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Application of reduced Rayleigh equations to electromagnetic wave scattering by two-dimensiona
randomly rough surfaces
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The small perturbation method has been extensively used for wave scattering by rough surfaces. The
standard method developed by Rice is difficult to apply when we consider second and third orders of scattered
fields as functions of the surface height. Calculations can be greatly simplified with the use of reduced
Rayleigh equations, because one of the unknown fields can be eliminated. We derive a set of four reduced
equations for the scattering amplitudes, which are applied to cases of a rough conducting surface, and to a slab
where one of the boundaries is a rough surface. As in the one-dimensional case, numerical simulations show
the appearance of enhanced backscattering for these structures.
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I. INTRODUCTION

The scattering of electromagnetic waves from a rou
surface has been studied in different domains such as ra
physics, geophysical remote sensing, ocean acoustics,
surface optics.1–11 One of the earliest theories used is t
small perturbation method~SPM! originally developed by
Rice.12 This theory still remains of interest,11,13,14 because
perturbative terms of orders higher than 1 can produce
hanced backscattering, or improve prediction accuracy in
emission model. Although the Rice method can be used
principle to determine all orders in the perturbative devel
ment, very few works use terms of order higher than 1 fo
two-dimensional surface due to the calculational complex
The second order was written in a compact form
Voronovich15 in his work on the small-slope approximatio
and only recently was the third order presented.13 However,
there exists a different way to obtain the SPM which da
back from the work of Brownet al.16 Using both the Ray-
leigh hypothesis and the extinction theorem, they obtained
integral equation, called the reduced Rayleigh equat
which involves only the incident and scattered fields alo
In their method the field transmitted through the surface
eliminated in such a way that the scattered field become
function of the incident field only. This reduced equati
was extensively used by Maradudin and co-workers to st
localization effects by a conducting surface,17–19 coherent
effects in reflection factor,20 and scattering by one
dimensional21 and two-dimensional conducting surface.22 It
should be noted that the third-order perturbation term w
already explicited in the work of Ref. 22.

In recent years, similar studies were made in the cas
thin films bounded by a rough surface,11,23 but only in the
one-dimensional case.24 In order to calculate the two
dimensional case it becomes necessary to derive an e
sion of the reduced Rayleigh equation for this system. In
present paper, we first study a surface where down- and
going fields exist both on the upper and lower sides of
film. We show the existence of four equations, that we a
call reduced Rayleigh equations, which have the prope
0163-1829/2001/63~24!/245411~20!/$20.00 63 2454
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that one of the down- or up-going fields is eliminated. W
these equations, we rediscover the equation obtained
Brown et al.16 for one rough surface, and derive the corr
sponding ones for a slab where one of the boundaries
rough surface. Next a perturbative development, up to th
order, is obtained in a compact matrix form for these tw
systems. This third-order term is mandatory if we need
expression for the cross section up to the fourth-order
proximation. As in the one-dimensional case, the results
the incoherent cross section show a well-defined peak in
retroreflection direction.

In the case of small-roughness metallic surfaces, this p
was originally explained by the infinite perturbatio
theory,17–19and further developments21 showed that the ma
jor contribution to the enhanced backscattering peak co
from the second-order term in the field perturbation. Ho
ever, in the one-dimensional case the enhanced backsca
ing for a rough surface, appears only for a~TM! incident
wave due to the fact that plasmon polaritons only exist
this polarization. In the two-dimensional case, due to
existence of cross polarization, we will show that an incide
TE wave can excite a TM plasmon mode which can tra
form into a TE or TM volume electromagnetic wave. Th
the enhanced backscattering is present independently o
polarization of the incident and scattered waves. For a ro
dielectric film bounded by a conducting plane, enhanc
backscattering is present for both TE and TM incide
waves, even in the one-dimensional case, because gu
waves exist for these two polarizations. The qualitative eff
of the two-dimensional surface is particularly sensitive wh
we study thin films. For instance, in the one-dimensio
case, satellite peaks11,23 appear on each side of the enhanc
backscattering peaks; however, in the two-dimensional c
the coupling between TE and TM modes drastically atte
ates these peaks.

The paper is organized as follows. In Sec. II, we der
the four reduced Rayleigh equations. In Sec. III, we int
duce the diffusion matrix. In Sec. IV, we determine the p
turbative development up to the third-order term in the s
face height, for a rough surface alone, and for slab with
rough surface located at one of the boundaries. In Sec. V
©2001 The American Physical Society11-1
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introduce the Mueller matrix, and the definition of the stat
tical parameters for the rough surface. We then obtain
bistatic matrix in terms of a perturbative development. N
merical examples which show the enhanced backscatte
are presented in Sec. VI. Conclusions drawn from the res
of our calculations, are discussed in Sec. VII.

II. DERIVATION OF THE REDUCED RAYLEIGH
EQUATION

The reduced Rayleigh equation was obtained for a tw
dimensional surface by Brownet al.16 using the extinction
theorem and the Rayleigh hypothesis. It allows one to ca
late the scattered field from the rough surface. Now, if
want to compute the transmitted field from a rough surfa
we have to introduce another reduced Rayleigh equation
rived by Greffet.25 However, these two equations were esta
lished in the case where there is no up-going field inside
medium; thus they cannot be used to obtain the field s
tered by a slab with a rough surface on its upper side. In f
to generalize these equations to a slab, we have to con
all the fields shown in Fig. 1. We will prove that there ex
four reduced Rayleigh equations, which involve only three
the participating fieldsE 02, E 01, E 12, andE 11.

We consider that each electromagnetic wave propag
with a frequency v, and in the following the factor
exp(2ivt) will be omitted. We choose to work with a Ca
tesian coordinate systemr5(x,z)5(x,y,z), where thez axis
is directed upward, and we consider a boundary of the fo
z5h(x). Moreover, we suppose that there exists a lengtL
for which h(x,y)50, if uxu>L/2 or uyu>L/2, andL may be
arbitrarily large but finite.

A. Propagation equations and boundary conditions

The electric fieldE satisfies the Helmohltz equation in th
two media:

~“21e0K0
2!E0~r !50 for z.h~x!, ~1!

FIG. 1. A rough surface with an incident wave coming fro
both sides of media 0 and 1.
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~“21e1K0
2!E1~r !50 for z,h~x!, ~2!

whereK05v/c. Since the system is homogeneous in thex
5(x,y) directions, we can represent the electric field by
Fourier transform. Thus, using the Helmohltz equation,
deduce the following expression for the electric field8,10 in
the medium 0:

E0~r !5E d2p

~2p!2 E02~p!exp~ ikp
02

•r !

1E d2p

~2p!2 E01~p!exp~ ikp
01

•r !, ~3!

where~see Fig. 2!

a0~p![~e0K0
22p2!1/2, ~4!

kp
06[p6a0~p!êz . ~5!

In fact, when writing such a definition, we implicitly mak
the assumption that the Rayleigh hypothesis is correct. T
representation is only valid whenz.max@h(x)#, and in this
caseE02(p) represents the incident wave amplitude. In o
der to be correct we need to add an explicit dependenc
the z coordinate like~see Ref. 26!:

E025E02~p,z!, E015E01~p,z!. ~6!

However, explicit calculations in the case of infinite condu
ing surfaces,27 and for a dielectric medium4 without this hy-
pothesis, have shown that the perturbative developments
identical. The validity of this hypothesis is no doubt a mat
of the convergence domain, as discussed by Voronovich8,15

In medium 1, we have a similar expression,

FIG. 2. Decomposition of the wave vectork01.
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E1~r !5E d2p

~2p!2 E12~p!exp~ ikp
12

•r !

1E d2p

~2p!2 E11~p!exp~ ikp
11

•r !, ~7!

where

a1~p![~e1K0
22p2!1/2, ~8!

kp
16[p6a1~p!êz . ~9!

We decompose the vectorsE(p) on a two-dimensional basi
due to the fact that“•E(r )50, which gives the conditions

kp
06

•E06~p!50, kp
16

•E16~p!50. ~10!

Then, we define the horizontal polarization vectorsH for TE
andV for TM in medium 0 by

êH~p![
êz3kp

06

i êz3kp
06i

5êz3p̂, ~11!

êV
06~p![

êH~p!3kp
06

i êH~p!3kp
06i

56
a0~p!

Ae0K0

p̂2
ipi

Ae0K0

êz ,

~12!

with similar expressions for medium 1:

êH~p![
êz3kp

16

i êz3kp
16i

5êz3p̂, ~13!

êV
16~p![

êH~p!3kp
16

i êH~p!3kp
16i

56
a1~p!

Ae1K0

p̂2
ipi

Ae1K0

êz .

~14!

Thus we decompose the waves in medium 0 on the b
@p#02[@ êV

02(p),êH(p)#, and@p#01[@ êV
01(p),êH(p)#:

E02~p!5S EV
02~p!

EH
02~p! D

@p#02

, E01~p!5S EV
01~p!

EH
01~p! D

@p#01

,

~15!

where for medium 1 on the basis@p#12[@ êV
12(p),êH(p)#

and @p#11[@ êV
11(p),êH(p)#

E12~p!5S EV
12~p!

EH
12~p! D

@p#12

, E11~p!5S EV
11~p!

EH
11~p! D

@p#11

.

~16!

The electric field E(x,z) and magnetic field B(x,z)
5(1/iv)“3E(x,z), satisfy the following boundary condi
tions:

n~x!3$E0@x,h~x!#2E1@x,h~x!#%50, ~17!

n~x!•$e0E0@x,h~x!#2e1E1@x,h~x!#%50, ~18!

n~x!3$B0@x,h~x!#2B1@x,h~x!#%50, ~19!

n~x![êz2“h~x!.
24541
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Let us introduce the fields Fourier transforms Eqs.~3! and
~7!, into the boundary conditions@Eqs.~17!–~19!#, they give

(
a56

E d2p

~2p!2 n~x!3E0a~p!exp~ ikp
0a
•r x!

5 (
a56

E d2p

~2p!2 n~x!3E1a~p!exp~ ikp
1a
•r x!, ~20!

e0

e1
(

a56
E d2p

~2p!2 n~x!•E0a~p!exp~ ikp
0a
•r x!

5 (
a56

E d2p

~2p!2 n~x!•E1a~p!exp~ ikp
1a
•r x!, ~21!

(
a56

E d2p

~2p!2 n~x!3@kp
0a3E0a~p!#exp~ ikp

0a
•r x!

5 (
a56

E d2p

~2p!2 n~x!3@kp
1a3E1a~p!#exp~ ikp

1a
•r x!,

~22!

r x5x1h~x!êz , kp
0a[p1aa0~p!êz ,

kp
1a[p1aa1~p!êz , ~23!

where the summation includes the two possible signsa
56, linked to the propagation directions. We will also u
the condition“•E0(x,z)5“•E1(x,z), which gives the rela-
tion

(
a56

E d2p

~2p!2 kp
0a
•E0a~p!exp~ ikp

0a
•r x!

5 (
a56

E d2p

~2p!2 kp
1a
•E1a~p!exp~ ikp

1a
•r x!. ~24!

B. Field elimination

Equations~20!–~22! and ~24! are all linear in the fields
E02, E01, E12, andE11. In order to eliminateE12 or E11

in Eqs.~20!–~22! and~24!, we will take the following linear
combination of their left and right sides:

E d2x$ku
1b3@Eq. ~20!#1@Eq. ~22!#2ku

1b@Eq. ~21!#

2n~x!@Eq. 24!#%exp~2 iku
1b
•r x!, ~25!

with ku
1b[u1ba1(u)êz , and whereb56, has to be fixed

according to the choice of the field we want to elimina
With the vectorial identitya3(b3c)5b(a•c)2c(a•b), the
right side of Eq.~25! can be written
1-3
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(
a56

E E d2x
d2p

~2p!2 @2~ku
1b1kp

1a!•n~x!E1a~p!

1~ku
1b2kp

1a!•E1a~p!n~x!2n~x!•E1a~p!

3~ku
1b2kp

1a!#exp@2 i ~ku
1b2kp

1a!•r x#. ~26!

We now have to discuss the different cases depending on
relative sign betweena andb.

~1! If a52b, we can use an integration by parts~see
Appendix A! to evaluaten(x)[êz2“h(x). Then we can
make the replacement

n~x!5êz2“h~x!↔n~x!5êz1
~u2p!

@ba1~u!2aa1~p!#
.

~27!

It has to be noted that the denominator@ba1(u)2aa1(p)#
does not present any singularity becausea52b. For the
first term in integral~26!, we obtain

2~ku
1b1kp

1a!•n~x!E1a~p!

5
2bE1a~p!

@a1~u!1a1~p!#
@u22p21a1~u!22a1~p!2#,

50. ~28!

The last equality can be easily checked using Eq.~8!. For the
sum of the second and third terms of Eq.~26!, we also have

~ku
1b2kp

1a!•E1a~p!n~x!2n~x!•E1a~p!~ku
1b2kp

1a!50,
~29!

due to the fact that

n~x!5
ku

1b2kp
1a

ba1~u!2aa1~p!
. ~30!

~2! If a5b, we can use again the integration by parts o
if a1(u)Þa1(p). Then we have to consider three cases:~a!
uÞp anduÞ2p, as in the previous case by using an in
gration by parts we show that Eq.~26! is zero.~b! u5p; then
ku

1b5kp
1a ,

2E d2x~ku
1b1kp

1a!•n~x!E1a~p!exp@2 i ~ku
1b2kp

1a!•r x#

52E d2x 2ku
1b
•n~x!E1a~p!

522ba1~u!E1a~p!E dx522ba1~u!L2 E1a~p!,

~31!

because*d2x“h(x)50, and

~ku
1b2kp

1a!•E1a~p!n~x!2n~x!•E1a~p!~ku
1b2kp

1a!50.
~32!

~c! u52pÞ0; thenku
1b2kp

1a52u,

and if we denotedu,2p the kronecker symbol
24541
he

y
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du,2pE d2x n~x!exp@2 i ~ku
1b2kp

1a!•r x#

5du,2pE d2x @ êz2“h~x!#exp~22iu•x!

5du,2pH êzE d2x exp~22iu•x!2êx

3E dy@exp~22iu•x!h~x,y!#x52L/2
x5L/2 2êy

3E dx@exp~22iu•x!h~x,y!#y52L/2
y5L/2

22iuE d2x h~k!e22iu•xJ
5du,2p F êz

sinuxL

ux

sinuyL

uy
22iu h~22u!G ~33!

since uÞ0, the first term of the previous expression is
most of orderL and as

E d2p

~2p!2
↔ 1

L2 (p
,

this result implies that expression~26! is also zero when
L→`.

We can summarize all the above results in the form

2E d2x~ku
1b1kp

1a!•n~x!E1a~p!exp@2 i ~ku
1b2kp

1a!•r x#

522ba1~u!da,bdu,p L2 E1a~p!

522ba1~u!da,b~2p!2d~u2p!E1b~u!

when L→1`, ~34!

whered(u2p)5L2/(2p)2du,p the Dirac function.
After an integration onp and a summation ona, for ex-

pression~26! we obtain

22ba1~u!E1b~u!. ~35!

We see that we can eliminate the fieldE12(u) or E11(u)
depending on the choice made forb56.

Now, if we consider theleft sideof Eq. ~25!, we have

(
a56

E E d2x
d2p

~2p!2 F2~ku
1b1kp

0a!•n~x!E0a~p!

1~ku
1b2kp

0a!•E0a~p!n~x!2n~x!•E0a~p!

3S e0

e1
ku

1b2kp
0aD Gexp@2 i ~ku

1b2kp
0a!•r x#. ~36!

Using an integration by parts, we replacen(x) by Eq. ~27!:

n~x!↔êz1
~u2p!

@ba1~u!2aa0~p!#
5

ku
1b2kp

0a

@ba1~u!2aa0~p!#
.

~37!
1-4
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In this case there is no need to discuss the relative sign
tweena andb becauseba1(u)2aa0(p)Þ0, due to the fact
that e0Þe1 . We then obtain

2~ku
1b1kp

1a!•n~x!E0a~p!

52
u22p21a1~u!22a0~p!2

ba1~u!2aa0~p!
E0a~p!,

52
~e12e0!K0

2

ba1~u!2aa0~p!
E0a~p!, ~38!

where we have used definitions~4! and ~8!. The remaining
terms of Eq.~36! give

~ku
1b2kp

0a!•E0a~p!n~x!2n~x!•E0a~p!S e0

e1
ku

1b2kp
0aD

5~ku
1b2kp

0a!•E0a~p!n~x!2n~x!•E0a~p!~ku
1b2kp

0a!

1n~x!•E0a~p!S ku
1b2

e0

e1
ku

1bD
5

ku
1b2kp

0a

ba1~u!2aa0~p!
•E0a~p!

~e12e0!

e1
ku

1b . ~39!

Introducing the notation

I @aup#[E d2x exp@2 ip•x2 iah~x!#, ~40!
24541
e-and taking into account expressions~35!, ~38!, and~39!, we
express the resulting linear combination@Eq. ~25!# in the
form

(
a56

E d2p

~2p!2

I @ba1~u!2aa0~p!uu2p#

ba1~u!2aa0~p!

3FK0
2 E0a~p!2

ku
1b

e1
~ku

1b2kp
0a!•E0a~p!G

5
2ba1~u!

~e12e0!
E1b~u!, ~41!

this expression represents a set of two equations, depen
on the choice forb56. The last step is to project Eq.~41!
on the natural basis of E1b(u), namely, @u#1b

[@ êV
1b(u),êH(u)#, which has the property to be orthogon

to ku
1b , so it eliminates the second term of Eq.~41!, left hand

side. Let us note that in order to decomposeE0a(p) on @p#0a,
one has to define a matrixM̄1b,0a(uup) transforming a vector
expressed on the basis@p#0a into a vector on the basis@u#1b,
multiplied by a numerical factor (e0e1)1/2K0

2 introduced for a
matter of convenience:

M̄1b,0a~uup![~e0e1!1/2K0
2S êV

1b~u!•êV
0a~p! êV

1b~u!•êH~p!

êH~u!•êV
0a~p! êH~u!•êH~p!.

D
~42!
C. Reduced Rayleigh equations

With definitions~11!–~14! the matrixM̄ takes the form

M̄1b,0a~uup!5S iuiipi1aba1~u!a0~p!û•p̂ 2be0
1/2K0a1~u!~ û3p̂!z

ae1
1/2K0a0~p!~ û3p̂!z ~e0e1!1/2K0

2û•p̂ D , ~43!

and the two reduced Raleigh equations resulting from Eq.~41! read

(
a56

E d2p

~2p!2

I @ba1~u!2aa0~p!uu2p#

ba1~u!2aa0~p!
M̄1b,0a~uup!E0a~p!5

2b~e0e1!1/2a1~u!

~e12e0!
E1b~u!, ~44!

where we suppose thatE0a(p) and E1b(u), respectively, are decomposed on the bases@p#0a and @u#1b. We can derive a
similar equation whereE0b is now eliminated, by simply exchanginge0 ande1 in Eqs.~43! and~44!. Due to the symmetry of
Eqs.~3!, ~7! and ~17!–~19!, we obtain

(
a56

E d2p

~2p!2

I @ba0~u!2aa1~p!uu2p#

ba0~u!2aa1~p!
M̄0b,1a~uup!E1a~p!52

2b~e0e1!1/2a0~u!

~e12e0!
E0b~u!, ~45!

M̄0b,1a~uup!5S iuiipi1aba0~u!a1~p!û•p̂ 2be1
1/2K0a0~u!~ û3p̂!z

ae0
1/2K0a1~p!~ û3p̂!z ~e0e1!1/2K0

2û•p̂ D . ~46!
1-5
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In Sec. III we will show how these equations greatly simpl
the perturbative calculation of plane-wave scattering b
rough surface. In order to keep a compact notation, we
troduce matricesM̄h given by

M̄h
1b,0a~uup![

I @ba1~u!2aa0~p!uu2p#

ba1~u!2aa0~p!
M̄1b,0a~uup!,

~47!

M̄h
0b,1a~uup![

I @ba0~u!2aa1~p!uu2p#

ba0~u!2aa1~p!
M̄0b,1a~uup!.

~48!

III. DIFFUSION MATRIX

We are interested in the diffusion of an incident pla
wave by a rough surface from the previous formalism. W
define an incident plane wave of wave vectorkp0

02 as

E02~p!5~2p!2d~p2p0!Ei~p0!. ~49!

We are naturally led to introduce the diffusion operatorR̄,

E01~p![R̄~pup0!•Ei~p0!, ~50!

which can be represented in a matrix form, using the vec
rial basis described above:

R̄~pup0!5S RVV~pup0! RVH~pup0!

RHV~pup0! RHH~pup0!
D

@p
0
2#→@p1#

.

The field in medium 0 is now written@using decomposition
~3!#

E0~r !5Ei~p0!exp„ikp0

02
•r …

1E d2p

~2p!2 R̄~pup0!•Ei~p0!exp~ ikp
01

•r !. ~51!

IV. A PERTURBATIVE DEVELOPMENT

In order to obtain a perturbative development, one ha
make a perturbative analysis of the given boundary-probl
A direct approach which uses an exact integral equa
called the extended boundary condition~see Refs. 4 and 26!
requires tedious calculations. Another issue is to use
Rayleigh hypothesis in the boundary conditions. This is
method generally used to obtain the SPM.12,13,15But a great
deal of simplification can be achieved if we are only inte
ested in the field outside the slab. It was discovered
Brown et al.16 that an exact integral equation can be obtain
~excepted for the Rayleigh hypothesis!, which only involves
the scattering matrixR̄(pup0). The proof is based on th
extinction theorem, which decouples the fields inside a
outside the media. In this section, we will show how to o
tain this integral equation from the previous developme
including a generalization to the case of bounded rand
media. We seek for a perturbative development ofR̄ in pow-
ers of the heighth:
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R̄~pup0!5R̄~0!~pup0!1R̄~1!~pup0!1R̄~2!~pup0!1R̄~3!~pup0!

1¯ . ~52!

One can easily prove that this development takes the f
~see Appendix B!.

R̄~pup0!5~2p!2d~p2p0!X̄~0!~p0!

1a0~p0!X̄~1!~pup0!h~p2p0!

1a0~p0!E d2p1

~2p!2 X̄~2!~pup1up0!h~p2p1!

h~p12p0!1a0~p0!E E d2p1

~2p!2

d2p2

~2p!2

X̄~3!~pup1up2up0!h~p2p1!h~p12p2!

h~p22p0!, ~53!

whereh(p) is the Fourier transform28 of h(x):

h~p![E d2x exp~2 ip•x!h~x!. ~54!

We will now show the power of the reduced Rayleigh equ
tion for the three configurations mentioned in the Introdu
tion.

A. A rough surface separating two different media

We consider a rough surface delimiting two media whi
are semi-infinite; see Fig. 3. We suppose that there is
upward field propagating in the medium 1, soE1150. With
the choiceb51 in Eq. ~44!, we obtain the following inte-
gral equation for the scattering matrixR̄se0 ,e1

(pup0) for a
single surface29 ~the subscripts means a single surface lo
cated atz50):

FIG. 3. A two-dimensional rough surface separating two diel
tric media 0 and 1.
1-6
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E d2p

~2p!2 M̄h
11,01~uzp!•R̄se0 ,e1

~pup0!1M̄h
11,02~uup!50.

~55!

@This equation was already obtained by making use of
extinction theorem.16 It should be noted that since the righ
hand side of Eq.~55! is null, one can simplify the second lin
of the matrices,M̄11,01 and M̄11,02, by a factor (e1)1/2,
then they coincide with theM̄ and N̄ matrices derived by
Brown et al.16#

In order to construct a perturbative development,
method is simply to expand in Taylor series the te
exp@iah(x)# inside I @aup# @Eq. ~40!#,

I @aup#5~2p!2d~p!2 iah~1!~p!2
a2

2
h~2!~p!2

ia3

3!
h~3!~p!

1¯ , ~56!

h~n!~p![E d2x exp~2 ip•x!hn~x!, ~57!

and to collect the terms of the same order inh(x). Let us
define the matrix

D̄10
6 ~p0![S e1a0~p0!6e0a1~p0! 0

0 a0~p0!6a1~p0!
D ,

~58!

the classical specular reflection coefficients for TM and
waves are given by the diagonal elements of the matrix:

V̄10~p0![D̄10
2 ~p0!•@D̄10

1 ~p0!#21. ~59!

Introducing Eq.~56! into Eq. ~55!, for R̄se0 ,e1
we obtain a

perturbative development of the form of Eq.~53!, where the
coefficients are given by

X̄se0 ,e1

~0! ~p0!52
a1~p0!2a0~p0!

a1~p0!1a0~p0!

3@M̄11,01~p0up0!#21
•M̄11,02~p0up0!

5V̄10~p0! ~60!
24541
e

e

and

X̄se0 ,e1

~1! ~uup0!52i Q̄1~uup0!, ~61!

X̄se0 ,e1

~2! ~uup1up0!5a1~u!Q̄1~uup0!1a0~p0!Q̄2~uup0!

22P̄~uup1!•Q̄1~p1up0!, ~62!

X̄se0 ,e1

~3! ~uup1up2up0!52
i

3
@@a1

2~u!1a0
2~p0!#Q̄1~uup0!

12a1~u!a0~p0!Q̄2~uup0!#

1 i P̄~uup1!•X̄se0 ,e1

~2! ~p1up2up0!

1 i @a1~u!

2a0~p2!#•P̄~uup2!•Q̄1~p2up0!,

~63!

with

Q̄6~uup0!

[
a1~u!2a0~u!

2a0~p0!
@M̄11,01~uuu!#21

•@M̄11,02~uup0!

6M̄11,01~uup0!•X̄~0!~p0!#, ~64!

P̄~uup1![@a1~u!2a0~u!#

3@M̄11,01~uuu!#21
•@M̄11,01~uup1!#. ~65!

After some simple algebra, we obtain
Q̄1~uup0!5~e12e0!@D̄10
1 ~u!#21

•S e1iuiip0i2e0a1~u!a1~p0!û•p̂0 2e1
1/2K0a1~u!~ û3p̂0!z

2e0
1/2K0a1~p0!~ û3p̂0!z K0

2 û•p̂0
D •@D̄10

1 ~p0!#21, ~66!

Q̄2~uup0!5
~e12e0!

a0~p0!
@D̄10

1 ~u!#21
•S e0a1~p0!iuiip0i2e1a1~u!a0

2~p0!û•p̂0 2e0
1/2K0a1~u!a1~p0!~ û3p̂0!z

2e0
21/2e1K0a0

2~p0!~ û3p̂0!z K0
2a1~p0!û•p̂0

D •@D̄10
1 ~p0!#21,

~67!

P̄~uup1!5~e12e0!@D̄10
1 ~u!#21

•S iuiip1i1a1~u!a0~p1!û•p̂1 2e0
1/2K0a1~u!~ û3p̂1!z

e0
21/2K0a0~p1!~ û3p̂1!z K0

2û•p̂1
D . ~68!
1-7
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It can be easily checked thatX̄(1) is the well-known first-
order term in perturbation theory which was obtained
Rice.12 After some lengthy calculations, we have proven th
Eqs.~62! and~63!, are identical to those found by Johnson13

Thus our expressions~62! and~63!, are a compact manner i
which to write the second and third-order terms of the p
turbative expansion; moreover, they are well adapted for
merical computations. However, it has to be noted that o
the first termX̄(1) is reciprocal. Since the second- and thir
order perturbative terms are included in the integral, the
efficient X̄(2) andX̄(3), are not unique; however, they can b
put into a reciprocal form~see Appendix B!.

It is worth noticing that we can follow an analogous pr
cedure to calculate the transmitted field. By takingb52 in
Eq. ~45!, we obtain

E d2p

~2p!2 M̄h
02,12~uup!•E12~p!5

2~e0e1!1/2a0~u!

~e12e0!
E02~u!.

~69!

This equation was already obtained with the extinct
theorem.24

B. A slab with a rough surface on the bottom side

We consider a slab delimited on the upper side by a p
nar surface and on the bottom side by a rough surface,
Fig. 4. Since there is no incident upward field in medium
the scattering matrix obtained in Sec. IV A is sufficient
determine the scattering matrix of the present configurat
In order to obtain proof, let us introduce some definitions
explained in Fig. 5. The scattering matrix for an incide
plane wave coming from the medium 0, and scattered in
medium 1, is given by

V̄0~pup0!5~2p!2d~p2p0!V̄10~p0!, ~70!

whereV̄10 is defined by Eq.~59!. The transmitted waves in
medium 1 are given by:

FIG. 4. A slab formed with a bottom two-dimensional roug
surface and an upper planar surface.
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T̄0~pup0!5~2p!2d~p2p0!
a0~p0!

a1~p0!
T̄10~p0!, ~71!

T̄10~p0![2a1~p0!S ~e0e1!1/2 0

0 1D •@D̄10
1 ~p0!#21. ~72!

Now, when the incident wave is coming from medium 1, w
have, similarly,

V̄1~pup0!52~2p!2d~p2p0!V̄10~p0!, ~73!

T̄1~pup0!5~2p!2d~p2p0!T̄10~p0!. ~74!

The scattering matrixR̄se1 ,e2

H for the rough surfaceh, which

is located atz52H,30 and separates two media of perm
tivity e1 ande2 , is given by

R̄s,e1 ,e2

H ~pup0!5exp$ i @a1~p!1a1~p0!#H%R̄s,e1 ,e2
~pup0!,

~75!

where the phase term comes from the translationz52H

@see Eq.~B2!#, and R̄se1 ,e2
denotes the scattering matri

R̄se0 ,e1
of the Sec. IV A, where we have replacede0 by e1

ande1 by e2 . Furthermore, if we define the product of tw
operatorĀ and B̄ by

~Ā•B̄!~pup0![E d2p1

~2p!2 Ā~pup1!•B̄~p1up0!, ~76!

we can easily prove for the configuration shown in Fig.
that ~we use for the fields the notations of Fig. 1!,

E115R̄se1 ,e2

H
•T̄0

•E021R̄se1 ,e2

H
•V̄1

•E11, ~77!

E015V̄0
•E021T̄1

•E11, ~78!

where E02(p)5(2p)2d(p2p0)Ei(p0). These equations
were recently used to calculate in first order the field sc
tered by a layered medium.14 In fact, as we shall see below
these equations allow us to obtain all orders of the field p
turbation. Expression~77! is analogous to the Dyson equa
tion usually used in random media.4 Thus we are naturally
led to introduce a scattering operatorŪ,

FIG. 5. Definitions of scattering matrices for a planar surface
1-8
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E115R̄se1 ,e2

H
•Ū•T0

•Ē02, ~79!

which satisfies the equation

Ū51̄1V̄1
•R̄se1 ,e2

H
•Ū. ~80!

If we define byR̄d(pup0), the global scattering matrix for th
upper planar surface and the bottom rough surface, by

E01~p!5R̄d~pup0!•Ei~p0!, ~81!

with Eqs.~78! and ~79!, the scattering matrix becomes

R̄d5V̄01T̄1
•R̄se1 ,e2

H
•Ū•T̄0. ~82!

We can improve development~80! by summing all the
specular reflexions inside the slab; this can be done by in
ducing the operatorŪ(0) which satisfies the equation

Ū~0!51̄1V̄1
•R̄se1 ,e2

H~0!
•Ū~0!, ~83!

where R̄se1 ,e2

H(0) is the zeroth-order term of the perturbativ

development, which is given by

R̄se1 ,e2

H~0! ~pup0!5~2p!2d~p2p0!V̄H21~p0!, ~84!

and,V̄H21 is the scattering matrix for a planar surface loca
at the heightz52H:

V̄H 21~u![exp@2ia1~u!H# D̄21
2 ~p0!•@D̄21

1 ~p0!#21,
~85!

D̄21
6 ~p0![S e2a1~p0!6e1a2~p0! 0

0 a1~p0!6a2~p0!
D .

~86!

The term exp@2ia1(u)H# comes from the phase shift induce
by the translation of the planar surface from the heighz
50 to z52H @see Eq.~B2!#. The diagrammatic representa
tion of Eq.~83!, shown in Fig. 6, is in fact a geometric serie

FIG. 6. Diagrammatic representation of the operatorŪ(0).
24541
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which can be summed as

Ū~0!~pup0!5~2p!2d~p2p0!Ū~0!~p0!, ~87!

Ū~0!~p0![@ 1̄1V̄10~p0!•V̄H21~p0!#21. ~88!

From the previous results, Eq.~80! can be written in the form

Ū5Ū~0!1Ū~0!
•V̄1

•DR̄se1 ,e2

H
•Ū, ~89!

where

DR̄se1 ,e2

H [R̄se1 ,e2

H 2R̄se1 ,e2

H~0! . ~90!

In order to obtain the perturbative development ofR̄d , we
introduce the expansion

R̄se1 ,e2

H 5R̄se1 ,e2

H~0! 1R̄se1 ,e2

H~1! 1R̄se1 ,e2

H~2! 1R̄se1 ,e2

H~3! , ~91!

in Eqs.~82! and ~89!, which gives the following terms:

R̄d
~0!5V̄01T̄1

•R̄se1 ,e2

H~0!
•Ū~0!

•T̄0, ~92!

R̄d
~1!5T̄1

•Ū~0!
•R̄se1 ,e2

H~1!
•Ū~0!

•T̄0, ~93!

FIG. 7. A slab formed with an upper two-dimensional rou
surface and a bottom planar surface.
nt

b.
R̄d
~2!5T̄1

•Ū~0!
•@R̄se1 ,e2

H~2! 1R̄s,e1 ,e2

H~1!
•Ū~0!

•V̄1
•R̄se1 ,e2

H~1! #•Ū~0!
•T̄0, ~94!

R̄d
~3!5T̄1

•Ū~0!
•@R̄se1 ,e2

H~3! 1R̄se1 ,e2

H~2!
•Ū~0!

•V̄1
•R̄se1 ,e2

H~1! 1R̄se1 ,e2

H~1!
•Ū0

•V̄1
•R̄se1 ,e2

H~2!

1R̄se1 ,e2

H~1!
•Ū~0!

•V̄1
•R̄se1 ,e2

H~1!
•Ū~0!

•V̄1
•R̄se1 ,e2

H~1! #•Ū~0!
•T̄0. ~95!

Using development~53! for R̄se1 ,e2

H , and definitions~70!, ~71!, ~73!, and~74!, we obtain, after some calculation a developme

of the form of Eq.~53! for R̄d with the following coefficients:

X̄d
~0!~p0!5@V̄10~p0!1V̄H 21~p0!#•@ 1̄1V̄10~p0!•V̄H 21~p0!#21. ~96!

This matrix is naturally diagonal, and its coefficients are identical to those of the reflection coefficients for a planar sla4 The
other coefficients are
1-9
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X̄d
~1!~pup0!5T̄10~p!•Ū~0!~p!•X̄se1 ,e2

H~1! ~pup0!•Ū~0!~p0!•T̄10~p0!, ~97!

X̄d
~2!~pup1up0!5T̄10~p!•Ū~0!~p!•@X̄se1 ,e2

H~2! ~pup1up0!2a1~p1!X̄se1 ,e2

H~1! ~pup1!•Ū~0!~p1!•V̄10~p1!•X̄se1 ,e2

H~1! ~p1up0!#

•Ū~0!~p0!•T̄10~p0!, ~98!

X̄d
~3!~pup1up2up0!5T̄10~p!•Ū~0!~p!•@X̄se1 ,e2

H~3! ~pup1up2up0!2a1~p2!X̄se1 ,e2

H~2! ~pup1up2!•Ū~0!~p2!•V̄10~p2!•X̄se,e2

H~1! ~p2up0!

2a1~p1!X̄se1 ,e2

H~1! ~pup1!•Ū~0!~p1!•V̄10~p1!•X̄se,e2

H~2! ~p1up2up0!1a1~p1!a1~p2!X̄se1 ,e2

H~1! ~pup1!

•Ū~0!~p1!•V̄10~p1!•X̄se1 ,e2

H~1! ~p1up2!•Ū~0!~p2!•V̄10~p2!•X̄se1 ,e2

H~1! ~p2up0!#•Ū~0!~p0!•T̄10~p0!. ~99!

In these expressions,X̄se1 ,e2

H(n) (pup0)[exp$i@a1(p)1a1(p0)#H%X̄se1 ,e2

(n) (pup0), and the subscriptse1 ande2 in X̄se1 ,e2
mean that

we replacee0 by e1 , ande1 by e2 in Eqs.~61!–~63!.

C. A slab with a rough surface on the upper side

We consider a slab delimited on the upper side by a two-dimensional rough surface, and on the bottom side by
surface; see Fig. 7. To derive the reduced Rayleigh equation for this configuration, we have to combine the equatio

E d2p

~2p!2 M̄h
11,01~uup!•R̄u~pup0!•Ei~p0!1M̄h

11,02~uup0!•Ei~p0!5
2~e0e1!1/2a1~u!

~e12e0!
E11~u!, ~100!

E d2p

~2p!2 M̄h
12,01~uup!•R̄u~pup0!•Ei~p0!1M̄h

12,02~uup0!•Ei~p0!52
2~e0e1!1/2a1~u!

~e12e0!
E12~u!, ~101!

with

E11~u!5V̄H 21~u!•E12~u!, ~102!

whereV̄H 21 is given by Eq.~86!, andR̄u is the global scattering matrix for the upper rough surface and the bottom p
surface.

The reduced Rayleigh equation for the scattering matrixR̄u is then

E d2p

~2p!2 @M̄h
11,01~uup!1V̄H 21~u!•M̄h

12,01~uup!#•R̄u~pup0!52@M̄h
11,02~uup0!1V̄H 21~u!•M̄h

12,02~uup0!#. ~103!

With the expansion ofI (aup) in a power series, we obtain the perturbative development

X̄u
~0!~p0!52F M̄11,01~p0up0!

a1~p0!2a0~p0!
2V̄H 21~p0!

M̄12,01~p0up0!

a1~p0!1a0~p0!
G21

•F M̄11,02~p0up0!

a1~p0!1a0~p0!
1V̄H 21~p0!•

M̄12,02~p0up0!

2a1~p0!1a0~p0!
G

5@V̄10~p0!1V̄H 21~p0!#•@ 1̄1V̄10~p0!•V̄H 21~p0!#21, ~104!

X̄u
~1!~uup0![2i Q̄11~uup0! ~105!

X̄u
~2!~uup1up0!5a1~u!Q̄21~uup0!1a0~p0!Q̄12~uup0!22P̄1~uup1!•Q̄11~p1up0! ~106!

X̄u
~3!~uup1up2up0!52

i

3
$@a1

2~u!1a0
2~p0!#Q̄11~uup0!12a1~u!a0~p0!Q̄22~uup0!%1 i P̄1~uup1!•X̄~2!~p1up2up0!

1 i @a1~u!P̄2~uup2!2a0~p2!P̄1~uup2!#•Q̄11~p2up0! ~107!

with

Q̄ba~uup0![
1

2a0~p0!
F M̄11,01~uuu!

a1~u!2a0~u!
2V̄H 21~u!•

M̄12,01~uuu!

a1~u!1a0~u!
G21

•@aM̄11,01~uup0!•X̄se0 ,e1

~0! ~p0!1M̄11,02~uup0!

1bV̄H 21~u!•@aM̄12,01~uup0!•X̄se0 ,e1

~0! ~p0!1M̄12,02~uup0!##, ~108!

P̄6~uup1![F M̄11,01~uuu!

a1~u!2a0~u!
2V̄H 21~u!•

M̄12,01~uuu!

a1~u!1a0~u!
G21

•@M̄11,01~uup1!6V̄H 21~u!•M̄12,01~uup1!#, ~109!

where,a56 andb56 are the sign indices. After some computations we obtain
245411-10



•@D̄10
1 ~p0!#21, ~110!

•@D̄10
1 ~p0!#21, ~111!

~p0!~ û3p̂0!z

!û•p̂0
D •@D̄10

1 ~p0!#21, ~112!

~p0!~ û3p̂0!z

!û•p̂0
D •@D̄10

1 ~p0!#21, ~113!

~114!
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~116!
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245411-11
Q̄11~uup0!5~e12e0!@D̄10
1 ~u!#21

•S e1iuiip0iFV
1~u!FV

1~p0!2e0a1~u!a1~p0!FV
2~u!FV

2~p0!û•p̂0 2e0
1/2K0a1~u!FV

2~u!FH
1~p0!~ û3p̂0!z

2e0
1/2K0a1~p0!FH

1~u!FV
2~p0!~ û3p̂0!z K0

2 FH
1~u!FH

1~p0!û•p̂0
D

Q̄21~uup0!5~e12e0!@D̄10
1 ~u!#21

•S e1iuiip0iFV
2~u!FV

1~p0!2e0a1~u!a1~p0!FV
1~u!FV

2~p0!û•p̂0 2e0
1/2K0a1~u!FV

1~u!FH
1~p0!~ û3p̂0!z

2e0
1/2K0a1~p0!FH

2~u!FV
2~p0!~ û3p̂0!z K0

2 FH
2~u!FH

1~p0!û•p̂0
D

Q̄12~uup0!5
~e12e0!

a0~p0!
@D̄10

1 ~u!#21
•S e0a1~p0!iuiip0iFV

1~u!FV
2~p0!2e1a1~u!a0

2~p0!FV
2~u!FV

1~p0!û•p̂0 2e0
1/2K0a1~u!a1~p0!FV

2~u!FH
2

2e0
21/2e1K0a0

2~p0!FH
1~u!FV

1~p0!~ û3p̂0!z K0
2a1~p0!FH

1~u!FH
2~p0

Q̄22~uup0!5
~e12e0!

a0~p0!
@D̄10

1 ~u!#21
•S e0a1~p0!iuiip0iFV

2~u!FV
2~p0!2e1a1~u!a0

2~p0!FV
1~u!FV

1~p0!û•p̂0 2e0
1/2K0a1~u!a1~p0!FV

1~u!FH
2

2e0
21/2e1K0a0

2~p0!FH
2~u!FV

1~p0!~ û3p̂0!z K0
2a1~p0!FH

2~u!FH
2~p0

where

S FV
6~p0! 0

0 FH
6~p0!

D 5@ 1̄6V̄H 21~p0!#•@ 1̄1V̄10~p0!•V̄H 21~p0!#21

and

P̄1~uup1!5~e12e0!@D̄10
1 ~u!#21

•S iuiip1iFV
1~u!1a1~u!a0~p1!FV

2~u!û•p̂1 2e0
1/2K0a1~u!FV

2~u!~ û3p̂1!z

e0
21/2K0a0~p1!FH

1~u!~ û3p̂1!z K0
2FH

1~u!û•p̂1
D ,

P̄2~uup1!5~e12e0!@D̄10
1 ~u!#21

•S iuiip1iFV
2~u!1a1~u!a0~p1!FV

1~u!û•p̂1 2e0
1/2K0a1~u!FV

1~u!~ û3p̂1!z

e0
21/2K0a0~p1!FH

2~u!~ û3p̂1!z K0
2FH

2~u!û•p̂1
D .
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The first-order term was recently derived in Ref. 14. Th
noted that, for this order, the matrix differs from the o
obtained for a surface separating two semi-infinite media
only the factorsF6. Likewise, for higher order, we see tha
Eqs. ~110! and ~111! differ from Eq. ~66! by only F6, and
similarly for Eqs.~112! and ~113! with respect to Eq.~67!,
and Eqs.~115! and ~116! with respect to Eq.~68!. So when
the thicknessH becomes infinite, and the absorption Im(e1)
Þ0, or e15e2 , we haveV̄H 2150; thusF651, and in this
case we recover the matrix equations~66!–~68! for a rough
surface between two semi-infinite media.

V. MUELLER MATRIX CROSS SECTION AND SURFACE
STATISTIC

When we consider an observation point in the far-fie
limit, the saddle-point method gives an asymptotic form
the scattered fieldEs[E01 obtained from Eq.~51!:

Es~x,z!5
exp~ iK 0ir i !

ir i f̄~pup0!•Ei~p0!, ~117!

with

f̄~pup0![
K0 cosu

2p i
R̄~pup0! ~118!

p5K0

x

ir i , ~119!
24541
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whereu is the angle betweenêz and the scattering direction
~see Fig. 2!. In order to describe the incident and the sc
tered waves, we introduce the modified Stokes paramete

I s~p![S uEV
s ~p!u2

uEH
s ~p!u2

2 Re@EV
s ~p!EH

s ~p!#

2 Im@EV
s ~p!EH

s ~p!#

D ,

I i~p0![S uEV
i ~p0!u2

uEH
i ~p0!u2

2 Re@EV
i ~p0!EH

i ~p0!#

2 Im@EV
i ~p0!EH

i ~p0!#

D . ~120!

The analog of the scattering matrix for these parameter
the Mueller matrix, defined2 by

I s~p![
1

ir i2 M̄ ~pup0!•I i~p0!, ~121!

which can be expressed as a function2 of f̄(pup0). To main-
tain a matrix formulation in the following calculations, w
introduce a product between two-dimensional matrices w
the definition
f̄(ḡ[S f VV f VH

f HV f HH
D (S gVV gVH

gHV gHH
D

5S f VVgVV* f VHgVH* Re~ f VVgVH* ! 2Im~ f VVgVH* !

f HVgHV* f HHgHH* Re~ f HVgHH* ! 2Im~ f HVgVH* !

2 Re~ f VVgHV* ! 2 Re~ f VHgHH* ! Re~ f VVgVV* 1 f HVgVH* ! 2Im~ f VVgHH* 2 f VHgHV* !

2 Im~ f VVgHV* ! 2 Im~ f VHgHH* ! Im~ f VVgVV* 1 f HVgVH* ! Re~ f VVgHH* 2 f VHgHV* !

D . ~122!
effi-
ent

tion
This product allows one to express the matrixM̄ as

M̄ ~pup0!5 f̄~pup0!( f̄~pup0!, ~123!

5
K0

2 cos2 u

~2p!2 R̄~pup0!(R̄~pup0!.

~124!

Following Ishimaruet al.,31 we define the Mueller matrix
cross section per unit areas̄5(s i j ),

s̄[
4p

A
M̄ , ~125!

and, the bistatic Mueller matrix4 ḡ5(g i j ):
ḡ[
1

A cosu0
M̄ . ~126!

These matrices are generalizations of the classical co
cients. In fact, if we assume, for example, that the incid
wave is vertically polarized, we have

1

A cosu0
uEV

s ~p!u25
1

ir i2 g11~pup0!uEV
i ~p!u2, ~127!

1

A cosu0
uEH

s ~p!u25
1

ir i2 g21~pup0!uEV
i ~p!u2. ~128!

Thus g11 and g21 are the classical bistatic coefficientsgVV
andgHV , respectively. We can also define the cross sec
1-12
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and the bistatic coefficients for an incident circular polariz
tion. As an example, taking the incident wave to be rig
circularly polarized, we have

I i~p0!5 1
2 ~1 1 022! t. ~129!

Now, if we put a right-hand side polarizer at the receiver

1

4 S 1 1 0 1

1 1 0 1

0 0 0 0

2 2 0 2

D . ~130!

the right to right bistatic coefficientg rr is

g rr 5 1
4 ~g111g1212g141g211g2212g241g41

1g4212g44!, ~131!

whereg i j are coefficients of the matrixḡ5(g i j ).
In a similar way, we obtain the right to left bistatic coe

ficient

g lr 5 1
4 ~g111g1212g141g211g2212g242g41

2g4222g44!. ~132!

Up to now, we have made no hypothesis on the natur
the rough surface. Let us introduce the statistical caracte
tics of the functionh(x). We suppose that it is a stationar
isotropic Gaussian random process defined by the mom

^h~x!&50, ~133!

^h~x!h~x8!&5W~x2x8!, ~134!

where the angle brackets denote an average over the
semble of realizations of the functionh(x). In this work we
will use a Gaussian form for the surface-height correlat
function W(x),

W~x!5s2 exp~2x2/ l 2!, ~135!

wheres is the rms height of the surface, andl is the trans-
verse correlation length. In momentum space we have

^h~p!&50, ~136!

^h~p!h~p8!&5~2p!2d~p1p8!W~p!, ~137!

with

W~p![E d2xW~x!exp~2 ip•x! ~138!

5ps2l 2 exp~2p2l 2/4!. ~139!

We are now able to define the bistatic coherent matrix

ḡcoh~pup0![
1

A cosu0
^ f̄~pup0!&(^ f̄~pup0!&

5
K0

2 cos2 u

A~2p!2cosu0
^R̄~pup0!&(^R̄~pup0!&,

~140!
24541
-
t

of
is-

ts

n-

n

and the incoherent bistatic matrix

ḡ incoh~pup0![
1

A cosu0
@^ f̄~pup0!( f̄~pup0!&

2^ f̄~pup0!&(^ f̄~pup0!&#,

5
K0

2 cos2 u

A~2p!2cosu0
@^R̄~pup0!(R̄~pup0!&

2^R̄~pup0!&(^R̄~pup0!&#. ~141!

From Eq. ~53!, and the property of the Gaussian rando
process, we obtain

ḡcoh~pup0!5
K0

2 cos2 u

cosu0
d~p2p0!R̄coh~p0!(R̄coh~p0!,

~142!

R̄coh~p0![X̄~0!~p0!1K0 cosu0E d2p

~2p!2

X̄~2!~p0up1up0!W~p12p0!1¯ , ~143!

whereR̄coh(p0) is a diagonal matrix describing the reflectio
coefficients of the coherent waves. For the incoherent p
we have

ḡ incoh~pup0!5
K0

4 cos2 u cosu0

~2p!2 @ Ī ~121!~pup0!1 Ī ~222!~pup0!

1 Ī ~321!~pup0!#, ~144!

where

Ī ~121!~pup0![W~p2p0!X̄~1!~pup0!(X̄~1!~pup0!,
~145!

Ī ~222!~pup0![E d2p1

~2p!2 W~p2p1!W~p12p0!

X̄~2!~pup1up0!(@X̄~2!~pup1up0!

1X̄~2!~pup1p02p1up0!#, ~146!

Ī ~321!~pup0![W~p2p0!@X̄~1!~pup0!(X̄~3!~pup0!

1X̄~3!~pup0!(X̄~1!~pup0!#, ~147!

with

X̄~3!~pup0![E d2p1

~2p!2 $W~p12p0!X̄~3!~pup0up1up0!

1W~p2p1!@X̄~3!~pup1up02p1p1up0!

1X̄~3!~pup1upup0!#%. ~148!

VI. APPLICATIONS

In the previous sections we have developed a metho
compute the scattering matrices for a rough surface betw
1-13
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two media, and for a thin film which includes one roug
surface. In this section, we will numerically evaluate the
coherent bistatic coefficients given by Eqs.~144!–~147! for
different values of the parameters which characterize
configurations. In all numerical simulations the media 0 w
be the vacuum (e051).

A. A rough surface separating to different media

We consider that a polarized light of wavelengthl
5457.9 nm is normally incident (u050°,f050°) on a two-
dimensional rough silver surface~see Fig. 3! characterized
by the roughness parameterss55 nm, l 5100 nm, ande5
27.51 i0.24. As a matter of comparison we have chosen
same parameters used for the scattering by a o
dimensional rough surface.21 The perturbative developmen
is given by Eqs.~61!–~68!. In Fig. 8, we present the result
for an incident wave linearly polarized, the scattered fi
being observed in the incident plane (f50°). The single-

scattering contribution associated with the termĪ (121) is
plotted as a dotted line, the double-scattering contribut

Ī (222) as a dashed line, the scattering termĪ (321) as a dash-
dotted line, and the sum of all these termsḡ incoh by the solid
curve.

We observed an enhancement of the backscattering w
corresponds to the physical process in which the incid
light excites a surface electromagnetic wave. In fact, the
face polariton propagates along the rough surface, an
then scattered into a volume wave due to the roughness

FIG. 8. The bistatic coefficients for horizontal~TE! and vertical
~TM! polarized incident light of wavelengthl5457.9 nm (u0

50° andf5f050°), on a two-dimensional randomly rough sil
ver surface, characterized by the parameterss55 nm, l 5100 nm
ande1527.51 i0.24. For each figure are plotted the total incoh

ent scatteringḡ incoh ~solid curve!, the first order given byĪ (121)

~dotted line!, the second order byĪ (222) ~dashed line!, and the third

order by Ī (321) ~dash-dotted line!.
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the same time, a reverse partner exists with a path trave
in the opposite direction. These two paths can interfere c
structively near the backscattering direction to produce
peak.17–19 However, in one dimension,21 this peak can only
be observed for a TM-polarized incident wave becaus
surface polariton only exists for this polarization. In two d
mensions, the surface wave also exists for a TM polarizat
but in fact a depolarization occurs so that a TE incident wa
can excite a TM surface wave, and this surface wave can
scattered into volume wave with both polarizations as can
seen in Fig. 8. Now, when the incident wave is circula
polarized, we see, in Fig. 9, that enhanced backscatte
takes also place. We have not displayed the left to left a
left to right polarizations because the media are not optic
active; as a consequence, the results are the same wheth
incident wave is right or left polarized.

In expression~144!, the peak is produced by the term
Ī (222). We see that the termP̄(uup1)•Q̄1(p1up0) in
X̄se0 ,e1

(2) (pup1up0) contains a factor of the form@see Eq.~58!#

@D10VV
1 ~p1!#215

1

e1a0~p1!1e0a1~p1!
, ~149!

which is close to zero except whenp1 is near the resonanc
mode pr of the polariton, which is given by the root
D10VV

1 (pr)50. When we observe a field scattered far aw
from the backscattering direction (p1p0Þ0), the terms
X̄se0 ,e1

(2) (pup1up0) and X̄se0 ,e1

(2) (pup1p02p1up0), containing

D10VV
1 , are nonzero whenp1'pr , andp1p02p1'pr , re-

spectively. Since these domains are disjointed, the produc(
of these two terms is approximately zero. Conversely, wh
we are near the backscattering direction (p1p0'0), the
terms inside the brackets are almost equal and produc

-

FIG. 9. The same configuration as in Fig. 8, but with a rig
incident circularly polarized wave, and right to right~or left to left!
and right to left~or left to right! observed polarizations.
1-14
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enhancement factor. This enhancement factor is not equ

2 because the matricesQ̄1(pup0) and Q̄2(pup0) in X̄se0 ,e1

(2)

do not contain the term@D10VV
1 (p1)#21, so they produce a

significant contribution whatever the scattering angle is.
order to isolate the terms producing an enhanced backsca
ing more precisely, a better approach is to work with t
formalism of Ref. 16 derived from quantum-mechanic
scattering theory; such an approach was used, for instanc
Refs. 17 and 23. If the decomposition of each step of
multiple-scattering process is clearly put in evidence, ho
ever, it offers the disadvantage of producing a heavier p
turbative development, as can be seen when comparing
~53! and~66!–~68! with Eqs.~15!–~19! and~A-1! of Ref. 22.
fo
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B. A film with a rough surface on the upper side

We consider a dielectric film~see Fig. 7!, of mean thick-
ness H5500 nm and dielectric constante152.6896
10.0075i , deposited on a planar perfectly conducting su
strate (e25 i`), and illuminated by a linearly polarized ligh
of normally incident wavelengthl5632.8 nm (f050°,u0
50°). Thetwo-dimensional upper rough surface is chara
terized by the parameterss515 nm and l 5100 nm. The
scattering diagrams are shown in Fig. 10, with the sa
curve labeling as before. The perturbative developmen
given by Eqs.~105!, ~107!, ~110!, and~116!. Since we have
chosen an infinite conducting plane (e25 i`), the coeffi-
cientsF6 @Eq. ~114!# have the following forms:
FV
6~p0!5

16exp@2ia0~p0!H#

@e1a0~p0!1e0a1~p0!#1@e1a0~p0!2e0a1~p0!#exp@2ia0~p0!H#
, ~150!

FH
6~p0!5

17exp@2ia0~p0!H#

@a0~p0!1a1~p0!#1@a0~p0!2a1~p0!#exp@2ia0~p0!H#
, ~151!
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The parameters are the same as those used in Ref. 23
one-dimensional dielectric film where a TE-polarized wa
is incident. The thickness was chosen in such a way that
slab supports only two guided wave modespTE

1 51.5466K0

andpTE
2 51.2423K0 for the TE polarization. These modes a

resonance modes; they verify@FH
6#21(pTE

1,2)50. For the TM
case, we have three modes given by the ro
@FV

6#21(pTM)50, which are pTM
1 51.6126K0 , pTM

2

51.3823K0 , andpTM
3 51.0030K0 . As described in Refs. 11

23, and 32, these guided modes can produce a classi
enhanced backscattering with satellite peaks symmetric
positioned. The satellite peaks angles are given by the e
tion

sinu6
nm52sinu06

1

K0
@pn2pm#, ~152!

wherepn and pm describe one of the guided modes. Wh
n5m, we recover the classical enhanced backscattering.
can given an explanation for this formula as in the previo
case. In expression~106!, the term producing the peak
comes from

22P̄~uup1!•Q̄1~p1up0!, ~153!

whereQ̄1(p1up0) contains the factorsF6(p1) having reso-
nances for the slab guided mode. The product

X̄d
~2!~pup1up0!(X̄d

~2!~pup1p02p1up0! ~154!

in Eq. ~146! has a significant contribution only whenp1 and
p1p02p1 are near resonance modes. As there are sev
resonances, we can havep1'pn and p1p02p1'pm , with
nÞm, where pn and pm are resonance vectors. Ifpn
r a

he

ts

lly
lly
a-

e
s

ral

56pnêx andpm57pmêx ~guided modes propagating alon
the incident plane but with opposite directions!, we have (p
1p0)•êx'6(pn2pm) which is another way of writing Eq.
~152!. For the TE polarization, since we have only tw
guided waves, the satellite peaks can only exist at the an
u6

12(TE)5617.7°. Now, for the TM polarization we hav
three possibilities:u6

12(TM) 5613.3°, u6
13(TM) 5637.6°,

andu6
23(TM) 5622.3°. The satellite peaks are produced

the termĪ (222), and in the case of TM polarization we do n
obtain any significant contribution to satellite peaks. Ho
ever, for the TE to TE scattering shown in Fig. 11, we fi
satellite peaks at the angleu6

12(TE)5617.7° positioned
along a dotted line. Now, by doubling the slab thickness~see
Fig. 12!, the satellite peaks disappear for the entry polari
tion, but we see a phenomenon called Sele´nyi fringes.32–34

For a slightly random rough surface, the slab produ
fringes similar to those obtain with a Fabry-Perrot interfe
ometer illuminated by an extended source. The roughn
modulates amplitude fringes, but their localization rema
the same as for the interferometer. We also note that
enhanced backscattering decreases with the slab thickn
We can conclude, as in the case of one-dimensional ro
surface, that the satellite peaks appear only when the w
guide supports few modes for the TE polarizations. Th
results differ from those obtained in Ref. 32 where no sa
lite peak appears in their two-dimensional slab. We ha
checked that with these parameters values we also find
peak, and we agree with the results given by the contri
tions of the first- and second-order terms. However, the th
order term gives a contribution larger than the first-ord
one, and such a result casts some doubt on the validity of
SPM method in that case.
1-15
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However, for the choice of parameters presented here
satellite peak has been observed even when the thickne
the slab is chosen in such a way that only two guided mo
exist for the TM polarization~a result not presented here!.
This is in agreement with the results of Ref. 35 for a on

FIG. 10. The bistatic coefficients for horizontal~TE! and verti-
cal ~TM! polarized incident light of wavelengthl5632.8 nm, on a
slab with an upper two-dimensional randomly rough surface, ch
acterized by the parameterss515 nm, l 5100 nm, e152.6896
1 i0.0075, and thicknessH5500 nm, deposited on an infinite con
ducting plane (e252`). The scattered field is observed in th
incident plane. For each figure are plotted the total incoherent s

tering ḡ incoh ~solid curve!, the first order given byĪ (121) ~dotted

line!, the second order byĪ (222) ~dashed line!, and the third order

by Ī (321) ~dash-dotted line!.

FIG. 11. Details of the second-order~TE to TE! contribution to
the scattering shown in Fig. 10. We see two satellite peaks at
angleu6

12~TE!5617.7°. The dotted lines mark the peak angle p
sition.
24541
no
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dimensional surface, where it is noted that the excitation
TM modes are more difficult to excite than the TE modes.
order to enhance this effect the authors of Ref. 35 chos
higher permittivity for the media 1.e155.66441 i0.005. In
this case satellite peaks were observed for a slab which
ports three guided modes. We have also done numerical
culations with these parameters; however, we did not
serve satellite peaks. Thus the transition from one- to tw
dimensional rough surfaces lowers the efficiency of
excitation of TM modes. Next, instead of doubling the sl
thickness, we have changed the infinite conducting plane
a silver plane (e25218.310.55i ). We see in Fig. 13 tha
the enhancement of backscattering is also decreased, an
there is no more satellite peak corresponding to TE to
scattering. This fact has to be compared with the next c
figuration, where the rough surface is now between med
and 2; see Fig. 4.

C. A film with a rough surface on the bottom side

The permitivities are the same as in the previous confi
ration, except that the casee25 i` cannot be treated with the
SPM because the second and third orders diverge. The
heights now has valuess55 nm andl 5100 nm. We have
not chosens515 nm because numerically we note that t
first-order termĪ (121) was not greater than the second ord
Ī (222), which means that we are near the limit
validity of the SPM. The perturbative development is giv
by Eqs. ~97!–~99!, and the guided modes are the roo
of @XVVd

(0) (pTM)#21 for TM polarization, and of
@XHHd

(0) (pTE)#21 for TE polarization. We obtain two modes i
the TE case, whose values arepTE

1 51.5534K0 and pTE
2

51.2727K0 ; the corresponding satellite peaks angles
u6

12(TE)5616.3°. For the TM case, we have three guid
modes with pTM

1 51.7752K0 , pTM
2 51.4577K0 , and pTM

3

51.034K0 ; they correspond to six possible sattelite pea

r-

t-

he
-

FIG. 12. Effect of the slab thicknessH51000 nm on the con-
figuration shown in Fig. 10.
1-16
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angles given byu6
12(TM) 5618.51°, u6

13(TM) 5647.8°,
and u6

23(TM) 5625°. We see the apparition of satelli
peaks only for the TM to TM scattering process, as shown
Fig. 14. This result differs from the previous case becau
on the one hand, the rough surface not being a perfect
ductor, we still obtain satellite peaks; on the other ha
these satellite peaks now appear for the TM to TM polari

FIG. 13. The same parameters as in Fig. 10, but with a si
plane characterized bye25218.310.55i .

FIG. 14. The bistatic coefficients for horizontal~TE! and verti-
cal ~TM! polarized light of wavelengthl5632.8 nm, incident on a
film of permittivity e152.68961 i0.0075, deposited on a two
dimensional randomly rough surface, characterized by the pa
eters s55 nm, l 5100 nm, e25218.310.55i , and thicknessH
5500 nm. The scattered field is observed in the incident plane.

each figure are plotted the total incoherent scatteringḡ incoh ~solid

curve!, the first order given byĪ (121) ~dotted line!, the second order

by Ī (222) ~dashed line!, and the third order byĪ (321) ~dash-dotted
line!.
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tion instead of the TE to TE polarization. This is a surprisi
result, because the TM polarization, which has one m
mode than the TE one, should decrease the amplitude o
satellite peaks for this polarization, as was the case with
upper rough boundary. Moreover, we see in Fig. 15 that
three satellite peaks can be clearly separated. This ca
explained from the fact that there are two phenomena wh
occur in this case. The first is the same as in the previ
case, where the wave can excite guided modes through
roughness, which produces an enhancement of backsca
ing and the satellite peaks. These effects come from the t

a1~p1!X̄se1 ,e2

H~1! ~pup1!•Ū~0!~p1!•V̄10~p1!•X̄se1 ,e2

H~1! ~p1up0!

~155!

in Eq. ~98!, whereŪ(0)(p1) have resonances for the differe
modes of the guided wave. However, there is also a sec
phenomenon which was described in our first examp
where the rough surface can excite a plasmon mode. T
appears from Eq.~98!, with the term

X̄se1 ,e2

H~2! ~pup1up0!, ~156!

and subsequently in Eqs.~144! and~146!. The localization of
this modepr is given by

@D21VV
1 ~pr !#

215
1

e2a1~pr !1e1a2~pr !
. ~157!

In our case this givesipr i51.7755K0 , which is very close
to the valuepTM

1 51.7752K0 . So, in Eq.~146! the product(
of Eq. ~155! by Eq. ~156! can produce peaks wherep1

56ipr i êx'6pTM
1 êx and (p01p)•êx56(pTM

1 2pTM
n ), with

n51, 2, and 3. We have effectively verified numerically th
the product of this two term can considerably enhance
different peaks, in particular the first satellite peaksu6

12

~when n52). Now, by doubling the slab thickness, we s

r

-

or

FIG. 15. Details of the second-order~TM to TM! contribution to
the scattering shown in Fig. 14. Dotted lines mark the peak an
position.
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from Fig. 16 that the satellite peaks have disappeared du
the profusion of guided modes which can be excited.

VII. CONCLUSIONS

We have obtained four generalized reduced Rayle
equations which are exact integral equations, and where
of the four unknown fields coming on the rough surface h
been eliminated. These equations offer a systematic me
to compute the small perturbation development with
lengthy calculations. Moreover, the scattering matrices
only two dimensional. All the theoretical calculations ha
been done up to order 3 in the height elevation, which
lowed us to obtain all the fourth-order cross-section term
We have calculated the perturbative development for th

FIG. 16. Effect of the slab thicknessH51000 nm on the con-
figuration shown in Fig. 14.
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to

h
ne
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od
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re

l-
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e

different structures composed of a rough surface separa
to semi-infinite media, and a dielectric film where one of t
two boundaries is a rough surface. For the first structure,
perturbative expression was already calculated at the t
order, but our derivation offers the advantage that it can
formulated in a compact manner, making numerical com
tations easier. For the slab configuration we present new
sults, to our knowledge. It should be noted that for the c
of a rough surface in the upper position, a generalized d
vation of the reduced Rayleigh equations becomes man
tory. The numerical results show an enhancement of
backscattering for co-polarization and cross-polarization
all these cases. In the slab case, for some configurations
definite polarizations, we have detected satellite peaks wh
result from the interference of different waveguide mod
This general formulation can be extended to a configura
including two rough surfaces, and some results will be p
sented in a next subsequent paper.36
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APPENDIX A: INTEGRATION BY PARTS

We need to calculate the following integral:

E d2x exp@2 i ~ku
1b2kp

1a!•r x#“h~x!. ~A1!

Since“h(x,y) is zero for uxu>L/2 or uyu>L/2, we can
fix the integration limits. We choose the boundary limitsxl
in x such thatuxl u.L/2, and (u2p)xxl52pmx , with mx
PZ. Similarly, we choose the boundaryyl in y such that
uyl u.L/2 and (u2p)yyl52pmy , with myPZ. Thus the in-
tegral ~A1! is
E
2xl

xl E
2yl

yl
dx dyexp@2 i ~u2p!•x#¹h~x!exp$2 i @ba1~u!2aa1~p!#h~x!%

5êxE
2yl

yl
dyFexp$2 i ~u2p!•x2 i @ba1~u!2aa1~p!#h~x!%

2 i @ba1~u!2aa1~p!# G
x52xl

x51xl

1êyE
2xl

xl
dxFexp$2 i ~u2p!•x2 i @ba1~u!2aa1~p!#h~x!%

2 i @ba1~u!2aa1~p!# G
y52yl

y51yl

2E
2xl

xl E
2yl

yl 2 i ~u2p!

2 i @ba1~u!2aa1~p!#
exp$2 i ~u2p!•x2 i @ba1~u!2aa1~p!#h~x!% ~A2!

52E d2x
~u2p!

@~ba1~u!2aa1~p!#
exp@2 i ~ku

1b2kp
1a!•r x#. ~A3!
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The term in the square bracket cancelled due to the ch
made forxl andyl . From the previous calculations, we ca
now replace“h(x) by

¹h~x!↔2
~u2p!

@ba1~u!2aa1~p!#
. ~A4!

APPENDIX B: PERTURBATIVE DEVELOPMENT AND
RECIPROCITY CONDITION

As noted by Voronovich,8 the scattering operatorR̄ has a
very simple law of transformation when we shift the boun
ary in the horizontal direction by a vectord:

R̄x→h~x2d!~pup0!5exp@2 i ~p2p0!•d#R̄x→h~x!~pup0!,
~B1!

or when we translate the surface by a vertical shiftHêz :

R̄h1H~pup0!5exp$2 i @a0p1a0~p0!#H%R̄h•~pup0!.
~B2!

Now, using Eq.~B1!, we can deduce some properties on t
perturbative development of the scattering operator. T
generalization of the Taylor expansion for a function d
pending on a real variable to an expansion depending o
function ~which is in fact a functional! can be expressed i
the form

R̄~pup0!5R̄~0!~pup0!1R̄~1!~pup0!1R̄~2!~pup0!1R̄~3!~pup0!

1¯ , ~B3!

where

R̄~1!~pup0!5E d2p1

~2p!2 R̄~1!~pup1up0!h~p1!, ~B4!

R̄~2!~pup0!5E E d2p1

~2p!2

d2p2

~2p!2

R̄~2!~pup1up2up0!h~p1!h~p2!, ~B5!

R̄~3!~pup0!5E E E d2p1

~2p!2

d2p2

~2p!2

d2p3

~2p!2

R̄~3!~pup1up2up3up0!h~p1!h~p2!h~p3!. ~B6!

A

Applying this perturbative development on each side of E
~B1!, and taking their functional derivative~see Ref. 7! de-
fined by

d~n!

dh~q1! . . . dh~qn!
, ~B7!

we obtain for alln>0, in the limit h50,

R̄~n!~puq1u¯uqnup0!5exp@2 i ~p2q1¯2qn2p0!•d#

3R̄~n!~puq1u¯uqnup0!. ~B8!
24541
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We find that

R̄~n!~puq1u¯uqnup0!}d~p2q1¯2qnp0! ~B9!

so we can defineX̄ matrices by the relations

R̄~0!~pup0!5~2p!2d~p2p0!X̄~0!~p0!, ~B10!

R̄~1!~pup0!5a0~p0!X̄~1!~pup0!h~p2p0!, ~B11!

R̄~2!~pup0!5a0~p0!E d2p1

~2p!2 R̄~2!~pup1up0!h~p2p1!

h~p12p0!, ~B12!

R̄~3!~pup0!5a0~p0!E E d2p1

~2p!2

d2p2

~2p!2 R̄~3!~pup1up2up0!

h~p2p1!h~p12p2!h~p22p0!, ~B13!

A

wherea0(p0) is introduced for a matter of convenience.
Let us now make some remarks about the reciprocity c

dition. If we define the antitranspose operation by:

S a b

c dD
aT

5S a 2c

2b d D , ~B14!

the reciprocity condition for an incident and a scatter
waves in the medium 0 reads8

R̄aT~pup0!

a0~p0!
5

R̄~2p0u2p!

a0~p!
. ~B15!

Making use of the previous functional derivative, we wou
like to prove that each order of the perturbative developm
must satisfies this condition. It is easy to show that

@X̄~1!~pup0!#aT5X̄~1!~2p0u2p!, ~B16!

thus X̄(1) is reciprocal, but the same conclusion cannot
extended toX̄(n) when n>2. For example, in the casen
52, using Eq.~B15!, we can only deduce that

E d2p1

~2p!2 @X̄~2!~pup1up0!#aTh~p2p1!h~p12p0!

5E d2p1

~2p!2 X̄~2!~2p0u2p1u2p!h~p2p1!h~p12p0!.

~B17!

From this we cannot deduce a result similar to Eq.~B16! for
X̄(2). This fact is well illustrated with the following identity
~which can be demonstrated with a transformation of
integration variables!:
1-19
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E d2p1

~2p!2 ~p1p022p1!h~p2p1!h~p12p0!50.

~B18!

We see thatp1→p1p022p1 is not a null function, although
24541
the integral is null. From this we deduce thatX̄(n) for n.1 is
not unique. Moreover in using Eq.~B18! we can transform
X̄(n) in a reciprocal form. This procedure is illustrated in t
one-dimensional case in Ref. 21, and the results for
second-order in the electromagnetic case are given in Re
and 22.
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