the quantum Ising model is 0 and it has a transit
whend5e. Similarly for 1,n,2, the lower critical dimen-
sion is between 0,d,1 and the transition is topological a
seen in Fig. 1. Forn<1, l8 is no longer a next-to-leading
eigenvalue and thus the transition is not topological. As
pected the phase boundary in then-d plane is in agreemen
with the standardd→(d11) scenario.

Similar questions may be addressed regarding the fi
temperature transition in these quantum models. The fi
temperature transition is essentially ad-dimensional classica
~finite temperature! transition since critical fluctuations ar
classical.7,8 Thus we expect in the finite temperature tran
tion that low-dimensional topological defects will come in
play and the classical picture of Cardy and Hamber1 will be
valid.
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