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Suppression of current in transport through parallel double quantum dots
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We report our study ofI -V curves in the transport through the quantum dot when an additional quantum dot
lying in the Kondo regime is side-connected to it. Due to the Kondo scattering of the effective spin on a
side-connected quantum dot, the conductance is suppressed at low temperatures and at low source-drain bias
voltages. This zero-bias anomaly is understood as enhanced Kondo scattering with decreasing temperature.
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I. INTRODUCTION

Advances in nanotechnology have made it possible to
ricate quantum dots or artificial atoms and to study th
transport properties. Due to the confinement and the C
lomb interaction in the quantum dot, charge and spin can
quantized. Quantization of electron charge leads to the
most periodic variation of conductance as a function of
number of electronsN or the gate voltage. A conductanc
peak is observed whenever the charge fluctuation is allo
or theN and (N11) states become energetically degenera
Otherwise, electrons in the electrodes cannot hop int
quantum dot due to the strong Coulomb repulsion. This C
lomb blockade leads to vanishing conductance between
neighboring conductance peaks. Kondo effects can enh
the conductance in the Coulomb-blockade region when
number of electrons at the quantum dot is odd and at l
one electron spin is unpaired. The unpairedS5 1

2 in the
quantum dot can be screened by the electrons in the exte
electrodes connected to the quantum dot. This theore
prediction1 of the nonequilibrium Kondo effects in quantu
dot systems was confirmed experimentally recently.2–4 In the
conventional bulk Kondo systems where magnetic ions
doped into normal metals, the study of the Kondo effects w
confined to the equilibrium state. In quantum dot syste
the nonequilibrium situation is easily controlled and mod
parameters can be varied by adjusting the gate voltages

Study of the Kondo effect in the quantum dot systems
been diversified to see the different aspects. The quan
dots are inserted in the Aharonov-Bohm ring to study
effect of many-body interaction on the persistent curre5

When electrons are scattered off the magnetic impurity, t
experience a phase shiftp/2 at the Fermi energy due to th
Kondo effect. The direct measurement of this phase shi
not possible in the bulk systems. Using a quantum dot
serted into the Aharonov-Bohm ring, the phase shift due
the Kondo effect was studied theoretically6 and measured
experimentally.7 Serial double quantum dots were also stu
ied in the Kondo regime.8 Enhanced conductance wa
observed9 in an otherwise Coulomb-blockade region at t
spin singlet-to-triplet transition point when the number
electrons on a quantum dot is even. The ground state ca
either spin-singlet or spin-triplet depending on the geome
of the confinement potential. Perpendicular magnetic fie
can induce a transition of the ground state between s
0163-1829/2001/63~24!/245326~12!/$20.00 63 2453
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singlet and spin-triplet. These novel Kondo effects have b
interpreted as coming from the enhanced Kondo tempera
at the transition point.10

In this paper, we study theoretically the transport prop
ties of parallel double quantum dots as depicted in Fig.
Oneactivequantum dot is connected to the source and dr
electrodes and the other quantum dot isside-connectedto the
active quantum dot. Since the energy levels in two quant
dots can be controlled separately using the gate voltage,
ferent transport regimes can be probed. In this work,
present our study of theI -V characteristics of this system
when the active quantum dot lies in the conductance p
region while the side-connected quantum dot lies in
Coulomb-blockade region. In this case, charge fluctuati
are suppressed and an effective spinS5 1

2 arises in a side-
connected dot. Electrons passing through the active dot
perience the Kondo scattering off an effective spin in a si
connected dot. We find that the linear-response conducta
is suppressed at low temperature due to the enhanced K
scattering off spinS5 1

2 . The spectral function at a side
connected dot develops a Kondo resonance peak as the
perature is lowered. On the other hand, the spectral func
at the active dot becomes depleted nearv50 with decreas-
ing temperature. We obtained these results using the n
equilibrium Green’s function method combined with th
noncrossing approximation~NCA!.

This paper is organized as follows. In Sec. II, we intr
duce our model Hamiltonian and present the formulation
current passing through an active dot. The relevant Gree

FIG. 1. Schematic display of parallel double quantum dots. T
activequantum dotA is connected to two left and right electrode
and the other dotS is side-connectedto the dotA. A side-connected
dot S provides an additional current path or acts as a scatte
center of electrons passing through the dotA.
©2001 The American Physical Society26-1
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functions in nonequilibrium are formulated in Sec. III usin
the NCA, which is modified for our system. Numerical r
sults, solving the NCA equations self-consistently, are p
sented in Sec. IV and a conclusion is included in Sec. V

II. PARALLEL DOUBLE QUANTUM DOTS

A. Model Hamiltonian

Consider the parallel double quantum dots shown in F
1. In this experimental geometry, the transfer of electro
from one electrode to the other is realized by hopping on
off an activequantum dot~the siteA). The other dot~the site
S) is side-connectedto the active dot by hopping. Assumin
that the energy-level spacing is large enough compared to
level broadening due to the tunneling into two electrodes,
model Hamiltonian can be written as

H5Hel1Hqdot1H1 , ~2.1a!

Hel5 (
p5L,R

(
kWa

epkWcpkWa
†

cpkWa , ~2.1b!

Hqdot5 (
i 5A,S

(
a

Ei dia
† dia1 (

i 5A,S
Uini↑ni↓ , ~2.1c!

H15 (
p5L,R

(
kWa

@Vp~kW !cpkWa
†

dAa1Vp* ~kW ! dAa
† cpkWa#

1(
a

@WdAa
† dSa1W* dSa

† dAa#. ~2.1d!

The electron creation operator of spina in the electrodep
5L,R is cpkWa

† . The indexp5L (R) denotes the left~right!
external electrode. Both electrodes are assumed to be
scribed by the Lorentzian density of states~DOS! with the
energy dispersionepkW[ekW1mp . mL,R56 1

2 eV is the chemi-
cal potential shift due to the bias voltage applied to the e
trodes.dia

† is the electron creation operator in a quantum
i 5A,S with A (S) labeling an active~side-connected! dot,
respectively.Ui is the on-site electron-electron Coulomb i
teraction in a doti.

WhenUA5US50, two dots become resonant levels a
the solution can be found analytically~see Appendix A!. The
model becomes nontrivial when one of the on-site Coulo
interactions or both are nonzero. In this paper, we are go
to study the case ofUA50 andUSÞ0 in detail. WhenUS is
the largest of all the model parameters and2ES@uWu,
charge fluctuations in a side-connected dot can be negle
and the side-connected dot can be treated as an effective
S5 1

2 . In this case, removing the charge degrees of freed
in a side-connected dot~Schrieffer-Wolf transformation11!,
the interaction between two dots can be derived,

HAS5JASSW S•(
ab

dAa
† 1

2 sW abdAb , JAS5
2uWu2

2ES
1

2uWu2

US1ES
.

~2.2!
24532
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Here SW S5(abuS;a& 1
2 sW ab^S;bu represents the spin degree

of freedom in a side-connected dot in the absence of cha
fluctuations. Electrons, flowing from the left electrode to t
right, at the active dot will experience the Kondo scatteri
off an effective spin of a side-connected dot. Appendix
contains the details of theUAÞ0 andUSÞ0 case.

B. Formulation of current

The current operator can be defined as a variation of
number operators of electrons per unit time leaving one e
trode (p5L,R),

Î p[2e~2Ṅp!

5
e

i\
@Np ,H#

5
e

i\ (
kWa

@Vp~kW !cpkWa
†

dAa2H.c.#. ~2.3!

The measured current is given by the thermal average of
above current operator and can be written in terms of
lesser Green’s functions out of equilibrium,12

I p~ t !52 ie(
kWa

@Vp~kW !GAcp
, ~kW ;t,t !2Vp* ~kW !GcpA

, ~kW ;t,t !#.

~2.4!

The current can be expressed in terms of Green’s funct
for the conduction electrons and quantum dots using
Dyson equations for the mixed Green’s functions,

GcpA~kW ;t,t8![
1

i\
^TcpkWa~ t !dAa

† ~ t8!&

5Vp~kW !E
C
dt1 Gcp~kW ;t,t1!DA~ t1 ,t8!,

~2.5a!

GAcp~kW ;t,t8![
1

i\
^TdAa~ t !cpkWa

†
~ t8!&

5Vp* ~kW !E
C
dt1 DA~ t,t1!Gcp~kW ;t1 ,t8!,

~2.5b!

i\Di~ t,t8!5^Tdia~ t !dia
† ~ t8!&, i 5A,S. ~2.5c!

Here the subscriptC in the time-integral means the Keldys
contour. Using analytic continuation to the real-time axis13

we can find the lesser part ofGAcp(kW ;t,t8),

GAcp
, ~kW ;t,t8!5Vp* ~kW !E dt1@DA

,~ t,t1!Gcp
a ~kW ;t1 ,t8!

1DA
r ~ t,t1!Gcp

, ~kW ;t1 ,t8!#. ~2.6!

The current can be expressed as
6-2
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I p52 ie
1

V (
kWa

uVp~kW !u2E dv

2p
$DA

,~v!@Scp
a ~v!2Scp

r ~v!#

1Scp
, ~v!@DA

r ~v!2DA
a~v!#%

52 ie(
a

E dv

2p
uDA

r ~v!u2$SA
,~v!@Scp

a ~v!2Scp
r ~v!#

1Scp
, ~v!@SA

r ~v!2SA
a~v!#%. ~2.7!

HereSA is the self-energy for the active dotA and the fol-
lowing equations are used:

Scp~ t,t8!5
1

V (
kW

uVp~kW !u2Gcp~kW ;t,t8!, ~2.8a!

Scp
r ,a~v!5E de

p

Gp~e!

\v2e6 id
, ~2.8b!

Scp
,,.~v!52Gp~v! f p~6v!, ~2.8c!

Gp~v![
p

V (
kW

uVp~kW !u2d~\v2epkW !. ~2.8d!

The above equation for the current is quite general and
be used as a starting point in reducing the expression
current in specific cases.

The average number of electrons at a side-connected dS
should remain the same in a steady state. This conditio
essential to get the right expression for the current flow
from the left to the right electrodes. That is, the net curr
flowing out of the dotS should vanish for

I S5
e

i\ (
a

@W* ^dSa
† dAa&2W^dAa

† dSa&#

52 ie(
a

@W* GAS
, ~ t,t !2WGSA

, ~ t,t !#. ~2.9!

The currentI S was expressed in terms of the mixed Gree
functions,

i\GAS~ t,t8!5^TdAa~ t !dSa
† ~ t8!&, ~2.10a!

i\GSA~ t,t8!5^TdSa~ t !dAa
† ~ t8!&. ~2.10b!

These mixed Green’s functions can be written as

GAS~ t,t8!5WE
C
dt1 D̃A~ t,t1!DS~ t1 ,t8!

5WE
C
dt1 DA~ t,t1!D̃S~ t1 ,t8!, ~2.11a!

GSA~ t,t8!5W* E
C
dt1 D̃S~ t,t1!DA~ t1 ,t8!

5W* E
C
dt1 DS~ t,t1!D̃A~ t1 ,t8!. ~2.11b!
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Here DA and DS are the fully dressed Green’s functions
the dotsA andS, respectively,

i\DA~ t,t8!5^TdAa~ t !dAa
† ~ t8!&, ~2.12a!

i\DS~ t,t8!5^TdSa~ t !dSa
† ~ t8!&. ~2.12b!

On the other hand,D̃A andD̃S are the corresponding Green
functions, which cannot be separated into two parts by
moving one tunneling matrixW. Using analytic continuation
the currentI S can be written as

I S52 ieuWu2(
a

E dv

2p
$@D̃A

r ~v!2D̃A
a~v!#DS

,~v!

2@DS
r ~v!2DS

a~v!#D̃A
,~v!%

5e(
a

E dv

2p
2uWu2uD̃A

r ~v!u2@pS̃A
,~v!AS~v!

1Im$S̃A
r ~v!%DS

,~v!#. ~2.13!

SinceI S50 in steady state, we find the equation relating t
lesser part to the retarded part of the Green’s function or
spectral functionAS for the dotS,

DS
,~v!5p

S̃A
,~v!

2Im S̃A
r ~v!

AS~v!, ~2.14a!

f eff~v!5
S̃A

,~v!

22 Im S̃A
r ~v!

. ~2.14b!

That is, the condition that no net current flows out of the d
S determines its nonequilibrium thermal distribution fun
tion. The currentI S can be expressed in another form,

I S52 ieuWu2(
a

E dv

2p
$@DA

r ~v!2DA
a~v!#D̃S

,~v!

2@D̃S
r ~v!2D̃S

a~v!#DA
,~v!%

5e(
a

E dv

2p
2uWu2uDA

r ~v!u2

3@pSA
,~v!ÃS~v!1Im$SA

r ~v!%D̃S
,~v!#. ~2.15!

C. Interacting case:UAÄ0 and USÅ0

When UA50 and USÞ0, the active dotA becomes a
resonant level and the side-connected dotS is strongly cor-
related. This model Hamiltonian may describe the situat
that the dotA lies in the conductance peak region and the
S in the Kondo or Coulomb-blockade region. Green’s fun
tions of the two dots are given by the Dyson equations w
the self-energies being given by

SA~ t,t8!5Sc~ t,t8!1W2D̃S~ t,t8!, ~2.16a!

SS~ t,t8!5SU~ t,t8!1W2D̃A~ t,t8!. ~2.16b!
6-3
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HereSc(t,t8)5ScL(t,t8)1ScR(t,t8) @Eq. ~2.8a!# is the self-
energy coming from tunneling into left and right electrode
SU(t,t8) is the self-energy for a dotS due to the on-site
Coulomb interaction, and the auxiliary Green’s functions
defined by the Dyson equations

D̃A~ t,t8!5DA0~ t,t8!1E
C
dt1E

C
dt2 D̃A~ t,t1!

3Sc~ t1 ,t2!DA0~ t2 ,t8!, ~2.17a!

D̃S~ t,t8!5DS0~ t,t8!1E
C
dt1E

C
dt2 D̃S~ t,t1!

3SU~ t1 ,t2!DS0~ t2 ,t8!. ~2.17b!

From the self-energy equations, we find

SA
,~v!52GL~v! f L~v!12GR~v! f R~v!1W2D̃S

,~v!,
~2.18a!

SA
r ~v!2SA

a~v!522i @GL~v!1GR~v!#

1uWu2@D̃S
r ~v!2D̃S

a~v!#.

~2.18b!

Inserting all the equations into the expression of the curr
~2.7!, we find

I p5e(
a

E dv

2p
$4GL~v!GR~v!uDr~v!u2@ f p̄~v!2 f p~v!#

12uWu2Gp~v!uDA
r ~v!u2@D̃S

,~v!22p f p~v!ÃS~v!#%.

~2.19!

From the conditionI S50, we have

D̃S
,~v!5p

SA
,~v!

2Im SA
r ~v!

ÃS~v!

5
2p@GL~v! f L~v!1GR~v! f R~v!#1puWu2ÃS

,~v!

GL~v!1GR~v!1pWuu2ÃS~v!

3ÃS~v!

52p f eff~v!ÃS~v!, ~2.20a!

f eff~v![
GL~v! f L~v!1GR~v! f R~v!

GL~v!1GR~v!
. ~2.20b!

It follows from the relation I S50 that DS
,(v)

52p f eff(v)AS(v). The effective Fermi-Dirac function
f eff(v) describes the nonequilibrium thermal distribution
the dotSand also at the active dotA. @It can be shown from
Eq. ~2.22!.# The current flowing from the left to the righ
electrode becomes

I L5e(
a

E dv

2p
T~v!@ f R~v2 f L~v!#, ~2.21a!
24532
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T~v!54GL~v!GR~v!uDA
r ~v!u2F11

puWu2ÃS~v!

GL~v!1GR~v!
G

5
4pGL~v!GR~v!

GL~v!1GR~v!
AA~v!. ~2.21b!

Note that the currentI L consists of two contributions, com
ing from the direct path (L→A→R) and the indirect path
(L→A→S→A→R), which are interfering with each other

The current is written down in terms of the transmissi
coefficient, that is, in Landauer-Bu¨ttiker form. In turn, the
transmission coefficient is proportional to the spectral fu
tion of the active dotA. To find the spectral functionAA(v),
we note that Green’s functions of the two dots are related
each other by the equations

DA
r ~v!5D̃A

r ~v!1uWu2D̃A
r ~v!DS

r ~v!D̃A
r ~v!. ~2.22!

To get the desired spectral function, we have to calculate
Green’s functionDS

r at a side-connected dot and the aux

iary Green’s functionD̃A
r at the active dot is given by Eq

~2.17a!. Due to the on-site Coulomb interaction at a sid
connected dotS, the calculation ofDS

r (v) is highly non-
trivial and requires a many-body calculation. In the next s
tion, we describe the noncrossing approximation in orde
find the Green’s function at a side-connected dotS.

III. NONCROSSING APPROXIMATION „NCA…

To study theI -V curves of our model system, we need
calculate the Green’s function at a side-connected dotS out
of equilibrium. For this purpose, we adopt the NCA, whic
has been a very fruitful tool for the study of the Anders
model in both equilibrium14,15 and nonequilibrium.16,17

To begin with, we need to identify the effective con
tinuum band for the dotS. In the Anderson model, which
describes the magnetic ions imbedded in normal metals,
self-energy can be written as a sum of two contributions

S f~v!5E de

p

Geff~e!

\v2e1 id
1SU

r ~v!. ~3.1!

The first term is the one-body contribution from tunnelin
into the conduction band and the second termSU is the
many-body contribution from the on-site Coulomb intera
tion. On the other hand, the self-energy of the dotS in our
model is given by

SS~v!5uWu2D̃A
r ~v!1SU

r ~v!. ~3.2!

Comparing the two self-energies@Eqs. ~3.1! and ~3.2!#, we
can identify that the effective Anderson hybridization fun
tion is given by the equation

Geff~e!52uWu2 Im D̃A
r ~e!

52uWu2 ImH 1

e2Ed2Sc
r ~e!

J
5puWu2ÃA~e!. ~3.3!
6-4
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The effective continuum band for the dotS is represented by
the auxiliary Green’s functionD̃A(t,t8).

To find the Green’s function for the dotS, we do a per-
turbative expansion inW. To begin with, we represent th
Fock space of the dotS by the pseudoparticle operators.
the largeUS limit, we may neglect the double occupation

dSa→b†f a . ~3.4!

The boson operatorb annihilates the empty state and th
pseudofermion operatorf a destroys the singly occupied sta
at the dotS. After replacing the electron operatordSa by the
pseudoparticle operators, the occupation constraint has t
enforced:Q51,

Q5(
a

f a
† f a1b†b. ~3.5!

This constraint is taken into account using the Lagrange m
tiplier method: H→H1l(Q21). The projection to the
physical Hilbert spaceQ51 leads to the following projec
tion rule for the physical observables:

O~v!5
1

ZS
lim
l→`

eblOl~v→v1l!, ~3.6!

ZS5 lim
l→`

ebl^Q&l . ~3.7!

HereOl(v) is a thermal average of observable operatorÔ
for the HamiltonianH1l(Q21). The Feynman diagram
rules for the Green’s functions are very simple. In the 2nth
order, there are 3n11 pairs of creation and annihilation op
erators. This leads to the factor@ i\#22n@ i\#3n11. Canceling
one factor i\ leads to the following factor:
(21)NF@ i\#nuWu2n, whereNF is the number of closed fer
mion loops. With this rule, the NCA self-energies~displayed
in Fig. 2! are given by the equations

S f~l;t,t8!5 i\uWu2Gb~l;t,t8!D̃A~ t,t8!, ~3.8a!

Sb~l;t,t8!52 i\NsuWu2Gf~l;t,t8!D̃A~ t8,t !. ~3.8b!

Here Ns52 accounts for the spin degeneracy of the sin
occupied state for the dotS. Gb and Gf are the pseudopar
ticle Green’s functions of boson and fermion, respective
Using an analytic continuation to the real-time axis,13 we
find

S f
.~l;t,t8!5uWu2Gb

.~l;t,t8!D̃A
.~ t,t8!, ~3.9a!

S f
,~l;t,t8!52uWu2Gb

,~l;t,t8!D̃A
,~ t,t8!, ~3.9b!

S f
r~l;t,t8!5uWu2@Gb

r ~l;t,t8!D̃A
.~ t,t8!

2Gb
,~l;t,t8!D̃A

r ~ t,t8!#, ~3.9c!

Sb
.~l;t,t8!5NsuWu2Gf

.~l;t,t8!D̃A
,~ t8,t !, ~3.9d!

Sb
,~l;t,t8!52NsuWu2Gf

,~l;t,t8!D̃A
.~ t8,t !, ~3.9e!
24532
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Sb
r ~l;t,t8!5NsuWu2@Gf

r~l;t,t8!D̃A
,~ t8,t !

1Gf
,~l;t,t8!D̃A

a~ t8,t !#. ~3.9f!

To give a concrete example of analytic continuation, we c
sider the derivation ofSb

.(l;t,t8):

1

i
Sb

.~l;t,t8!52 i\uWu2
1

i
Gf

.~l;t,t8!3
21

i
D̃A

,~ t8,t !.

~3.10!

Removing the common factors on both sides of the equat
we find the desired expression forSb

.(l;t,t8).
After Fourier transform, we get the self-energy equatio

S f
.~l;v!5uWu2E dz

2p
Gb

.~l;v2z!D̃A
.~z!,

~3.11a!

S f
,~l;v!52uWu2E dz

2p
Gb

,~l;v2z!D̃A
,~z!,

~3.11b!

S f
r~l;v!5uWu2E dz

2p
@Gb

r ~l;v2z!D̃A
.~z!

2Gb
,~l;v2z!D̃A

r ~z!#, ~3.11c!

Sb
.~l;v!5NsuWu2E dz

2p
Gf

.~l;v1z!D̃A
,~z!,

~3.11d!

Sb
,~l;v!52NsuWu2E dz

2p
Gf

,~l;v1z!D̃A
.~z!,

~3.11e!

FIG. 2. NCA self-energy diagrams for~a! pseudofermion and

~b! slave boson. The solid line represents the propagatorD̃, the
Green’s function of the active dotA when W50. The dashed
~wavy! line is the pseudofermion~boson! propagator. The solid
circle means the tunneling matrixW.
6-5
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Sb
r ~l;v!5NsuWu2E dz

2p
@Gf

r~l;v1z!D̃A
,~z!

1Gf
,~l;v1z!D̃A

a~z!#. ~3.11f!

The Green’s function at the dotS can be written down in
terms of pseudoparticle operators,

i\DS~l;t,t8!5^TdSa~ t !dSa
† ~ t8!&

5^Tb†~ t ! f a~ t ! f a
†~ t8!b~ t8!&. ~3.12!

In the leading approximation, the desired Green’s function

DS~l;t,t8!' i\Gf~l;t,t8!Gb~l;t8,t !. ~3.13!

Analytic continuation to the real-time axis13 leads to

DS
.~l;t,t8!52Gf

.~l;t,t8!Gb
,~l;t8,t !, ~3.14a!

DS
,~l;t,t8!5Gf

,~l;t,t8!Gb
.~l;t8,t !, ~3.14b!

DS
r ~l;t,t8!52Gf

r~l;t,t8!Gb
,~l;t8,t !

2Gf
,~l;t,t8!Gb

a~l;t8,t !. ~3.14c!

After Fourier transform, we get

DS
.~l;v!52E dz

2p
Gf

.~l;v1z!Gb
,~l;z!,

~3.15a!

DS
,~l;v!5E dz

2p
Gf

,~l;v1z!Gb
.~l;z!, ~3.15b!

DS
r ~l;v!52E dz

2p
@Gf

r~l;v1z!Gb
,~l;z!

1Gf
,~l;v1z!Gb

a~l;z!#. ~3.15c!

From the projection to the physical Hilbert spaceQ51 of
the Green’s function at the dotS, we find the projection rules
for the pseudoparticle Green’s functions,

DS
r ~v!5

1

ZS
lim

l→`

eblDS
r ~l;v!

52
1

ZS
lim

l→`

eblE dz

2p
@Gf

r~l;v1z1l!Gb
,~l;z1l!

1Gf
,~l;v1z1l!Gb

a~l;z1l!#

52
1

ZS
E dz

2p
@Gf

r~v1z!Gb
,~z!1Gf

,~v1z!Gb
a~z!#,

~3.16!

ZS5E dv

2p
@NsGf

,~v!2Gb
,~v!#. ~3.17!

Since the pseudoparticle Green’s functions are centere
v5ES1l ~pseudofermion! and atv5l ~slave boson!, we
have to shift the integration variable before taking the lim
24532
is

at

t

l→`. For DS
r (v) to be well-defined, the limiting

pseudoparticle Green’s functions should be defined as

Gb, f
r ~v![ lim

l→`

Gb, f
r ~l;v1l!, ~3.18a!

Gb, f
, ~v![ lim

l→`

eblGb, f
, ~l;v1l!. ~3.18b!

The second equation means that liml→`Gb, f
, (l;v1l)50.

Applying the projection procedure to the lesser and grea
Green’s functions of the dotS, we find the additional projec-
tion rules for the pseudoparticle Green’s functions:

Gb, f
. ~v![ lim

l→`

Gb, f
. ~l;v1l!. ~3.19!

Accordingly, the lesser and greater Green’s functions of
dot S are given by the equations

DS
,~v!5

1

ZS
E dz

2p
Gf

,~v1z!Gb
.~z!, ~3.20a!

DS
.~v!52

1

ZS
E dz

2p
Gf

.~v1z!Gb
,~z!. ~3.20b!

Applying the projection procedure to the physical Gree
functionDS at the dotS, we obtained the projection rules fo
the pseudoparticle Green’s functions.

We are now in a position to find the self-energy equatio
projected to the physical Hilbert space,Q51, for the
pseudoparticle Green’s functions,

Sb, f
r ,.~v!5 lim

l→`

Sb, f
r ,.~l;v1l!, ~3.21a!

Sb, f
, ~v!5 lim

l→`

eblSb, f
, ~l;v1l!. ~3.21b!

By comparing the self-energies, we can see the identi
Gb, f

r (v)5Gb, f
. (v),

S f
,~v!52uWu2E dz

2p
Gb

,~v2z!D̃A
,~z!, ~3.22a!

S f
r~v!5uWu2E dz

2p
Gb

r ~v2z!D̃A
.~z!, ~3.22b!

Sb
,~v!52NsuWu2E dz

2p
Gf

,~v1z!D̃A
.~z!,

~3.22c!

Sb
r ~v!5NsuWu2E dz

2p
Gf

r~v1z!D̃A
,~z!. ~3.22d!

These are the NCA self-energy equations out of equilibriu
Now inserting the equations

D̃A
,~v!5uD̃A

r ~v!u2@2GL~v! f L~v!12GR~v! f R~v!#,
~3.23a!
6-6
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D̃A
.~v!5uD̃A

r ~v!u2@2GL~v! f L~2v!12GR~v! f R~2v!#,
~3.23b!

we find the final version of the NCA equations,

S f
,~v!52 (

p5L,R
E dz

p
uWu2uD̃A

r ~z!u2Gp~z! f p~z!

3Gb
,~v2z!, ~3.24a!

S f
r~v!5 (

p5L,R
E dz

p
uWu2uD̃A

r ~z!u2Gp~z! f p~2z!Gb
r ~v2z!,

~3.24b!

Sb
,~v!52Ns (

p5L,R
E dz

p
uWu2uD̃A

r ~z!u2Gp~z!

3 f p~2z!Gf
,~v1z!, ~3.24c!

Sb
r ~v!5Ns (

p5L,R
E dz

p
uWu2uD̃A

r ~z!u2Gp~z! f p~z!Gf
r~v1z!.

~3.24d!

The effective Anderson hybridization for a side-connec
dot S is given byGeff(v)5uWu2uD̃A

r (v)u2@GL(v)1GR(v)#.
Although the dotS is not directly coupled to the externa
electrodes, it can experience the bias potential difference
the active dotA.

IV. NUMERICAL RESULTS

For the numerical calculations, we assume the cons
energy-independent tunneling matrix between the ac
quantum dotA and two electrodes. The left and right ele
trodes are assumed to be described by the same Loren
density of states~DOS!. The self-energies due to the tunne
ing into the electrodes are found in a closed form in this ca
The auxiliary Green’s function for the active dotA(D̃A

r ) and
the effective Anderson hybridization function for the sid

connected dotS @Geff(v)5G̃L(v)1G̃R(v)# are given by the
equations

D̃A
r ~v!5

1

\v2EA2G3
D

\v1 iD

, ~4.1!

G̃p~v!5GpuWu2
D2

@\v~\v2EA!2GD#21~\v2EA!2D2 .

~4.2!

HereD is the conduction-band width of the Lorentzian DO
The tunneling rate of an active dotA into the electrodesG
5GL1GR or the effective bandwidth of Anderson hybridiz
tion Geff(v) will be taken as an energy unit in our numeric
works. For this model, the Kondo temperature at z
source-drain bias voltage can be estimated within an orde
1 by the equation
24532
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.

o
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TK5G3expS 2
puESu
2Geff

D . ~4.3!

HereGeff5uWu2/G is the effective Anderson hybridization a
v50 andEA50.

Self-energies. The self-energySS of a side-connected do
S is obtained from the Green’s functionDS , which is calcu-
lated from Eq. ~3.16!, using the relationSS

r 5@DS
r #21

2@DS0
r #21. The imaginary part ofSS

r is displayed in Fig. 3.
Displayed results are corrected to satisfy the causality r
tion for the Green’s function at the active dotA. This correc-

FIG. 3. Temperature and bias voltage dependence of the
energy of a side-connected dotS. Temperature variation of the self
energy is displayed in~a!. The panel~b! is the magnified view of
the panel~a! nearv50. With decreasing temperatures, the stru
ture in the self-energy becomes sharper nearv50. Temperature
variations are T/TK531.6,10,3.16,1,3.1631021,1021,3.16
31022,1022,3.1631023,1023. At T510233TK , the variation of
the self-energy with increasing bias voltage is displayed in~c!. The
source-drain bias voltages are varied fromeV50 to eV5203TK

by the amount 23TK .
6-7
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tion procedure is explained in Appendix C; see also Ref.
With decreasing temperature, a sharp feature develops
v50, which is a sign of a Kondo resonance peak. Whe
finite source-to-drain bias voltage is applied, the sharp st
ture nearv50 becomes smooth and splits into two atv5
6eV/2.

Spectral functions. The spectral functions are calculate
from the imaginary part of the Green’s functions,

Ai~v!52
1

p
Im Di

r~v!, i 5A,S, ~4.4!

and displayed in Figs. 4 and 5. The spectral functionAS(v)

FIG. 4. Temperature and bias voltage dependence of the spe
function AS(v) at a side-connected dotS. ~a! and ~b! show the
developments of a Kondo resonance peak with decreasing tem
ture. The panel~b! is a magnified view of the panel~a!. The
bias voltage dependence of the spectral functionAS(v) at T
510233TK is displayed in~c!. The Kondo resonance peak is pr
gressively suppressed with the increasing bias voltage and dev
into a two-peak structure. Temperature and voltage variations
the same as in Fig. 3.
24532
.
ear
a
c-

at a side-connected dotSdevelops the Kondo resonance pe
nearv50 with decreasing temperature belowT,TK . The
Green’s function at the active dotA is renormalized accord
ing to Eq. ~2.22!. As the side-connected dotS develops the
Kondo resonance, the spectral functionAA(v) at the active
dot A is depleted nearv50. The spectral depletion can b
understood as the destructive interference between the d
path and the indirect path~Fano interference!. The spectral
depletion leads to the suppression of the current flow
through the dotA. The width of the depleted region is give
by the Kondo temperature~4.3! of the dotS. When a finite
value of source-to-drain bias voltage is applied, the peak
AS(v) and the dip inAA(v) nearv50 split into two atv

tral

ra-

ps
re

FIG. 5. Temperature and bias voltage dependence of the spe
function AA(v) at the active dotA. Due to the Fano interference
the spectral functionAA(v) becomes depleted nearv50 as the
temperature is lowered belowTK , as shown in~a! and~b!. When a
finite bias voltage is applied, the spectral depletion is refilled a
the two-peak structure inAS(v) is manifested as the double-di
structure inAA(v). Temperature and voltage variations are t
same as in Fig. 3.
6-8
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56eV/2. The two Kondo resonance peaks inAS(v) and
dips in AA(v) become pinned at the Fermi energies of t
left and right electrodes.16,17

Since the NCA underestimates the one-body contribu
of the self-energySS ~side-connected dot! from tunneling
into the effective continuum band, our NCA calculation
the spectral function at the active dotA shows negative spec
tral weight near the depleted region~violation of the causal-
ity relation!. This is purely an artifact of the NCA. Since th
NCA is based on the expansion in powers of the Ander
hybridization~in our caseW) and includes only a subset o
diagrams up to infinite order inW without vertex corrections
the underestimation is expected. Though the NCA unde
timates the one-body contribution of the self-energy, its
pendence on the energy and temperature turns out to be
rect close tov50 and at T.0 K. The NCA leads to
pathological results at and nearT50 K.14 From the Fermi-
liquid relation, it can be shown that the spectral function
the active dotA is zero atv50 at zero temperature. Accord
ing to the Fermi-liquid theory, the magnetic ion’s spect
function@AS(v) in our case# can be related to the phase sh
of conduction electrons~electrons at the active dotA in our
case! at the Fermi energy. The phase shift is determined
the Langreth-Friedel sum rule,19 nS52(d/p), where the nu-
merical factor 2 accounts for two possible spin directions

AS~0!5
1

pGeff
sin2

pnS

2
, ~4.5!

whereGeff5uWu2/G is the effective Anderson hybridizatio
for a side-connected dotS at v50. With complete screen
ing, nS is equal to 1. Inserting the Fermi-liquid relation in
Eq. ~2.22!, it can be shown that the spectral function of t
active dotA vanishes atv50, or AA(0)50.

To compensate for the NCA’s underestimation of the s
energy, we corrected the self-energy by adding a term p
portional to one-body self-energyuWu2D̃A

r (v) to it such that
the spectral functionAA of the active dot remains non
negative definite andAA(0)→0 with the temperature ap
proaching zero. Since the contribution to the self-ene
coming from the hybridization with the effective continuu
band is of one-body nature and temperature-independ
this correction procedure is not a bad idea.

Linear-response conductance. The linear-response con
ductances(T) is calculated by differentiating Eq.~2.21a!
with respect to the source-drain bias voltage atV50,

s~T!5
2e2

h E de T~e!F2
] f ~e!

]e G . ~4.6!

As shown in Fig. 6,s(T) is suppressed with decreasing tem
perature. The conductance shows a logarithmic depend
on temperature near the Kondo temperature. From Fe
liquid theory, it can be expected that the conductance is c
pletely suppressed at zero temperature. The electron flo
blocked by the destructive interference between two differ
paths: the direct path (L→A→R) and the indirect one (L
→A→S→A→R).
24532
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This suppressed behavior ofs(T) at low temperatures is
another example of zero-bias anomalies~ZBA’s! observed in
several mesoscopic devices. Scattering of conduction e
trons off the Kondo impurities is one of the scenarios e
plaining ZBA’s. Depending on the topology of mesoscop
devices and Kondo impurities, the ZBA can lead to the e
hanced or suppressed conductance at low temperature.

As expected from the Kondo effect, the linear-respon
conductances(T) shows the scaling behavior over a wid
range of temperature. Several curves ofs(T) for different
sets of model parameters~differing Kondo temperature! col-
lapse onto one curve as shown in Fig. 6.

Differential conductance. The current flowing from the
left to right electrode is calculated using Eq.~2.21a!. Differ-
ential conductanceG(T,V)5dI/dV is obtained by differen-
tiating the current with respect to a finite source-drain b
voltage. Differential conductance is displayed in Fig. 7. W
decreasing temperature,dI/dV is suppressed near zer
source-drain bias voltage. The pseudogap behavior of
spectral function at the active quantum dotA explains this
I -V characteristic.

V. CONCLUSION

In this work, we studied the transport properties of par
lel double quantum dots when only theactivedot is coupled
to the two external electrodes and the other dot isside-
connectedto the active dot. When the active dot lies in th
conductance peak region and the side-connected dot in
Coulomb-blockade region, the current flow through the
tive dot is suppressed due to the Kondo scattering off
effective spin in the side-connected dot. Suppressed con
tance at low temperature and near zero bias voltage ca
understood in terms of Fano interference between two pa
direct path of left electrode–active dot–right electrode a
indirect path of left electrode–active dot–side-connec

FIG. 6. Temperature dependence of linear-response conduct
s(T). The conductance atV50 is suppressed with decreasing tem
perature as can be expected from the temperature dependence
spectral functionAA(v). The conductance is suppressed logari
mically due to the enhanced Kondo scattering near the Kondo t
perature and becomes saturated with decreasing temperature.s(T)
shows the scaling behavior over a wide range of temperature. S
bols mean different sets of model parameters or differing Kon
temperatures.
6-9
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dot–active dot–right electrode. Our study suggests the p
sibility that the current flowing through one quantum dot c
be controlled experimentally by an additional side-connec
quantum dot.
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APPENDIX A: NONINTERACTING CASE: UAÄUSÄ0

When UA5US50, both active and side-connected do
become resonant levels. The current and its noise can
obtained analytically in a closed form. The self-energies
the dotsA andS are

SA~ t,t8!5Sc~ t,t8!1uWu2DS0~ t,t8!, ~A1!

SS~ t,t8!5uWu2D̃A~ t,t8!. ~A2!

Here the one-body self-energySc is given by the equation

Sc~ t,t8!5
1

V (
pkW

uVp~kW !u2Gcp~kW ;t,t8!,

and the auxiliary Green’s functionsD̃A andD̃S are given by
the equations

D̃A~ t,t8!5DA0~ t,t8!1E
C
dt1E

C
dt2 D̃A~ t,t1!

3Sc~ t1 ,t2!DA0~ t2 ,t8!, ~A3!

D̃S~ t,t8!5DS0~ t,t8!. ~A4!

The self-energy of the auxiliary Green’s functionD̃A is given

by S̃A(t,t8)5Sc(t,t8).
The retarded Green’s functions can be readily obtaine

FIG. 7. Differential conductanceG(T,V)5dI/dV with varying
temperature. The differential conductance is progressively s
pressed near zero bias voltage with lowering temperature. From
the temperature variations are T/TK510,3.16,1,3.16
31021,1021,3.1631022,1022,1023. The last three curves canno
be distinguished with the naked eye.
24532
s-

d

.

be
f

,

DA
r ~v!5

\v2ES

@\v2ES#3@\v2EA2Sc
r ~v!#2uWu2

,

~A5!

DS
r ~v!5

\v2EA2Sc
r ~v!

@\v2ES#3@\v2EA2Sc
r ~v!#2uWu2

.

~A6!

Due to the Fano interference, the spectral function of
active dotA vanishes atv5ES . On the other hand, the spec
tral function of the side-connected dotS is peaked atv
5ES . The nonequilibrium distribution function of the dotS
is also readily calculated,

S̃A
,~v!52GL~v! f L~v!12GR~v! f R~v!,

2Im S̃A
r ~v!5GL~v!1GR~v!, ~A7!

f eff~v!5
S̃A

,~v!

22 Im S̃A
r ~v!

5
GL~v! f L~v!1GR~v! f R~v!

GL~v!1GR~v!
.

The full self-energies of the active dotA are

SA
,~v!52GL~v! f L~v!12GR~v! f R~v!1uWu2D̃S

,~v!,

SA
r ~v!2SA

a~v!522i @GL~v!1GR~v!#

1uWu2@D̃S
r ~v!2D̃S

a~v!#. ~A8!

To determineD̃S
,(v), we use the conditionI S50 ~the num-

ber of electrons in the dotS remains the same!,

D̃S
,~v!52p

GL~v! f L~v!1GR~v! f R~v!

GL~v!1GR~v!
ÃS~v!. ~A9!

Here ÃS(v)5d(\v2ES).
Inserting all the equations into the expression of the c

rent ~2.7!, we find the current flowing from the left electrod
to the right one,

I L5e(
a

E dv

2p
$4GL~v!GR~v!uDA

r ~v!u2@ f R~v!2 f L~v!#

12uWu2GL~v!uDA
r ~v!u2@D̃S

,~v!22p f L~v!ÃS~v!#%

5
e

h (
a

E de T~e!@ f R~e!2 f L~e!#. ~A10!

The transmission spectral functionT(e) is given by the
equation

T~e!54GL~e!GR~e!uDA
r ~e!u2F11

puWu2ÃS~e!

GL~e!1GR~e!
G

5
4pGL~e!GR~e!

GL~e!1GR~e!
AA~e!. ~A11!

p-
p,
6-10
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The current noise, defined as the current-current correla
function, can be obtained in a closed form in the nonint
acting case,

S~ t,t8!5^dI ~ t !dI ~ t8!&1^dI ~ t8!dI ~ t !&. ~A12!

HeredI 5I 2^I &. Defining the current Green’s function by

i\GII ~ t,t8!5^TdI ~ t !dI ~ t8!&, ~A13!

the current-current correlation function can be written
S(t,t8)5\GII

.(t,t8)1\GII
.(t8,t). Six diagrams are contrib

uting to the current noise and the static current noiseS0
5S(v50) is given by the well-known formula20

S05
4e2

h E de T~e!$ f L~e!@12 f L~e!#1 f R~e!@12 f R~e!#%

1
4e2

h E de T~e!@12T~e!#$ f L~e!2 f R~e!%2. ~A14!

The first line is the thermal Johnson noise and the sec
line is called the shot noise coming from a finite source-dr
bias voltage.

Typical results atT50 K are displayed in Fig. 8 for the

FIG. 8. Tunneling coefficients and Fano factor atT50 K. Due
to the Fano interference, the transmission coefficientT(v) is com-
pletely suppressed whenv5ES , the energy level of the side
connected dot. The Fano factor,F5S0/2eI, has a dip structure
accordingly. The model parameters areEA50, ES /G50.2 for dis-
played curves. In~a! and ~b!, W/G50.3 (1.0) for solid~dashed!
line, respectively. In panel~c!, the values ofW/G are varied from
the bottom successively as 0.1,0.2,0.3,0.4,0.7,1.0,1.5.
24532
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transmission coefficientT(e) and the Fano factorF
5S0/2eI. Due to the Fano interference, the transmission
efficient is completely suppressed atv5ES , the energy
level of the side-connected dot. This structure leads to a
in the Fano factor. The Fano factorF takes the following
values atV50 andV→`:

F~V50!512
4GLGR

~GL1GR!2

ES
2

ES
21~EAES2W2!2/G2 ,

F~V→`!512
2GLGR

~GL1GR!2 .

Here G5GL1GR . The limiting value of F at eV@G is
solely determined by the tunneling rates,GL andGR .

APPENDIX B: INTERACTING CASE: UAÅ0 AND USÅ0

When both dotsA andSare strongly correlated, the mode
system becomes highly nontrivial due to many-body effec
In this section, we derive the effective spin exchange int
action when both dots lie in the Kondo limit or in the a
sence of charge fluctuations. Our model spaceM and its
orthogonal spaceM̄ are then given by

M5uAa& ^ uSb&5uAa;Sb&, a,b5↑,↓, ~B1!

M̄5uAa;Sr&, uAr;Sa&, uAr;Sr8&,

a,b5↑,↓; r,r856. ~B2!

Herea andb represent the spin-up or -down state, whiler
andr8 are the isospin state:

u i 1&5di↑
† di↓

† u0&,u i 2&5u0&,i 5A,S,

whereu0& means the empty state of a quantum dot.
To find the effective spin-exchange Hamiltonian, we ne

to evaluate the following matrix elements:

^Aa;SbuH1uAm;Sr&50,

^Aa;SbuH1uAr;Sm&

5db,m^AauH1uAr&

5db,m3H(
pkW

Vp* ~kW !cpkWadr,2

1~21!a21/2(
pkW

Vp~kW !cpkW ā
† dr,1J ,

^Aa;SbuH1uAr;Sr8&5~21!a21/2Wda1b,0dr1r8,0 .

When the charge fluctuations can be neglected, we find
effective spin-exchange Hamiltonian

H̃15(
pkWa

(
p8kW8b

Jpp8~kW ,kW8!cpkWa
† 1

2 sW abcp8kW8b•SW A

1JAS~SW A•SW S2 1
4 !, ~B3!
6-11
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Jpp8~kW ,kW8!52Vp~kW !Vp8
* ~kW8!F 1

2EA
1

1

EA1UA
G , ~B4!

JD52uWu2F 1

EA1UA2ES
1

1

ES1US2EA
G . ~B5!

Electrons are scattered off an effective spinSW A at the active
dot and can flow from one electrode to the other. SinceSW A is
coupled antiferromagnetically toSW S , the occurrence of en
hanced Kondo scattering at low temperature depends on
magnitude of antiferromagnetic couplingJAS relative to, e.g.,
the Kondo temperature. WhenJAS@TK , a spin-singlet for-
mation between two dots is favored over the many-bo
Kondo singlet state and the enhanced Kondo scattering is
expected. On the other hand, whenTK@JAS, a Kondo sin-
glet state is expected to be favored over a spin-singlet s
between two dots and the conductance will be enhanced
to the Kondo scattering at low temperature. Detailed stud
this model in equilibrium is in progress using Wilson’s n
merical renormalization group method and will be publish
elsewhere.

APPENDIX C: FERMI-LIQUID RELATIONS

In this section, we discuss the correction of pathologi
behavior of NCA nearv50. The Green’s function of the
dot A is related to that at the dotS by Eq. ~2.22!. The cau-
sality is seldom violated when the number of channels
h-
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larger than two. On the other hand, the causality is viola
for the case of one channel nearv50 at temperatures below
the Kondo temperatureTK . The recently developed conserv
ing t-matrix approximation~CTMA! ~Ref. 21! may have a
chance to overcome this pathology. In this paper, we
going to remedy this pathology of the NCA byadding a
one-body self-energy correction to the self-energySS(v) to
satisfy the Fermi-liquid relation. The self-energy for the d
S can be written as a sum of two contributions,

SS
r ~v!5Shyb

r ~v!1SU
r ~v!, Shyb

r ~v!5uWu2D̃r~v!.
~C1!

The self-energySNCA
r (v) calculated from the NCA is known

to show the correct energy and temperature dependence
v50 and T50. ~Temperature must be higher than th
pathogical temperature estimated in, e.g., Ref. 14.! We as-
sume that SU(v) is well-captured in the NCA. Since
2Im SU

r (v)}v21@pkBT#2 for v,T,TK ~see Ref. 22!, we
add the correction term toSNCA in order to makeDA

r (v)
obey the causality relation,18

SS
r ~v!'SNCA

r ~v!1~ uWu22WNCA
2 !D̃A

r ~v!. ~C2!

Here WNCA
2 is determined numerically from the calculate

SNCA
r (v) at the lowest possible temperature,

WNCA
2

G
[2Im SNCA

r ~0!. ~C3!
.

B:

M.
1L. I. Glazman and M. E. Raikh, JETP Lett.47, 452~1988!; T. K.
Ng and P. A. Lee, Phys. Rev. Lett.61, 1768~1988!.

2D. Goldhaber-Gordon, H. Shtrikman, D. Malahu, D. Abusc
Magder, U. Meirav, and M. A. Kastner, Nature~London! 391,
156 ~1998!.

3S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhov
Science281, 540 ~1998!.

4J. Nygard, D. H. Cobden, and P. E. Lindelof, Nature~London!
408, 342 ~2000!.
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