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Ab initio modeling of quantum transport properties of molecular electronic devices
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We report on a self-consisteab initio technique for modeling quantum transport properties of atomic and
molecular scale nanoelectronic devices under external bias potentials. The technique is based on density
functional theory using norm conserving nonlocal pseudopotentials to define the atomic core and nonequilib-
rium Green’s functionsNEGF's) to calculate the charge distribution. The modeling obagendevice system
is reduced to a calculation defined on a finite region of space using a screening approximation. The interaction
between the device scattering region and the electrodes is accounted for by self-energies within the NEGF
formalism. Our technique overcomes several difficulties of doing first principles modeling of open molecular
guantum coherent conductors. We apply this technique to investigate single wall carbon nanotubes in contact
with an Al metallic electrode. We have studied the current-voltage characteristics of the nanotube-metal
interface from first principles. Our results suggest that there are two transmission eigenvectors contributing to
the ballistic conductance of the interface, with a total conduct@wes, whereG,=2¢e?/h is the conduc-
tance quanta. This is about half of the expected value for infinite perfect metallic nanotubes.
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[. INTRODUCTION semi-infinite armchair carbon nanotube is in contact with an
atomic scale semi-infinite Al metallic electrode. The inter-
In the last several years, there has been a large growth d#ce region(central box can be considered as a “molecule”

research effort in nanotechnology, and in particular, thén contact to a metallic electrode on the left, and to a nano-
search for nanoelectronic devices has become a worldwidibe electrode on the rigfit These electrodes extend to elec-
effort.! Such an effort is made viable by the ability to fabri- tron reservoirs ag=*o where the electric current is col-
cate device structures of truly nanometer sédlby the dis- lected. A gate electrode with potentiaVy, which is
coveries of self-organized nanostructures such as carbdipacitively couple to the molecule, may also be present. For
nanotube$,and by the progress in making accurate measureconcreteness, we assume a two probe geometry in what fol-
ments of structural and electronic properties of these nandows and fix the transport direction to be along thexis.
systems. More recenﬂy, guantum transport measurements (ﬁv}(tensions to different boundary conditions are Straightfor—
atomic and molecular scale nanoelectronic systems have réard and will be presented elsewhé&eur theoretical goal
ceived great attentidn'?because they represent the ultimateis to predict quantum transport properties of molecular nan-
size limit of functional devices. The current-voltageV)  odevices such as that of Fig. 1, including thie\f character-
characteristics of these atomic and molecular systems havtics, from first principles without phenomenological param-
profound potential for device application, including high €ters.
nonlinearity, negative differential resistance, electrome- TO analyze quantum transport through molecular scale de-
chanic and electrostatic current switchig:* Demonstra-
tions of molecular based logic gatemd nonvolatile random Left
access memory devité have already been made, and
clearly point to the exciting possibility of molecular comput-
ing machinery’. Previous work also clearly demonstrated
that many of the molecular device characteristics are directly
related to specific atomic scale degrees of freedom, and in
teractions of the device region with the device electrodes
play one of the most important roles. From the theoretical
point of view, a serious challenge is to accurately predict
guantum transport properties of atomic/molecular scale de
vices including thd-V curves, without any phenomenologi-
cal parameters. This goal, despite extensive resedarch, FIG. 1. Metallic electrode-nanotube interface. A semi-infinite

has not yet been achieved Sat'SfaCtor”Y- _ (4,4 armchair nanotube is in contact with a semi-infinite(1810)

In this paper, we present a modeling technique whichnetaliic electrode. This is a typical two probe molecular device
solves the theoretical Challenge within the first prinCipleSStructure where the device regidgthe center boxis coupled to
density functional theoryDFT) (Refs. 36—38approach. To  perfect atomic-scale electrodes which extend to reservoiz=at
make the problem at hand clear, we use the molecular device«, where current is collected. Bias potentialsy,,, may be ap-
shown in Fig. 1 to discuss our technique. Figure 1 represenisiied to the reservoirs. Furthermore, the device may be capacitively
a typical two-probe molecular device geometry where acoupled to a gate electrode through a gate potential.
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vices from first principles under a finite bias potential, three~G, where G,=2e?/h is the conductance quanta. This is
points are of essential importance. First, one must deal witlabout half of the expected value finfinite perfect metallic
opensystems within the DFT formalism. Recall that conven-nanotubes. This result is consistent with a previous calcula-
tional DFT methodge.g., the well-known plane wave meth- tion using the supercell meth@ton a jellium-nanotube in-
ods discussed in Ref. 41 or real-space techniques such tyface, and provides a possible explanation of the phenom-
Ref. 42 can treat two kinds of problemg) finite systems enon observed by Frardt al*®

such as an isolated molecule, as in quantum chemistry and The rest of the paper is organized as follows. In Sec. I,
(i) periodic systems consisting of supercells, as in solid stat&e present a discussion of the theoretical formalism. Section
physics. In contrast, a molecular device, such as that showtl presents a few important details of the numerical imple-
in Fig. 1, hasopenboundaries provided by long electrodes mentation. Section IV presents modeling a nanotube-metal
which maintain different chemical potential due to an exter-molecular junction. In Sec. V, we summarize and give an
nal bias. In other words, a typical device geometry is neitheputlook of future work. Finally, mathematical details of our
isolated nor periodic. Therefore, one must find a techniqué@b initio technique is presented in several Appendixes.
beyond(i),(ii) above, to reduce the infinitely large problem

of an open device to a finite problem which can be efficiently Il. THEORETICAL FORMALISM: BOUNDARY

dealt with. Second, one must calculate the device Hamil- CONDITIONS, ELECTRODES, AND DENSITY MATRIX

tonianH[p(r)] within DFT using the correct charge distri- As mentioned above, to investigate properties of the mo-

bution p(r) which must be constructed under a finite biasIecular device such as that shown in Fig. 1 we will make use
with the correct open boundary conditions. For open sys- 9

.y e 8,41,42 .
tems,p(r) is contributed by both scattering states which Con_glfetcht?o;ailcr:n g?rreDgsT;‘bfrlggzdoonT efltlrfg atomitcoc(tj)?;‘(s:r:abrz zihe?‘ined
nectz= —o to z= + o crossing the molecular region, and by 9 '

bound states which may exist inside the molecular region. | y standard norm-conserving nonlocal pseudopoterffials.

: : : : o be specific, in this work we use a minimgl p real
is worth noting that when the electrochemical pOtem'alSspace Fireball linear combination of atomic orbitdl€AO)

mye+ AV, of the two electrodes are not equal, the device i ) B )
actually in a nonequilibrium state. HerkV,, is the bias “basis séf {£,(r—R))} 10 expand the KS wave functions.

. . . . Furthermore, we note that, because of the open boundary
voltage applied at the left/right reservoirs apg, is the o ; :

d , . . . _conditions, a real space technique is needed to calculate the
chemical potentials there. In this work, we will not ConS'derHamiltonian and effective potential within DET. The use of a
transient phenomena and only focus on the steady Stat(reﬁinimal basis set results IFI)’I an efficient calcul.ation and also
Third, an efficient numerical procedure should be used in .

cceptable accuracy as amply documented in the

order to simulate molecular devices with a large number of; N
9 iterature®®4251.24\We note that systematic improvements

atoms. may be achieved in LCAO basis s¥tso as to give compa-

Similar to the pioneering work of Lan),the formalism ;
developed in this work is based on a self-consistent solutioﬁable %ccuraqy .to 5|2arge basis Seﬁ methods such as plane
multigrids®? or wavelets® The latter methods

; waves;,
of the Kohn-ShamKS) equation foropen systems. How- cannot be used in our approach because the computational

ever, we do not use the jellium approximation to describe the .
A equirements to construct the NEGF would be too large us-
electrodes but we assume that each semi-infinite electrod€

. : . INg such basis sets. To save space, we do not present these

has its own discrete translational symmetry, represented by a*~ - : A
: L i . amiliar DFT details. Suffice it to say that once the charge

collection of atoms at positiod®R,} in a unit cell repeated to

aitherz= + o or z— — . The use of atomic scale electrodes density is constructed, the rest of the DFT iterations is car-

) ; : ried out in standard fashion which can be found in the DFT
complicates the problem considerably because of its nor 41,42,38

o . . : iterature’
trivial electronic structure and multiple van Hove singulari- In what follows, we focus on the novel parts of our for-
ties i tg‘;?l density of states of_the elec_trodes. I:’rewou?’nalism: (1) How to deal with an open therefore infinitely
method3®3! construct charge density from eigenstates of thqarge device system an®) How to calculate the charge
open Sys%eg,T whe_re bound states contribution _has_ beecrﬂstribution under external bias for an open system. The de-
neglected®?! In this work, we apply the nonequilibrium

Green's functiondNEGF’s) (Refs. 43—45 which naturally tails of how to calcylate the Hae?llton|an operator in matrix
. ; .~ . form and the effective potentia®'(r), can be found in Ap-
include scattering states as well as bound states contributions .

; pendix C.
to the charge density.

We have applied our NEGF-DFab initio formalism to
investigate quantum transport properties of i lEased mo-
lecular junction in the ballistic regime, a short account of The device boundary condition plays a crucial role in
these results can be found in Ref. 39. In the following, wesimulating transport through a molecular device. Essentially,
apply our formalism to investigate the transport properties othe wave functions, and thus the electric current through the
a single wall carbon nanotulWCN) in contact with a Al device, depend on the KS effective poterffidf of the entire
metallic electrode shown in Fig. 1. We report th¥ char-  device: ¥ =¥[V*T p(r)]]. For our problem, the accurate
acteristics of the nanotube-metal interface from first prin-effective potentiaNM®™ p(r)] should be constructed by cal-
ciples. We found that there are two transmissionculating the charge distribution for ttopensystem which is,
eigenvector®4’ contributing to the ballistic conductance of actually, infinitely large because the electrodes extends to
the SWCN-metal interface, with a total conductanGe =+,

A. Boundary conditions for the Kohn-Sham potential
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Approximations to the device potentidf p(r)] may be VcH(r)|Z :VIHbqu(r)|z-
made by modeling only the central simulation bgabeled ! ’ !
c) of Fig. 1 as a finite cluster or as a supercell. If more and V?(r)|zr:VHbulk(r)|Zri ©)

more atomic layers of the electrodes are added to the central
box, the KS potential near the molecular region begins tQ’VhereVﬁbum(erl andv'r—!bulk(r)|zr are the Hartree potentials

mimic the correct potential which requires the electrodes tQy the equivalent bulk systems. We have used a multigrid
be infinitely long. However, the KS wave functions obtainedgcpnique to solve the Poisson equation in three-dimensional

this way have incorrect boundary conditions for quantum(3D) real spac¥ to apply Eq.(2). The total KS potentials

scattering and thereforg cannot pe used to calculate electr ”frf'bu”((r) and Vgﬁ(r) will then be equal ag,, within the
current through the device. For this reason, an extra quantugy

scattering calculation must be carried out after matching the

finite cluster or supercell potential to perfect electrode he case ifz), is chosen far enough inside the electrode

122,27 Thic ki P oo . . ! ) _ \
p(_)tent_lalsz. This kind of indirect approach has I|_m|ted 4P~ surface, which one can confirm numericallgduring a simu-
plicability because there are no electron reservoirs to mainy,

. . . ) . lation.
tain a chemical potential difference across the device, an

theref h | bi tential b lied to th The above requirements on the effective potential, Egs.
deevrii:re’ no external bias potential may be applied 1o ?1),(2), reduce the infinitely large open device problem de-

To deal withopenboundary conditions for the KS poten- fined on all space, to a problem defined on the finite scatter-

. : . . ing region. This way, we only have to calculate charge den-
F'al.' we mak_e asmple_observatlon that the KS potent_lal dee ity and effective potential inside the scattering region in
inside a solid surface is very close to the corresponding bul :

. . . .2 ~~order to solve the KS equations.
KS potential. This fact leads to a screening approximation
which forms a natural boundary condition for open device

cal density approximation of DFT, if the charge densities
o(r) andpy;, pu(r) are equal ag,, . Again, this is indeed

B. Electrode potential

systems:
In our model, each electrode consists of a collection of
Vel =Vl (n), z<z, ato+ms at position$R,} in a unit cell which is repgated o
' =+oo. In order to apply the boundary conditions Egs.
vefiy =4 Vei(r), z<z<z, (1) (1),(2), we must first calculat®/& | (r).

Vel =velt (r), z=z Each electrode unit cell can be associated with an LCAO
' rbullct " basis{{,}. It is not difficult to confirm that the unit cell may

) . always be chosen so that the Hamiltonian has the following
where the planez=z andz=z, are the left and right limits tridiagonal form:

of the central simulation box that describes the scattering

region (see Fig. 1L The simulation box should be large

enough so that these planes are sufficiently deep enough in- h h h

side the surface of the electrode such that @y holds. zz=1 22 zz+1 . ®
The boundary condition in Eq1) naturally divides the h,zo1 hyy hyzeg

device into a scattering region or center cal),(left cells : .

belonging the left electrodd ), and right cells belonging to o o . ] )

the nght e|ectr0ddr) [See F|g 1_ The atomic structure in Here,hzyzr is itself a Hamiltonian matrix defined on unit cells

the left (and righy cells is required to be identical to that of labeled by the integers and z'. The construction of the

the corresponding bulk system, so that that each electrode amiltonian matrix elementh, ,: is straightforward and is

described by an effective potentiaf) (). Clearly, the discussed in Appendix C. Using the Bloch ansatz

electrodes do not have to be the same: the left cells can be K\ — aikz tk [y k72 4K

crystalline Al to simulate an Al electrode, while the right Viz)=eT =N T @

cells can be a perfect carbon nanotube to simulate a nanotulsehralinger’s equation becomes

electrode. As suchyf, (r) is obtained by a separate A K411 oK

“electrode” calculation®® described in the next subsection,  LNzz-1lM1 "+ hzz Nz, 0[]0 ]

and stored in a database. With thisc(r) division, only the —ENs. . N\KT"l+s, +s NGRS (5)

effective potential within the scattering regicvﬁ“(r), needs [S22-alM] 2t Sazeal M

to be updated at each iteration of the self-consistent KS equatheres, ,» represents the overlap matrix elements calculated
tions. between basis states in taeandz’ unit cells. By choosing

There remains the difficulty of having to match the effec-appropriate values df, one can diagonalize the above equa-
tive potential inside the scattering region to that outside, i.e.fion in order to obtain the eigenvalues and eigenstates".
to ensure that Eq(1) holds atz, andz . While it is not The density matrix of the electrode is obtained by inte-
straightforward to impose a boundary condition on the tota@rating over the Brillouin zone in the usual fashion:
KS potentialvﬁﬁ(r) it is natural to apply matching boundary

conditions to the Hartree potentid”(r) by solving the [sz dk| W) T EX; w) (WX,
Poisson equation in real space as a boundary value problem
with the following boundary conditions where
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e . —
f O(Eil‘l’)_ 1—|—e_(E_:u)/kBTe

is the equilibrium Fermi function for electrons of tempera-
ture T,. The chemical potentiak is determined by the
charge neutrality condition

f dk Y EK: 1) =N,

where N the number of electrons in the unit cell. By con-
structing the charge distribution within the unit cel(r)
=p(r,r) the KS potential of electrode‘s’ﬁfrf’bu,k(r) can be

updated and the KS equations solved self-consistently.
The electrode calculation provides the following informa-

PHYSICAL REVIEW B63 245407

Sr.. In addition, applying a bias potentialV,, to an elec-
trode simply entails a shift of the electrode potential in the
following way:

Vi oD =V D+ AV,
VCH(I')|Z|”<—V?(I')|ZW+AV|/,- )

N o= ot Sipp AV

®

The Hamiltonian matrix6) is diagonalized by the scat-
tering states incident from the left electro{ﬂ!"ln}, the scat-
tering states incident from the right electrobbk?}, as well
as a discrete set of bound stafek®’}. Once these eigen-

tion which are saved to an electrode database: the positiorsates are calculated, one can construct the density matrix

of the atoms in the unit celRy,}, V[ (1), the Hartree
potential on the boundary of the unit ch,'r,bum(r)lZ”r, the
electrode Hamiltonian in the form of the coupling matrices
P a1y e Niee+104, - the  overlap  matrix
{Sir.17e=1+Sie 1 »Sur e +1f, @nd the chemical potential,,
which ensures that each electrode is charge neutral.

C. Density matrix of an open device system
Using the boundary conditions Eq4),(2), the KS equa-

by integrating their modular over the three sets of labels
{ki",c" K},

n fkln n n
|‘I’k'>—kln<‘1’k' |+ W)
v

p=2, |«1f°”>f°”<\1f°”|+f dE
CI']

€)

o
X — (k|
vk

tions can be solved iteratively by constructing the chargewhereu"rzaE/ak,n and uk?EaE/ak{1 are the group veloci-

distribution inside the device regign(r) which in turn gen-

ties corresponding to thg]' and ki channels of the elec-

erates a new effective potentdf"[ p.(r)]. The charge dis- trodes. These expressions give a practical way to construct
tribution is conveniently calculated from the density matrix the density matrix once the scattering states and bound states
p, which can be constructed in two ways, either by includingare known. Although the scattering eigenstates can be effi-
all the eigenstates of the open device with the proper statissiently calculated? as shown in Appendix D it is, however,
tical weight, or from the nonequilibrium Green’s function rather difficult to calculate the bound states. Therefore, we
(NEGP (Refs. 44,43,4bwhich is what we use. construct density matrix using the nonequilibrium Green’s
To begin, we note that for LCAO fireball basis ¥é@  functior®*G=
which we use in our model, the Hamiltonian matrix of the

entire device including the infinitely long electrodes, can al- p=— '_J dEG=(E) (10)
ways be written into a tridiagonal form 2w '
" h. h,; O 0 0 1 where
h|’|,1 h|'| h|’c 0 0 G<:GRE<[fk|n,fk?]GA (11)
0 Rei fee Por 0 ) and GR” is the retarded/advanced Green’s function of the
0 0 he hep hepsg device(for their calculation, see Appendix)AThe quantity
e 0 0 h,-1 hio | S<[fM,f] represents injection of charge from the

Note this matrix is actually infinitely large due to the semi-

infinite electrode Hamiltoniank, ., andh, ..:

electrode® and can be written in terms of the self-energies
S andS | due to coupling to the left and right electrodes
(for their calculation, see Appendix)B

. . . 0
h =] 0 hy-1x hyo hygad, (7) SEFNf )= =20 Im(F9E] + st ). (12
L O 0 hy-1 hy Of course, the density matrix calculated using the NEGF Eq.
i (10) is exactly equivalent to that calculated using the eigen-
hor  hyrig 0 0 states by Eq(9).
h.=|h,, h, h,y O It remains to specify the distribution functions
" 0 .’ S {4, 1<" £%}. In the equilibrium situation where the electro-

chemical potentials of the left and right electrodes are equal

which are derived from the electrode calculations. Similarly,

one can also define the equivalent overlap matriesand m* =+ AV =pe=pu AV, 13
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the distribution functions are given by the equilibrium Fermi charges <[4, f%']. In other words, the NEGF tells us how

distribution to fill the states of an open device system under bias, accord-
o o ing to Eq.(10). In the equilibrium situation without bias, i.e.,
(B m+AV) =1 (Ej uc) when the chemical potentials of the electrodes are e@ial,

n is reduced to a simple forth*®
=N (B +AV) = E,u*). (14)
< _ e R

We note that, in clear contrast to the study of closed systems IM[G=(E)]=—2f*(B)IM[G(E)]. (16
(e.g., finite cluster or supercellghe electrochemical poten- Importantly, this expression remains true even for situations
tials of an open systernu,,+AV,,, are knowna priori where the electrochemical potentials are different — so long
from the “electrode” calculation described above. as

Finally, we discuss the distribution functions in the non- . .
equilibrium situation whem,+AV,# u,+ AV, . First of all, fh(E)=fk(E)=1. (17)
the distribution functions of the electrodésnd reservoins

can be approximatéias This is simply because when E(.7) is satisfied, there is no

additional information in the distribution functiori&’ and

FR(E; py+ AV)) = FoYE; 1+ A V), £k

(15) Therefore, we can split the integral of EQ.0) into two
n ~

FA (s e+ AV) =B, +AV,). terms: an “equilibrium” contribution p®, where f4'(E)
This way, we have neglected any influence that the devicef*"(E)=1 and a “nonequilibrium” contribution p"*
scattering region has on the distribution functions of the elecwhere Eq.(17) is not satisfied. The density matrix can be
trodes and reservoirs. This is a reasonable assumption for oM Itten

purposes and is commonly used in quantum transport ~_ ~eq “neq
literature®® Next, the distribution of the bound states is as- p=p~Hp™ (18

sumed to befcn:fe"(E;,uC) where pw.=u+AV, or u,  where
=u,+AV,. The two choices are equivalent if there are no

bound states in the intervpl, + AV, ,u, +AV,], which can - 1 Hmin

be confirmed numerically. To end this section, we emphasize pr=- - Im j_m dEGR(E)}' (19

that given the distribution functiongf*,f¢", %'}, the self-

consistent solution of the KS equations is essentially exact ~ nea i #max _

(within DFT) for open device systems, if the size of the P="5 ] dEG™(E), (20

simulation box is chosen large enough, which we confirm Hmin

numerically during a calculation. where Kmin=mMiN(w+AV), 1, +AV,),  tmac=Max(y

+AV,,u,+AV,). In Eg. (19), we have assumed that the elec-

Il. NUMERICAL PROCEDURE trons are aif=0 so that the distribution functions are step

functions, but Eq(19) can easily be rewritten for arbitrary

In the next subsection we discuss the procedure of evalyytiibution functions{fkln fkp}_
ating the energy integration in E(LO) for computing charge L ’ L me
density. The use of the NEGF, as opposed to the eigenstates, | "€ €quilibrium charge contributiop™ is related to the

y B R - .
of the open system, to construct charge density is the mo&ftarded Green's functio®™(E) which can be analytically

important and novel point of owb initio technique. Once continued into the complex energy pIa'??eThu;, the inte-

the charge density is obtained, one can then perform thgration in Eq.(19) can be evaluated along a suitable contour
usual DFT self-consistent iterations. We will also present! thé complex plane. For condcr_eteness, V\I/we have chﬁsen the
procedures of calculating physical quantities and discus§EMicircular contour illustrated in Fig. 2 wheg,, is cho-

some numerical results. Finally, the calculations of retarded€n Sufficiently low so that it is lower than the lowest eigen-

Green’s functiorGR and the self-energy are included in Ap- value of H. The integration itself is accomplished using a
pendixes A and B. Gaussian quadrature of the parameter < 7. The result

converges rapidly as the number of quadrature points is in-
creased(typically 30 quadrature points are enolgfhis
contour integration has tremendous computational advan-
In order to calculate charge density from H40), we tages because the DOS is very smooth away from the real
must perform the energy integration over the density ofaxis, thus avoiding the many van Hove singularities in the
statedDOS) which is the integrand. The charge density mustDOS. In Fig. 3, we show the DOS and band structure as
be obtained very accurately, otherwise the self-consisterfunctions of energy for a perfect carbon chain with a four-
DFT analysis would not produce the correct results. atom unit cell; the inset shows the integrated DOS along a
From the point of view of constructing the charge densitycomplex contour(see Fig. 2. Clearly, the van Hove singu-
p(r), the essential difference between the NEGF and the larities (peaks in DOS in Fig. Bwill make it tremendously
retarded Green’s functioBR, is thatG= contains informa- difficult to integrate the DOS along the real axis while the
tion about the distribution functidf through the injected DOS along the complex contour is very smooth. Indeed, as

A. Calculation of charge density
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E therefore impossible to make use of a contour integral to
evaluate Eq(20) and thus the nonequilibrium charge must
be calculated along the real axis directly. Hence,

N i HMmax n n
phet= — _f dE GRE<[ka ,fkr]GA. (22)
n

2 ‘
min
) So long as there are no band edges in the intefyal
Ein Eim E, +AV,,u,+AV,], the energy integration will be smooth

along the real axis and a Gaussian quadrature is found to
converge with a small number of evaluations®f. As a
check to the contour numerical procedure, for an infinitely
semicircleC is equal to the integral along the real alRdbetween Ir:)ng perlfeclt Carbohn chain Wh.ere there IS EO bound state, we
Epmin @NdEmay. The equilibrium charge contribution is calculated by "aV€ caicu ated charge density using both Eg6) and (9)

choosing a sufficiently low value oE,;, and E,,=min(y and obtained exactly the same results.
+V| ,/,Lr+V,).

FIG. 2. Analytical continuation 0GR into the complex energy
plane E, ,E;). The equilibrium charge contribution is calculated by
exploiting the analytical properties GR. The integral around the

B. Evaluating physical quantities

shown in the inset of Fig. 3, the total integrated DOS is 16 By including the semi-infinite electrodes as self-energies,
when the contour integl’ation is Completed, which is the NUMzps in Eq(AS), and Only eva|uating the density matrix near
ber of valence electrons in the four-atom unit cell. We alsqhe central Ce”, information about the System outside the
note that such a complex contour automatically includes th@entral cell is discarded. However, if the central cell is cho-
charge contribution from any bound states belpn,  sen large enough, the density at the edge of the central cell
which would appear as functions along the real axis. The wjll relax to the bulk value, and changes to physical quanti-
contour integration is most important for any self-consistentjes will be due solely to changes of the state of the device
analysis, because, as opposed to simple transport calculgyside the internal celt. Thus, changes in extensive physical
tions, one must integrate over the entire spectfinmtluding  quantities such as the band-structure energy or number of
bound StateSWhmh would norma”y require a prOhlblthEly e|ectr0ns(or Changes in theh'may be evaluated by averag-
large number of evaluations @~ to reach a reasonable ing over the central cell. This average is calculated by per-
accuracy for constructing the charge density. forming a trace over the indices of the density matrix corre-
The nonequilibrium charge contribution is evaluated us-sponding to the central cell. For example, the band-structure
ing Eq.(20). In energy ranges where E@.7) is not satisfied, energy in our formalism is given by
IM[G=]+# —2f*{E)Im[GR], and the DOS must be calcu-
lated from the NEGF Eq(11). BecauseG”(E) is nonana- Egs=TrlpH]=pc i ¢t pcchectperhre. (22
lytic above the real axis whil&R(E) is nonanalytic below

the real axisG <(E) is only analytic along the real axis. It is Since changes in physical quantities may be calculated, one

can also calculate the Hellmann-Feynman foree#E/dR,
and optimize the atomic coordinates of thgensystem un-

2500

g B g ' ' der the influence of external fields. We will not report quan-
2 1§ . 3 ot ) tum molecular dynamics simulations for open systems under
25 -E: g ] R bias in this work and leave that topic for the futdre.
- 0 1 1 1 1 1 1

The transport properties we are interested in this work is
the electric current which is evaluated using the Landauer

0051152253
]

1500

" formula
z s} g
2e (u
oo 1= | "dE (4 - <) T(E), (23)
T h Mmin
os | 500 whereT(E) is the transmission probability and is given*by
. . : . . . T(E)=4 TIM(Z] )G IM(ZL)GR . (24
-0.26 -0.25 -0.24 -0.23 -0.22 -0.21
E It is emphasized that, since the current is calculated from a

FIG. 3. The density of state€DOS, solid squarésand band self-consistent analysis, the functions inside the trace in Eq.
structure kL vs E, empty squardsversus energy, for a perfect (24) are all functions of bias potentialsV,;, so that gauge
carbon atomic chain with a four-atom unit célinit cell lengthL).  invariant nonlineai-V curves are obtained. The importance
The peaks in DOS are the van Hove singularities at the band edge8f gauge invariance in a nonlinear transport theory has been
The inset shows the integrated density of states along a complégmphasized by Btiker and co-worke®~% and we refer
contour versus the contour variabfe DOS is very smooth along interested readers to their original contributions.
the complex contour and the integral converges with a small num- At equilibrium, the current is proportional to the conduc-
ber of Gaussian quadrature points. tanceG,
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studied’® Since the potential is uniquely determined by the
charge distribution, this nontrivial result is strong evidence
that the central cell is chosen large enough such that the
potential is effectively screened, and therefore relaxes to the
bulk value at the boundary.

ONON
0©0©
©)0©)0
0©0(©
CREA

IV. TRANSPORT THROUGH
A CARBON NANOTUBE-METAL INTERFACE

In this section, we report our analysis on the transport
properties of a single wall armchair carbon nanotube in con-
tact with an Al electrode, shown in Fig. 1 where a semi-
infinite nanotube is in contact with a semi-infinite Al elec-
trode. Carbon nanotubes are either metals or semiconductors
depending on their helicity, therefore they provide a very
exciting possibility of forming an all carbon nanotube-based

FIG. 4. Charge density contours of the carbon nanotube-metaholecular electronic system. So far a considerable amount of
interface of Fig. 1 at equilibrium. The contours of the bulk lead experimentﬁl&lo'g'&%'a%nd theoretical 1°14.68-71.21.68ffort

match that of the device at the edges of the device region. has been devoted to understand the nanotube pkﬁ?gmg_
refer interested readers to Ref. 66 for detailed discussions of
I=G(u)X (= pmr) (25 other properties nanotubes and we will focus on presenting

the transport properties of the nanotube-metal interface.
The most basic question concerning nanotube electronics
262 is its conductance. For perfect single wall armchair nano-
G(m)=5-T(w). (26)  tubes which arénfinitely long, it is well knowrf*"3that there
are two states crossing the Fermi level of the nanotube.
Therefore, for these ideal tubes the equilibrium conductance
should b&® G=2G,, whereG,=2e?/h is the conductance
quanta. For infinitely long nanotubes with defects, the con-
ductance is slightly influenced by scattering due to the de-
cts, but G~2G, is still maintained as predicted by
theory?”? To the best of our knowledge, however, experi-
mental measurements of nanotube conductance have never
found a 25, conductance up to now. In fact, most measure-
ments report two orders of magnitude smaller values due,
As mentioned above, for an open system without boungresumably, to the poor nanotube-electrode contacts. From
states(such as a perfect atomic chgiits transmission coef- this perspective, it is extremely interesting that a recent mea-
ficient and DOS can be calculated by the scattering st3tes,surement, reported by Framk al,*® showedG~ G, by dip-
or by Green'’s functions using EQR4). We have confirmed ping a multiwall nanotube into a liquid metal repeatedly.
that exactly the same numerical values are obtained froritheir measuretf conductance is therefore half of the ideal
these two approaches for all the systems we studied. Becauieeoretical valué”3 Clearly, the theoretical value ofGp,
the scattering state calculation is completely independenthich is only true for infinitely long metallic nanotubes,
from the Green’s function calculatidfi this is a very strong cannot explain the experimental data. To understand this dis-
test which validates the numerical procedure presentedrepancy, Choi and co-workers repofed plane waveab

which is evaluated at the Fermi level of the device

Finally, we comment that, within linear response, formu-
las may also be derived for the electrochemical
capacitanc&®?*the ac response coefficierifsand nonlinear
conductance coefficienté® We leave the discussion of
these linear response coefficients for atomic devices for th
future.

C. Numerical validation

above, including the self-energy calculatiGhppendix B, initio calculation of an armchair nanotube in contact with a
the contour integration, and the nonorthogonal Green’s funcjellium electrode. Their analysis showed that there is consid-
tion formalism(Appendixes A,G. erable back scattering due to the nanotube-jellium contact. In

A key ingredient of our formalism is the implementation particular, thew-band incident electron suffers strong scat-
of the screening approximation by imposing E¢8,(2) on  tering and its contribution to conductance is almost com-
the KS effective potentials. However, no such restriction ispletely inhibited?® while the 7* band does not suffer back
placed on the charge density which we computed selfscattering and therefore it is its contribution which gavea
consistently from the NEGF. Indeed, for all the systems weconductance value. This result gives a plausible explanation
have checked, a perfect match of charge density atis  to the experimental findindg$.
achieved by including a few layers of bulk electrode within ~ To further investigate this problem for the case where a
the central cell. Figure 4 shows the equilibrium charge dennanotube is in contact with an atomic electrqde opposed
sity p(r) along a cross section of thez plane for a carbon to jellium electrodg and to predict thé-V curves of such an
nanotube in contact with an @00 electrode(see Fig. L interface, we have studied the nanotube-metal interface
The high quality matching was also obtained for gy C shown in Fig. 1 using our NEGF-DFT technique presented
deviceé® and several other molecular device systems we havpreviously. The system consists of a semi-infinite and perfect
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FIG. 5. The transmission eigenvalugiied squarepof the two FIG. 6. Thel-V curve for the nanotube-metal interfacedat 2

eigenmodes for the nanotube-metal interface as a function of elegnd 2.5 a.u.. The result is obtained by fixing bigs=0 and vary-
tron energy. Each eigenmode contributes less than unity to the totghg v, from negative to positive. Th&V curves are essentially
transmission coefficient, but one contributes more than the othefinear with a slope~G, for d=2 a.u., and~0.3%G, for d
The three panels correspond to different nanotube-metal junctior-2 5 a.u., at small bias voltages.

distanced. Energy is normalized such that the Fermi level i€at

=0. The total transmission CgeﬁiCiempe” squargsat Fermi en-  role in controlling the interface transparency. This is under-
ergy is~1 in unit of Go=2e/h for the upper two panels and standable becauskdirectly controls charge transfer between

becomes much smaller wheis large. the two sides of the interface thereby determines the Fermi
. L ) ~level alignment.
single wall (4,4) nanotulf& which is in contact with a semi- Finally, Fig. 6 shows thd-V curve for this system ad

infinite Al electrode. The Al electrode is represented by slabs-3 ang 2.5 a.u. To obtain this result, we fixed bias=0

of bulk Al (100) with a finite cross section. _We_study the ang variedV, from negative to positive. TheV curves are
ideal situation where no structural relaxation is allowed-essentially linear with a slope-G, for d=2 a.u., and
Therefore the nanotube-metal junction is characterized bKO.S%O for d=2.5 a.u., at small bias voltages. These re-
the contact distance, which is the distance between the left g ,jt5 are consistent with the equilibrium conductance dis-

most ring of carbon atoms and the right most layer of the Al sqeq in the last paragraph. THg curves showed a slight
atoms(see Fig. ], which we vary as a control parameter. recyification which is due to the asymmetry across the inter-
Our analysis shows that there are two transmission eigeface |n contrast, theV curves for a G molecular junction
vectors which connect the two sides of the nanotubeyere found to be quite nonlinear at similar range of bias
electrode interface. This is consistent with the fact that Joltages®® Our results, together with that of Ref. 28, allows
perfect and infinitely long nanotube has two states at it§,s to conclude that the equilibrium conductance of a

Fermi level. As usual®*’ the transmission eigenvectors and anotube-metal interface should b&, instead of B, due
eigenvalues are obtained by diagonalization of the scattering, scattering of the interface. ’

matrix which we calculated from the NEGF via the Fisher-
Lee relationshig#** The two transmission eigenvaluds
and T, are plotted in Fig. 5 as a function of energyfor
three values of junction distanak=1.5,2.0,2.5 a.u., where In this paper, we have presentedaminitio technique to

E is normalized so thatEg=0. The total transmission simulate quantum transport through open coherent quantum
coefficient is therefore T=T,;+T,, and this gives conductors. The novelty of this technique lies in constructing
equilibrium conductance at Fermi energy to h® the electronic charge density via the nonequilibrium Green’s
=1.01G,,0.985,,0.39G,, for the threed’s, respectively. functions, instead of using eigenstates of the conductor, with
Our results suggest that both transmission eigenvectors cothe help of a screening approximation which reduces the in-
tribute substantially to the conductance although one contribfinitely large problem to a finite calculation in the scattering
utes more than the other, and there are also substantial bacégion. The construction of the charge density from NEGF is
scattering at the interface making each transmission eigeracilitated by the analytic continuation technique which dras-
values less than one. We believe the difference between theally reduces the computation effort. Because our DFT
two transmission eigenvectors is related to the relative shiftanalysis is based on a real space technique with the Hartree
of the carbon nanotuber and #* bands which has been potential solved on a real space grid, our technique allows
discussed in Ref. 28. The fact that they happen to add up tsimulations of devices with different electrodés.g., one
give G=Gy is indeed interesting, and is true for a range ofcarbon and the other alumingmwith bias as well as gate
values ofd. This result is thus in qualitative agreement with potentials>°

those of the nanotube-jellium interfateFurthermore, our We have provided many results which clearly demon-
results suggest that the junction distadqaays an important strated the power of our technique, and in particular we have

V. SUMMARY
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simulated transport properties of a carbon nanotube-metdhose basis orbitals which extend into the central cell. There-
interface. We found that due to interface back scattering, théore we need to calculate a submatrix@ﬁy which corre-
two transmission eigenvectors each contribute a transmissi@ponds to the central cell. As shown in Refs. 44, the central
coefficient which is smaller than unity, with the totalG, cell retarded Green’s function has a very simple form in
for a range of the distance between the nanotube and theCAO orbital space

electrode. This is consistent with the nanotube-jellium results

obtained beforé® and is also consistent with the experimen- hE -S|, hE, 0 -1

tal measurements of Fram al*® In this regard, we caution e E £

that the experiments were carried out on multiwall nanotubes 9cc™ he, hec he, ' (A3)
while the theory is on single wall tubes. 0 hre hf =3,

Many further analyses of molecular nanoelectronics can
be carried out using the technique presented here. Not onwherehij(EH 7)Sij—hi andEl,, andX;  are the self-
guantum transport properties including/ curves can be energies due to coupling to the left and right electrodes, re-
predicted from first principles, but also structural analysis ofspectively. In terms of the surface Green’s functiags.
open boundary nanodevices under external fields. The latter[(E+i7)s .—h, ..] ! andg, .=[(E+i#n)s; .—h;.]"%,
can be simulated with quantum molecular dynamics withinthe self-energies can be written
our NEGF-DFT formalism?® Clearly, molecular electronic

device systems with more than two electrodes can also be Elvlzhﬁ,lghxhﬁﬂ,
readily simulated within our formalism. From a numerical (A4)
computation point of view, our method is easily paralleliz- SPo=nhE hE

r,r r,r—lgr,Oc r,r+1-

able. More importantly, because we use a nonorthogonalized
LCAO fireball basis set which has a finite range, our methodne calculate the self-energies using a procedure described in
can be made to scale &(N). We hope to report these the next subsection and the Green’s function is then obtained

developments in a future publication. by direct matrix inversion of Eq/A3). We note that efficient
techniques of inverting large sparse matrice®{iN) opera-
ACKNOWLEDGMENTS tions exist’®
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APPENDIX A: GREEN'S FUNCTIONS erative method$?
OF A TWO PROBE DEVICE The method of Ref. 77 is valid for situations where the
coupling matricehr, _;,hf,1,h5,_1,hf,, 1} are nonsin-
ular so as to have a simple inverse. For abinitio analy-

: . . . sis where the range of interaction is fixed by the support of
the rgtfirded. Greep S funcUo@R IS kpown. The calculation the basis orbitals and not by a semiempirical parametrization,
of GR in a tight-binding basis set is well knofthand we o0 matrices may be singular. Here we describe a direct
write down necessary formula for the sake of completenesg,ansjon to the technique of Ref. 77 to deal with singular
and ease pf prﬁgentation. _  matrices.

ExpandingG™ in terms of the real space basis set using  consider an infinitely long perfect electrode described by
the infinite chain{hf, ,,h%,.h%,. 1} as in Eq.(3). By di-

APPENDIX B: SELF-ENERGIES

In this appendix, we present expressions for the retarde
Green’s function. From Ed11), G may be calculated once

R y — R ’
GH(rr) =14, G ulrl, (A1) agonalizing Eq(5), we solvé® the Bloch states and classify
leads to the following equation fa@® : them into right-moving and left-moving groups according to
r their group velocitie4® denoting them ag¢'"}. We also
im[(E+i7)S,, —H,, ]G} =6 (A2)  calculate their duals defined by
(2 uv' 19y, = Oy
n—0
:/TE¢}/T<¢|/T|¢|/T>]€1 . (Bl)

To calculate the charge distribution of the scattering re-
gion of the devicdsee Fig. 1, we only need the components Following Sanvitoet al,’” we make the following ansatz for
of density matrix in which the basis states have support inthe retarded Green’s function of an infinitely long perfect
side the central cell. Namely, we only have to worry aboutelectrode:

|.’77
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Oou(2,2) z>7',

G5u|k(2,2’)= (B2)

Opul(z,2") z<Z',

where

g;u.k(z,z'>52 [N (P,
(B3)
O 2:2)= 2 [T (V.

The indexz, as before, is an integer labeling the unit cells of

the electrode and the quantityis a matrix to be specified

below. Note that the retarded boundary condition is satisfie%

because of the choice of phas& 2. The quantityV was

PHYSICAL REVIEW B63 245407

E:,|:h|E,|—19|,oo(C_210_2)h|E,|+1- (B9)

By precisely the same procedure, one can degjvg which
then givesZ{'r from Eq. (A4). As a validation to our closed
form (B9) for the self-energies, we have calculated the self-
energies using a transfer matrix technifft/@ and obtained
exactly the same numerical results.

APPENDIX C: CALCULATION
OF HAMILTONIAN MATRIX ELEMENTS

Some details concerning the calculation of Hamiltonian
matrix elements are presented in this appertiiX We use a
minimal sp basis set to expand the electronic wave func-
ons. Following Sankey and Niklewsk{, we used fireball
pseudoatomic orbitals which are solutions to the radial

aI;o given_in Ref. 77 in a form that is vali_d vyhen the COU- schralinger equation derived from the pseudopoterffi@y
pling matrices are nonsingular. By substituting the ansatgypanding all quantities on a real space grid, one may de-

(B2) and multiplying byH —ES using Eq.(3), it is straight-
forward to prove that the following choice dfwill make the
electrode Green’s functiofB2) satisfy the Green’s function
equation(A2),

V= ; hE,_ 1| N1 X( P! +hE,
1

+ 20 5ol (@| (B4)

velop a fully self-consistent solution to the KS equatiths.
Our technique is similar to that of Ref. 42, except that the
solution of the Poisson equation is performed and the matrix
elements of the effective potenti@/®(r)) «v are calculated
in real space for the piecewise continuous funcé¥i(r).

The KS Hamiltonian has the following form:

VZ
H=| = =+ V() + VI +V(r) |8(r =)

+VNS (). (C1

Note that this result reduces to the form given in Ref. 77

when the coupling matrices are nonsingular.

With the Green’s function of an infinitely long perfect
electrode calculated, as in E@®2), we can now calculate the

left surface Green’s functiog, .., which is needed in Eq.
(A4). By its definition and using EdY), g, .. satisfies

hhi-r  hi
0 hi

h|E,|+1 g|yoczllyoc- (BS)

hr

We formg, .. by adding a sum of left moving Bloch states

to the bulk Green’s function of the left electrodifbulk:
91+(2.2) = Gllpu(2.2') + A12(2), (86)

where

A (2)= Z | Y(N)Z e 2P|, .. (B7)

for z<c—1. Substituting Eq(B7) into the last row of Eq.
(B5) yields the following equation fo# .. :

3 T2 0611 (@1

:hE|+19|J,rbu|k(C_1,C_2)y (B8)

thus defining the surface Green'’s functigp.. in Eq. (B6)
and the self-energy

Here VNA(r) represents the local pseudopotential screened
by the addition of charge density of the neutral isolated
atoms® pNA(r);  V(r) is a screened Hartree potential
which solves the corresponding Poisson equation

VAV (r)=—4mlp(r)—p"A(N)]. (C2

Multiplying by two LCAO basis stateg, (r —R;) and {,(r
—R;) and integrating ovedr anddr’ leads to the standard
tight-binding matrix representatioll ,,. One may derive
general formulas for the kinetic energy, overlap, nonlocal
pseudopotential and local pseudopotential matrix elements
between two states of arbitrary angular momehfan(,) and
(1,m,).>%"®These involve integrals that may be pretabulated
and stored in the database.

We solve the Poisson equation in the “electrode” calcu-
lation using a FFT technique. For open device systems, how-
ever, the potential must satisfy boundary condition &.
Hence we solve Eq(C2) with a multigrid techniqu®® di-
rectly in real space. The boundary conditions in the trans-
verse direction may either be homogeneous or periodic. A
gate potentialV, (see Fig. 1 can also be applied which
capacitively couples to the device, it simply provides a
boundary condition t&/°"(r). OnceV?"(r) is obtained, the
exchange-correlation potentis#J p(r)] is added to it. By
applying Eq.(1), the real-space part of the effective potential
Ve(r) is therefore known and is in a form of piecewise
continuous function, as in Eql).

The matrix elements 07°f(r) are thus obtained as a sum
of integrals over the real space grid:
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off off where the repeated indicés' and k[ represent sums over
(Ve 1= JQ dr &, (r=R)Vibud N E(r—=Ry) only the evanescent modes. The evanescent mpgesire
! obtained by diagonalizing E@5) by choosinge and select-
off ing those\ which are complexcorresponding to evanescent
+fQ dré,,u(r_Rl)Vc (r)gv(r_RJ) mode$_4o
¢ Applying the Hamiltonian operator, we find the following

homogeneous equation fdrc":
+JQ drg,u(r_RI)VETI)ulk(r)gv(r_RJ)- g d

m
€3 AlkI hIE,c 0 aklmcn 0
Since only basis states in the immediate neighbor cells have " "
support within the center cell, changes in the effective poten- Al hE’C ke l/,gn =|0]. (D2)
tial Vﬁ“(r) only affect matrix elements in a few cells. Thus, ¢ Cm KMen 0
the Hamiltonian matrix elements between basis states in the 0 h'ﬁc ':f b

ith andjth cells will be the same as in the equivalent bulk
system so long as neither basis function has support within
the central cell, leading to the form of the Hamiltonian H€ré
shown in Eq.(6).

Once the Hamiltonian is calculated in matrix form, an i m m

. .~ . . I =[hE E Kiy—17 K

output charge density matrix®" is calculated using Eq. A —[hl,l+hl,l—1()‘¢) le"s
(10), leading to a new density in real spae@) and effec-
tive potential within the central ceW®" p(r)]. This process o o o
is repeated until a predefined numerical tolerance is reached. A':r =[hE,+hE,, (A )+1]¢:‘r ,
This allows for a completely self-consistent solution to the ’ ’ ¢
KS equations for open systems.

K'_E K"
APPENDIX D: BOUND STATES OF AN OPEN SYSTEM Al =hcie

In this appendix, we describe how one might calculate the
bound states in an open system such as that of Fig. 1 and
argue that this is a difficult process because bound states are
solutions to a highly nonlinear eigenvalue problem. The dis-

crete set of bound stat¢® "} which is localized inside the The above quantities depend on the Bloch states and there-
device scattering region, can be expressed as an expansiofpre are highly nonlinear functions of energy
Hence, Eq/(D2) is a highly nonlinear root finding prob-

m

K™ k
Acr EhE,r‘Prr : (D3)

m
(p:(' a"lmcn, zel, lem for each bound state eigenvaldgwhose solution be-
N n comes a very time-consuming task. Furthermore, one does
V=4 yi, zec, (D1) not know how many bound state there arpriori. We there-
K™ men fore conclude that it is numerically difficult to calculate
¢, BT, zer, them.
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