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Fermi-edge singularities in linear and nonlinear ultrafast spectroscopy

D. Porras, J. Ferna´ndez-Rossier,* and C. Tejedor
Departamento de Fı´sica Teo´rica de la Materia Condensada, Universidad Auto´noma de Madrid, Cantoblanco, 28049 Madrid, Spain

~Received 5 September 2000; revised manuscript received 30 January 2001; published 6 June 2001!

We discuss Fermi-edge singularity effects on the linear and nonlinear transient response of an electron gas
in a doped semiconductor. We use a bosonization scheme to describe the low-energy excitations, which allows
us to compute the time and temperature dependence of the response functions. Coherent control of the energy
absorption at resonance is analyzed in the linear regime. It is shown that a phase shift appears in the coherent
control oscillations, which is not present in the excitonic case. The nonlinear response is calculated analytically
and used to predict that four wave-mixing experiments would present a Fermi-edge singularity when the
exciting energy is varied. A new dephasing mechanism is predicted in doped samples that depends linearly on
temperature and is produced by the low-energy bosonic excitations in the conduction band.
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I. INTRODUCTION

The promotion of an electron from a localized state in
valence band to an empty state in a partially filled cond
tion band is accompanied by a dynamical response of
Fermi gas. The enhancement of the absorption probab
when the new electron is promoted just above the Fe
level is known as the Fermi-edge singularity~FES!.1 This
phenomenon has been observed in continuous-wave s
troscopy in a variety of doped semiconduct
heterostructures.2,3 FES arises as a result of the interpl
between two different physical processes: the sudden app
ance of a hole potential and the presence of an extra elec
at the conduction band. Both effects produce charge-den
oscillations involving low-energy electron-hole pairs. T
constructive interference between these two effects gives
FES. Following the seminal work of Schotte and Schott4

these low-energy electron-hole pairs can be described as
monaga bosons.

Coherent ultrafast spectroscopy of undoped semicond
tors, where excitons are the relevant excitation, has b
much more widely addressed than that of the doped c
Both linear and nonlinear techniques, like coherent con
~CC! and four wave mixing~FWM!, have been used to stud
the decay of the optical coherence induced by the lase
undoped samples.5 In the case of doped systems, only a fe
experiments has been performed. Kimet al.6 carried out
FWM experiments in n-doped GaAs quamtum wells th
presented FES in continuous-wave spectroscopy. In this
periment it was determined that the carrier-carrier scatte
rate was a decreasing function of the exciting energy~above
the Fermi energy!, in agreement with Landau theory. How
ever, the spectral width of their laser pulses was larger t
the Fermi-energy of the electron gas so that Fermi-edge
citations coexist with higher-energy electrons. Bar-Adet al.
performed FWM experiments under strong magnetic fie
finding indications of the nonlinear response of the FE7

Brener et al.8 performed off-resonant pump and probe e
periments inn-doped GaAs QW, probing the ac Stark shift~a
nonresonant nonlinearity! in contrast with the works by Kim
et al., and Bar-adet al. which measured resonant nonlinea
ties. From the theory side, Perakiset al.9–11 have studied the
0163-1829/2001/63~24!/245321~8!/$20.00 63 2453
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coherent nonlinear response of the FES, either under
trashort laser pulses, or under nonresonant excitation,
when the nonlinearity comes from an intense laser pu
spectrally peaked below the absorption threshold.

Our paper addresses a physical situation slightly differ
from all of the above; a doped semiconductor, in zero m
netic field, is excited by laser pulses spectrally peak
around the absorption threshold, so that absorption ta
place. Moreover, the laser pulses are spectrally narrow~com-
pared to the Fermi energyeF measured from the bottom o
the conduction band! so that the photoexcited electrons ha
energies close to the Fermi level, but the pulses are sho
thanT2 so that transient coherent effects can be observe5

Our main findings are~i! CC of the energy absorbed b
the system~the analogous of CC of the exciton density12–14!
can be performed in doped samples. CC oscillations sho
characteristic phase shift, which depends on the exponen
the continuous wave FES.~ii ! The intensity of the FWM
signal shows a singularity when the exciting frequency
varied near the Fermi edge.~iii ! The optical coherence in
duced by the laser, both in the CC and FWM situations,
an intrinsic exponentialdecay roughly proportional to the
temperatureT. At zero T, the intrinsic decay follows the
well-known power law associated to the FES in the line
response.1

FES can be understood in a model of spinless free e
trons, which only interact with a photoexcited hole.1,15,17

Within the Nozières-De Dominicis scheme we consider
localized hole and a contact interaction:

H5 (
k50

kD

ekak
†ak1~Eg1eF!d†d1

V

N (
k,k8

kD

ak
†ak8d

†d, ~1!

where d† creates a localized hole andek is the dispersion
relation of electrons at the conduction band, created byak

† .
kD is a wave-vector cutoff,V the attractive potential betwee
the hole and the electrons in the conduction band, andN the
linear size of the system. It must be stressed that two dif
ent kind of excitations appear in the Hamiltonian~1!: the
valence hole, and the conduction electron-hole pairs, wh
can be described, close to the Fermi energy, as bos
excitations.4 These conduction electron-hole pairs are tota
©2001 The American Physical Society21-1
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unrelated to the excitons in undoped semiconductors, wh
involve both the conduction and the valence band.

We discuss now some of the approximations involved
Hamiltonian~1!. First of all, we assume that the valence ho
has an infinite mass and it does not recoil in its interact
with the conduction electrons. Considering a finite mass h
would render extremely difficult an analytical calculation
the transient nonlinear response. In general, holes ha
finite mass in real semiconductors. However, there is a n
ber of situations in which the hole can behave as an infi
mass particle. Strong localization of the holes can hap
due to both alloy fluctuations in general and single mo
layer fluctuations in narrow quantum wells. The hole is a
strongly localized in the case of ‘‘acceptor to conductio
band’’ transitions in ann-doped semiconductor slightly com
pensated with acceptor impurities like Beryllium.3 From the
theory point of view, it is well established that the finite ma
of the valence hole reduces the FES, especially
emission.16 Hence, the experimental observation of FES in
real system supports the existence of strongly localized
lence holes.

Second, Hamiltonian~1! only includes a single valenc
hole. This is known to give the correct linear response
semiconductor samples. Nevertheless, in the case of e
tons, two valence hole states must be included in order to
the correct third-order optical response,18 which has a con-
tribution coming from the exciton-exciton interaction. Not
however, that Eq.~1! is analogous to a two-level system~the
valence hole! dressed by the final-state interaction with t
Fermi sea electrons. This implies that the single valence h
case presents optical nonlinearities that do not exist in
excitonic case, and govern the nonlinear response in a
excitation regime. The most important process that inv
dates this approximation is the overlap between the diffe
perturbations induced on the conduction electrons by vale
holes at different sites. The range of this perturbation can
estimated askF

21 . The overlap will be negligible if the den
sity of photoexcited valence holes (nvh) is low enough, so
that the distance between valence holes is greater thankF

21 .
This is the case for typical excitation densities of 109,
1010 cm22 in FWM experiments in doped GaAs quantu
wells with a Fermi energy of 20 meV, so thatkF

21nvh
1/2

'1022. In this range the Coulomb interaction between c
riers at different valence hole sites can also be neglec
Under these conditions, the optical response of a sample
many valence holes will be equivalent to the optical respo
of Hamiltonian~1!.

This paper is organized as follows: In Sec. II we revie
the bosonization approach to the FES linear response.
original contribution starts in Sec. II C, where we use t
approach to obtain the nonlinear optical response of the F
In Sec. III we discuss the predictions of the linear-respo
theory at finite temperature in the case of a CC experim
In Sec. IV we apply our calculation ofx (3) to the case of
various FWM experiments. The discussion of our results
made in Sec. V, where we consider the comparison of
dephasing mechanisms contained in Eq.~1! with other
competing processes.
24532
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II. THEORETICAL FRAMEWORK

A. The bosonization scheme

Since only states close to the Fermi level are excited,
can approximate the dispersion relation byek5(k2kF)/r
with r being the density of single-particle states at the Fe
level. We consider a hole potentialV isotropic and weak, so
that onlys-wave scattering is important. Under these con
tions, the problem becomes that of one-dimensional e
trons with linear energy dispersion. The bosonization
proach allows us to express all the physics in terms of
bosonic fields

bk
†5 (

k85k

kD

ak8
† ak82k /AkN ~2!

with 0<k<kF . The set of operatorsbk , bk
† satisfies bosonic

commutation relations only when one is restricted to the lo
energy range.1 We defineHi as the initial Hamiltonian with-
out a valence hole (d†d50) andH f as the final Hamiltonian
after the photoexcitation of the valence hole (d†d51). They
can be written in terms of the bosonic operators:4

Hi5(
k

k

r
bk

†bk ,

H f5v01(
k

k

r S bk
†1

rV

AkN
D S bk1

rV

AkN
D , ~3!

wherev05Eg1eF2(Vr)2eF is the renormalized hole en
ergy ~we set\51). The indexk in bk

† , bk always runs be-
tween 0 andkF .

Hi andH f are related by a canonical transformation th
describes the effect of the potential created by the vale
hole onto the conduction electrons:

H f5v01U†HiU, ~4!

where

U5expFVr(
k

1

AkN
~bk

†2bk!G . ~5!

Optical properties are determined from the adequate
relation functions of the electric dipole operatorP†

5m a†d† , wherem is the dipole matrix element anda† is
the creation operator of conduction electrons at the locali
hole site. This operator can also be expressed as an expo
tial of Tomonaga boson operators:

a†5 (
k50

kD

ak
†5expF(

k

1

AkN
~bk

†2bk!G . ~6!

B. Linear response

The linear responsex (1)(t) is given~in the rotating wave
approximation! by the expression

x (1)~ t !5 iu~ t !^P~ t !P†~0!&. ~7!
1-2
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P† creates a valence hole, so that the system evolves
der the final HamiltonianH f in the interval (0,t):

^P~ t !P†~0!&5^eiHt P~0!e2 iHt P†~0!&

5^eiH i taU†e2 iH i tUa†&e2 iv0t

5^B~ t !B†~0!&e2 iv0t, ~8!

where

B†~ t !5expF ~11Vr!(
k

1

AkN
~bk

†ei
k
r t2bke

2 i
k
r t!G . ~9!

The original Schotte and Schotte result4 can be extended
to the case of nonzero temperature by considering a bat
Tomonaga bosons at thermal equilibrium in the average~8!:

^B~ t !B†~0!&5expH2(
k

~11Vr!2

kN H @112NB~k!#

3F12cosS k

r
t D G1 i sinS k

r
t D J J, ~10!

whereNB(k) is the Bose-Einstein occupation factor. We a
interested in the long-time limit of the response functio
The cutoff in momentum space in Eq.~10! is kF and it im-
plies a cutoff in energy space,ec5kF /r52eF , as usually
taken in the bosonization procedure. In the limitt@ec

21 we
obtain

x (1)~ t !5 im2u~ t !F i ec

sinh~pkBTt!

pkBT G2a

e2 iv0t, ~11!

where a5(11Vr)2. Expression~11! will be valid in the
case of near-resonance excitation and spectrally nar
pulses, that is,uv2v0u!ec , and (Dt)21!ec (v is the ex-
citation energy!. Condition kBT!ec must also be fulfilled
in order to consider low-energy excitations only. At ze
T, Eq. ~11! recovers the well-known behaviorx (1)(t)
5 im2u(t)( i ect)

2a.
In the spectral domain, the absorption is given byu(v

2v0)(v2v0)(a21) so that FES takes place fora,1. In the
time domain, the FES is characterized by theintrinsic
power-law decay of the response function~with a,1). As
we show below, the decay of the optical coherence, i.e.,
dephasing, is an increasing function ofa, which is the square
of a sum of two terms that have different physical origin a
opposite effects. The first term 1, is related to the addition
a new electron to the Fermi level in the absorption proce
The second term2uVru, is related to the sudden switchin
of the hole potential. The first term makes dephasingmore
efficient while the second one makes dephasinglessefficient.

C. Third-order susceptibility

To study the nonlinear response of the electron gas
concentrate on FWM experiments, which are usually
scribed by means of the third-order susceptibilityx (3). How-
ever it is not evident whether a perturbative expansion
terms of the electric field is justified in the case of t
24532
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nonlinear optical response of Hamiltonian~1!. Primozich
et al.10,11 have shown the validity of such an expansion p
vided that (mE0Dt)2!1. Considering excitation intensitie
of mW, Dt50.7 ps, and known values for the interban
dipole matrix element of GaAs,19 one obtains (mE0Dt)2

'1023. Thus, we can consider terms up to the third order
the electric field for the ultrafast transient experiments
scribed below.

We consider the typical situation in which the system
excited by two mutually delayed laser pulses that propag
along different directions,k1 andk2, with uk1u5uk2u. In any
system with translational invariance and some degree of n
linearity in the optical response, these exciting pulses w
induce an electric dipole that will re-emit light along th
direction 2k22k1. Up to the third order in the external field
the FWM signal is given by

FFWM~ t !5E
2`

t

dt1 dt2 dt3 x (3)~ t2t1 ,t2t2 ,t2t3!

3E1* ~ t2!E2~ t1!E2~ t3!1H.c., ~12!

whereE1,2 are the electric fields in the directionsk1,2. As in
the case of CC, FWM takes place as long as the polariza
induced by the first laser pulse is not wiped out before
second pulse reaches the sample. For this reason, both
and FWM can be used to measureT2. In undoped samples
x (3) is related to the exciton-exciton interaction. In the ca
of the FES we are going to see thatx (3) is not zero even for
noninteracting electrons. This constitutes an important diff
ence between the doped and undoped systems.

Performing a perturbation expansion up to third order
the electric field, it can be shown thatx (3) is proportional to
the average of four polarization operators:20

x (3)~ t2t1 ,t2t2 ,t2t3!52 i @u~ t2t1!u~ t12t2!u~ t22t3!

3^P~ t !P†~ t1!P~ t2!P†~ t3!&

1u~ t2t1!u~ t12t2!u~ t2t3!

3^P~ t2!P†~ t1!P~ t !P†~ t3!&#. ~13!

In ^P(t)P†(t1)P(t2)P†(t3)& the second and fourth polar
ization operators create a valence hole, so that the sys
evolves underH f inside the intervals (t2 ,t3) and (t,t1). Us-
ing the same argument that leads to Eq.~8!, it is straightfor-
ward to show that

^P~ t !P†~ t1!P~ t2!P†~ t3!&5m4^B~ t !B†~ t1!B~ t2!B†~ t3!&

3exp@2 i ~ t2t11t22t3!v0#.

~14!

Using the definition ofB† given by Eq.~9!, we can ex-
pressx (3) as the thermal average of a product of four exp
nentials of bosons. The average of a product of any num
of exponentials of bosons can be factorized into tw
exponential correlation functions. In Appendix A this fact
used to prove the general result:
1-3
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^B~ t0!B†~ t1! . . . B~ tn21!B†~ tn!&

5 )
j . i 50

n

^B~ t i !B
†~ t j !&

(21)11 i 1 j
, ~15!

wheren is an odd integer.̂B(t i)B
†(t j )& is given by Eq.~10!

and, in the long-time approximation, by Eq.~11!. The non-
linear susceptibilityx (n) at any ordern can be expressed b
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means of products ofn11 polarization operators of the form
^PP† . . . PP†&. Each polarization operator can be express
as an exponential of bosonic operators. Thus, Eq.~15! allows
the calculation of the optical response of the FES at a
order in the electric field in the long-time limit, under th
approximations discussed in Sec. I.

Application of Eq.~15! to the case ofx (3) yields the result
^P~ t !P†~ t1!P~ t2!P†~ t3!&5m4^B~ t !B†~ t1!&^B~ t1!B†~ t2!&^B~ t2!B†~ t3!&^B~ t !B†~ t3!&

^B~ t !B†~ t2!&^B~ t1!B†~ t3!&
exp@2 i ~ t2t11t22t3!v0#.

~16!
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This result implies thatx (3) will present singularities
similar to that ofx (1). Using the result of Eq.~11! in Eq. ~16!
we obtain the followingT50 expression forx (3):

x (3)}F ~ t2t1!~ t12t2!~ t22t3!~ t2t3!

~ t2t2!~ t12t3! G2a

. ~17!

This simple expression is valid for 0<a,1. Out of this
range the expression is more complicated. Equations~12!,
~13!, and~16! allow us to calculate the FWM signal in nea
resonance experiments, under the same conditions expla
under Eq.~11!.

III. LINEAR RESPONSE: COHERENT CONTROL
EXPERIMENTS

In CC experiments, the sample is excited by a pair
phase-locked identical laser pulses delayed in a timet with
respect to each other. The total energy absorbed by the
tem W, as a function of the delayt, can be measured b
detecting the reflectivity changes produced by the photo
citation density12 or by measuring the total luminiscens
emitted by the sample.13 These experiments are carried out
the linear- regime, where the total energy absorbed after p
toexcitation can be easily calculated by means of the line
response function:

W~t!52 ImE
2`

`

x (1)~ t12t2!E* ~ t1!E~ t2!dt1 dt2 .

~18!

The electric field of the phase-locked laser pulses is gi
by E(t)5E(t)e2 iv0t1E(t2t)e2 iv0(t2t). The pulses are
thus spectrally peaked around the FES transition. The e
lope functions are Gaussian pulses of widthDt: E(t)
5E 0e2t2/Dt2. Substituting the electric field into the expre
sion ~18! it can be clearly seen thatW(t) depends strongly
on t. It oscillates with frequencyv0, showing that the ab-
sorption in doped semiconductors, close to a Fermi-edge
gularity, can be coherently controlled. The phase and
amplitude of these oscillations change also witht. We can
distinguish three different regimes:
ed

f

ys-

x-

o-
r-

n

e-

in-
e

~i! For t,Dt, the two pulses overlap: the absorbed e
ergy oscillates between 0~destructive interference! and
4WSP ~constructive interference!

W~t!52WSP@11cos~v0t!#, ~19!

whereWSP is the energy transfered by a single pulse.
~ii ! For t@Dt,1/pkBT, the decay of the polarization be

tween the two pulses is exponential, as can be seen clear
the behavior ofx (1) for long times. It can be easily prove
that in this regime

W~t!52WSP1WCCe2apkBTtcosS v0t1a
p

2 D , ~20!

whereWCC is the constant prefactor before the exponen
decay and is given by

WCC52p~Dt !2S ec

2TD 2a

expF1

2
~aDtkBT!2G . ~21!

In the general caseWCCÞ2WSP, due to the finite width
of the exciting pulses and the fact that the decay is non
ponential for short times. Equation~20! shows important dif-
ferences with the case of CC of excitons. First of all, a ph
shift of ap/2 appears in the CC oscillations at longt. This
surprising behavior is not observed in undoped sample12

where the maxima of the oscillations are exactly att
52np/v0. The great interest of this phase shift in the C
oscillations resides in the fact that it is independent of
relative importance of other competing dephasing proces
This could allow a more accurate determination of the F
exponenta, than in continuous-wave photoluminescence e
periments.

Second, the exponent of the coherence decay behave
early with temperature, with the factorpa. In Sec. V it is
shown that this one is the most important temperat
dependent dephasing mechanism at low temperatu
Thus, the measure of the decay time of the CC oscillati
could allow another independent determination of t
singularity exponent.

~iii ! For very low temperatures, we can have 1/pkBT@t
@Dt. In this range, the decay of the polarization is none
ponential, even when the pulses do not overlap, becaus
1-4
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the behavior ofx (1) at short times. However, the conditio
t,Dt.ec

21 can still be fulfilled, so the asymptotic approx
mation that leads to Eq.~11! is valid. This nonexponentia
decay is another important difference with the undoped c

In an intermediate region of parameters, the integration
Eq. ~18! must be performed numerically. The result of th
calculation is presented in Fig. 1, forT5124K, and clearly
shows the different regimes and the phase shiftap/2 and
exponential relaxation for longt.

The main conclusion from this section is that the abso
tion in doped semiconductors, close to the FES, can be
herently controlled. The decay of the polarization predic
in cases~ii ! and ~iii ! is not produced by any inelastic
scattering mechanism or some sort of inhomogeneous br
ening as it happens in the CC of excitons.14 Instead, it is an
intrinsic effect due to the excitation of a continuum
bosonic modes with a distribution of energies that impl
destructive interference in the time domain. In the absenc
the potential created by the photoexcited hole (V50), this
effect has been described as inhomogeneous broadeni
momentum space.6 However, the sudden switching of th
hole potential partially compensates the effect of the mom
tum space broadening, reducing the dephasing. This situa
resembles that of the experiment of Wehneret al.,21 where
the electron-LO phonon scattering rate is coherently c
trolled. In our case, the Tomonaga bosons play the role of
phonons in that experiment, with an important difference:
Tomanaga bosons form a gapless continuum of mo
which leads to the dephasing of the optical polarization.

FIG. 1. Upper panel: evolution of the absorbed energy a
function oft for Gaussian pulses of widthDt50.7 ps,a50.7, and
v051.5 eV. Only the envelopes of the CC oscillations are plott
corresponding to temperatures between 1 K~outer! and 4 K~inner!.
Lower panels: CC oscillations att50 ps~left! andt53 ps~right!
for the caseT54 K. In the right panel the maxima of the oscilla
tions are not at integer values ofv0t/(2p), showing a characteris
tic phase shift.
24532
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IV. NONLINEAR RESPONSE: FOUR WAVE-MIXING
EXPERIMENTS

In this section we study the usual transient FWM expe
ments in which the exciting fields appearing in Eq.~12! are
E1,2(t)5E1,2(t)e

2 ivt, whereE1,2(t) are Gaussian pulses o
width Dt, delayed int with respect to each other@E2(t
2t)5E1(t)#, andv is the central exciting frequency, whic
is taken at the FES resonance.

A. Decay of the four-wave mixing intensity with temperature

We are now interested in the properties of the nonlin
optical response, rather than in the dephasing processe
tween the pulses. Therefore, in Secs. IV A and IV B, we ta
t50. From the factorization formula forx (3) given in Eq.
~16!, we expect to find, in a FWM experiment, some of t
characteristics of the FES in linear response, such as a st
dependence on temperature.

In order to test this idea we calculate the time-integra
FWM ~TI-FWM! intensity,I FWM5*dtuFFWM(t)u2 when the
sample is excited at resonance (v5v0) by Gaussian pulses
with Dt50.7 ps. In Fig. 2 we present our results for th
particular casea50.7, as a function of temperature. We fo
cus on the interval between 10 and 30 K, for comparis
with experiments7 ~at higherT the conditionkBT!ec is not
satisfied!. In this range our result for the decay with temper
ture can be fitted to an exponential forme2T/T0(a), so that we
can obtain a characteristic temperatureT0(a) that governs
the decay of the FWM signal. The parameterT0 is plotted as
a function ofa in the inset of Fig. 2. A similar exponentia
decay of the TI-FWM of a doped sample under high ma
netic field has been observed by Bar-Adet al.7 If we apply
our zero magnetic field theory to their result, we would inf
a'0.7, a good value to get FES as the ones observe
continuous-wave spectroscopy.2 This could be a hint that the
physics of the FES under magnetic fields could be descri
by a model similar to the one presented here, but furt
work is needed to clarify this point.

B. Four-wave mixing intensity as a function of the exciting
frequency

Now we treat the case in whicht50 and the exciting
pulses are slightly out of resonance (vÞv0). Condition uv

a

,

FIG. 2. Temperature dependence of the TI-FWM signal fora
50.7, t50, andDt50.7 ps. The inset shows the exponential d
cay parameterT0 between 10 and 30 K as a function ofa.
1-5
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2v0u!ec must be satisfied in order for the bosonization p
cedure to be valid. We have calculated the TI-FWM intens
as a function ofv for Dt50.7 ps, a50.7, and different
temperatures. Our results are presented in Fig. 3, where
shown that the FES appears as an asymmetric resonan
the FWM spectrum, similar to the one which is observed
linear spectroscopy. The FES resonance is strongly s
pressed with temperature and shows Lorentzian broade
for high T, as expected from the exponential decay ofx (3) at
long times. This fact allows us to unambiguously determ
the observation of the FES in the nonlinear regime. A stro
resonance in the FWM signal as a function of the excit
frequency was reported in the work of Kimet al.,6 in a
doped sample, which also showed a FES resonance in
photoluminescence experiments.

C. Four-wave mixing signal as a function oft

In a transient degenerate FWM experiment the nonlin
signal can be studied as a function of the time delay,t. We
consider first the time resolved FWM~TR-FWM! signal,
FFWM(t,t), which is a function of both the detection timet
and the delayt. FFWM(t,t) can be estimated by assumin
that the laser-pulse amplitudes can be approximated bd
functions~obviously, this is justified in the caset@t@Dt).
Using this assumption, simple analytical expressions can
obtained:

FFWM~t,t !}2 im4~ i ec!
23au~t!u~ t2t!e2 iv0t

3Fsinh2~pkBTt!sinh2@pkBT~ t2t!#

~pkBT!3sinh~pkBTt!
G2a

1H.c.

~22!

For large t, FFWM(t) presents an exponential decay e
@2apkBTt# which becomes a power-law decayt2a at zero
temperature.22

Usually, the TI-FWM intensity as a function oft,
I FWM(t)5*dtuFFWM(t,t)u2, is measured in the
experiments.7 In order to obtain realistic results beyond th
deltalike pulses approximation, we have performed num
cal integrations of Eq.~12! with Gaussian pulses havingDt

FIG. 3. TI-FWM signal as a function of the exciting frequen
v2v0, for the caseDt50.7 ps, a50.7, and different tempera
turesT50.5, 1, 2, 5, 10, and 15 K~from top to bottom!.
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50.7 ps anda50.7 as shown in Fig. 4, for different tem
peratures. The maximum is located aroundt50, for which
the overlap of the laser pulses is maximum.I FWM(t) can
show nonexponential relaxation for 1/pkBT.t@Dt, in ex-
act analogy to the case of the dephasing of CC oscillati
discussed in Sec. III. Fort@Dt,1/pkBT, it can be analyti-
cally shown from our calculation ofx (3) that the decay is
exponential, of the forme22apkBTt. It must be pointed out
that the two different regimes of the TI-FWM as a functio
of t shown in Fig. 4 have been observed experimentally23 in
the presence of a magnetic field.

V. DISCUSSION AND CONCLUSION

The main concern of this paper is the temporal evolut
of the laser induced optical coherence of a doped semic
ductor in the regime where FES is observed. In marked c
trast with undoped semiconductors, the induced cohere
decays, even at zero temperature, without the interventio
any inelastic scattering or statistical broadening. We refe
this decay as intrinsic dephasing. Its origin lies in the ex
tation of a continuum of low-energy conduction electro
hole pairs whenever a hole is promoted from the vale
band to the conduction band. In the spectral domain, th
low-energy excitations can give rise to the FES. In the ti
domain they produce the intrinsic dephasing.

We have presented calculations of the optical respons
a doped semiconductor, as modeled by Hamiltonian~1!, in
some standard experimental situations. The question
whether the physical processes not included in that Ham
tonian will obscure our predictions. There are three ad
tional sources of decay of the optical coherence that
compete with the ‘‘intrinsic dephasing:’’ electron-electro
(e-e) scattering, electron-phonon scattering, and inhomo
neous broadening of the localized valence hole levels.5

A rough estimate of the decay time of the optical coh
ence due toe-e scattering,T2

e-e , can be obtained as the in
verse of the scattering rate of electrons ateF . For two-
dimensional electrons it has been shown24 that (T2

e-e)21

}T2log(T), at kBT!eF . At low T, this e-e dephasing is less
important than the FES intrinsic dephasing~linear inT). Em-

FIG. 4. TI-FWM signal as a function oft ~in ps! for a50.7 and
Dt50.7 ps at different temperatures from 1 up to 5 K by succes-
sively increasingT in 1 K steps.
1-6
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ploying a Thomas-Fermi approximation, we can estim
T2

e-e515 ps at 10 K andeF520 meV, showing a dephasin
much slower thanT2

FES51/apkBT50.35 ps, for a50.7
and the same temperature. The effect of electron-elec
interaction in the nonlinear optical response of dop
samples has been considered in more detail by Primo
et al.10,11 for pump-probe experiments, whereuE2u@uE1u.

The electron-phonon interaction will also have a contrib
tion, mainly due to the scattering between conduction e
trons and acoustical phonons, which are the relevant la
excitations at low energies. This interaction can be descri
by a deformation potential Hamiltonian,1 which implies a
cubic dependence on temperature of the scattering
(T2

ph)21}T3. We have performed an estimate of this deph
ing time, which yields (T2

ph)21580 ns for an electron a
eF520 meV, T510 K, in a GaAs quantum well.

Thus, both electron-electron and electron-phonon effe
give rise toslower decays of the optical coherence so th
they will not compete with the FES intrinsic dephasing
low temperatures.

The decay of the optical coherence due to the broade
in the distribution of the hole energies depends on the p
ticular details of each sample. However, this dephasing
quite independent of temperature. In the case in which in
mogeneous broadening is more efficient than intrinsic F
dephasing, the experimental study of (T2)21 as a function of
temperature would allow to separate the linear te
(T2

FES)21, which is the most important temperatur
dependent contribution, as we have shown.

Hence, it is our contention that the dynamics of the op
cal coherence of a doped sample in the FES regime, as
scribed in this paper, can be observed. However, the lim
tions of both the Hamiltonian, the bosonization, and
perturbative expansion call for further work on the theo
side.

From the experimental point of view, the realization
the experiments suggested in this paper would permit in
pendent measurement of the singularity exponenta, as well
as the observation of new physical phenomena, like
phase shift in the CC oscillations~Sec. III! or the FES in the
time integrated FWM signal as a function of the exciti
frequency near the Fermi energy.

In summary, we have presented a theory for the trans
optical response of the FES. The use of the bosonizatio
describe the low-energy excitations across the Fermi le
allows the analytical evaluation of the linear and nonline
response both at zero and finite temperature. CC of the
ergy absorbed at resonance with the FES can be perform
CC oscillations show a phase shift that depends on the
gularity exponenta. The FWM signal shows a sharp asym
metric resonance neareF as a function of the exciting en
ergy, and is strongly suppressed with temperature. We h
shown that both CC and FWM experiments could be use
study the decay of the laser induced coherence or depha
In contrast to the case of undoped samples, the bath of
monaga bosons responsible for the FES produces a
dephasing mechanism that depends linearly on tempera
24532
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APPENDIX A: GENERAL EXPRESSION FOR THE
AVERAGE OF N POLARIZATION OPERATORS

In this appendix we prove Eq.~15!, which allows us to
calculate the nonlinear optical susceptibilities at any orden.
First of all we factorize the correlation function into differe
bosonic modes:

^B~ t0!B†~ t1! . . . B~ tn21!B†~ tn!&

5)
k

^Bk~ t0!Bk
†~ t1! . . . Bk~ tn21!Bk

†~ tn!&,

~A1!

where Bk
†(t)5exp@bk* (t)bk

†2bk(t)bk#, with bk(t)5(1
1Vr)ei (k/r)t. We ignore for the moment the indexk
and defineb j5b(t j ). Using the well-known relationeAeB

5eA1Be
1
2 [A,B] we can easily show that

^B~ t0!B†~ t1! . . . B~ tn21!B†~ tn!&

5 )
j . i 50

n

exp@2 i Im~b i* b j !~21! i 1 j 11#

3K expH 2(
i

@~21! ib i* b†2H.c.#J L .

~A2!

The average in Eq.~A2! is calculated assuming a therm
distribution of bosons:

K expH 2(
i

@~21! ib i* b†2H.c.#J L
5expH 2@1/21NB~k!#U(

j
b j~21! jU2J .

~A3!

We expand the absolute value inside of the exponentia
Eq. ~A3!:

U(
j

b j~21! jU2

52(
j . i

@ ubu22Re~b i* b j !#~21! i 1 j 11.

~A4!

We have Re(b i* b j )5(11Vr)2cos(k/r)(ti2tj) and
Im(b i* b j )5(11Vr)2sin(k/r)(ti2tj). Substituting Eq.~A3!
into Eq. ~A2!, and writing explicitly the momentum indexk,
we obtain
1-7
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^B~ t0!B†~ t1! . . . B~ tn21!B†~ tn!&

5 )
j . i 50

n FexpS 2a(
k

H @112NB~k!#

3F12cos
k

r
~ t i2t j !G1 i sin

k

r
~ t i2t j !J D G (21)i 1 j 11

5 )
j . i 50

n

^B~ t i !B
†~ t j !&

(21)i 1 j 11
. ~A5!
2453
The factorization formula implies thatx (n) of Hamil-
tonian ~1! can be expressed as a product of linear (x (1))
susceptibilities, when one restricts to the low-energy s
trum ~that is, resonant excitation at the FES and long-t
response!. A very similar factorization is found in othe
physical problems in which a localized level interacts w
the low-energy excitations of an electron bath, such as
Kondo effect25 or an impurity in a Luttinger liquid.26 In both
cases, the factorization formula allows us to write a per
bation expansion in a parameter that plays the role of
electric field in the FES case.
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