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Ab initio modeling of quantum transport properties of molecular electronic devices
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We report on a self-consistentab initio technique for modeling quantum transport properties of atomic and
molecular scale nanoelectronic devices under external bias potentials. The technique is based on density
functional theory using norm conserving nonlocal pseudopotentials to define the atomic core and nonequilib-
rium Green’s functions~NEGF’s! to calculate the charge distribution. The modeling of anopendevice system
is reduced to a calculation defined on a finite region of space using a screening approximation. The interaction
between the device scattering region and the electrodes is accounted for by self-energies within the NEGF
formalism. Our technique overcomes several difficulties of doing first principles modeling of open molecular
quantum coherent conductors. We apply this technique to investigate single wall carbon nanotubes in contact
with an Al metallic electrode. We have studied the current-voltage characteristics of the nanotube-metal
interface from first principles. Our results suggest that there are two transmission eigenvectors contributing to
the ballistic conductance of the interface, with a total conductanceG'G0 whereG052e2/h is the conduc-
tance quanta. This is about half of the expected value for infinite perfect metallic nanotubes.

DOI: 10.1103/PhysRevB.63.245407 PACS number~s!: 72.10.2d, 85.65.1h
th
th
i

ri-

rb
r
n

ts
e
te

a
h
e

d
t-
d

ct
i

de
ca
ic
d
i-

ic
le

vi
en

an
r-
’’
no-
c-
-

For
fol-

or-

an-

m-

de-

ite

ice

vely
I. INTRODUCTION

In the last several years, there has been a large grow
research effort in nanotechnology, and in particular,
search for nanoelectronic devices has become a worldw
effort.1 Such an effort is made viable by the ability to fab
cate device structures of truly nanometer scale,2,3 by the dis-
coveries of self-organized nanostructures such as ca
nanotubes,4 and by the progress in making accurate measu
ments of structural and electronic properties of these na
systems. More recently, quantum transport measuremen
atomic and molecular scale nanoelectronic systems hav
ceived great attention5–12 because they represent the ultima
size limit of functional devices. The current-voltage~I-V!
characteristics of these atomic and molecular systems h
profound potential for device application, including hig
nonlinearity, negative differential resistance, electrom
chanic and electrostatic current switching.5–8,11 Demonstra-
tions of molecular based logic gates5 and nonvolatile random
access memory device8,6 have already been made, an
clearly point to the exciting possibility of molecular compu
ing machinery.5 Previous work also clearly demonstrate
that many of the molecular device characteristics are dire
related to specific atomic scale degrees of freedom, and
teractions of the device region with the device electro
play one of the most important roles. From the theoreti
point of view, a serious challenge is to accurately pred
quantum transport properties of atomic/molecular scale
vices including theI-V curves, without any phenomenolog
cal parameters. This goal, despite extensive research,13–35

has not yet been achieved satisfactorily.
In this paper, we present a modeling technique wh

solves the theoretical challenge within the first princip
density functional theory~DFT! ~Refs. 36–38! approach. To
make the problem at hand clear, we use the molecular de
shown in Fig. 1 to discuss our technique. Figure 1 repres
a typical two-probe molecular device geometry where
0163-1829/2001/63~24!/245407~13!/$20.00 63 2454
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semi-infinite armchair carbon nanotube is in contact with
atomic scale semi-infinite Al metallic electrode. The inte
face region~central box! can be considered as a ‘‘molecule
in contact to a metallic electrode on the left, and to a na
tube electrode on the right.39 These electrodes extend to ele
tron reservoirs atz56` where the electric current is col
lected. A gate electrode with potentialVg which is
capacitively couple to the molecule, may also be present.
concreteness, we assume a two probe geometry in what
lows and fix the transport direction to be along thez axis.
Extensions to different boundary conditions are straightf
ward and will be presented elsewhere.40 Our theoretical goal
is to predict quantum transport properties of molecular n
odevices such as that of Fig. 1, including theirI-V character-
istics, from first principles without phenomenological para
eters.

To analyze quantum transport through molecular scale

FIG. 1. Metallic electrode-nanotube interface. A semi-infin
~4,4! armchair nanotube is in contact with a semi-infinite Al~100!
metallic electrode. This is a typical two probe molecular dev
structure where the device region~the center box! is coupled to
perfect atomic-scale electrodes which extend to reservoirs atz5
6`, where current is collected. Bias potentials,DVl /r may be ap-
plied to the reservoirs. Furthermore, the device may be capaciti
coupled to a gate electrode through a gate potential.
©2001 The American Physical Society07-1
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vices from first principles under a finite bias potential, thr
points are of essential importance. First, one must deal w
opensystems within the DFT formalism. Recall that conve
tional DFT methods~e.g., the well-known plane wave meth
ods discussed in Ref. 41 or real-space techniques suc
Ref. 42! can treat two kinds of problems:~i! finite systems
such as an isolated molecule, as in quantum chemistry
~ii ! periodic systems consisting of supercells, as in solid s
physics. In contrast, a molecular device, such as that sh
in Fig. 1, hasopenboundaries provided by long electrod
which maintain different chemical potential due to an ext
nal bias. In other words, a typical device geometry is neit
isolated nor periodic. Therefore, one must find a techni
beyond~i!,~ii ! above, to reduce the infinitely large proble
of an open device to a finite problem which can be efficien
dealt with. Second, one must calculate the device Ham
tonian H@r(r )# within DFT using the correct charge distr
bution r(r ) which must be constructed under a finite bi
with the correct open boundary conditions. For open s
tems,r(r ) is contributed by both scattering states which co
nectz52` to z51` crossing the molecular region, and b
bound states which may exist inside the molecular region
is worth noting that when the electrochemical potenti
m l /r1DVl /r of the two electrodes are not equal, the device
actually in a nonequilibrium state. HereDVl /r is the bias
voltage applied at the left/right reservoirs andm l /r is the
chemical potentials there. In this work, we will not consid
transient phenomena and only focus on the steady s
Third, an efficient numerical procedure should be used
order to simulate molecular devices with a large number
atoms.

Similar to the pioneering work of Lang,30 the formalism
developed in this work is based on a self-consistent solu
of the Kohn-Sham~KS! equation foropen systems. How-
ever, we do not use the jellium approximation to describe
electrodes but we assume that each semi-infinite elect
has its own discrete translational symmetry, represented
collection of atoms at positions$RI% in a unit cell repeated to
eitherz51` or z52`. The use of atomic scale electrod
complicates the problem considerably because of its n
trivial electronic structure and multiple van Hove singula
ties in the density of states of the electrodes. Previ
methods30,31construct charge density from eigenstates of
open system where bound states contribution has b
neglected.30,31 In this work, we apply the nonequilibrium
Green’s functions~NEGF’s! ~Refs. 43–45! which naturally
include scattering states as well as bound states contribu
to the charge density.

We have applied our NEGF-DFTab initio formalism to
investigate quantum transport properties of a C60 based mo-
lecular junction in the ballistic regime, a short account
these results can be found in Ref. 39. In the following,
apply our formalism to investigate the transport properties
a single wall carbon nanotube~SWCN! in contact with a Al
metallic electrode shown in Fig. 1. We report theI-V char-
acteristics of the nanotube-metal interface from first pr
ciples. We found that there are two transmissi
eigenvectors46,47 contributing to the ballistic conductance o
the SWCN-metal interface, with a total conductanceG
24540
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'G0 where G052e2/h is the conductance quanta. This
about half of the expected value forinfinite perfect metallic
nanotubes. This result is consistent with a previous calc
tion using the supercell method28 on a jellium-nanotube in-
terface, and provides a possible explanation of the phen
enon observed by Franket al.48

The rest of the paper is organized as follows. In Sec.
we present a discussion of the theoretical formalism. Sec
III presents a few important details of the numerical imp
mentation. Section IV presents modeling a nanotube-m
molecular junction. In Sec. V, we summarize and give
outlook of future work. Finally, mathematical details of o
ab initio technique is presented in several Appendixes.

II. THEORETICAL FORMALISM: BOUNDARY
CONDITIONS, ELECTRODES, AND DENSITY MATRIX

As mentioned above, to investigate properties of the m
lecular device such as that shown in Fig. 1 we will make u
of the familiar DFTab initio method38,41,42 to describe the
electronic degrees of freedom. The atomic cores are defi
by standard norm-conserving nonlocal pseudopotentia49

To be specific, in this work we use a minimals, p real
space Fireball linear combination of atomic orbitals~LCAO!
basis set42 $zm(r2RI)% to expand the KS wave functions
Furthermore, we note that, because of the open boun
conditions, a real space technique is needed to calculate
Hamiltonian and effective potential within DFT. The use o
minimal basis set results in an efficient calculation and a
acceptable accuracy as amply documented in
literature.50,42,51,24 We note that systematic improvemen
may be achieved in LCAO basis sets54 so as to give compa
rable accuracy to large basis set methods such as p
waves,41 multigrids,52 or wavelets.53 The latter methods
cannot be used in our approach because the computat
requirements to construct the NEGF would be too large
ing such basis sets. To save space, we do not present
familiar DFT details. Suffice it to say that once the char
density is constructed, the rest of the DFT iterations is c
ried out in standard fashion which can be found in the D
literature.41,42,38

In what follows, we focus on the novel parts of our fo
malism: ~1! How to deal with an open therefore infinitel
large device system and~2! How to calculate the charge
distribution under external bias for an open system. The
tails of how to calculate the Hamiltonian operator in mat
form and the effective potentialVeff(r ), can be found in Ap-
pendix C.

A. Boundary conditions for the Kohn-Sham potential

The device boundary condition plays a crucial role
simulating transport through a molecular device. Essentia
the wave functions, and thus the electric current through
device, depend on the KS effective potential22,30of the entire
device: C5C@Veff@r(r )##. For our problem, the accurat
effective potentialVeff@r(r )# should be constructed by ca
culating the charge distribution for theopensystem which is,
actually, infinitely large because the electrodes extendsz
56`.
7-2
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Approximations to the device potentialVeff@r(r )# may be
made by modeling only the central simulation box~labeled
c) of Fig. 1 as a finite cluster or as a supercell. If more a
more atomic layers of the electrodes are added to the ce
box, the KS potential near the molecular region begins
mimic the correct potential which requires the electrodes
be infinitely long. However, the KS wave functions obtain
this way have incorrect boundary conditions for quant
scattering and therefore cannot be used to calculate ele
current through the device. For this reason, an extra quan
scattering calculation must be carried out after matching
finite cluster or supercell potential to perfect electrod
potentials.22,27This kind of indirect approach has limited ap
plicability because there are no electron reservoirs to m
tain a chemical potential difference across the device,
therefore, no external bias potential may be applied to
device.

To deal withopenboundary conditions for the KS poten
tial, we make a simple observation that the KS potential d
inside a solid surface is very close to the corresponding b
KS potential. This fact leads to a screening approximat
which forms a natural boundary condition for open dev
systems:

Veff~r !5H Vl
eff~r !5Vl ,bulk

eff ~r !, z<zl ,

Vc
eff~r !, zl,z,zr ,

Vr
eff~r !5Vr ,bulk

eff ~r !, z>zr ,

~1!

where the planesz5zl andz5zr are the left and right limits
of the central simulation box that describes the scatte
region ~see Fig. 1!. The simulation box should be larg
enough so that these planes are sufficiently deep enoug
side the surface of the electrode such that Eq.~1! holds.

The boundary condition in Eq.~1! naturally divides the
device into a scattering region or center cell (c), left cells
belonging the left electrode (l ), and right cells belonging to
the right electrode~r! @see Fig. 1#. The atomic structure in
the left ~and right! cells is required to be identical to that o
the corresponding bulk system, so that that each electrod
described by an effective potentialVl /r ,bulk

eff (r ). Clearly, the
electrodes do not have to be the same: the left cells ca
crystalline Al to simulate an Al electrode, while the rig
cells can be a perfect carbon nanotube to simulate a nano
electrode. As such,Vl /r ,bulk

eff (r ) is obtained by a separat
‘‘electrode’’ calculation,55 described in the next subsectio
and stored in a database. With this (l ,c,r ) division, only the
effective potential within the scattering region,Vc

eff(r ), needs
to be updated at each iteration of the self-consistent KS e
tions.

There remains the difficulty of having to match the effe
tive potential inside the scattering region to that outside,
to ensure that Eq.~1! holds atzl and zr . While it is not
straightforward to impose a boundary condition on the to
KS potentialVc

eff(r ) it is natural to apply matching boundar
conditions to the Hartree potentialVc

H(r ) by solving the
Poisson equation in real space as a boundary value pro
with the following boundary conditions
24540
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Vc
H~r !uzl

5Vl ,bulk
H ~r !uzl

,

Vc
H~r !uzr

5Vr ,bulk
H ~r !uzr

, ~2!

whereVl ,bulk
H (r )uzl

andVr ,bulk
H (r )uzr

are the Hartree potential
of the equivalent bulk systems. We have used a multig
technique to solve the Poisson equation in three-dimensi
~3D! real space56 to apply Eq.~2!. The total KS potentials
Vl /r ,bulk

eff (r ) and Vc
eff(r ) will then be equal atzl /r within the

local density approximation of DFT, if the charge densiti
rc(r ) andr l /r ,bulk(r ) are equal atzl /r . Again, this is indeed
the case ifzl /r is chosen far enough inside the electro
surface, which one can confirm numerically57 during a simu-
lation.

The above requirements on the effective potential, E
~1!,~2!, reduce the infinitely large open device problem d
fined on all space, to a problem defined on the finite scat
ing region. This way, we only have to calculate charge d
sity and effective potential inside the scattering region
order to solve the KS equations.

B. Electrode potential

In our model, each electrode consists of a collection
atoms at positions$RI% in a unit cell which is repeated toz
56`. In order to apply the boundary conditions Eq
~1!,~2!, we must first calculateVl /r ,bulk

eff (r ).
Each electrode unit cell can be associated with an LC

basis$zz%. It is not difficult to confirm that the unit cell may
always be chosen so that the Hamiltonian has the follow
tridiagonal form:

F � � �

hz,z21 hz,z hz,z11

hz,z21 hz,z hz,z11

� � �

G . ~3!

Here,hz,z8 is itself a Hamiltonian matrix defined on unit cel
labeled by the integersz and z8. The construction of the
Hamiltonian matrix elementshz,z8 is straightforward and is
discussed in Appendix C. Using the Bloch ansatz

Ck~z!5eikzfk[@lk#zfk, ~4!

Schrödinger’s equation becomes

@hz,z21@lk#211hz,z1hz,z11@lk#11#fk

5Ek@sz,z21@lk#211sz,z1sz,z11@lk#11#fk, ~5!

wheresz,z8 represents the overlap matrix elements calcula
between basis states in thez andz8 unit cells. By choosing
appropriate values ofk, one can diagonalize the above equ
tion in order to obtain the eigenvaluesEk and eigenstatesfk.

The density matrix of the electrode is obtained by in
grating over the Brillouin zone in the usual fashion:

r̂5E dkuCk& f eq~Ek;m!^Cku,

where
7-3
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f eq~E;m![
1

11e2(E2m)/kBTe

is the equilibrium Fermi function for electrons of temper
ture Te . The chemical potentialm is determined by the
charge neutrality condition

E dk feq~Ek;m!5N,

whereN the number of electrons in the unit cell. By co
structing the charge distribution within the unit cellr(r )
5 r̂(r ,r ) the KS potential of electrodesVl /r ,bulk

eff (r ) can be
updated and the KS equations solved self-consistently.

The electrode calculation provides the following inform
tion which are saved to an electrode database: the posi
of the atoms in the unit cell$Rl /r%, Vl /r ,bulk

eff (r ), the Hartree
potential on the boundary of the unit cellVl /r ,bulk

H (r )uzl /r
, the

electrode Hamiltonian in the form of the coupling matric
$hl /r ,l /r 21 ,hl /r ,l /r ,hl /r ,l /r 11 ,%, the overlap matrix
$sl /r ,l /r 21 ,sl /r ,l /r ,sl /r ,l /r 11%, and the chemical potentialm l /r
which ensures that each electrode is charge neutral.

C. Density matrix of an open device system

Using the boundary conditions Eqs.~1!,~2!, the KS equa-
tions can be solved iteratively by constructing the cha
distribution inside the device regionrc(r ) which in turn gen-
erates a new effective potentialVc

eff@rc(r )#. The charge dis-
tribution is conveniently calculated from the density mat
r̂, which can be constructed in two ways, either by includ
all the eigenstates of the open device with the proper sta
tical weight, or from the nonequilibrium Green’s functio
~NEGF! ~Refs. 44,43,45! which is what we use.

To begin, we note that for LCAO fireball basis set50,42

which we use in our model, the Hamiltonian matrix of th
entire device including the infinitely long electrodes, can
ways be written into a tridiagonal form

F hl ,` hl ,l 11 0 0 0

hl ,l 21 hl ,l hl ,c 0 0

0 hc,l hc,c hc,r 0

0 0 hr ,c hr ,r hr ,r 11

0 0 0 hr ,r 21 hr ,`

G . ~6!

Note this matrix is actually infinitely large due to the sem
infinite electrode Hamiltonianshl ,` andhr ,` :

hl ,`[F� � � 0

0 hl ,l 21 hl ,l hl ,l 11

0 0 hl ,l 21 hl ,l

G , ~7!

hr ,`[F hr ,r hr ,r 11 0 0

hr ,r 21 hr ,r hr ,r 11 0

0 � � �

G
which are derived from the electrode calculations. Simila
one can also define the equivalent overlap matricessl ,` and
24540
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sr ,` . In addition, applying a bias potentialDVl /r to an elec-
trode simply entails a shift of the electrode potential in t
following way:

Vl /r ,bulk
eff ~r !←Vl /r ,bulk

eff ~r !1DVl /r ,

Vc
H~r !uzl /r

←Vc
H~r !uzl /r

1DVl /r ,

hl /r ,`←hl /r ,`1sl /r ,`DVl /r . ~8!

The Hamiltonian matrix~6! is diagonalized by the scat

tering states incident from the left electrode$Ckl
n
%, the scat-

tering states incident from the right electrode$Ckr
n
%, as well

as a discrete set of bound states$Ccn
%. Once these eigen

states are calculated, one can construct the density matr̂
by integrating their modular over the three sets of lab
$kl

n ,cn,kr
n%,

r̂5(
cn

uCcn
& f cn

^Ccn
u1E dEF uCkl

n
&

f kl
n

vkl
n ^Ckl

n
u1uCkr

n
&

3
f kr

n

vkr
n ^Ckr

n
uG , ~9!

wherevkl
n
[]E/]kl

n and vkr
n
[]E/]kr

n are the group veloci-
ties corresponding to thekl

n and kr
n channels of the elec

trodes. These expressions give a practical way to const
the density matrix once the scattering states and bound s
are known. Although the scattering eigenstates can be
ciently calculated,40 as shown in Appendix D it is, however
rather difficult to calculate the bound states. Therefore,
construct density matrix using the nonequilibrium Gree
function43–45 G,

r̂52
i

2pE dEG,~E!, ~10!

where

G,5GRS,@ f kl
n
, f kr

n
#GA ~11!

and GR/A is the retarded/advanced Green’s function of t
device~for their calculation, see Appendix A!. The quantity

S,@ f kl
n
, f kr

n
# represents injection of charge from th

electrodes44 and can be written in terms of the self-energi
S l ,l

L andS l ,l
R due to coupling to the left and right electrode

~for their calculation, see Appendix B!:

S,@ f kl
n
, f kr

n
#522i Im~ f kl

n
S l ,l

l 1 f kr
n
S r ,r

r !. ~12!

Of course, the density matrix calculated using the NEGF
~10! is exactly equivalent to that calculated using the eig
states by Eq.~9!.

It remains to specify the distribution function

$ f kl
n
, f cn

, f kr
n
%. In the equilibrium situation where the electro

chemical potentials of the left and right electrodes are eq

m* 5m l1DVl5mc5m r1DVr , ~13!
7-4
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the distribution functions are given by the equilibrium Fer
distribution

f kl
n
~E;m l1DVl !5 f cn

~E;mc!

5 f kr
n
~E;m r1DVr !5 f eq~E,m* !. ~14!

We note that, in clear contrast to the study of closed syst
~e.g., finite cluster or supercells!, the electrochemical poten
tials of an open systemm l /r1DVl /r , are knowna priori
from the ‘‘electrode’’ calculation described above.

Finally, we discuss the distribution functions in the no
equilibrium situation whenm l1DVlÞm r1DVr . First of all,
the distribution functions of the electrodes~and reservoirs!
can be approximated44 as

f kl
n
~E;m l1DVl !5 f eq~E;m l1DVl !,

~15!
f kr

n
~E;m r1DVr !5 f eq~E;m r1DVr !.

This way, we have neglected any influence that the dev
scattering region has on the distribution functions of the e
trodes and reservoirs. This is a reasonable assumption fo
purposes and is commonly used in quantum trans
literature.44 Next, the distribution of the bound states is a
sumed to bef cn

5 f eq(E;mc) where mc5m l1DVl or mc
5m r1DVr . The two choices are equivalent if there are
bound states in the interval@m l1DVl ,m r1DVr #, which can
be confirmed numerically. To end this section, we empha

that given the distribution functions$ f kl
n
, f cn

, f kr
n
%, the self-

consistent solution of the KS equations is essentially ex
~within DFT! for open device systems, if the size of th
simulation box is chosen large enough, which we confi
numerically during a calculation.

III. NUMERICAL PROCEDURE

In the next subsection we discuss the procedure of ev
ating the energy integration in Eq.~10! for computing charge
density. The use of the NEGF, as opposed to the eigens
of the open system, to construct charge density is the m
important and novel point of ourab initio technique. Once
the charge density is obtained, one can then perform
usual DFT self-consistent iterations. We will also pres
procedures of calculating physical quantities and disc
some numerical results. Finally, the calculations of retar
Green’s functionGR and the self-energy are included in Ap
pendixes A and B.

A. Calculation of charge density

In order to calculate charge density from Eq.~10!, we
must perform the energy integration over the density
states~DOS! which is the integrand. The charge density mu
be obtained very accurately, otherwise the self-consis
DFT analysis would not produce the correct results.

From the point of view of constructing the charge dens
r(r ), the essential difference between the NEGFG, and the
retarded Green’s functionGR, is thatG, contains informa-
tion about the distribution function43 through the injected
24540
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chargeS,@ f kl
n
, f kr

n
#. In other words, the NEGF tells us how

to fill the states of an open device system under bias, acc
ing to Eq.~10!. In the equilibrium situation without bias, i.e
when the chemical potentials of the electrodes are equal,G,

is reduced to a simple form43,45

Im@G,~E!#522 f eq~E!Im@GR~E!#. ~16!

Importantly, this expression remains true even for situatio
where the electrochemical potentials are different — so lo
as

f kl
n
~E!5 f kr

n
~E!51. ~17!

This is simply because when Eq.~17! is satisfied, there is no

additional information in the distribution functionsf kl
n

and

f kr
n
.
Therefore, we can split the integral of Eq.~10! into two

terms: an ‘‘equilibrium’’ contribution r̂eq, where f kl
n
(E)

5 f kr
n
(E)51 and a ‘‘nonequilibrium’’ contribution r̂neq,

where Eq.~17! is not satisfied. The density matrix can b
written

r̂5 r̂eq1 r̂neq, ~18!

where

r̂eq[2
1

p
ImF E

2`

mmin
dEGR~E!G , ~19!

r̂neq[2
i

2pEmmin

mmax
dEG,~E!, ~20!

where mmin[min(ml1DVl ,mr1DVr), mmax[max(ml
1DVl ,mr1DVr). In Eq. ~19!, we have assumed that the ele
trons are atTe50 so that the distribution functions are ste
functions, but Eq.~19! can easily be rewritten for arbitrar

distribution functions$ f kl
n
, f kr

n
%.

The equilibrium charge contributionr̂eq is related to the
retarded Green’s functionGR(E) which can be analytically
continued into the complex energy plane.58 Thus, the inte-
gration in Eq.~19! can be evaluated along a suitable conto
in the complex plane. For concreteness, we have chosen
semicircular contour illustrated in Fig. 2 whereEmin is cho-
sen sufficiently low so that it is lower than the lowest eige
value of H. The integration itself is accomplished using
Gaussian quadrature of the parameter 0,u,p. The result
converges rapidly as the number of quadrature points is
creased~typically 30 quadrature points are enough!. This
contour integration has tremendous computational adv
tages because the DOS is very smooth away from the
axis, thus avoiding the many van Hove singularities in t
DOS. In Fig. 3, we show the DOS and band structure
functions of energy for a perfect carbon chain with a fou
atom unit cell; the inset shows the integrated DOS alon
complex contour~see Fig. 2!. Clearly, the van Hove singu
larities ~peaks in DOS in Fig. 3! will make it tremendously
difficult to integrate the DOS along the real axis while t
DOS along the complex contour is very smooth. Indeed,
7-5
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shown in the inset of Fig. 3, the total integrated DOS is
when the contour integration is completed, which is the nu
ber of valence electrons in the four-atom unit cell. We a
note that such a complex contour automatically includes
charge contribution from any bound states belowmmin ,
which would appear asd functions along the real axis. Th
contour integration is most important for any self-consist
analysis, because, as opposed to simple transport cal
tions, one must integrate over the entire spectrum~including
bound states! which would normally require a prohibitively
large number of evaluations ofG, to reach a reasonabl
accuracy for constructing the charge density.

The nonequilibrium charge contribution is evaluated
ing Eq.~20!. In energy ranges where Eq.~17! is not satisfied,
Im@G,#5” 22 f eq(E)Im@GR#, and the DOS must be calcu
lated from the NEGF Eq.~11!. BecauseGA(E) is nonana-
lytic above the real axis whileGR(E) is nonanalytic below
the real axis,G,(E) is only analytic along the real axis. It i

FIG. 2. Analytical continuation ofGR into the complex energy
plane (Er ,Ei). The equilibrium charge contribution is calculated b
exploiting the analytical properties ofGR. The integral around the
semicircleC is equal to the integral along the real axisR between
Emin andEmax. The equilibrium charge contribution is calculated b
choosing a sufficiently low value ofEmin and Emax5min(ml

1Vl ,mr1Vr).

FIG. 3. The density of states~DOS, solid squares! and band
structure (kL vs E, empty squares! versus energy, for a perfec
carbon atomic chain with a four-atom unit cell~unit cell lengthL).
The peaks in DOS are the van Hove singularities at the band ed
The inset shows the integrated density of states along a com
contour versus the contour variableu. DOS is very smooth along
the complex contour and the integral converges with a small n
ber of Gaussian quadrature points.
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therefore impossible to make use of a contour integral
evaluate Eq.~20! and thus the nonequilibrium charge mu
be calculated along the real axis directly. Hence,

r̂neq52
i

2pEmmin

mmax
dE GRS,@ f kl

n
, f kr

n
#GA. ~21!

So long as there are no band edges in the interval@m l
1DVl ,m r1DVr #, the energy integration will be smoot
along the real axis and a Gaussian quadrature is foun
converge with a small number of evaluations ofG,. As a
check to the contour numerical procedure, for an infinite
long perfect carbon chain where there is no bound state,
have calculated charge density using both Eqs.~10! and ~9!
and obtained exactly the same results.

B. Evaluating physical quantities

By including the semi-infinite electrodes as self-energi
as in Eq.~A3!, and only evaluating the density matrix ne
the central cell, information about the system outside
central cell is discarded. However, if the central cell is ch
sen large enough, the density at the edge of the central
will relax to the bulk value, and changes to physical quan
ties will be due solely to changes of the state of the dev
inside the internal cellc. Thus, changes in extensive physic
quantities such as the band-structure energy or numbe
electrons~or changes in them! may be evaluated by averag
ing over the central cell. This average is calculated by p
forming a trace over the indices of the density matrix cor
sponding to the central cell. For example, the band-struc
energy in our formalism is given by

EBS5Trc@rH#5rc,lhl ,c1rc,chc,c1rc,rhr ,c . ~22!

Since changes in physical quantities may be calculated,
can also calculate the Hellmann-Feynman forces2]E/]RI
and optimize the atomic coordinates of theopensystem un-
der the influence of external fields. We will not report qua
tum molecular dynamics simulations for open systems un
bias in this work and leave that topic for the future.59

The transport properties we are interested in this work
the electric current which is evaluated using the Landa
formula

I 5
2e

h E
mmin

mmax
dE ~ f kl

n
2 f kr

n
!T~E!, ~23!

whereT(E) is the transmission probability and is given by43

T~E!54 Tr@ Im~S l ,l
l !Gl ,r

R Im~S r ,r
r !Gr ,l

A #. ~24!

It is emphasized that, since the current is calculated from
self-consistent analysis, the functions inside the trace in
~24! are all functions of bias potentialsDVl /r so that gauge
invariant nonlinearI-V curves are obtained. The importanc
of gauge invariance in a nonlinear transport theory has b
emphasized by Bu¨ttiker and co-workers60–63 and we refer
interested readers to their original contributions.

At equilibrium, the current is proportional to the condu
tanceG,

es.
ex

-
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I 5G~m!3~m l2m r ! ~25!

which is evaluated at the Fermi level of the device

G~m!5
2e2

h
T~m!. ~26!

Finally, we comment that, within linear response, form
las may also be derived for the electrochemi
capacitance,60,23 the ac response coefficients,60 and nonlinear
conductance coefficients.62,64 We leave the discussion o
these linear response coefficients for atomic devices for
future.

C. Numerical validation

As mentioned above, for an open system without bou
states~such as a perfect atomic chain!, its transmission coef-
ficient and DOS can be calculated by the scattering state40

or by Green’s functions using Eq.~24!. We have confirmed
that exactly the same numerical values are obtained f
these two approaches for all the systems we studied. Bec
the scattering state calculation is completely independ
from the Green’s function calculation,40 this is a very strong
test which validates the numerical procedure presen
above, including the self-energy calculation~Appendix B!,
the contour integration, and the nonorthogonal Green’s fu
tion formalism~Appendixes A,C!.

A key ingredient of our formalism is the implementatio
of the screening approximation by imposing Eqs.~1!,~2! on
the KS effective potentials. However, no such restriction
placed on the charge density which we computed s
consistently from the NEGF. Indeed, for all the systems
have checked, a perfect match of charge density atzl /r is
achieved by including a few layers of bulk electrode with
the central cell. Figure 4 shows the equilibrium charge d
sity r(r ) along a cross section of thexz plane for a carbon
nanotube in contact with an Al~100! electrode~see Fig. 1!.
The high quality matching was also obtained for a C60
device39 and several other molecular device systems we h

FIG. 4. Charge density contours of the carbon nanotube-m
interface of Fig. 1 at equilibrium. The contours of the bulk le
match that of the device at the edges of the device region.
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studied.40 Since the potential is uniquely determined by t
charge distribution, this nontrivial result is strong eviden
that the central cell is chosen large enough such that
potential is effectively screened, and therefore relaxes to
bulk value at the boundary.

IV. TRANSPORT THROUGH
A CARBON NANOTUBE-METAL INTERFACE

In this section, we report our analysis on the transp
properties of a single wall armchair carbon nanotube in c
tact with an Al electrode, shown in Fig. 1 where a sem
infinite nanotube is in contact with a semi-infinite Al ele
trode. Carbon nanotubes are either metals or semicondu
depending on their helicity, therefore they provide a ve
exciting possibility of forming an all carbon nanotube-bas
molecular electronic system. So far a considerable amoun
experimental48,10,9,8,65,66and theoretical67,15,14,68–71,21,66effort
has been devoted to understand the nanotube physics.66 We
refer interested readers to Ref. 66 for detailed discussion
other properties nanotubes and we will focus on presen
the transport properties of the nanotube-metal interface.

The most basic question concerning nanotube electro
is its conductance. For perfect single wall armchair na
tubes which areinfinitely long, it is well known72,73that there
are two states crossing the Fermi level of the nanotu
Therefore, for these ideal tubes the equilibrium conducta
should be66 G52G0, whereG052e2/h is the conductance
quanta. For infinitely long nanotubes with defects, the c
ductance is slightly influenced by scattering due to the
fects, but G;2G0 is still maintained as predicted b
theory.27,28 To the best of our knowledge, however, expe
mental measurements of nanotube conductance have n
found a 2G0 conductance up to now. In fact, most measu
ments report two orders of magnitude smaller values d
presumably, to the poor nanotube-electrode contacts. F
this perspective, it is extremely interesting that a recent m
surement, reported by Franket al.,48 showedG'G0 by dip-
ping a multiwall nanotube into a liquid metal repeated
Their measured48 conductance is therefore half of the ide
theoretical value.72,73 Clearly, the theoretical value of 2G0,
which is only true for infinitely long metallic nanotubes
cannot explain the experimental data. To understand this
crepancy, Choi and co-workers reported28 a plane waveab
initio calculation of an armchair nanotube in contact with
jellium electrode. Their analysis showed that there is cons
erable back scattering due to the nanotube-jellium contac
particular, thep-band incident electron suffers strong sca
tering and its contribution to conductance is almost co
pletely inhibited,28 while the p* band does not suffer bac
scattering and therefore it is its contribution which gave aG0
conductance value. This result gives a plausible explana
to the experimental findings.48

To further investigate this problem for the case where
nanotube is in contact with an atomic electrode~as opposed
to jellium electrode!, and to predict theI-V curves of such an
interface, we have studied the nanotube-metal interf
shown in Fig. 1 using our NEGF-DFT technique presen
previously. The system consists of a semi-infinite and per

al
7-7



-
b
e
d
b

ft
A

e
be
t
it
d
rin
r

co
tri
ba
e
t
if

n
p
o
th

er-
n
rmi

re-
is-

t
ter-

ias
s
a

tum
ing
n’s
ith
in-

ng
is
s-

FT
rtree
ws

n-
ave

le
to
he
tio

d
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single wall (4,4) nanotube66 which is in contact with a semi
infinite Al electrode. The Al electrode is represented by sla
of bulk Al ~100! with a finite cross section. We study th
ideal situation where no structural relaxation is allowe
Therefore the nanotube-metal junction is characterized
the contact distanced, which is the distance between the le
most ring of carbon atoms and the right most layer of the
atoms~see Fig. 1!, which we vary as a control parameter.

Our analysis shows that there are two transmission eig
vectors which connect the two sides of the nanotu
electrode interface. This is consistent with the fact tha
perfect and infinitely long nanotube has two states at
Fermi level. As usual,46,47 the transmission eigenvectors an
eigenvalues are obtained by diagonalization of the scatte
matrix which we calculated from the NEGF via the Fishe
Lee relationship.74,44 The two transmission eigenvaluesT1
and T2 are plotted in Fig. 5 as a function of energyE for
three values of junction distanced51.5,2.0,2.5 a.u., where
E is normalized so thatEF50. The total transmission
coefficient is therefore T5T11T2, and this gives
equilibrium conductance at Fermi energy to beG
51.01G0 ,0.98G0 ,0.39G0, for the threed’s, respectively.
Our results suggest that both transmission eigenvectors
tribute substantially to the conductance although one con
utes more than the other, and there are also substantial
scattering at the interface making each transmission eig
values less than one. We believe the difference between
two transmission eigenvectors is related to the relative sh
of the carbon nanotubep and p* bands which has bee
discussed in Ref. 28. The fact that they happen to add u
give G'G0 is indeed interesting, and is true for a range
values ofd. This result is thus in qualitative agreement wi
those of the nanotube-jellium interface.28 Furthermore, our
results suggest that the junction distanced plays an important

FIG. 5. The transmission eigenvalues~filled squares! of the two
eigenmodes for the nanotube-metal interface as a function of e
tron energy. Each eigenmode contributes less than unity to the
transmission coefficient, but one contributes more than the ot
The three panels correspond to different nanotube-metal junc
distanced. Energy is normalized such that the Fermi level is atE
50. The total transmission coefficient~open squares! at Fermi en-
ergy is ;1 in unit of G0[2e2/h for the upper two panels an
becomes much smaller whend is large.
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role in controlling the interface transparency. This is und
standable becaused directly controls charge transfer betwee
the two sides of the interface thereby determines the Fe
level alignment.

Finally, Fig. 6 shows theI-V curve for this system atd
52 and 2.5 a.u. To obtain this result, we fixed biasVl50
and variedVr from negative to positive. TheI-V curves are
essentially linear with a slope;G0 for d52 a.u., and
;0.39G0 for d52.5 a.u., at small bias voltages. These
sults are consistent with the equilibrium conductance d
cussed in the last paragraph. TheI-V curves showed a sligh
rectification which is due to the asymmetry across the in
face. In contrast, theI-V curves for a C60 molecular junction
were found to be quite nonlinear at similar range of b
voltages.39 Our results, together with that of Ref. 28, allow
us to conclude that the equilibrium conductance of
nanotube-metal interface should be;G0 instead of 2G0, due
to back scattering of the interface.

V. SUMMARY

In this paper, we have presented anab initio technique to
simulate quantum transport through open coherent quan
conductors. The novelty of this technique lies in construct
the electronic charge density via the nonequilibrium Gree
functions, instead of using eigenstates of the conductor, w
the help of a screening approximation which reduces the
finitely large problem to a finite calculation in the scatteri
region. The construction of the charge density from NEGF
facilitated by the analytic continuation technique which dra
tically reduces the computation effort. Because our D
analysis is based on a real space technique with the Ha
potential solved on a real space grid, our technique allo
simulations of devices with different electrodes~e.g., one
carbon and the other aluminum!, with bias as well as gate
potentials.39

We have provided many results which clearly demo
strated the power of our technique, and in particular we h

c-
tal
r.
n

FIG. 6. TheI-V curve for the nanotube-metal interface atd52
and 2.5 a.u.. The result is obtained by fixing biasVl50 and vary-
ing Vr from negative to positive. TheI-V curves are essentially
linear with a slope;G0 for d52 a.u., and;0.39G0 for d
52.5 a.u., at small bias voltages.
7-8
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simulated transport properties of a carbon nanotube-m
interface. We found that due to interface back scattering,
two transmission eigenvectors each contribute a transmis
coefficient which is smaller than unity, with the total;G0
for a range of the distance between the nanotube and
electrode. This is consistent with the nanotube-jellium res
obtained before,28 and is also consistent with the experime
tal measurements of Franket al.48 In this regard, we caution
that the experiments were carried out on multiwall nanotu
while the theory is on single wall tubes.

Many further analyses of molecular nanoelectronics
be carried out using the technique presented here. Not
quantum transport properties includingI-V curves can be
predicted from first principles, but also structural analysis
open boundary nanodevices under external fields. The la
can be simulated with quantum molecular dynamics wit
our NEGF-DFT formalism.59 Clearly, molecular electronic
device systems with more than two electrodes can also
readily simulated within our formalism. From a numeric
computation point of view, our method is easily parallel
able. More importantly, because we use a nonorthogonal
LCAO fireball basis set which has a finite range, our meth
can be made to scale asO(N). We hope to report thes
developments in a future publication.
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APPENDIX A: GREEN’S FUNCTIONS
OF A TWO PROBE DEVICE

In this appendix, we present expressions for the retar
Green’s function. From Eq.~11!, G, may be calculated onc
the retarded Green’s functionGR is known. The calculation
of GR in a tight-binding basis set is well known44 and we
write down necessary formula for the sake of completen
and ease of presentation.

ExpandingGR in terms of the real space basis set usin

GR~r ,r 8!5uzm~r !&Gmn
R ^zn~r 8!u, ~A1!

leads to the following equation forGmn
R :

lim
h→0

@~E1 ih!Smn82Hmn8#Gn8n
R

5dmn . ~A2!

To calculate the charge distribution of the scattering
gion of the device~see Fig. 1!, we only need the componen
of density matrix in which the basis states have support
side the central cell. Namely, we only have to worry abo
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those basis orbitals which extend into the central cell. The
fore we need to calculate a submatrix ofGmn

R which corre-
sponds to the central cell. As shown in Refs. 44, the cen
cell retarded Green’s function has a very simple form
LCAO orbital space

gCC5F hl ,l
E 2S l ,l

l hl ,c
E 0

hc,l
E hc,c

E hc,r
E

0 hr ,c
E hr ,r

E 2S r ,r
r
G 21

, ~A3!

wherehi , j
E [(E1 ih)si , j2hi , j andS l ,l

l andS r ,r
r are the self-

energies due to coupling to the left and right electrodes,
spectively. In terms of the surface Green’s functionsgl ,`
[@(E1 ih)sl ,`2hl ,`#21 andgr ,`[@(E1 ih)sr ,`2hr ,`#21,
the self-energies can be written75

S l ,l
l [hl ,l 21

E gl ,`hl ,l 11
E ,

~A4!
S r ,r

r [hr ,r 21
E gr ,`hr ,r 11

E .

We calculate the self-energies using a procedure describe
the next subsection and the Green’s function is then obta
by direct matrix inversion of Eq.~A3!. We note that efficient
techniques of inverting large sparse matrices inO(N) opera-
tions exist.76

APPENDIX B: SELF-ENERGIES

In this appendix we derive the necessary expressions
computing the self-energies. There are many methods in
literature for evaluating self-energy due to coupling
electrodes.44,75 For self-consistent calculations, an efficie
method must be used because of the many iteration step
the DFT procedure. We have chosen to extend a met
proposed by Sanvitoet al.77 because this method allows for
direct evaluation of the self-energy and it does not rely o
finite smearing parameterh which is employed in most it-
erative methods.75

The method of Ref. 77 is valid for situations where t
coupling matrices$hl ,l 21

E ,hl ,l 11
E ,hr ,r 21

E ,hr ,r 11
E % are nonsin-

gular so as to have a simple inverse. For ourab-initio analy-
sis where the range of interaction is fixed by the suppor
the basis orbitals and not by a semiempirical parametrizat
these matrices may be singular. Here we describe a d
extension to the technique of Ref. 77 to deal with singu
matrices.

Consider an infinitely long perfect electrode described
the infinite chain$hz,z21

E ,hz,z
E ,hz,z11

E % as in Eq.~3!. By di-
agonalizing Eq.~5!, we solve40 the Bloch states and classif
them into right-moving and left-moving groups according
their group velocities,40 denoting them as$f l /r%. We also
calculate their duals defined by

f̃ i
l /r[f j

l /r^f l /r uf l /r& j i
21 . ~B1!

Following Sanvitoet al.,77 we make the following ansatz fo
the retarded Green’s function of an infinitely long perfe
electrode:
7-9
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Gbulk
R ~z,z8!5H gbulk

1 ~z,z8! z.z8,

gbulk
2 ~z,z8! z,z8,

~B2!

where

gbulk
1 ~z,z8![(

r
uf r&@l r #z2z8^f̃ r uV,

~B3!

gbulk
2 ~z,z8![(

l
uf l&@l l #z2z8^f̃ l uV.

The indexz, as before, is an integer labeling the unit cells
the electrode and the quantityV is a matrix to be specified
below. Note that the retarded boundary condition is satis
because of the choice of phaselz2z8. The quantityV was
also given in Ref. 77 in a form that is valid when the co
pling matrices are nonsingular. By substituting the ans
~B2! and multiplying byH2ES using Eq.~3!, it is straight-
forward to prove that the following choice ofV will make the
electrode Green’s function~B2! satisfy the Green’s function
equation~A2!,

V[F(
L

hz,z21
E uf l&@l l #21^f̃ l u1hz,z

E

1(
r

hz,z11
E uf r&l r^f̃ r uG21

. ~B4!

Note that this result reduces to the form given in Ref.
when the coupling matrices are nonsingular.

With the Green’s function of an infinitely long perfec
electrode calculated, as in Eq.~B2!, we can now calculate the
left surface Green’s functiongl ,` , which is needed in Eq
~A4!. By its definition and using Eq.~7!, gl ,` satisfies

F� � �

hl ,l 21
E hl ,l

E hl ,l 11
E

0 hl ,l 21
E hl ,l

E
G gl ,`5I l ,` . ~B5!

We formgl ,` by adding a sum of left moving Bloch state
to the bulk Green’s function of the left electrodeGl ,bulk

R :

gl ,`~z,z8!5Gl ,bulk
R ~z,z8!1D l ,`~z!, ~B6!

where

D l ,`~z![F(
l

uf l&(l l)z2c12^f̃ l uGd l ,` ~B7!

for z,c21. Substituting Eq.~B7! into the last row of Eq.
~B5! yields the following equation ford l ,` :

(
l

@hl ,l 21
E ~l l !211hl ,l

E #uf l&^f̃ l ud l ,`

5hl ,l 11
E gl ,bulk

1 ~c21,c22!, ~B8!

thus defining the surface Green’s functiongl ,` in Eq. ~B6!
and the self-energy
24540
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S l ,l
l 5hl ,l 21

E gl ,`~c22,c22!hl ,l 11
E . ~B9!

By precisely the same procedure, one can derivegr ,` which
then givesS r ,r

r from Eq. ~A4!. As a validation to our closed
form ~B9! for the self-energies, we have calculated the se
energies using a transfer matrix technique70,75 and obtained
exactly the same numerical results.

APPENDIX C: CALCULATION
OF HAMILTONIAN MATRIX ELEMENTS

Some details concerning the calculation of Hamiltoni
matrix elements are presented in this appendix.78,51We use a
minimal sp basis set to expand the electronic wave fun
tions. Following Sankey and Niklewski,50 we used fireball
pseudoatomic orbitals which are solutions to the rad
Schrödinger equation derived from the pseudopotential.49 By
expanding all quantities on a real space grid, one may
velop a fully self-consistent solution to the KS equations42

Our technique is similar to that of Ref. 42, except that t
solution of the Poisson equation is performed and the ma
elements of the effective potential^Veff(r )&mn are calculated
in real space for the piecewise continuous functionVeff(r ).

The KS Hamiltonian has the following form:

H5F2
¹2

2
1VdH~r !1VNA~r !1Vxc~r !Gd~r2r 8!

1VNL~r ,r 8!. ~C1!

Here VNA(r ) represents the local pseudopotential scree
by the addition of charge density of the neutral isolat
atoms50 rNA(r ); VdH(r ) is a screened Hartree potenti
which solves the corresponding Poisson equation

¹2VdH~r !524p@r~r !2rNA~r !#. ~C2!

Multiplying by two LCAO basis stateszm(r2RI) and zn(r
2RJ) and integrating overdr anddr 8 leads to the standard
tight-binding matrix representationHmn . One may derive
general formulas for the kinetic energy, overlap, nonlo
pseudopotential and local pseudopotential matrix eleme
between two states of arbitrary angular momenta (l mmm) and
( l nmn).50,78These involve integrals that may be pretabula
and stored in the database.

We solve the Poisson equation in the ‘‘electrode’’ calc
lation using a FFT technique. For open device systems, h
ever, the potential must satisfy boundary condition Eq.~2!.
Hence we solve Eq.~C2! with a multigrid technique56 di-
rectly in real space. The boundary conditions in the tra
verse direction may either be homogeneous or periodic
gate potentialVg ~see Fig. 1! can also be applied which
capacitively couples to the device, it simply provides
boundary condition toVdH(r ). OnceVdH(r ) is obtained, the
exchange-correlation potentialVxc@r(r )# is added to it. By
applying Eq.~1!, the real-space part of the effective potent
Veff(r ) is therefore known and is in a form of piecewis
continuous function, as in Eq.~1!.

The matrix elements ofVeff(r ) are thus obtained as a su
of integrals over the real space grid:
7-10
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^Veff&mn5E
V l

drzm~r2RI !Vl ,bulk
eff ~r !zn~r2RJ!

1E
Vc

drzm~r2RI !Vc
eff~r !zn~r2RJ!

1E
Vr

drzm~r2RI !Vr ,bulk
eff ~r !zn~r2RJ!.

~C3!

Since only basis states in the immediate neighbor cells h
support within the center cell, changes in the effective pot
tial Vc

eff(r ) only affect matrix elements in a few cells. Thu
the Hamiltonian matrix elements between basis states in
i th and j th cells will be the same as in the equivalent bu
system so long as neither basis function has support wi
the central cell, leading to the form of the Hamiltonia
shown in Eq.~6!.

Once the Hamiltonian is calculated in matrix form, a
output charge density matrixr̂out is calculated using Eq
~10!, leading to a new density in real spacer(r ) and effec-
tive potential within the central cellVc

eff@r(r )#. This process
is repeated until a predefined numerical tolerance is reac
This allows for a completely self-consistent solution to t
KS equations for open systems.

APPENDIX D: BOUND STATES OF AN OPEN SYSTEM

In this appendix, we describe how one might calculate
bound states in an open system such as that of Fig. 1
argue that this is a difficult process because bound state
solutions to a highly nonlinear eigenvalue problem. The d
crete set of bound states$Ccn

% which is localized inside the
device scattering region, can be expressed as an expan

Ccn
55

w
l

kl
m

akl
mcn

, zP l ,

cc
cn

, zPc,

w
r

kr
m

bkr
mcn

, zPr ,

~D1!
F.
n

nd

ys
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where the repeated indiceskl
m and kr

m represent sums ove
only the evanescent modes. The evanescent modes$w% are
obtained by diagonalizing Eq.~5! by choosingE and select-
ing thosel which are complex~corresponding to evanesce
modes!.40

Applying the Hamiltonian operator, we find the followin
homogeneous equation forCcn

:

F A
l

kl
m

hl ,c
E 0

A
c

kl
m

hc,c
E

A
c

kr
m

0 hr ,c
E

A
r

kr
m
G F akl

mcn

cc
cn

bkl
mcn
G5F 0

0

0
G . ~D2!

Here

A
l

kl
m

[@hl ,l
E 1hl ,l 21

E ~l
w

kl
m

!21#w l

kl
m

,

A
r

kr
m

[@hr ,r
E 1hr ,r 11

E ~l
w

kr
m

!11#w l

kr
m

,

A
c

kl
m

[hc,l
E w

l

kl
m

,

A
c

kr
m

[hc,r
E w

r

kr
m

. ~D3!

The above quantities depend on the Bloch states and th
fore are highly nonlinear functions of energyE.

Hence, Eq.~D2! is a highly nonlinear root finding prob
lem for each bound state eigenvalueE, whose solution be-
comes a very time-consuming task. Furthermore, one d
not know how many bound state there area priori. We there-
fore conclude that it is numerically difficult to calculat
them.
,
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