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Application of reduced Rayleigh equations to electromagnetic wave scattering by two-dimensional
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The small perturbation method has been extensively used for wave scattering by rough surfaces. The
standard method developed by Rice is difficult to apply when we consider second and third orders of scattered
fields as functions of the surface height. Calculations can be greatly simplified with the use of reduced
Rayleigh equations, because one of the unknown fields can be eliminated. We derive a set of four reduced
equations for the scattering amplitudes, which are applied to cases of a rough conducting surface, and to a slab
where one of the boundaries is a rough surface. As in the one-dimensional case, numerical simulations show
the appearance of enhanced backscattering for these structures.
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[. INTRODUCTION that one of the down- or up-going fields is eliminated. With
these equations, we rediscover the equation obtained by

The scattering of electromagnetic waves from a roughBrown et al® for one rough surface, and derive the corre-
surface has been studied in different domains such as radigponding ones for a slab where one of the boundaries is a
physics, geophysical remote sensing, ocean acoustics, af@ugh surface. Next a perturbative development, up to third
surface optics$~ ™ One of the earliest theories used is theorder, is obtained in a compact matrix form for these two

small perturbation methodSPM) originally developed by Systems. This third-order term is mandatory if we need an
Rice? This theory still remains of interedt!34because €XpPression for tr_]e Cross sec_tlon up to the fourth-order ap-
perturbative terms of orders higher than 1 can produce erproximation. As in the one-dimensional case, the results of
hanced backscattering, or improve prediction accuracy in a € mcoher'ent Cross section show a well-defined peak in the
emission model. Although the Rice method can be used iﬁetroreﬂectlon direction. . .
principle to determine all orders in the perturbative develop- In the_ case of small-_roughness mete_a\lllp _surfaces, thls_peak
ment, very few works use terms of order higher than 1 for a. o> orl_glnally explained by the infinite perturbation
 VEIy 9 " Gheory’-°and further developmerffsshowed that the ma-
two-dimensional surface due_to the_ calculational complexn))/rior contribution to the enhanced backscattering peak comes
The second order was written in a compact form by om the second-order term in the field perturbation. How-
Voronovich® in his work on the small-slope approximation, eyer in the one-dimensional case the enhanced backscatter-
and onl){ recently was the third ordgr preseri't%Hi.owever, ing for a rough surface, appears only for(BM) incident
there exists a different way to obtain the SPM which dategyaye due to the fact that plasmon polaritons only exist for
back from the work of Browret al'® Using both the Ray- this polarization. In the two-dimensional case, due to the
leigh hypothesis and the extinction theorem, they obtained agxistence of cross polarization, we will show that an incident
integral equation, called the reduced Rayleigh equationTE wave can excite a TM plasmon mode which can trans-
which involves only the incident and scattered fields aloneform into a TE or TM volume electromagnetic wave. Thus
In their method the field transmitted through the surface igshe enhanced backscattering is present independently of the
eliminated in such a way that the scattered field becomes polarization of the incident and scattered waves. For a rough
function of the incident field only. This reduced equationdielectric film bounded by a conducting plane, enhanced
was extensively used by Maradudin and co-workers to studpackscattering is present for both TE and TM incident
localization effects by a conducting surfdde!® coherent waves, even in the one-dimensional case, because guided
effects in reflection facto®® and scattering by one- waves exist for these two polarizations. The qualitative effect
dimensiona! and two-dimensional conducting surfeelt of the two-dimensional surface is particularly sensitive when
should be noted that the third-order perturbation term wasve study thin films. For instance, in the one-dimensional
already explicited in the work of Ref. 22. case, satellite peaks®® appear on each side of the enhanced
In recent years, similar studies were made in the case diackscattering peaks; however, in the two-dimensional case,
thin films bounded by a rough surfate?® but only in the  the coupling between TE and TM modes drastically attenu-
one-dimensional casé. In order to calculate the two- ates these peaks.
dimensional case it becomes necessary to derive an exten- The paper is organized as follows. In Sec. I, we derive
sion of the reduced Rayleigh equation for this system. In théhe four reduced Rayleigh equations. In Sec. Ill, we intro-
present paper, we first study a surface where down- and umluce the diffusion matrix. In Sec. IV, we determine the per-
going fields exist both on the upper and lower sides of thdurbative development up to the third-order term in the sur-
film. We show the existence of four equations, that we alsdace height, for a rough surface alone, and for slab with a
call reduced Rayleigh equations, which have the propertyough surface located at one of the boundaries. In Sec. V, we
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FIG. 1. A rough surface with an incident wave coming from
both sides of media 0 and 1.
ky
introduce the Mueller matrix, and the definition of the statis-
tical parameters for the rough surface. We then obtain the FIG. 2. Decomposition of the wave vecti?*.
bistatic matrix in terms of a perturbative development. Nu-
merical examp_les which show thg enhanced backscattering (V2+51K§)El(r)=0 for z<h(x), 2)
are presented in Sec. VI. Conclusions drawn from the results
of our calculations, are discussed in Sec. VII. whereK,=w/c. Since the system is homogeneous in the
=(x,y) directions, we can represent the electric field by its
Il. DERIVATION OF THE REDUCED RAYLEIGH Fourier transform. Thus, using the Helmohltz equation, we
EQUATION deduce the following expression for the electric fiéfdin

. ) _ the medium O:
The reduced Rayleigh equation was obtained for a two-

dimensional surface by Browat all® using the extinction d2p

theorem and the Rayleigh hypothesis. It allows one to calcu- E%r)= J ——E% (p)exp(i kg’ )

late the scattered field from the rough surface. Now, if we (2m)

want to compute the transmitted field from a rough surface, d2p

we have to introduce another reduced Rayleigh equation de- + j 2—2E°+(p)exm kg+ ), 3
rived by Greffet?® However, these two equations were estab- (2m)
lished in the case where there is no up-going field inside th@vhere(
medium; thus they cannot be used to obtain the field scat-
tered by a slab with a rough surface on its upper side. In fact,

see Fig. 2

= 2_ 2\1/2
to generalize these equations to a slab, we have to consider ao(P)=(€oKo—=P7) ™ @
all the fields shown in Fig. 1. We will prove that there exist
four reduced Rayleigh equations, which involve only three of kgi =p+ay(p)&,. (5)

the participating field€°~, E®", E1™, andE**.

We consider that each electromagnetic wave propagatds fact, when writing such a definition, we implicitly make
with a frequency o, and in the following the factor the assumption that the Rayleigh hypothesis is correct. This
exp(—iwt) will be omitted. We choose to work with a Car- representation is only valid wher™>maxh(x)], and in this
tesian coordinate systens (x,z) = (x,y,z), where thezaxis ~ caseE’ (p) represents the incident wave amplitude. In or-
is directed upward, and we consider a boundary of the forndler to be correct we need to add an explicit dependence in
z=h(x). Moreover, we suppose that there exists a leigth the z coordinate like(see Ref. 28
for which h(x,y)=0, if |x|=L/2 or |y|=L/2, andL may be
arbitrarily large but finite. EC=E% (p,z), E°*=E%"(p,2). (6)

However, explicit calculations in the case of infinite conduct-
h o o ing surfaceg/ and for a dielectric mediufrwithout this hy-
The eI_ectrlc fieldE satisfies the Helmohltz equation in the pothesis, have shown that the perturbative developments are
two media: identical. The validity of this hypothesis is no doubt a matter
5 _— of the convergence domain, as discussed by Vorondiigh.
(Vo4 €0KQE™(r)=0 for z>h(x), D In medium 1, we have a similar expression,

A. Propagation equations and boundary conditions
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d%p 1 Let us introduce the fields Fourier transforms E®.and
EXr)= J WEl_(p)exp(lkp -T) (7), into the boundary conditiorf&gs.(17)—(19)], they give
d*p 1+ 1+ d?
ikLt. p .
+J_2(217) E (p)exp(lkp r), (7) a§+ J‘Wn(X)Xan(p)qulkga'rx)
where &
= ———n(x) X EY¥(p)expiki®-r,), (20
al(P)E(GlKS—pZ)UZ, (8) azt f (27) (X) (p)exp( p %, (20
Ks“=p*ay(p)&,. 9) 2
0 .
We decompose the vectoEp) on a two-dimensional basis P 2+ f W”(X)'an(p)exmkga' ry)
due to the fact thaV - E(r) =0, which gives the conditions tas=
+ + + + d2p )
kp™-E**(P=0, k;"-E™(p)=0. (10 -z f Zm2 "0 ERpexalikgh o, (2D

Then, we define the horizontal polarization vectdror TE
andV for TM in medium 0 by

f 2 n(x) X [kp*x E%(p) Jexp(ik3? 1)

L ol SN (1
=13 ETH >< ’
R R T
——N(X) X[ k32X E*3(p) Jexp(ikp? 1
B(p)XKS"  ao(p) f (2m)
0+ -+ o N
&= kT Vegko " Vegko 22
(12)
with similar expressions for medium 1: ry=x+h(x)e,, koa p+aag(p)e,,
&( )=ﬁ“ Xp (13 ki?=p+ & 23
eu(p _”észét” =6XxXp, p =p aa’l(p)eZa ( )
1+ where the summation includes the two possible signs
é\lli'( eH(p)it“ al(p) p— [Pl ®,. ==+, Iink_e_d to thg: propagatioln directior_ls. We will also use
||Q+(P) I \/e—lKo VeKo the conditionV - E°(x,z) =V - E*(X,z), which gives the rela-
(14)  tion

Thus we decompose the waves in medium 0 on the basis

[p1°"=[& (p).&(p)], and[p]°* =[&" (p).&:(P)]: koa EO%(p)exp( iK% 1,)
£0- 0+
{58, o2
H [pIo~ H [p]°+(15) ZJ’ ko2 EM(p)expliky?-ry).  (24)

where for medium 1 on the bas[qa]lfz[é\l,_(p),éH(p)]
and[p]“z[éff'(p),“eH(p)] B. Field elimination

El- ()= E\l,_(p) EL+(p) = \1/+(p) Equations(20)—(22) and (24) are all linear in the fields
(p)= EL (p)) (P)= EL ()] .. E°", E®, E'7, andE'". In order to eliminate&e*~ or E**
L] [P] (16) in Egs.(20)—(22) and(24), we will take the following linear

combination of their left and right sides:
The electric field E(x,z) and magnetic field B(x,2)

=(1iw)V XE(X,2), satisfy the following boundary condi-
tions: f d*x{ky° X [Eq. (20)]+[Eq. (22)]- k{"[Eq. (21)]
n)X{Ex,h()]-Exh()]}=0, (17 OO[EG, 24 Tjexp— iK1 25

n(X)-{&E () ]-eExh()]}=0, (18 .
with k;"=u+ba,(u)&,, and whereb=*, has to be fixed

n(x) X {B[ x,h(x)]— B x,h(x)]}=0, (199  according to the choice of the field we want to eliminate.
With the vectorial identityax (b c)=b(a-c)—c(a-b), the
n(x)=&,—Vh(x). right side of Eq.(25) can be written
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d%p |
Z | | xgapt g nooEnm 0 | PxNO0RKI i (KPR 1]
1b 1
+ (k" —kp™) - E¥(p)n(x) —n(x)- E¥(p) = 5u’_pf d?x [&,— Vh(x)]exp—2iu-X)
X (k= k™) Jexd =i (ky*— ko) 1], (26)
We now have to discuss the different cases depending on the = 5u,p[ éZJ d%x exp( —2iu-x)— &,

relative sign betweea andb.

(1) If a=—b, we can use an integration by pafsee . x=L2 _ &

Appendix A to evaluaten(x)=&,—Vh(x). Then we can X | dylexp(—2iu-x)h(x.y) ==L~ &
make the replacement

(u=p) xf dx{exp(—2iu-x)h(x,y) J="7

[baj(u)—aai(p)]’

n(x)=&—Vh(xX)«—n(x)=¢&,+
27 —2iuf dth(k)e‘zi“'x}
It has to be noted that the denominaftwa,(u) —aa(p)]

does not present any singularity becaase —b. For the _s 5, Sinu,L Si”uyL_z- h(—2 33
first term in integral(26), we obtain u-p| % Uy y luh(—2w 33
— (KP4 13y n(x)EL2 since u#0, the first term of the previous expression is at
(ky ™k -NCOE™(p) most of orderL and as
—bE'(p)
- =\ 2 2 2_ 2 )
[al(u)+a1(p)][u p +al(u) al(p) ]7 d p iz
2 T 24~
—o. 28) (2m)? L2

this result implies that expressioi26) is also zero when
L—oo.

We can summarize all the above results in the form

The last equality can be easily checked using(By.For the
sum of the second and third terms of Eg6), we also have

(ky®=kp®) - E*(p)n(x) = n(x) - E*(p) (ki k) =0,
P "7 (29 - f d2x(K20+K12) - n(x) E2(p)expf —i (K2~ k%).1,]

due to the fact that
=—2bay(U) 84 pdup L? E*(p)

(30) = —2bay(u) 8, p(2m)?8(u—p)E(u)

when L— + o, (34

1b_ kla
_ u P
n0)= bay(u)—aay(p)’

(2) If a=b, we can use again the integration by parts only

. : where §(u—p)=L2%/(2m)26, , the Dirac function.
if a;(u) # a1(p). Then we have to consider three cas@s: After an iFr)ltegration orpu;nd a summation og, for ex-
u#p andu# —p, as in the previous case by using an inte- '

gration by parts we show that EQ6) is zero.(b) u=p; then pression(26) we obtain
k°=ky?, —2bay(WE™(u). (35
o 1b . 1 L b im We see that we can eliminate the fidid~ (u) or E**(u)

_f d*x(ky"+kp") - nO)E(p)exd —i(ky" —Kp™) -1y depending on the choice made for +.
Now, if we consider theeft sideof Eq. (25), we have
=— J d?x 2kIP. n(x)E*3(p) d2o T
p
2y " | _/L1lb Oay Oa

aZi fd X2 (kiP+k%%) - n(x)E%(p)

= _Zbal(u)Ela(p)f dx=— 2ba1(U)L2 Ela(p)1 + (k&b— kga) . an(p)n(X) _ n(X) . EOa(p)

(31) . :
0 1b_ 1,0 i lb_ 1,0
becausd d’xVh(x)=0, and X Zlku —kpa)_exp[—|(ku —kp) 1. (36)
(kab—kéa)-Ela(p)n(x)— n(x)~E1a(p)(kﬁb—kéa)=0. Using an integration by parts, we replacgx) by Eqg. (27):
32
(©) u=—p#0; thenk®—k*=2 - N(x) <&+ (uzp) = Kk
© U= mpr T ety % — 2 [bar(U)—aag(P)]  [bas(u)—aag(p)]
and if we denotej, _, the kronecker symbol (37
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In this case there is no need to discuss the relative sign b@nd taking into account expressio(®5), (38), and(39), we
tweena andb becausda;(u) —aag(p) #0, due to the fact €xpress the resulting linear combinatipig. (25)] in the
that e, # €,. We then obtain form

— (kiP+k2?) - n(x)E%(p)

Z d?p I[bay(u)—aag(p)|u—p]

u?—p?+ a1 (u)?— ay(p)? (2)° ba(u)—aay(p)

= — EOa ,
bay(u)—aag(p) (P) kﬁb .
) X | K E%(p)— — (k" — k") -E%(p)
(61— €0)Kp 0a !
= bau—aa o E (P, (38
a(u) —aay(p) ~ 2bay(u) E1(u) 1)
where we have used definitiot$) and (8). The remaining (€1~ €o) ’

terms of Eq.(36) give ) ) ) _
this expression represents a set of two equations, depending

on the choice fob=*. The last step is to project E¢41)
on the natural basis of E’(u), namely, [u]*®

(klb kOa) an(p)n(X) n(X) an(p)( klb kOa)
=[8&l"(u),&,(u)], which has the property to be orthogonal

= (kiP—k3?) - E%(p)n(x) — n(x) - E%(p) (ki° — k3?) tok®, so it eliminates the second term of E41), left hand
€ side. Let us note that in order to decomp&Sg(p) on[p]°,
+n(x)- an(p)( ki — e—kll,b> one has to define a matr **%(u|p) transforming a vector
1

expressed on the bagis]°® into a vector on the basjsi]*°,

kiP— kg2 o (e1— €o) » multiplied by a numerical factoree;)*/?K3 introduced for a
= bay(u)—aag(p) E*(p) Ky (39  matter of convenience:
Introducing the notation alb, \ a0a alb
I\Wlb’oa(um)z(Go'fl)l/ZK% ?\/ W Aeova(p) v %(F;)
|[a|p]zf d?xex —ip-x—iah(x)], (40) (- &) e“(u)'e“(p@)
C. Reduced Rayleigh equations
With definitions(11)—(14) the matrixM takes the form
o lulllpll+abas(u)ag(p)a-p  —beg?Koas(W)(xp),
M= (Ulp): 1/2 1/2; ’ (43)
aey Koao(p)(GXP), (€0€1)VKE0-P
and the two reduced Raleigh equations resulting from(&%. read
d’p I[ba;(u)—aay(p)|lu—p] — 2b(eg€r) Py (U)
M*(u|p)E%(p)= E'°(u), 44
5, | G bartar- aasm WPER = ey & (49

where we suppose th&3(p) and E'®(u), respectively, are decomposed on the bdgd$? and[u]'®. We can derive a
similar equation wher&° is now eliminated, by simply exchangirg ande; in Egs.(43) and(44). Due to the symmetry of
Egs.(3), (7) and(17)—(19), we obtain

d2p I[bao(u)_aal(p)|u_p] “10b.1a 1a _ Zb(fofl)llzao(u) ob

@m? bagu)aap) " UPETRETT T B 49

ona (o) | 1UlIP]+abao(Was(p)a-p - —berKoao(u)(@xP), 4
(ulp)= aeg Koaa(p)(0XP), (€0€1) VK50 p 40
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In Sec. lll we will show how these equations greatly simplify éx(p;) z
the perturbative calculation of plane-wave scattering by a on
rough surface. In_order to keep a compact notation, we in- R ky
troduce matrice®,, given by en(p
oy oy 02—t &)
“ulp)= A(ulp),
P T b (1) —aa(p) P
(47) “
_ I[[bag(u)—a u—pJl —
Mgb'la(u|p)5 [ aO( ) al(p)| p]MOb'la(U|p). \ /t
bao(u) —aas(p) "\ S~ @
(48)
en(p) °
lll. DIFFUSION MATRIX gt A\
We are interested in the diffusion of an incident plane

1-
wave by a rough surface from the previous formalism. We kp

define an incident plane wave of wave Vedttﬂtr) as FIG. 3. A two-dimensional rough surface separating two dielec-

tric media 0 and 1.

E% (p)=(2m)258(p— Po) E'(Po)- (49)
We are naturally led to introduce the diffusion opera®r  R(p|po) =R (p|po) + R™(plpo) + R (p|po) + R (p|po)
E%*(p)=R(plpo) - E'(po), (50) o (52)
which can be represented in a matrix form, using the vectoOne can easily prove that this development takes the form
rial basis described above: (see Appendix B
R(plpy) = Ruwv(Plpo)  Run(P[po) E(D|Po):(277)25(p—po)i(o)(po)
(PIpo) .
RHV(p|pO) RHH(p|pO) [p(;]%[er]

+ ag(Po) X (p|po) h(p—po)

The field in medium 0 is now writtefusing decompaosition d%p, —

(3] + aro(Po) f 2w X7 (PlPalPoh(p—py)
0 _ i +1,0—
E*(r)=E'(po)explikp, 1) h(p1—Po) + ao( >f f—dzpl d%p,

P17~ Po) T @o(Po (2m2 (2m)?

+fd—2p§(p|p> E'(po)exp(ik®" ). (51)
2 0/)" 0 : . _
(2m) P X3 (p|pa|p2lpo)h(p—p1)h(p1—p2)

IV. A PERTURBATIVE DEVELOPMENT h(p2—Po), (53

In order to obtain a perturbative development, one has tevhereh(p) is the Fourier transforfi of h(x):
make a perturbative analysis of the given boundary-problem.
A direct approach which uses an exact integral equation
called the extended boundary conditisee Refs. 4 and 26 h(p)EJ d?x exp(—ip-x)h(x). (54)
requires tedious calculations. Another issue is to use the
Rayleigh hypothesis in the boundary conditions. This is theye will now show the power of the reduced Rayleigh equa-
method generally used to obtain the SPM>**But a great  tjon for the three configurations mentioned in the Introduc-
deal of simplification can be achieved if we are only inter-tjon.
ested in the field outside the slab. It was discovered by
Brown et al1® that an exact integral equation can be obtained
(excepted for the Rayleigh hypothesis/hich only involves
the scattering matrbR(p|p,). The proof is based on the ~ We consider a rough surface delimiting two media which
extinction theorem, which decouples the fields inside and'® semi-infinite; see Fig. 3. We suppose that there is no
outside the media. In this section, we will show how to ob-Upward field propagating in the medium 1, 86" =0. With
tain this integral equation from the previous developmentthe choiceb=+ in Eq. (44), we obtain the following inte-
including a generalization to the case of bounded randongral equation for the scattering matrRSEOYEl(p|po) for a

media. We seek for a perturbative deveIopmerRTc'uh pow-  single surfac® (the subscripts means a single surface lo-
ers of the heighh: cated atz=0):

A. A rough surface separating two different media

245411-6
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f oo M3 "% (Ulp) - Reey e, (PlP0) + ME 07 (ulp) =0 e
W h S€q. €1 0 h .
(55)
[This equation was already obtained by making use of the seo 61(U|po) 2iQ" (ulpo), (61)

extinction theorent® It should be noted that since the right-
hand side of Eq(55) is null, one can simplify the second line

of the matricesM1*%" and M1* %~ by a factor ;)2

then they coincide with thé1 and N matrices derived by Xsep.ex(UlP1lPo) = 1(WQ” (ulpo) + ao(Po) Q™ (ulPo)
Brown et alf] — —,
In order to construct a perturbative development, the —2P(u[p1)- Q" (palpo), (62)

method is simply to expand in Taylor series the term
exdiah(x)] inside [ «@|p] [Eq. (40)],

X3 :_i_ 200) + a2 ~+
Lalp]=(2m)?8(p)— i ah D (p)— & h<2>(p) h<3(p) sep e, (U[P1]P2lPo) = — Z[[@1(W) + a5(Po) 1Q ™ (Ul po)

+ 2a1(u)ao(po)6_(u| Po) ]

e (56)
+iP(ulpy) - X ) e, (Palp2lpo)
h™(p)= f d?xexp(—ip-x)h"(x), (57) +ilay(u)
and to collect the terms of the same orderifx). Let us — ag(P2)1-P(Up,) - QF (2| Po),
define the matrix 63)
— €1a0(Po) = €9a1(Po) 0
DIO(pO)E + ’ ith
0 @o(Po) = @1(Po) wi
(58)
the classical specular reflection coefficients for TM and TE
waves are given by the diagonal elements of the matrix: Q™ (ulpo)
= ~ — _ u)—ap(u) — —
VA% po) =Dl po) - [Diepo)] (59 = o) s ov (] M ulpy)
- 2ao(Po)
Introducing Eq.(56) into Eqg. (55), for Rs. ., We obtain a — .\ or 10)
perturbative development of the form of E§3), where the M (ulpo) - X™(po) ], (64)
coefficients are given by
X0 (pg)— alipo;—aoipo; P(ulpy) =[ay(u) — ag(u)]
ces P @ +a _ _
P atel X[V (U] 2 (MO (ulpy) . (65)
XM (polpg) ]~ M* 2 (pg| po)
=V*¥(po) (600 After some simple algebra, we obtain

e1|[ullllpoll — €oas(U) a1 (Po)T-Po  — fi/ZKoal(U)(ﬂx Po) 2

N o [Dypo)]~ % (66)
ftl)/ZKoal(po)(UXpo)z K§ 0Po [PiolPo)]

6+(U|po)=(51_ Eo)[BIo(U)]fl' (

eoa1(Po)[[ullllpoll — elal(u)aé(po)ﬁ- Po —€o 2K0011(U)C¥1(po)(u>< Po) 2

Q (U|po ( ( ))[Dlo( )] ! (

-[Digpo)] ™%,

— €5 %e1K 0 (Po) (0% Py) K§a1(po)0-Po
(67)
Bulpy = (Bt (||u||||p1||+a1<u>ao<p1>a-m — egKoay (U)(0XPy), -
—(e—e )
P1 tomoEo 661’2Koao(p1)(0><f>1)z 2A 0-py
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z €0
én(po) E°-

V' B

€1
é?/_ (o)

o
€ El+ V E *

€1
E°-
€
z=hi(z) 0 )
T E1+

€p €0

€1
€1 €1

7° -

EH—

) ] ) FIG. 5. Definitions of scattering matrices for a planar surface.
FIG. 4. A slab formed with a bottom two-dimensional rough

surface and an upper planar surface.
ao(Po) =,
T (po), (72

_ T%(plpo) = (27)?8(p—po)
It can be easily checked tha® is the well-known first- @1(Po)
order term in perturbation theory which was obtained by _ (€ge1)*? _
Ricel? After some lengthy calculations, we have proven that Tlo(po)EZOél(po)( 0 1) [Diy(po)] " (72
Egs.(62) and(63), are identical to those found by Johnsdn. o ) ) ]
Thus our expressior(§2) and(63), are a Compact manner in NOW, W.he.n the incident wave is coming from medium 1, we
which to write the second and third-order terms of the perhave, similarly,

turbative expansion; moreover, they are well adapted for nu- V! = —(2)28(D— D) V10 73
merical computations. However, it has to be noted that only _(plpo) (2m)"o(p pO)_ (Po). 73
the first termX(®) is reciprocal. Since the second- and third- T(plpo) = (27)28(p—Po) T APo).- (74)
order perturbative terms are included in the integral, the co oH

The scattering matri;lRSEl’E2 for the rough surfacé, which

is located az=—H,*° and separates two media of permit-
tivity €; ande,, is given by

efficientX(® andX(®, are not unique; however, they can be
put into a reciprocal fornisee Appendix R

It is worth noticing that we can follow an analogous pro- o
cedure to calculate the transmitted field. By takbyg — in ﬁ';’el,EZ(p|p0)=exp{i[a1(p)+ al(po)]H}RS'Elyéz(p|po),

Eq. (45), we obtain (75)
d’p — 2 Y200(u where the phase term comes from the transladen—H
P R (ulp 2 (py = 2 oW oy i R o matri
(2m) (e1— €p) [see Eq.(B2)], and R, ., denotes the scattering matrix
(69

ﬁSfO'el of the Sec. IVA, where we have replaceg by €,
This eqtiation was already obtained with the extinctionande; by e,. Furthermore, if we define the product of two
theorent’ operatorA andB by

S d?p; — _
B. A slab with a rough surface on the bottom side (A- B)(p|p0)Ef ﬁA(Mpl) ‘B(p1lpo),  (76)

We consider a slab delimited on the upper side by a pla-
nar surface and on the bottom side by a rough surface, s¢
Fig. 4. Since there is no incident upward field in medium 2,

e can easily prove for the configuration shown in Fig. 4
at (we use for the fields the notations of Fig, 1

the scattering matrix obtained in Sec. IV A is sufficient to E1+:§§'€l’62.170. E0*+§';1’52.\71- EY, (77
determine the scattering matrix of the present configuration. o o
In order to obtain proof, let us introduce some definitions as EOt=VO.EO" + TL.EYF, (78)

explained in Fig. 5. The scattering matrix for an incidentWhere E% (p) = 2 i ;

; . . p)=(2m)“6(p—po)E'(pg). These equations
plagg Waile. coming lf)rom the medium 0, and scattered in th9vere recently used to calculate in first order the field scat-
medium L, 1S given by tered by a layered mediuffi.In fact, as we shall see below,

Vi = (2m)28(p—po) VO py), 70 these equations allow us to obtain all orders of the field per-
(plpo) = (2m)"0(P=Po)VHPo) (79 turbation. Expressiol77) is analogous to the Dyson equa-
whereV° is defined by Eq(59). The transmitted waves in tion usually used in random medialhus we are naturally
medium 1 are given by: led to introduce a scattering operatdy

245411-8
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z

én(ps) 3

Ch
=
S

FIG. 6. Diagrammatic representation of the operﬁéﬂ).

Ef=RY _.U-TO.EC, (79

which satisfies the equation
U=1+V:.RY

ST} (80)

If we define bde(p|p0), the global scattering matrix for the
upper planar surface and the bottom rough surface, by

E®* (p)=Rq(plPo) - E'(Po), (81
with Egs.(78) and (79), the scattering matrix becomes FIG. 7. A slab formed with an upper two-dimensional rough
Rd Vo4 T ﬁ‘:e . U.T0 82) surface and a bottom planar surface.

We can improve developmenB0) by summing all the which can be summed as
specular reflexions inside the slab; this can be done by intro-

U = 25(p—pg) U@
ducing the operatod(® which satisfies the equation U (pIpo) = (2m)76(p=po) U™ (po), @1
U©=1+VLREO, . U©, (83 U (po)=[1+V¥(pg) - VH?(pg) ] L. (889)
e 52
development, which is given by U= U(o)-f-U VEARY, U, (89)

R (Plpo)=(2m)?5(p—po)VH?Xpo), (84

and,VH21is the scattering matrix for a planar surface located

SH _BH  _QHO)
at the heighz=—H: ARg &, =Rs e, Rse e, - (90)
VM 2Yu)y=exg 2i a;(u)H] D,y(Po) - [Day(Po) 1~ L, In order to obtain the perturbative developmentRy, we
(85) introduce the expansion
. er,a1(Pg) £ €12(Pg) 0 SH  _pHO) | pH() | pHE2) | RHEB)
D31(Po) = ST e Rsei ™ Rsep e T Rsey e T Rsep e, TR e, (D)

0 a1(Po) = @2(Po) |~ . .
in Egs.(82) and (89) which gives the following terms:

The term exfia;(u)H] comes from the phase shift induced
by the translation of the planar surface from the height
=0 toz=—H [see Eq(B2)]. The diagrammatic representa-

RY'=VO+TH R, .U@.TO, (92)

RW_T1. . gHD [j0). 0
tion of Eq.(83), shown in Fig. 6, is in fact a geometric series Ry '=T"U"-Rg. - U™ T, (93
|
RP=TH U@ [RE?_+RUD_.U©.VERED 1.0 T, 04

R =71 00 [REC) 4 RE2. 0. VA RED 1+ RHD, 0. V2. RH2

Seq,€p Se€p ,€p S€p €9 S€q,€p
pH(1 1100) \/1 pH(1 1100) \/1 pH(1 11(0) 70
+Re - U@ VERYE U VE R, T U TO, (95

Using developments3) for RH se & , and definitiong70), (71), (73), and(74), we obtain, after some calculation a development
of the form of Eq.(53) for Rd with the following coefficients:

X (po) = [V po) + VM 2(pg)]-[1+Vpy) - VH 2 pg)] L. (96)

This matrix is naturally diagonal, and its coefficients are identical to those of the reflection coefficients for a plahaihslab.
other coefficients are

245411-9
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X (plpo) =T™(p) - U(p) - X¢ 2, (PlPo) - U (po) - T (o), 97

X (plpalpo) =T p) - U (p) - [XELZ, (p|palpo) — a1 (P Xell, (plpy) - UP(p1) - VEpy) - XELT, (palpo)]

U9 (po)- T py), (98)

X (plpalpalpo) =T p) - U (p) - [Xe¥, (plpalp2lPo) — a1 (p2) X6l (plpalp2) - UP(p2) - VI p2) - X4 L (P2l o)

— ay(py) XH sep, 52(p|p1) U9(py)-V¥%p,)- _':e(ze)z(p1|p2|p0)+al(pl)al(pz)XSEl 52(p|p1)
U@ (py) - V2py) - XL, (palp2) - U (p2) - V2Ap) - XELE, (P2l po)]- U (po) - T*(po). (99

In these expressmnX,se(n)e (p|po) =explil a(p) + a1 (Po) IHIXL 561 o (p|po), and the subscripts, ande, in XSE ., Mean that
we replaceeg by €4, and €, by €, in Egs.(61)—(63).

C. A slab with a rough surface on the upper side

We consider a slab delimited on the upper side by a two-dimensional rough surface, and on the bottom side by a planar
surface; see Fig. 7. To derive the reduced Rayleigh equation for this configuration, we have to combine the equations

d2 o . o . 2 1/2 u
f( ';’ZM%“” U|p)'Ru(p|po)'E'(po)+M%+'o(U|po)'E'(po)=%EH(U)a (100
d2 — 0 os o . . . 2 )1/2 U)
f ﬁzw " (ulp)-Ru(plpo) - E'(Po) + My~ (U|po)'E'(po):_%El_(U), (101
with
EXf(u)=VH 2(u)-EX(u), (102

whereVH 2! is given by Eq.(86), andR, is the global scattering matrix for the upper rough surface and the bottom planar
surface.

The reduced Rayleigh equation for the scattering m:{T[sz then

f (dz)z[M“ O (ulp) +VH 2u)- M~ (ulp) - Ry(plpo) = = [M7 0 (ulpo) + VH 2 () - M7~ (ulpo) . (103
With the expansion of(«|p) in a power series, we obtain the perturbative development
X\ (po) =~ %_W “(po) xgpojfii'& ' iﬂlpojf z(f)l(i)ot))) V" o) —'\2;;) ipj(iogw
=[V¥%po) + V" Z(pg) - [ 1+V A po) - VH 2(pg)] 2, (104
X{M(ulpg)=2iQ" * (ulpo) (109
X2 (ulp|po) = a1 (U)Q ™ * (ulpo) + aro(Po) Q" ™ (Ulpo) — 2P (ulp1)- Q" * (Palpo) (106)

i — _ — —
X1 (ulpalpzlpo) = = g {laf(W)+ a§(Po) IQ" * (ulpo) + 2a1 (W) a(Po) Q™ (ulPo)} +iP* (ulp1)- X' (paps|po)

+i[ az(U)P™(U[pa) — ag(P2)P* (U]p2)]- Q* * (P2lpo) (107)
with
—_ B Ml+,0+(u|u) . M17,0+(u|u) -1 R = — o
QP = 5 o5 | et maow VW i T agwy| LM WlRo) X, (Po) + MO (ulpo)
+bVH 2 () - [aM* ™" (ulpo) - X2 . (Po) + M™% (ulpo)11, (108
. ,\Wl+,0+(u U) o Ml—,0+(u U) - ——— o R
P*(ulpy)= WCYJ(U)_ H 2y )'ij(u) '[Ml O (ulpy) = VH 2(u)- M0 (ulpy)], (109

where,a=* andb= =+ are the sign indices. After some computations we obtain
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T+ b= )[5+(u)]1<El|u”|p0|F\7(U)F\7(p0)anl(u)al(pO)Fv(U)Fv(po)a'fjo — €YK gay (U)F (U)F (Po) (0% Po), o] 110
(e—e . . ,

PoJ= €1 €l P10 — el gax,(po) 1 (U)Fy (Po) (0% Po), K2 F}3(U)F 35 (po)0- Po 10 Po

_ _ exllullpoll Fy (W FY (o) — €paa(U) aa(Po) Fyy (UFy (P0)0- Py — €5 2Koas(U)Fy (UF(Po) (0% Po),|

_ —(er— e D" -1, .[D, -1 (111
Q(ulpo) =(e1~ <o) [Diglu)] ( — Y%K ga1(po)F 1y (W) Fy (Po) (X P); K3 Fr(WF (o) Po [Palpo]

5l )_<el—eo>[5+(u)]_l(foa1<po)||u|||po||Fc(u>Fv<po>qoq(u)aé(p0>Fv<u>FJ(po>a~r)o — €5 Koaz (W) a1(Po) Fy (U)Fyy (Po) (G Po), D]l (112

PO "ag(po) ~ 5 1Ko (Po) Y (WY (Po) (0% o), K3ats(Po) i (U F 1 (Po)0- P Pl

— o (ame) - 1.(eoal<po>||u||lpolva<u>Fv<po>—elal(u)aé<po)F$(u>F¢<po>0-ﬁo ~ € Koas(War(P)FY(WFH(PO(@XPo)) — o

Qo= gy LPwlW] — g e1K 0B (Po) Fiy (WF (Po) (8 o), K3a1(Po)F 13 (U) Fir (Po) - o (Piopo)] ™ (119

where

Fy (Po) 0 . N —

( V0p° F+(po)>—[JiVHZl(po)]'[l"‘vlo(po)'VHZl(po)]1 (114
H

and

p* —(e1— e[ DH(u)]-2 lulllpallFy () + az(u)ao(Pa)Fy (Wa-P1 = &g Koas(W)Fy (U)(AXPy), (115
(ulp1) = (€1~ €0)[Dyo(u)] *- €5 V2K garg(py)F (W) (0% Py), K2F:: (U0 by

B (ulpy) = (€1 o)[ DY 1(IIUII||01||FJ(U)+al(u)ao(|01)F$(u)0-;?)l — €K gay (U)Fy (U)(0X Py), s
(Ulp1)=(€e1— €)[Dyg(u)]™*- €5 V2K paro(py)F iy (W) (OX Py), K2F:(u)0- by
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The first-order term was recently derived in Ref. 14. Theywhere# is the angle betwee@, and the scattering direction
noted that, for this order, the matrix differs from the one(see Fig. 2 In order to describe the incident and the scat-
obtained for a surface separating two semi-infinite media byered waves, we introduce the modified Stokes parameters

only the factorsF*
Egs. (110 and (111 differ from Eq. (66) by only F*, and
similarly for Egs.(112) and (113 with respect to Eq(67),
and Egs(115 and(116) with respect to Eq(68). So when
the thicknesdH becomes infinite, and the absorption &)(
#0, or e;=¢€,, we haveV"?!=0; thusF*=1, and in this
case we recover the matrix equatiqie$)—(68) for a rough
surface between two semi-infinite media.

V. MUELLER MATRIX CROSS SECTION AND SURFACE
STATISTIC

When we consider an observation point in the far-field
limit, the saddle-point method gives an asymptotic form for

the scattered fielES=E°" obtained from Eq(51):

. Likewise, for higher order, we see that

|EV(p)|?
[ER(P)]?
2 R4EY(P)ER(P)] |
2 ImEY(p)ER(P)]

1°(p)

|EV(Po)|?

|E (po)|2
2 RE{Ey(po)EH(Po)]
2 Im[Ey(po) Ex(Po)]

1'(po)= (120

The analog of the scattering matrix for these parameters is
the Mueller matrix, definedby

Irl)—
ES(x,2)= — T ”° f(plpo)-E'(po), (117
. 1 .
with 1%(p)= [z M( (plpo) - I'(Po), (121
Tplpo)= o Riplpy) (118
PIPo)= 2i PiPa which can be expressed as a funcfimﬁf_(p|p0). To main-
tain a matrix formulation in the following calculations, we
—K X (119 introduce a product between two-dimensional matrices with
P= o the definition
_ f f g g
fQ_E< vV VH)Q( vV VH)
fuv  fun OHv  GHH
fuv@iv fungvH Re(fyvavn) —Im(fy\vgin)
fhvOiiv fHHOHH Re(f1v0fin) —Im(fuvQn)
= * * * * * * (122)
2Refwghy)  2Refyngiy)  Re(fyvgoyt fuvdun)  —IM(fuv@in— fyndiy)
2Im(fygiy) 2 Im(fypgiin) - Im(fuv@iy+ Fuvain)  Re(fuvgin—fungiy)
|
This product allows one to express the matvixas — 1 i 126
. o o ~ Acosb, (126
M (plpo) = f(plPo) ©f(p[Po), (123
K2 Kgcos 0
(124

Following Ishimaruet al.,®* we define the Mueller matrix
cross section per unit araa= (o),

__47'rM
=AM

(125

and, the bistatic Mueller matrixy=(;;):

These matrices are generalizations of the classical coeffi-
cients. In fact, if we assume, for example, that the incident
wave is vertically polarized, we have

2
A cosf, | v(p)| ”r”Z 711(p|p0)|Ev p)|% (127

1 )
S 2_ i 2
Acosf, EH(p)| Hr”z 7’21(p|p0)|Ev(p)| . (128

Thus y4, and y,; are the classical bistatic coefficienig,,
and yyy, respectively. We can also define the cross section
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and the bistatic coefficients for an incident circular polariza-and the incoherent bistatic matrix
tion. As an example, taking the incident wave to be right

circularly polarized, we have —inco _ 1 = —
7" PIPo)= A cos5c [(H(PIPO)OF(PlPo))

I'(po)=3(110-2)". (129 B B
Now, if we put a right-hand side polarizer at the receiver, = (f(plP0))O(f(plPo))],
11 0 1 _ Kgcos' e R(plpy) ORI
110 1 = A(2m)%c0s0, L\ R(PIPO) OR(PIPo))
— . (130 _ _
410000 —(R(pIP))O(R(plpo))]. (14
2 20 2 From Eq.(53), and the property of the Gaussian random
the right to right bistatic coefficieny,, is process, we obtain
=L(y11t+ Y10+ 2710t Vo1t Yoot 2y2at K3cog 6 _ —
Yre = a(v11t vi2t 2y14 vort voot 2v24t Y 7°°”(p|po)= 20590 5(p—p0)RC°h(po)©R°°Wpo),
+ Yao+2Y44), (131 (142
where y;; are coefficients of the matrix=(y;;). )
In a similar way, we obtain the right to left bistatic coef- — _ 00 dp
ficient Rcowpo)zx (Po) + Ko costly W
Yie =3 (yit viz+ 214t Yot Yoot 2v24 Ya X@(po|p1lPo)W(PL—po) ++++, (143
~ Y42~ 27a4)- (132 Whereﬁc"h(po) is a diagonal matrix describing the reflection
Up to now, we have made no hypothesis on the nature 0q.oefﬁcients of the coherent waves. For the incoherent part
the rough surface. Let us introduce the statistical caracterig”® have
tics of the functionh(x). We suppose that it is a stationary, 4002
. . . . &inco K cos™ 6 cosé, —1-1) 2-2)
isotropic Gaussian random process defined by the moments,™cof(p|p,) = (ZTU (p|po) +! (p|po)
h(x))=0, (133 —
oy +187Y(p|po)], (144
(hGO(X'))=W(x—=x"), (139 here
where the angle brackets denote an average over the en- __ _ _
semble of realizations of the functidi(x). In this work we 11 (p|po) =W(p—po) X'V (p|po) O XV (p| o),
will use a Gaussian form for the surface-height correlation (149
function W(x), 42
—o_ P1
W(X) = o2 exp( — x2/12), (135 12 2)(D|PO)EJ Ww(p_pl)w(pl_po)
whereo is the rms height of the surface, ahds the trans- 212 202
verse correlation length. In momentum space we have X (plp1|po) OLX' (pl 1| Po)
(h(p))=0, (130 +X2(plp+po—pilpo) ], (146)
(h(ph(p"))=(2m)?8(p+p" )W(p), (137 1537 (plpo) =W(p—po) X (p|po) ©X™(p]po)
with +XB(plp) OXV(plpg)], (147
W(p)= J d2XW(x)exp —ip-X) (13g ~ With
— d?p, _
= 7?12 exp(—p?l2/4). (139 X®(p|pg)= J W{W(pl—po)X“)(plpolpllpo)
We are now able to define the bistatic coherent matrix —13)
. +W(p—p)[ X (p|pa|po—P+PalPo)
7 plpo) = m(f(mpo))@(f(mpo» +X®(p|p1lplpo) 13- (148

KZcog 0

B W@(plpo))@(ﬁ(mpo)), VI. APPLICATIONS

In the previous sections we have developed a method to
(140 compute the scattering matrices for a rough surface between
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X107 TM)to (TM) K10™ ™) to (TE) x10™ right to right x10° right to left

-50 0 50

8 (degree) 8 (degree)

x 107 (TE) to (TE) x10™ (TE} to (TM)
3
25
= 2
;
0.5

] 0 -50 0 50 o e
oldegres) Odegree) 0 [¢] (dggree) 5 0 (degree)
FIG. 8. The bistatic coefficients for horizont@E) and vertical FIG. 9. The same configuration as in Fig. 8, but with a right

(TMO) polarized incident light of wavelength=457.9nm @, incident circularly polarized wave, and right to riglair left to lef
=0° and¢$=¢o=0°), on a tvo-dimensional randomly rough sil- - 4nq right to left(or left to right observed polarizations.
ver surface, characterized by the parameters5 nm, | =100 nm

ande; = —7.5+i0.24. For each figure are plotted the total incoher- . i . )
ent scatteringy™®" (solid curve, the first order given by~ jthe same tlm_e, areverse partner exists with a path travelling
(dotted ling, the second order byf2~2) (dashed ling and the third " the opposite direction. These two paths can interfere con-
order byl (dash-dotted fing struc%v_eilg/ near the_ backscatterln_g dlre_ctlon to produce a
peak. However, in one dimensioft, this peak can only
be observed for a TM-polarized incident wave because a
two media, and for a thin film which includes one rough surface polariton only exists for this polarization. In two di-
surface. In this section, we will numerically evaluate the in-mensions, the surface wave also exists for a TM polarization,
coherent bistatic coefficients given by Eq$44)—(147 for  butin fact a depolarization occurs so that a TE incident wave
different values of the parameters which characterize thean excite a TM surface wave, and this surface wave can be
configurations. In all numerical simulations the media 0 will scattered into volume wave with both polarizations as can be
be the vacuuméd,=1). seen in Fig. 8. Now, when the incident wave is circularly
polarized, we see, in Fig. 9, that enhanced backscattering
takes also place. We have not displayed the left to left and
A. A rough surface separating to different media left to right polarizations because the media are not optically
active; as a consequence, the results are the same whether the

We consider that a polarized light of wavelength incident wave is right or left polarized.

=457.9 nm is normally incidentdy=0°,¢,=0°) on a two- In expression(144), the peak is produced by the term
dimensional rough silver surfadsee Fig. 3 characterized 1?72, We see that the termP(ulp;)-Q*(pi|py) in
by the roughness parameters=5nm, |=100nm, ande= X2 _(p|p;|po) contains a factor of the forfsee Eq/(58)]

—7.5+i0.24. As a matter of comparison we have chosen the

same parameters used for the scattering by a one-

dimensional rough surfacd.The perturbative development

is given by Eqs(61)—(68). In Fig. 8, we present the results [Dion(P)]t
for an incident wave linearly polarized, the scattered field

being observed in the incident planeé£{0°). The single-

scattering contribution associated with the tethh™%) is  which is close to zero except when is near the resonance
plotted as a dotted line, the double-scattering contributionmode p, of the polariton, which is given by the roots
12-2) a5 a dashed line, the scattering tafdT V) as a dash- Diov(Pr)=0. When we observe a field scattered far away
dotted line, and the sum of all these tery®&°" by the solid ~ from the backscattering directionp¢po#0), the terms
curve. X2 . (plpalpo) and X2 _ (plp+po—pilpo), containing

We observed an enhancement of the backscattering whlqblwv, are nonzero whepl P, andp+py—pi~p;, re-
corresponds to the physical process in which the incidengpectively. Since these domains are disjointed, the pragluct
light excites a surface electromagnetic wave. In fact, the suref these two terms is approximately zero. Conversely, when
face polariton propagates along the rough surface, and ige are near the backscattering directign+@p,~0), the
then scattered into a volume wave due to the roughness. Agérms inside the brackets are almost equal and produce an

eap(py) + €gar(py)’ (149
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enhancement factor. This enhancement factor is not equal to B. A film with a rough surface on the upper side

2 because the matrica3" and Q™ in X1
_ @ (+p|po) _lQ (PlPo) S€0°€1 We consider a dielectric filnisee Fig. 7, of mean thick-
do not contain the termiDq,\(P1)]"", SO they produce a ogq H—500nm and dielectric ~ constante, = 2.6896

significant contribution whatever the scattering angle is. In, g 0075, deposited on a planar perfectly conducting sub-
order to isolate the terms producing an enhanced backscattefyate ¢,=ix), and illuminated by a linearly polarized light
ing more precisely, a better approach is to work with thegf normally incident wavelengtih =632.8 nm ¢,=0°,6,
formalism of Ref. 16 derived from quantum-mechanicaIZOO)_ Thetwo-dimensional upper rough surface is charac-
scattering theory; such an approach was used, for instance, {8rized by the parameters=15nm andl=100nm. The
Refs. 17 and 23. If the decomposition of each step of th&cattering diagrams are shown in Fig. 10, with the same
multiple-scattering process is clearly put in evidence, howcurve labeling as before. The perturbative development is
ever, it offers the disadvantage of producing a heavier pergiven by Eqs(105), (107), (110), and(116). Since we have
turbative development, as can be seen when comparing Egshosen an infinite conducting plane,&ix), the coeffi-
(53) and(66)—(68) with Egs.(15)—(19) and(A-1) of Ref. 22.  cientsF~ [Eq. (114)] have the following forms:

B 1*+exd 2iag(po)H]
 [e1a0(po) + €oa1(Po) 1+ [ €1a0(Po) — €01 (Po) 1€XH 2i ap(Po)H]'

Fv (Po) (150)

1¥ exd 2i ag(po)H]
[@o(po) + a1(Po) 1+ [ @o(Po) — @1(po) Jexd 2i ag(pe)H]"

Fri(Po) = (151)

The parameters are the same as those used in Ref. 23 for=a+ p"g, andp™=  p™&, (guided modes propagating along
one-dimensional dielectric film where a TE-polarized wavethe incident plane but with opposite directionse have p

is incident. The thickness was chosen in such a way that thg Po)- &~ =+ (p"—p™ which is another way of writing Eq.
slab supports only two guided wave .moctd&=15466<0 (152. For the TE polarization, since we have only two
andpte=1.242¥, for the TE pglajllzation. These modes are guided waves, the satellite peaks can only exist at the angles
resonance modes; they verff;;]*(p7) =0. For the TM  ¢13TE)=+17.7°. Now, for the TM polarization we have
case, we have three modes given by the r00t§hree possibilities:6(TM) = +13.3°, 6:X(TM) = +37.6°,

+q1-1 _ H 1 _ 2
[_Fi/ ]382(32TM)_3' 5 Vzhicgog(?(re ApT'\cAj_ 1.('5&312(?('0,R prNil and #2%(TM) = +22.3°. The satellite peaks are produced by
e 0, aNAPTy= . 0. 1S UESCHDEAIN WEIS. 2L 1o termI@-2) and in the case of T™M polarization we do not

23, and 32, these guided modes can produce a classicaﬁ ) anifi buti I ks. H
enhanced backscattering with satellite peaks symmetricall tain any significant contribution to satellite peaks. How-

positioned. The satellite peaks angles are given by the equ&Ver: for the TE to TE scatterlizng shown in Fig. 11, we find
tion satellite peaks at the anglé.(TE)==17.7° positioned

along a dotted line. Now, by doubling the slab thicknese
Fig. 12, the satellite peaks disappear for the entry polariza-
tion, but we see a phenomenon called 8gidringes32-34
For a slightly random rough surface, the slab produces

1
sin Gim=—sin00tK—0[p“—pm], (152

comes from enhanced backscattering decreases with the slab thickness.

— — We can conclude, as in the case of one-dimensional rough
_ + '
2P(ulp1)- Q" (Pu[Po), (153 surface, that the satellite peaks appear only when the wave
whereO* contains the factorf* having reso- guide supports few modes f_or th_e TE polarizations. These
nanceSfo(rptlrLgo.Z,lab guided mode. The (p%)duct g results differ from those obtained in Ref. 32 where no satel-
' lite peak appears in their two-dimensional slab. We have
X2 OX?2 + Da— 15 checked that with these parameters values we also find no
@ (PIP1/Po) ©Xg” (PIP+Po—P1|Po) (154 peak, and we agree with the results given by the contribu-
in Eq. (146 has a significant contribution only when and  tions of the first- and second-order terms. However, the third
p+po— P, are near resonance modes. As there are severatder term gives a contribution larger than the first-order
resonances, we can hape~p" andp+py—p;~p™, with one, and such a result casts some doubt on the validity of the
n#m, where p” and p™ are resonance vectors. [i”  SPM method in that case.
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FIG. 10. The bistatic coefficients for horizon{@E) and verti- FIG. 12. Effect of the slab thickned$=1000 nm on the con-

cal (TM) polarized incident light of wavelength=632.8 nm, on a figuration shown in Fig. 10.
slab with an upper two-dimensional randomly rough surface, char-
acterized by the parameters=15nm, |=100nm, €,=2.6896  dimensional surface, where it is noted that the excitation of
+10.0075, and thicknesd =500 nm, deposited on an infinite con- 1\ modes are more difficult to excite than the TE modes. In
ducting plane &= —cc). The scattered field is observed in the 4o 15 enhance this effect the authors of Ref. 35 chose a
|nC|den_tmriLa;ne For each figure are plotted the tote:lllnlc;‘oherent Scahlgher permitti\(ity for the media 16125.6644+i0.005._ In
tering y™*" (solid curve, the first order given by™™" " (dotted  {njs case satellite peaks were observed for a slab which sup-
line), the second order blf>~?) (dashed ling and the third order ports three guided modes. We have also done numerical cal-
by 1871 (dash-dotted ling culations with these parameters; however, we did not ob-
serve satellite peaks. Thus the transition from one- to two-
However, for the choice of parameters presented here, ndimensional rough surfaces lowers the efficiency of the
satellite peak has been observed even when the thickness efcitation of TM modes. Next, instead of doubling the slab
the slab is chosen in such a way that only two guided modethickness, we have changed the infinite conducting plane by
exist for the TM polarizatior(a result not presented hg¢re a silver plane é,=—18.3+0.55). We see in Fig. 13 that
This is in agreement with the results of Ref. 35 for a one-the enhancement of backscattering is also decreased, and that
there is no more satellite peak corresponding to TE to TE
x 107" {(TB 1o (TH) scattering. This fact has to be compared with the next con-
figuration, where the rough surface is now between media 1
and 2; see Fig. 4.

C. A film with a rough surface on the bottom side

The permitivities are the same as in the previous configu-
ration, except that the cagg=ic cannot be treated with the
SPM because the second and third orders diverge. The rms
height o now has valuegr=5 nm andl =100 nm. We have
not chosenr=15nm because numerically we note that the
first-order terml* 1) was not greater than the second order
12=2) which means that we are near the limit of
validity of the SPM. The perturbative development is given
by Egs. (97)—(99), and the guided modes are the roots
: of [X®ypmm)]~* for TM polarization, and of
. ‘ : : ' , v [Xff,id(pTE)]‘l for TE polarization. We obtain two modes in

o(cegree) the TE case, whose values apd=1.5534&, and p?c

FIG. 11. Details of the second-ord€éfE to TE) contribution to =1.272K,; the corresponding satellite peaks angles are

the scattering shown in Fig. 10. We see two satellite peaks at th@:(TE)=* 16. 3° For the TM case we have three gwded

angle 9%TE)=+17.7°. The dotted lines mark the peak angle po-modes with p1,=1.775K,, p%,=1.457K,, and p3y,
sition. =1.034&K,; they correspond to six possible sattelite peaks
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tion instead of the TE to TE polarization. This is a surprising
result, because the TM polarization, which has one more
mode than the TE one, should decrease the amplitude of the
satellite peaks for this polarization, as was the case with an
upper rough boundary. Moreover, we see in Fig. 15 that the
three satellite peaks can be clearly separated. This can be
explained from the fact that there are two phenomena which
occur in this case. The first is the same as in the previous
case, where the wave can excite guided modes through the

roughness, which produces an enhancement of backscatter-
ing and the satellite peaks. These effects come from the term

x107 (TBto (TG x107° (TE) to (TM)

a1 (P XS, (plp1)- U (py) - VE(py) - XY, (p1lpo)
(155

) in Eq. (98), whereU®)(p,) have resonances for the different

modes of the guided wave. However, there is also a second

phenomenon which was described in our first example,

where the rough surface can excite a plasmon mode. This
FIG. 13. The same parameters as in Fig. 10, but with a silve@PPears from Eq98), with the term

plane characterized bg,= —18.3+0.55.

YVH(O)m

Yn(®)
o — ~N HH{A S o [+>]
£

-50 0 50 -50 0 50
6(degree) 6(degree)

Y'S-'e(lz,)ez( p| pl| pO) ’

: 12 _ o 13, _ o
angle523g|ven by#(TM) ==18.51°, 6.(TM)==+47.8°, 514 subsequently in EqeL44) and(146). The localization of
and ¢°(TM) =+25°. We see the apparition of satellite this modep, is given by

peaks only for the TM to TM scattering process, as shown in
Fig. 14. This result differs from the previous case because, N . 1
on the one hand, the rough surface not being a perfect con- [Don(pP)] = n :
. . ; exa1(Pr) T eraz(pr)
ductor, we still obtain satellite peaks; on the other hand, o o
these satellite peaks now appear for the TM to TM polarizaln our case this givepp,[|=1.7755,, which is very close
to the valuept,,=1.775X,. So, in Eq.(146) the product®

(156)

(157

x10°  (TM(TM) x10%  (TM(TH of Eq. (155 by Egq. (156) can produce peaks wheig
\ =+ prlec~* piués and Eo+p) - &=+ (PTy— PTy), With
n=1, 2, and 3. We have effectively verified numerically that
15 the product of this two term can considerably enhance the

1 different peaks, in particular the first satellite peadsﬂ'g2
(whenn=2). Now, by doubling the slab thickness, we see

0 x107 (TM) to (TM)
-50 0 50 7+
8 (degree) © (degree)
x107 (TBto (T8 X107 (TBto (™
25 2 or
. 15 5r
93:1. @I
& 2 1
ak
0.5 0.5 )
0 -50 [ 50 3r
B(degree) 6(degree)
FIG. 14. The bistatic coefficients for horizonf@E) and verti- 2F
cal (TM) polarized light of wavelength =632.8 nm, incident on a
film of permittivity e;=2.6896+i0.0075, deposited on a two-
dimensional randomly rough surface, characterized by the param:
eters c=5 nm, =100 nm, e,=—18.3+0.55, and thicknessH

=500 nm. The scattered field is observed in the incident plane. For ~ g = '_2‘5 o 2 prs 5 =
each figure are plotted the total incoherent scattenifief" (solid Bldegree)
curve), the first order given by*~ ) (dotted ling, the second order

by 12-2 (dashed ling and the third order by®~1 (dash-dotted
line).

FIG. 15. Details of the second-ord@M to TM) contribution to
the scattering shown in Fig. 14. Dotted lines mark the peak angle
position.
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different structures composed of a rough surface separating
to semi-infinite media, and a dielectric film where one of the

two boundaries is a rough surface. For the first structure, the
perturbative expression was already calculated at the third
order, but our derivation offers the advantage that it can be
formulated in a compact manner, making numerical compu-
tations easier. For the slab configuration we present new re-
sults, to our knowledge. It should be noted that for the case
of a rough surface in the upper position, a generalized deri-
vation of the reduced Rayleigh equations becomes manda-

tory. The numerical results show an enhancement of the
backscattering for co-polarization and cross-polarization in
15 all these cases. In the slab case, for some configurations and
definite polarizations, we have detected satellite peaks which
result from the interference of different waveguide modes.
05 This general formulation can be extended to a configuration
including two rough surfaces, and some results will be pre-
sented in a next subsequent pafer.

-50 0 50
6(degree)

FIG. 16. Effect of the slab thicknes$=1000 nm on the con-
figuration shown in Fig. 14.
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APPENDIX A: INTEGRATION BY PARTS

VII. CONCLUSIONS .
We need to calculate the following integral:

We have obtained four generalized reduced Rayleigh
equations which are exact integral equations, and where one
of the four unknown fields coming on the rough surface has
been eliminated. These equations offer a systematic method
to compute the small perturbation development without SinceVh(x,y) is zero for|x|=L/2 or |y|=L/2, we can
lengthy calculations. Moreover, the scattering matrices aréx the integration limits. We choose the boundary limifs
only two dimensional. All the theoretical calculations havein x such that|x,|>L/2, and (—p),x;=27m,, with m,
been done up to order 3 in the height elevation, which al-eZ. Similarly, we choose the boundagy in y such that
lowed us to obtain all the fourth-order cross-section termsly,|>L/2 and (—p),y,=27m,, with m e Z. Thus the in-
We have calculated the perturbative development for thregegral (Al) is

f d>xexy —i(ki’—ki?) -1, ]Vh(x). (A1)

fX|
—X Y

. dx dyexd —i(u—p)-x]Vh(x)exp{—i[bai(u)—aa(p)]h(x)}
(v
-/,

X=+X

exp{—i(u—p)-x—i[ba;(u)—aa;(p)]h(x)}
—i[bay(u)—aay(p)]

dy

X==X

e fXI dx exp{—i(u—p)-x—i[baj(u)—aa;(p)Th(x)}]Y~ ¥
%) ~i[ba(u) ~aay(p)] y
X (i —i(u—p) . .
_fX|fy|_i[ba1(u)_aa1(p)] eXp{_'(U_p)'X_|[ba1(u)_aa1(p)]h(x)} (AZ)
_ (u—p) _oplb_pla
B fdzx[(bal(u)—aal(p)]exq (k™= kp™) . (A3)
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The term in the square bracket cancelled due to the choicé/e find that
made forx, andy,. From the previous calculations, we can

now replaceVh(x) by R™(p|ay|--*|anlPo) = 8(p—ay - —0npo)  (BY)
(u—p)
[bai(u)—aay(p)]

Vh(x)« — (A4) so we can defin& matrices by the relations

RO(plpo)=(2m)28(p—po) X V(po),  (B10)
APPENDIX B: PERTURBATIVE DEVELOPMENT AND

RECIPROCITY CONDITION — —
R™W(plpo) = ao(po) X (plpo)h(p—po),  (B11)

As noted by Voronovicli,the scattering operatcﬁ has a

very simple law of transformation when we shift the bound- =12) d?p, =2
ary in the horizontal direction by a vectdr R™(p|po) = ao(po)f (2m)? R™(plp1|po)h(p—p1)
E>Hh(><—e|)(p|po):eXﬂ:—i(p_F’o)‘d]ﬁxﬂh(x)(mpo)& ) h(p1—Ppo), (B12
Bl

R®(p|po) = ao(po)f f 2 p)lz 2 p)22 ¥(plp1/p2lpo)

or when we translate the surface by a vertical SHi§, :

R =expl—i[app+ «a HIRy- .
h+H(P[Po) A —i[ @b+ ao(Po) JH}Ry- (pPo) ®2 h(p—poh(p1—pa)h(De—po). (B13
Now, using Eq.(B1), we can deduce some properties on the
perturbative development of the scattering operator. The
generalization of the Taylor expansion for a function de-
pending on a real variable to an expansion depending on a
function (which is in fact a functionalcan be expressed in diti

where aq(pg) is introduced for a matter of convenience.
Let us now make some remarks about the reciprocity con-
on. If we define the antitranspose operation by:

the form
R RO R R(2) 5(3) a b\?T [a -—c
R(p[po) =R™(p|po) + R™(p|po) + R (p|po) + R™(p|po) I D (B14)
C —
- (B3)
where the reciprocity condition for an incident and a scattered
waves in the medium 0 redtls
_ dp; — _ _
R(l)(p|p0)=f 5RO (plpalpo)h(py), (B4 R¥T(plpo) R(—pol—p)
(2m) - (B15)
X @o(Po) ao(p)
B52) pl d P2 . . . . .
R (p|po) = (2m)2 (2m)?2 Making use of the previous functional derivative, we would

like to prove that each order of the perturbative development
ﬁ@(plpllpzlpo)h(pl)h(pz) (B5) must satisfies this condition. It is easy to show that

=3 B d’py d’p, d’ps [XW(plpo)12T=X"(—po| —p), (B16)
R0~ | | [ G 2wy 2y _
_ thus X1 is reciprocal, but the same conclusion cannot be
R®(plp1|p2lpslPo)h(p)h(P2)h(Ps).  (BE)  extended toX™ when n=2. For example, in the case
=2, using Eq.(B15), we can only deduce that

Applying this perturbative development on each side of Eq. p

Thip— _
(B1), and taking their functional derivativiesee Ref. ¥ de- (2w )Z[X (plp1|Po)1*™h(p—p)N(P1~ Po)
fined by
dzpl Y (2)
P 2m2 X" (= Pol =Pal=P)h(P=P1)h(P1~Po).
) B7
(dz) - on(dy) ®0 617

we obtain for alln=0, in the limith=0, . o
From this we cannot deduce a result similar to &jL6) for

ﬁ”)(plqﬂ---an|p0)=exd—i(p—q1'"—qn—po)'d] X@). This fact is well illustrated with the following identity
. (which can be demonstrated with a transformation of the
X RM™(p|aq|* -+ |anlpo)- (B8) integration variables
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d’p
f (277)1?('0*po_Zpl)h(p—pl)h(pl—po)=0.
(B19)

We see thap,— p+po— 2p; is hot a null function, although

PHYSICAL REVIEW B3 245411

the integral is null. From this we deduce thet) for n>1 is
not unigue. Moreover in using E¢B18) we can transform

XM ina reciprocal form. This procedure is illustrated in the
one-dimensional case in Ref. 21, and the results for the
second-order in the electromagnetic case are given in Refs. 8
and 22.
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