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Suppression of current in transport through parallel double quantum dots
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We report our study off-V curves in the transport through the quantum dot when an additional quantum dot
lying in the Kondo regime is side-connected to it. Due to the Kondo scattering of the effective spin on a
side-connected quantum dot, the conductance is suppressed at low temperatures and at low source-drain bias
voltages. This zero-bias anomaly is understood as enhanced Kondo scattering with decreasing temperature.
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[. INTRODUCTION singlet and spin-triplet. These novel Kondo effects have been
interpreted as coming from the enhanced Kondo temperature
Advances in hanotechnology have made it possible to fabat the transition point®
ricate quantum dots or artificial atoms and to study their In this paper, we study theoretically the transport proper-
transport properties. Due to the confinement and the Couies of parallel double quantum dots as depicted in Fig. 1.
lomb interaction in the quantum dot, charge and spin can b®neactivequantum dot is connected to the source and drain
quantized. Quantization of electron charge leads to the aklectrodes and the other quantum datige-connectetb the
most periodic variation of conductance as a function of theactive quantum dot. Since the energy levels in two quantum
number of electrond\ or the gate voltage. A conductance dots can be controlled separately using the gate voltage, dif-
peak is observed whenever the charge fluctuation is allowefkrent transport regimes can be probed. In this work, we
or theN and (N+ 1) states become energetically degeneratepresent our study of the-V characteristics of this system
Otherwise, electrons in the electrodes cannot hop into &nhen the active quantum dot lies in the conductance peak
quantum dot due to the strong Coulomb repulsion. This Couregion while the side-connected quantum dot lies in the
lomb blockade leads to vanishing conductance between twgoulomb-blockade region. In this case, charge fluctuations
neighboring conductance peaks. Kondo effects can enhanege suppressed and an effective sBin3 arises in a side-
the conductance in the Coulomb-blockade region when theonnected dot. Electrons passing through the active dot ex-
number of electrons at the quantum dot is odd and at leaglerience the Kondo scattering off an effective spin in a side-
one electron spin is unpaired. The unpair8é 3 in the  connected dot. We find that the linear-response conductance
quantum dot can be screened by the electrons in the externigl suppressed at low temperature due to the enhanced Kondo
electrodes connected to the quantum dot. This theoreticalcattering off spinS=%. The spectral function at a side-
predictiort of the nonequilibrium Kondo effects in quantum connected dot develops a Kondo resonance peak as the tem-
dot systems was confirmed experimentally recefitfyin the  perature is lowered. On the other hand, the spectral function
conventional bulk Kondo systems where magnetic ions argt the active dot becomes depleted near0 with decreas-
doped into normal metals, the study of the Kondo effects washg temperature. We obtained these results using the non-
confined to the equilibrium state. In quantum dot systemsequilibrium Green’s function method combined with the
the nonequilibrium situation is easily controlled and modelnoncrossing approximatiofNCA).
parameters can be varied by adjusting the gate voltages.  This paper is organized as follows. In Sec. Il, we intro-
Study of the Kondo effect in the quantum dot systems hagjuce our model Hamiltonian and present the formulation of

been diversified to see the different aspects. The quantugurrent passing through an active dot. The relevant Green’s
dots are inserted in the Aharonov-Bohm ring to study the

effect of many-body interaction on the persistent curpent.
When electrons are scattered off the magnetic impurity, they
experience a phase shift/2 at the Fermi energy due to the VL VR
Kondo effect. The direct measurement of this phase shift is
not possible in the bulk systems. Using a quantum dot in-
serted into the Aharonov-Bohm ring, the phase shift due to
the Kondo effect was studied theoreticéllgnd measured \WY
experimentally. Serial double quantum dots were also stud-

ied in the Kondo regimé. Enhanced conductance was

observed in an otherwise Coulomb-blockade region at the

spin singlet-to-triplet transition point when the number of  F|G. 1. Schematic display of parallel double quantum dots. The
electrons on a quantum dot is even. The ground state can kgtive quantum dotA is connected to two left and right electrodes
either spin-singlet or spin-triplet depending on the geometryand the other dois side-connectetb the dotA. A side-connected

of the confinement potential. Perpendicular magnetic fieldslot S provides an additional current path or acts as a scattering
can induce a transition of the ground state between spineenter of electrons passing through the Aot
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functions in nonequilibrium are formulated in Sec. Ill using Here §S:§aﬁ|s; a>%5a3<3;ﬁ| represents the spin degrees
the NCA, which is modified for our system. Numerical re- of freedom in a side-connected dot in the absence of charge
sults, solving the NCA equations self-consistently, are pref,ctyations. Electrons, flowing from the left electrode to the
sented in Sec. IV and a conclusion is included in Sec. V. ignt, at the active dot will experience the Kondo scattering
off an effective spin of a side-connected dot. Appendix B
Il. PARALLEL DOUBLE QUANTUM DOTS contains the details of thd ,#0 andUg#0 case.

A. Model Hamiltonian .
B. Formulation of current

Consider the parallel double quantum dots shown in Fig.
1. In this experimental geometry, the transfer of electrons
from one electrode to the other is realized by hopping on an
off an activequantum dofthe siteA). The other dofthe site
S) is side-connectetb the active dot by hopping. Assuming

The current operator can be defined as a variation of the
umber operators of electrons per unit time leaving one elec-
rode p=L,R),

that the energy-level spacing is large enough compared to the lp=—€(=Np)
level broadening due to the tunneling into two electrodes, the e
model Hamiltonian can be written as = E[NP’H]
H:He|+ qu0t+ Hlv (Zla e N
=~ % [Vp(K)C ) daa—H.C1. (2.3
_ . R L
He= 2 2 €pkCpicaCpke (2.1b The measured current is given by the thermal average of the
P=LR ka above current operator and can be written in terms of the
lesser Green’s functions out of equilibriuth,
quot:i:ASE Ei diTadia+i:2ASUiniTni1: (2.19 _ L o
S« * |p(t)=—|e|22 [Vp(K)Gacp(Kit,t) =V (K)Gpa(kit )]
- .oy ot (2.9
Hl_p=L,R % [Vo(K)Coodaat Vi (K) daCpkel The current can be expressed in terms of Green’s functions
for the conduction electrons and quantum dots using the
+z [WdI\adsw\N*dé,adAa]- 2.1d Dyson equations for the mixed Green'’s functions,
. 1
The electron creation operator of spinin the electrodep Gepalkit,t)= E<Tcpﬁa(t)d£a(t’)>
=L,Ris C;ﬁa. The indexp=L (R) denotes the leftright)
external electrode. Both electrodes are assumed to be de- :Vp(E)J dt, ch(lz;t.tl)DA(tl.t'),
scribed by the Lorentzian density of stai@0S) with the c
energy dispersior,i=ex+ u,. ur== zeVis the chemi- (2.59
cal potential shift due to the bias voltage applied to the elec-
trodes.d! is the electron creation operator in a quantum dot R 1 :
i=A,S with A (S) labeling an activeside-connecteddot, GAcp(k;tat,)Em(TdAa(t)CpRa(t,)>
respectivelyU; is the on-site electron-electron Coulomb in-
teraction in a dot. - -
WhenU,=Ug=0, two dots become resonant levels and =Vp (k) chtl Da(t,t1)Gep(kity,t"),
the solution can be found analyticallyee Appendix A The
model becomes nontrivial when one of the on-site Coulomb (2.5b
interactions or both are nonzero. In this paper, we are going
to study the case df ,=0 andUg#0 in detail. WhenUg is inD(t,t")=(Td()d! (t")), i=A,S. (2.50

the largest of all the model parameters andEs>|W|, he subscrinE in the time-i | h ldvsh
charge fluctuations in a side-connected dot can be neglectddf"® the subscripC in the time-integral means the Keldys

and the side-connected dot can be treated as an effective sgifntour- .Using analytic continuation to the real-time axis,
S=1. In this case, removing the charge degrees of freedorie can find the lesser part Gacp(k;t,t’),
in a side-connected ddSchrieffer-Wolf transformatiot),

the interaction between two dots can be derived, G,fcp(lZ;t,t’)=V’,§(|Z)f dtl[DX(t,tl)Gip(lZ;tl,t’)
- - 2lw* - 2{w? <
Has=JasSs- % dI\a%O'aBdABa JAS:_—ES+ UgtEg’ + Dk(t'tl)GCP(k'tl't/)]' (2.6

(2.2 The current can be expressed as
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1 - do . ) HereD, andDg are the fully dressed Green’s functions of
lp=—ley kE [Vp(K)| f - 1Da(@)[2c (@) ~2cp(@)]  the dotsA andS respectively,
i N T '
+35()[Di(w)~Di(@)]} iDA(LE") =(Tdaa(t)da,(t"), (2.123
_ do ifiDg(t,t") =(Tds,()dE,(t")). (2129
=—ieX f 57 DA(@) P{ER (0)[5(@) ~5y(w)] - |
@ m On the other hand) , andD g are the corresponding Green’s
< r _va functions, which cannot be separated into two parts by re-
T2 ep(@)[Za(@) =2a(@)]}- @7 moving one tunneling matri¥V. Using analytic continuation,
HereX 4 is the self-energy for the active détand the fol-  the currentig can be written as
lowing equations are used:
P 2 do r na <
1 ) ) ls=—ielW?X | SH{[B(0)~DA(w)]Ds ()
Ecp<t.t'>=v§ Vp(K)[%Gep(Kit,t)),  (2.89 )
~[DY(w)~D¥w) D5 (w)}

sr.a )= % Fp(e) (2.8 do ~ ~
ORI prer=arl - —e3 | SB[ 7S 5 (@A)
<> _ _
2o (@) =20 () fy(*w), (2.89 +Im{S\(0)}D5(w)]. (2.13
T - Sincel s=0 in steady state, we find the equation relating the
I'y(w)= v > IVp(K) 28w €pp). (2.8d  |esser part to the retarded part of the Green’s function or the
K

spectral functiomg for the dotS
The above equation for the current is quite general and can _
be used as a starting point in reducing the expression of - Sa(w)
current in specific cases. Ds(w)=m——7c——Ag(w), (2.143
The average number of electrons at a side-connectefl dot —Im24(w)
should remain the same in a steady state. This condition is
essential to get the right expression for the current flowing
from the left to the right electrodes. That is, the net current fer(@)=
flowing out of the dotS should vanish for

Sa()
—2ImSh(w)

That is, the condition that no net current flows out of the dot
S determines its nonequilibrium thermal distribution func-
tion. The current g can be expressed in another form,

(2.14b

IS:% ; [W* <dgadAa> _W<dl‘\ad5a>]

; < < ) d ~
=—|e§ [W*Gad(t,t) =WGg,(t,1)]. (2.9 ls=—ie|W|2> fi{[DrA(w)_Di(w)]Dg(w)
The currentl g was expressed in terms of the mixed Green’s R _Ra <
functions, ° [Dg(w) =D @)Dy (w)}
d
ihGag(t,t) =(Tda,(DdL (1)), (2.103 =e§ f%ZIWIZIDk(w)I2
inGsAt,t) =(Tdsa(D)dAL(t")). (2.10n X[ 735 (0)Ag(w)+IM{Z\(0)}D5(w)]. (2.15

These mixed Green’s functions can be written as
C. Interacting case:U,=0 and Ug#0

GAs(t,t’)=WJ dt; Da(t,t;)Dg(ty,t") When U,=0 and Ug#0, the active dotA becomes a
c resonant level and the side-connected 8dd strongly cor-
related. This model Hamiltonian may describe the situation
:WJ dt; Da(t,t;)Dg(t;,t’), (2.11a  thatthe dof lies in the conductance peak region and the dot
c Sin the Kondo or Coulomb-blockade region. Green’s func-
tions of the two dots are given by the Dyson equations with
Gen(tit’)=W* fcdtl Be(t,t) DAty t) the self-energies being given by

SA(tt)=3 (1t +W2D(t,t"), (2.163

:W*fcdtl Ds(tt)Dalty ). (2110 So(tt) =St t)+W2DA(t,t). (2.16h
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HereX (t,t") =2, (t,t") + 3 .r(t,t") [Eq.(2.83] is the self-
energy coming from tunneling into left and right electrodes,
u(t,t’) is the self-energy for a dof due to the on-site
Coulomb interaction, and the auxiliary Green'’s functions are

defined by the Dyson equations

'DA(t,t’)=DAo(t,t')+f dtlf dt, Da(t,ty)
C C

X2 o(ty,t2)Dao(ta,t’), (2.173
Dg(t,t")=Dgy(t,t")+ fcdtlfcdtz Dy(t,ty)
X3ty 1) Deolts,t!). (2.17H

From the self-energy equations, we find

Sa(w)=2T (0)f (0)+2Tg(0)fr(w)+W2D5(w),
(2.183

Sh(0)—34(w)=—2i[T (0)+Tg(w)]
+|W|2[DY w)—D&w)].
(2.18b

PHYSICAL REVIEW B63 245326

T() = 4T ()@ Dy ()2 1+ T Ase)
. T () Tr(w)
_ A7l (w)'g(w) o1t

= Tl(w)+ Tr(w) "A@):

Note that the currenit, consists of two contributions, com-
ing from the direct path {(—A—R) and the indirect path
(L—=A—S—A—R), which are interfering with each other.
The current is written down in terms of the transmission
coefficient, that is, in Landauer-Biker form. In turn, the
transmission coefficient is proportional to the spectral func-
tion of the active doA. To find the spectral functioAs(w),
we note that Green'’s functions of the two dots are related to
each other by the equations

Di(w)=Dj(w)+|W|*D}(0)D w)Di(w). (2.22

To get the desired spectral function, we have to calculate the
Green’s functionDg at a side-connected dot and the auxil-

iary Green’s functiorﬁ;\ at the active dot is given by Eq.
(2.1739. Due to the on-site Coulomb interaction at a side-
connected dosS the calculation ofDg(w) is highly non-
trivial and requires a many-body calculation. In the next sec-
tion, we describe the noncrossing approximation in order to

Inserting all the equations into the expression of the currentind the Green’s function at a side-connected 8ot

(2.7), we find

d
=3 [ SoAT () (o) D (@)L ()~ Ty(w)]

+2|WIT'y(@)[Da(0) [ Ds (@) — 27 f y(w)Ag(@) ]}
(2.19

From the conditiorl s==0, we have

Sa(e)

Ds(w)=m——
s(o) W—ImEL(m) s\w

)

_ 27l (@)f () + Tr(w) fr(w) ]+ 7|W|"A5 (@)
I' (o) +Tr(w)+ 7W||?Ag(0)

XAg(w)
=27 fo(0)Ag(w), (2.203
- TF'i(o)f (o) +Tg(0)fr(w)
fer(w)= T (@) Tn(w) (2.20b
It follows from the relation 1s=0 that Dg(w)
=27f o w) Ag( ).

Ill. NONCROSSING APPROXIMATION (NCA)

To study thel -V curves of our model system, we need to
calculate the Green’s function at a side-connecteddmit
of equilibrium. For this purpose, we adopt the NCA, which
has been a very fruitful tool for the study of the Anderson
model in both equilibriurtf"*> and nonequilibriunt®t’

To begin with, we need to identify the effective con-
tinuum band for the do&. In the Anderson model, which
describes the magnetic ions imbedded in normal metals, the
self-energy can be written as a sum of two contributions,

de T,
S ()= de ( €)

r
T ﬁw—e+i5+2u(w)'

(3.1
The first term is the one-body contribution from tunneling
into the conduction band and the second texgy is the
many-body contribution from the on-site Coulomb interac-
tion. On the other hand, the self-energy of the 8ah our
model is given by

So(0)=|W?Dj(w) + 3 (w). 3.2

Comparing the two self-energi¢gqgs. (3.1) and (3.2)], we
can identify that the effective Anderson hybridization func-

The effective Fermi-Dirac function tion is given by the equation

fef(w) describes the nonequilibrium thermal distribution at
the dotSand also at the active dét [It can be shown from
Eqg. (2.22.] The current flowing from the left to the right
electrode becomes

Ie(€)=—|W]2ImDj(e)
]
e—E4g—3¢(e)

dw
l=eX Jznco)[fR(w—fL(w)], (2213 A WIZAa(0
a - A .

(3.3
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The effective continuum band for the dsts represented by

the auxiliary Green’s functio® A(t,t’).

To find the Green'’s function for the d& we do a per-
turbative expansion itW. To begin with, we represent the
Fock space of the ddb by the pseudoparticle operators. In
the largeUg limit, we may neglect the double occupation,

ds,—b'f,. (3.9

The boson operatob annihilates the empty state and the
pseudofermion operatdr, destroys the singly occupied state
at the dotS. After replacing the electron operatdg, by the

pseudoparticle operators, the occupation constraint has to be

enforced:Q=1,

Q=>, fIf,+b'b. (3.5

PHYSICAL REVIEW6B245326

(b)

This constraint is taken into account using the Lagrange mul- FIG. 2. NCA self-energy diagrams fdg) pseudofermion and

tiplier method: H—H-+A(Q—1). The projection to the
physical Hilbert spac®=1 leads to the following projec-
tion rule for the physical observables:

1 o
O(w)——S lim e O, (w—w+N\),
A—00

(3.6

Zs= lim e”M(Q), . (3.7

Ao

Here O, (w) is a thermal average of observable operador
for the HamiltonianH-+X(Q—1). The Feynman diagram
rules for the Green'’s functions are very simple. In thet2
order, there are 3+ 1 pairs of creation and annihilation op-
erators. This leads to the factar:] 2"[i#]3"**. Canceling
one factor i% leads to the following factor:

(= DNFLi2]"|W|?", whereNE is the number of closed fer-
mion loops. With this rule, the NCA self-energi@fisplayed
in Fig. 2 are given by the equations

S0t =iA|WPGH (Nt t)DA(tE),  (3.83

Sp(Ntt) = =i N W[2Gs(\;t,t)DA(t',1). (3.8

(b) slave boson. The solid line represents the propag@tothe
Green’s function of the active doA when W=0. The dashed
(wavy) line is the pseudofermioribosorn propagator. The solid
circle means the tunneling matri.

SUNGEE ) =N WG\ ;t,t)Da(t’,t)
+Gr (Nt t)DAE )], (3.9

To give a concrete example of analytic continuation, we con-
sider the derivation oF (\;t,t'):

-1_
G?(x;t,t')xi—D,f(t',t).
(3.10

Removing the common factors on both sides of the equation,
we find the desired expression &g (\;t,t').
After Fourier transform, we get the self-energy equations

1 1
i—EE(A;t,t') —iﬁ|W|2i—

f (\jw)=|W|? J_Gb Nio—0DR(0),
(3.119

Here Ng=2 accounts for the spin degeneracy of the singly

occupied state for the d& Gy, and G; are the pseudopar-

ticle Green’s functions of boson and fermion, respectively.

Using an analytic continuation to the real-time aXiaye
find

STGLE)=WRGE (Lt t)DA (L), (3.93
SEGEEY)=—|W2Gy (Mt t)DA(tt),  (3.9D
SIOGHLE ) =|WA[GL(\;t,t)DA ()

=Gy ()DL, (3.99
S5 (GEE)=NWIPGE (Nt t)DA(t', 1), (3.99
SNt =—NJW2GT(\;t,t)DA(t' 1), (3.99

SN o)=— Ilef—GbOx 0—0DA(0),
(3.11h

i\ w) |W|2f 5 [Gh(N o= DR (0)

—Gr (N e— )DL, (3.119

S (hiw)= NS|W|2f oG (OB,
(3.119

d ~
2b<<x;w>=—Ns|W|2f%Gf(x;wmoi(z),
(3.11e
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Sh\ )= NSIWIZJ S-LGHN w0+ DA (L)

+Gr(n 0+ DA (3.119

The Green’s function at the d@ can be written down in

terms of pseudoparticle operators,

t)d,(t))
=(Tb'()f(OFL(t)b(t")).

iADg(N;t,t") =(Tdg,(1)

(3.12

In the leading approximation, the desired Green'’s function is

Dg(\;t,t")=iAGi(N\;t,t")Gp(N;t',1). (3.13
Analytic continuation to the real-time axisleads to
Da(\tt)=—Gy (Mt,t)Go (Mt 1), (3.148
Ds(Mtt) =Gy (\tt)Gy (Nt/,t),  (3.14D
DN t,t)=—Gi(\t,t)Go (Nt 1)
—Gr(MGLE)GR(NE ). (3.140
After Fourier transform, we get
> . dg > . < .
DS()\,O)):_ EGf ()\,w-l—g)Gb ()\,g),
(3.153

< d¢ >
DS()\;w)ZJEGf Mo+ )Gy (N0, (3.15D

. a¢ <
Ds(x;w)=—fE[Gf(x;m{)Gb(?\;()

+Gr (N o+ )G D] (3.159

From the projection to the physical Hilbert spa@e=1 of

PHYSICAL REVIEW B63 245326

AN—cw. For Dg(w) to be well-defined, the limiting
pseudoparticle Green’s functions should be defined as

Gl (@)= lim G (\;0+\),

A— e

(3.183

Gy (@)= lim e”Gpy (N +\).

Ao

(3.18b

The second equation means that)\lmGEf()\;wH\):O.
Applying the projection procedure to the lesser and greater
Green'’s functions of the d@&, we find the additional projec-
tion rules for the pseudoparticle Green’s functions:

G (@)= lim Gf (\;0+\). (3.19

A— o0

Accordingly, the lesser and greater Green'’s functions of the
dot Sare given by the equations

DS ()= > f S

10d; )
_Z_sf 5-Gi (0+0Gy({). (3.200

0+{)Gy(¢),  (3.208

Ds(w)=

Applying the projection procedure to the physical Green'’s
functionD g at the dotS, we obtained the projection rules for
the pseudoparticle Green’s functions.

We are now in a position to find the self-energy equations

projected to the physical Hilbert spac=1, for the
pseudoparticle Green’s functions,
b7 (@)= ImEL7 (N o+N), (3.21a
A—00
Sp(w)=limeP S5 (N o+N). (3.21b

A

By comparing the self-energies, we can see the identities

the Green'’s function at the d& we find the projection rules Gl (w)= G (),

for the pseudoparticle Green’s functions,

1
Dy(w)= e limeP*DE(N; w)
A\ —> 00

1 d¢
—_ ﬁ)\ - r . < .
7 lme fZW[Gf()\,w—i—g—i—)\)Gb()\,ﬁ—)\)

+ G (N o+ NG LHN)]

N ) ) .

“z_sf 5 1G1(@+ )Gy () + Gy (0+HGL(0)],
(3.16

dw - -
Ze- | SoINGT (@) -Gi )] (317

d ~
2f<<w)=—|W|2f %Gaw_m:(o, (3.22a
IWIZJ—Gb(w ODA(), (3.22h

w>——Ns|W|2f G0+ DR,
(3.229
SE(0)=NJ W2 f S Gl(wt OBA(D. (3220

These are the NCA self-energy equations out of equilibrium.
Now inserting the equations

Since the pseudoparticle Green’s functions are centered at

w=Eg+\ (pseudofermiopnand atw=N\ (slave bosoy we
have to shift the integration variable before taking the limit

Da(w)=|Da(w)7[2I' (0)f () +2T () fr(w)],
(3.233

245326-6
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1.2 T T T T

Da(w)=|Dh()|3 2T (0)f (- )+ 2T g(w)fr(—w)],
(3.23b

we find the final version of the NCA equations,

< dg Y
Siw== 3| SIWEBL LT X

XGp(w—1), (3.243

, T ,
S= 3 | SWEDLOPT 01~ 06k -0,
(3.24h

< _ d§ ~Nr
S5t0)=—N, 3 | SIWEBL0FTy@)

Xfo(—)Gr (w+), (3.249 W

r dg o :
Shw) =N 3 | SmEB PTG o).
(3.240

The effective Anderson hybridization for a side-connected
dot Siis given byl g( ) =|W|?Dly(w)|] T (@) +'r(w)].
Although the dotS is not directly coupled to the external
electrodes, it can experience the bias potential difference via
the active dotA.

Zg(w)

IV. NUMERICAL RESULTS

For the numerical calculations, we assume the constant
energy-independent tunneling matrix between the active
guantum dotA and two electrodes. The left and right elec- 0
trodes are assumed to be described by the same Lorentzian R T
density of statesDOS). The self-energies due to the tunnel-
ing into the electrodes are found in a closed form in this case. FIG. 3. Temperature and bias voltage dependence of the self-

The auxiliary Green’s function for the active d@(ij;x) and  energy of a side-connected d&tTemperature variation of the self-
the effective Anderson hybridization function for the side-€nergy is displayed irie). The panelb) is the magnified view of

= ~ . the panel(a) nearo=0. With decreasing temperatures, the struc-
connected doB[I'¢i(w) =I' (0) + I'r(w)] are given by the  y,0"in the self-energy becomes sharper near0. Temperature

equations variations ~ are T/T«=31.6,10,3.16,1,3.2610 1,10 1,3.16
X1072,1072,3.16x1073,10° 3, At T=10"3X Ty, the variation of
B (0)= 1 4.1) the self-energy with increasing bias voltage is displaye@)jnThe
A D ' ' source-drain bias voltages are varied fred=0 to eV=20X Ty
ﬁw—EA—Fth+iD by the amount X Ty .
- D? m|Eg| )
_ 2 TK=F><ex;{ - . 4.3
Tp(w) =T W] [ﬁw(ﬁw—EA)—FD]er(ﬁw—EA)ZIZzZ') 2l er
4.2

Herel .4=|W|?/T is the effective Anderson hybridization at
HereD is the conduction-band width of the Lorentzian DOS. @ =0 andE,=0.

The tunneling rate of an active détinto the electrode§ Self-energiesThe self-energy. s of a side-connected dot
=TI'| + Ty or the effective bandwidth of Anderson hybridiza- Sis obtained from the Green’s functidds, which is calcu-
tion T (@) will be taken as an energy unit in our numerical lated from Eq. (3.16, using the relationYg=[Dg]*
works. For this model, the Kondo temperature at zero—[Dg,] 1. The imaginary part ok is displayed in Fig. 3.
source-drain bias voltage can be estimated within an order ddisplayed results are corrected to satisfy the causality rela-
1 by the equation tion for the Green'’s function at the active datThis correc-
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2 T T T T 0-4 T T T T
(a)
15 - 0.3 | (a) -
) 8
= 1F . = 02 .
<C <C
0.5 . 0.1 .
0 1 1 1 0 1 1 1 1
2 1.5 1 0.5 0 0.5 1 4 2 0 2 4

Ag(w)
Ap(®)

) 3
= &
< <
0 L L 0 1 1
'0.1 '0.05 0 0.05 0.1 _0-1 _0-05 0 0-05 0-1
T /T

FIG. 4. Temperature and bias voltage dependence of the spectral F|G, 5. Temperature and bias voltage dependence of the spectral
function Ag(w) at a side-connected d& (a) and (b) show the  function A,(w) at the active do&. Due to the Fano interference,
developments of a Kondo resonance peak with decreasing tempergme spectral functiom\,(w) becomes depleted near=0 as the
ture. The panelb) is a magnified view of the panel). The  temperature is lowered beloWy , as shown ir(a) and(b). When a
bias voltage dependence of the spectral functigf{w) at T finjte bias voltage is applied, the spectral depletion is refilled and
=10">xT is displayed in(c). The Kondo resonance peak is pro- the two-peak structure ilg(w) is manifested as the double-dip
gressively suppressed with the increasing bias voltage and develoggycture inA,(w). Temperature and voltage variations are the
into a two-peak structure. Temperature and voltage variations arggme as in Fig. 3.
the same as in Fig. 3.

tion procedure is explained in Appendix C; see also Ref, 182t @ side-connected dSevelops the Kondo resonance peak

With decreasing temperature, a sharp feature develops ne3far«=0 with decreasing temperature beldw<T . The
=0, which is a sign of a Kondo resonance peak. When 4ereen’s function at the active détis renormalized accord-

finite source-to-drain bias voltage is applied, the sharp strudnd t0 Eq.(2.22. As the side-connected d&develops the
ture nearo=0 becomes smooth and splits into twoaat= ~ Kondo resonance, the spectral functidp(w) at the active
+eV/2. dot A is depleted neaw=0. The spectral depletion can be
Spectral functionsThe spectral functions are calculated understood as the destructive interference between the direct
path and the indirect pattFano interferenge The spectral
depletion leads to the suppression of the current flowing
1 through the doA. The width of the depleted region is given
Ai(w)=— —im Di(w), i=AS, (4.4 by the Kondo temperaturét.d) of the dotS When a finite
value of source-to-drain bias voltage is applied, the peak in
and displayed in Figs. 4 and 5. The spectral functefw) As(w) and the dip inAx(w) nearw=0 split into two atw

from the imaginary part of the Green’s functions,
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==*eV2. The two Kondo resonance peaks Ay(w) and 1 . . . .

dips in Ax(w) become pinned at the Fermi energies of the %l

left and right electrode®:!’ 0.8 _mm .
Since the NCA underestimates the one-body contribution = .&ﬁ

of the self-energy2 s (side-connected dptfrom tunneling N; 0.6 - .

into the effective continuum band, our NCA calculation of & -

the spectral function at the active ddshows negative spec- = o4l . J

tral weight near the depleted regi¢violation of the causal- 5 P

ity relation). This is purely an artifact of the NCA. Since the oo L ﬁ i

NCA is based on the expansion in powers of the Anderson “Mmi“

hybridization(in our caséW) and includes only a subset of OT“mﬂ . . . .

diagrams up to infinite order i without vertex corrections, 0.001 0.01 0.1 1 10 100

the underestimation is expected. Though the NCA underes- Ty

timates the one-body contribution of the self-energy, its de-

pendence on the energy and temperature turns out to be cor- FIG. 6. Temperature dependence of linear-response conductance
rect close tow=0 and atT>0 K. The NCA leads to o(T). The conductance &t=0 is suppressed with decreasing tem-

pathological results at and ne@e=0 K14 Erom the Fermi- perature as can be expected from the temperature dependence of the

liquid relation, it can be shown that the spectral function ofslo.eCtraI functionx(w). The conductance is suppressed logarith-

th tive dof | tw=0 at zero temperature. Accord mically due to the enhanced Kondo scattering near the Kondo tem-
. € active 0o IS. Z'erO. alw=0 at zero te pe. a.u e’. ceora- perature and becomes saturated with decreasing temperafiire.
ing to the Fermi-liquid theory, the magnetic ion’s spectral

: . ... shows the scaling behavior over a wide range of temperature. Sym-
funCt'on[A_S(w) in our casgcan be related t(? the ph_ase shift bols mean different sets of model parameters or differing Kondo
of conduction electrongelectrons at the active détin our temperatures.

case at the Fermi energy. The phase shift is determined by

the Langreth-Friedel sum rufns=2(&/m), where the nu- This suppressed behavior o T) at low temperatures is
merical factor 2 accounts for two possible spin directions, gnother example of zero-bias anomaliZBA’s) observed in
several mesoscopic devices. Scattering of conduction elec-
1  _mng trons off the Kondo impurities is one of the scenarios ex-
ﬂ.reﬁs'nzT* (4.5 plaining ZBA'’s. Depending on the topology of mesoscopic
devices and Kondo impurities, the ZBA can lead to the en-
whereT o= |W|?T is the effective Anderson hybridization hanced or suppressed conductance at low temperature.
for a side-connected d@& at w=0. With complete screen-  As expected from the Kondo effect, the linear-response
ing, ng is equal to 1. Inserting the Fermi-liquid relation into conductancer(T) shows the scaling behavior over a wide
Eq. (2.22, it can be shown that the spectral function of therange of temperature. Several curvesodfT) for different
active dotA vanishes ato=0, or A5(0)=0. sets of model paramete(differing Kondo temperatupecol-
To compensate for the NCA’s underestimation of the selflapse onto one curve as shown in Fig. 6.
energy, we corrected the self-energy by adding a term pro- Differential conductanceThe current flowing from the
portional to one-body self—energyv|25;\(w) to it such that Ieft'to right electrode is calculated.usmg Eq.Zla). l?n‘fer—
the spectral functiorA, of the active dot remains non- ential conductanc&(T,V) =d1/dV is obtained by differen-

: L ; tiating the current with respect to a finite source-drain bias
negative definite and\,(0)—0 with the temperature ap- . ) . O L .
proaching zero. Since the contribution to the self-energ;}’onage' Differential conductance is displayed in Fig. 7. With

coming from the hybridization with the effective continuum decreasing temperaturel/dV is suppressed near zero

band is of one-body nature and temperature—independerﬁo'“'rce'Olrain _bias voltage. _The pseudogap bEhaVior .Of the
this correction procedure is not a bad idea spectral function at the active quantum dotexplains this

Linear-response conductancdhe linear-response con- |-V characteristic.
ductanceo(T) is calculated by differentiating Eq2.213
with respect to the source-drain bias voltagé/at0, V. CONCLUSION

In this work, we studied the transport properties of paral-
4.6 lel double quantum dots when only thetivedot is cou_pled
' to the two external electrodes and the other dosite-
connectedo the active dot. When the active dot lies in the
As shown in Fig. 6¢(T) is suppressed with decreasing tem- conductance peak region and the side-connected dot in the
perature. The conductance shows a logarithmic dependen@voulomb-blockade region, the current flow through the ac-
on temperature near the Kondo temperature. From Fermtive dot is suppressed due to the Kondo scattering off the
liquid theory, it can be expected that the conductance is comeffective spin in the side-connected dot. Suppressed conduc-
pletely suppressed at zero temperature. The electron flow tance at low temperature and near zero bias voltage can be
blocked by the destructive interference between two differentinderstood in terms of Fano interference between two paths:
paths: the direct pathL(—A—R) and the indirect onel(  direct path of left electrode—active dot-right electrode and
—A—S—A—R). indirect path of left electrode—active dot—side-connected

As(0)=

df(e)

Je

2e?
o(T)= TJ’ de T(e)
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1 T T T T T T T T T ﬁw_ES
D;—\((‘)): r 2’
[ho—Eg]X[hwo—Ex—2i(w)]—|W|
(A5)
ho—Ex—2L(w)
Di(w)= A .
[ho—Es]X[ho—Er—2¢(w)]—|W|
(A6)
Due to the Fano interference, the spectral function of the
o P T T T T R T active dotA vanishes atv=Eg. On the other hand, the spec-
6 1 2 3 4 5 6 7 8 9 10 tral function of the side-connected d&is peaked atw
eV/ Ty =Eg. The nonequilibrium distribution function of the d&t

. . ) . is also readily calculated,
FIG. 7. Differential conductanc&(T,V)=dl/dV with varying Y

temperature. The differential conductance is progressively sup-

pressed near zero bias voltage with lowering temperature. From top, E,f(w) =2I' (0)f (w)+ 2T g(0)fr(w),
the temperature variations are T/T¢=10,3.16,1,3.16 =~
x1071,1071,3.16x1072,10 2,10 2. The last three curves cannot —ImZy(0)=T (0)+Tg(w), (A7)

be distinguished with the naked eye.
Sa)  Ti(o)f(0)+Tgr(o)fr(w)

dot—active dot-right electrode. Our study suggests the pos- f q(w)=

sibility that the current flowing through one quantum dot can -2 Imig(w) - I' () +Tr(w)
be controlled experimentally by an additional side-connected _ )
quantum dot. The full self-energies of the active détare
ACKNOWLEDGMENTS Sa(0)=2T (0)f () + 2T k(o) fr(w)+|W|?DS(v),
This work is supported in part by the BK21 project and in r —S8( )= —2iIT 4T
part by the National Science Foundation under Grant No. Ta(0) = 24(@) (@) +Tr(w)]
APPENDIX A: NONINTERACTING CASE: U,=Ug=0 To determineD 5 (w), we use the conditiohs=0 (the num-

When U,=Ug=0, both active and side-connected dotsber of electrons in the da remains the same

become resonant levels. The current and its noise can be

obtained analytically in a closed form. The self-energies of ”Dg(w)ZZWFL(“’)fL(“’)+FR(“’)fR(‘”)~

A(). (A9)

the dotsA andSare I' (0)+T'r(w)
SA(LE) =3 (tt) +|W?Dgy(t,t'), (Al)  HereAg(w)=d(hw—Esy).
5 Inserting all the equations into the expression of the cur-
So(t,t")=|W|?Da(t,t"). (A2) rent(2.7), we find the current flowing from the left electrode
o . to the right one,
Here the one-body self-enerdy, is given by the equation
ot 012G (K-t.t! =63, [ 3201y (w)" @)Dy (w) A fr(w) ~ fu(@)]
2(t)=g 2 Ve(K)Gepkitt!), =82 | 5 A U(@)TR(0)Da(@)TTR(w) 1,
p
and the auxiliary Green’s functiori3, andDs are given by +2|W|T' (0)|D)(0)]’[Ds () — 27f (0)Ag(w) ]}
the equations
e
23 [ deTartata-fue (A10)

'DA(t,t’)=DAo(t,t')+f dtlf dt, Da(t,ty)
¢ ¢ The transmission spectral functiofi(e) is given by the

X Z¢(ty,tp)Dpo(tz,t"), (A3)  equation
Dg(t,t')=Dgy(t,t"). (A4) | W|?Ag(€)
S * . T()=4T(TRIDN O 1+ £ 55T (o
The self-energy of the auxiliary Green’s functibr, is given - R
by 2 a(t,t") =2(t,t"). =MA (€) (A11)
The retarded Green'’s functions can be readily obtained, I (e)+Tr(e) A

245326-10



SUPPRESSION OF CURRENT IN TRANSPORT THROUGH . .. PHYSICAL REVIEW6B245326

1.2 L T T T transmission coefficientT(e) and the Fano factorF
1 =Sy/2el. Due to the Fano interference, the transmission co-
0.8 efficient is completely suppressed at=Eg, the energy
06 level of the side-connected dot. This structure leads to a dip
0.4 in the Fano factor. The Fano factér takes the following
0.2 values atv=0 andV—oo:

0

EV—0)—1 AT\ T E2
(V=0)= (T +TR)? E4+ (EAEs—W?) T2’
2T\ Tr
F(V—oo)=1— T 1 TR2

Here I'=I"| +I'g. The limiting value ofF at eV>T" is
solely determined by the tunneling ratéy, andI'y.

APPENDIX B: INTERACTING CASE: U,#0 AND Ug#0

1 : : : : When both dot#\ andSare strongly correlated, the model
N © ] system becomes highly nontrivial due to many-body effects.
5 In this section, we derive the effective spin exchange inter-
% 0.6 T T action when both dots lie in the Kondo limit or in the ab-
oy 04 1 sence of charge fluctuations. Our model spadeand its
0.2 § orthogonal spacéV are then given by
0 1 1 1 1
0 2 4 6 8 10 M=|Aa)2|SB)=|Aa;SB), a,p=1,l, (BD)
eVv/ir
FIG. 8. Tunneling coefficients and Fano factofTat 0 K. Due M=[Aa;Sp), |Ap;Sa), |Ap;Sp’),
to the Fano interference, the transmission coefficignrt) is com- B ) .
pletely suppressed whem=Eg, the energy level of the side- a,B=1,1; pp'==. (B2)

connected dot. The Fano factdf=Sy/2el, has a dip structure
accordingly. The model parameters &g=0, Eg/I"'=0.2 for dis-
played curves. Ina) and (b), W/T'=0.3 (1.0) for solid(dashed
line, respectively. In pandk), the values ofW/T" are varied from |i +>:di)r¢d1|0>,|i _>: |O),i =A,S,
the bottom successively as 0.1,0.2,0.3,0.4,0.7,1.0,1.5.

Here « and B represent the spin-up or -down state, while
andp’ are the isospin state:

where|0) means the empty state of a quantum dot.
The current noise, defined as the current-current correlation To find the effective spin-exchange Hamiltonian, we need
function, can be obtained in a closed form in the noninter4o evaluate the following matrix elements:
acting case,
(Aa;SI|H4|Au;Sp)=0,
S(t,t")=(SI(t)51(t"))+ {8l (t")SI(1)). (A12)
(Aa;SBIH|Ap;Su)

Here 51 =1 —(I). Defining the current Green'’s function by
=65 (AalH{|A
i1Gy, (t,t")=(Tal(1)dl(t")), (A13) p.ulPalHilAp)
the current-current correlation function can be written as =68p,X Z V;(R)Cplzaﬁp,f
S(t,t")=4AG;, (t,t')+AG (t',t). Six diagrams are contrib- pk

uting to the current noise and the static current ndge

=S(w=0) is given by the well-known formufd +(_1)a*l/2§: Vp(lz)C:,;z;5p,+ ,
4e?
S():Tf de T(e){f (e)[1—TfL(e)]+Tr(e)[1—Tr(e)]} <A0‘;S:8|H1|AP;SP’>:(_1)a71/2\/\/5a+ﬁ,05p+p/,o-

4¢e2 When the charge fluctuations can be neglected, we find the
+ TJ de T(e)[1-T(e)[{f ()~ fr(e)}>. (A14) effective spin-exchange Hamiltonian

The first line is the thermal Johnson noise and the second

~ _ - —), T_) l - = . 3
line is called the shot noise coming from a finite source-drain Hi= %}1 p'ZE’B Jppr (kK )CpkaZ O apCpk " Sa
bias voltage. o
Typical results aff=0 K are displayed in Fig. 8 for the +Jas(Sa-Ss—3), (B3)
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larger than two. On the other hand, the causality is violated
, (B4)  for the case of one channel near0 at temperatures below
the Kondo temperatur€y . The recently developed conserv-
ing t-matrix approximation(CTMA) (Ref. 21 may have a
. (Bb) chance to overcome this pathology. In this paper, we are
going to remedy this pathology of the NCA kdding a

Electrons are scattered off an effective sfipat the active ~©ne-body self-energy correction to the self-ene¥gyw) to
dot and can flow from one electrode to the other. Sicés satisfy the Fermi-liquid relation. The self-energy for the dot

) ) - S can be written as a sum of two contributions,
coupled antiferromagnetically t85, the occurrence of en-
hanced Kondo seattering at I(_)w temperature (_:lepends on the Ers(w)zzﬁyb(wﬁzb(w), anb(w):|w|25r(w)_
magnitude of antiferromagnetic couplidgg relative to, e.g., (C1)
the Kondo temperature. Wheh Ty, a spin-singlet for- . _
mation between two dots is favored over the many-bodyl e self-energ@\ca(w) calculated from the NCA is known
Kondo singlet state and the enhanced Kondo scattering is né® Show the correct energy and temperature dependence near
expected. On the other hand, whp>J,s, a Kondo sin- @=0 and T=0. (Temperature must be higher than the
glet state is expected to be favored over a spin-singlet stafe@thogical temperature estimated in, e.g., Ref) We as-
between two dots and the conductance will be enhanced dgaime thatX,(w) is well-captured in the NCA. Since
to the Kondo scattering at low temperature. Detailed study of M 2{;(@)*w?+[7ksT]* for o, T<Ty (see Ref. 22 we
this model in equilibrium is in progress using Wilson’s nu- add the correction term tyca in order to makeD};(w)
merical renormalization group method and will be publishedobey the causality relatiof¥,
elsewhere.

. .1
Jopr (K K') =2V (K) V5, (K )[_—EA

+—
EatUa

JD:2|W|2

+
EptUsr—Es EgtUg—En

S (@)~ ca(@) + (|W2=Wic)Da(w).  (C2)

APPENDIX C: FERMI-LIQUID RELATIONS Here W5, is determined numerically from the calculated

In this section, we discuss the correction of pathologica® nca(@) at the lowest possible temperature,
behavior of NCA neaw=0. The Green’s function of the

dot A is related to that at the d@ by Eq. (2.22. The cau- WaCA:_ ImSx(0) (C3)

sality is seldom violated when the number of channels is r NCALH
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