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Hybrid resonances in the optical absorption of a three-dimensional anisotropic quantum well

V. A. Geyler, V. A. Margulis,* and A. V. Shorokhov
Institute of Physics and Chemistry, Ogarev University of Mordovia, 430000 Saransk, Russia

~Received 3 November 2000; published 6 June 2001!

The optical absorption of electromagnetic radiation by an electron gas in a three-dimensional anisotropic
quantum well subjected to a uniform magnetic field arbitrarily directed with respect to the potential symmetry
axes is investigated. The dependence of the absorption coefficient on the radiation frequency, on the direction
of the polarization vector, and on the magnitude and direction of the magnetic field is studied. It is shown that
in the general case there are three resonance frequencies on the absorption curve; the amplitude and the
position of the resonance peaks is investigated. In the limitT→0 ~the case of a degenerate gas!, the absorption
curve as a function of the radiation frequency contains kinks.
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I. INTRODUCTION

The modern development of nanotechnology has ena
the confinement of a finite number of electrons in a localiz
space of a few hundred angstroms~quantum wells and dots!.
In particular, it has become possible to experimentally inv
tigate wells in heterostructures with widths comparable
the cyclotron radius. Note that the physical properties
nanostructures cannot be extrapolated from behavio
larger sizes because of the prevalence of quantum effe
Hybridization of the size quantization and the magnetic o
promises discoveries of new effects in such systems. Th
fore, quantum wells and dots are attracting a great dea
experimental and theoretical interest.1–4 For example, the
magnetization of two-dimensional~2D! isotropic quantum
dots in perpendicular and parallel magnetic fields was s
ied by Meiret al.1 and by Ihmet al.,2 respectively. The case
of an oblique magnetic field is investigated in Ref. 3. T
spectrum and magnetic moment of an electron gas in a
quantum well is studied in Ref. 4.

It is especially important to investigate the optical pro
erties of nanostructures because the study of intraband
cal transitions yields important information about the ene
spectrum, the Fermi surface of electrons, and the value o
electronic effective mass. The effects of frequency hybridi
tion cause the resonance absorption of electromagnetic ra
tion in such structures at the hybrid frequencies but not at
bare cyclotron frequencies. For example, in Ref. 5, f
infrared magnetotransmission measurements on a qu
three-dimensional semiconductor structure were reported
particular, when the sample is tilted to 13° and 30° w
respect to the field direction, the cyclotron resonance sp
into two branches. This splitting is explained just by t
hybridization effect. In Ref. 6, the optical transitions of a
electron gas in a two-dimensional symmetrical quantum w
are investigated. The resonance absorption here was
served at the two hybrid frequencies. For arrays of quan
dots, the resonance absorption at the same frequencies
experimentally investigated by Meureret al.7 The electrody-
namic response of quantum-dot structures containing
210 electrons per dot was observed by Demelet al.8 In par-
ticular, in a magnetic field the resonance splits into t
branches. However, for a strong magnetic fieldB.4 T, an
additional resonance was observed. The optical absorptio
0163-1829/2001/63~24!/245316~7!/$20.00 63 2453
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two-dimensional quantum dots with a few electrons was
perimentally investigated by Sikorski and Merkt.9 The elec-
tronic energy levels of an anisotropic quantum well in a p
pendicular magnetic field and the selection rules for dip
transitions were investigated by Madhav and Chakrabort10

The hybrid-phonon resonance in a 2D quantum well w
studied in Ref. 11. We stress that the above investigati
consist of a model of 2D parabolic quantum dots. The effe
of electron-electron interactions in quantum wells are cons
ered in Refs. 12 and 13. However, as was shown in Ref.
the electron-electron interaction in the case of a thr
dimensional harmonic quantum well has no effect on
electron transitions.

In this paper, we present a theoretical study of the opt
absorption of an electron gas in a three-dimensional quan
well subjected to a uniform magnetic field arbitrarily d
rected with respect to the potential symmetry axes. In
above-mentioned papers, the parabolic potential is use
the confinement potential of quantum wells. The choice
this potential is justified by a number of factors. On the o
hand, it has been proved rigorously that for high-energy l
els, any confinement potential is well approximated by
parabolic one.15 On the other hand, in accordance with th
generalized Kohn theorem,14 electron-electron interaction in
this case has no effect on the electron transitions. Fina
even in the presence of an external magnetic field, a p
bolic potential gives a quadratic Hamiltonian whose sp
trum can be obtained by a purely algebraic method, i.e., w
the help of an appropriate linear canonical transformation
the phase space. This spectrum reduces to the algebraic
of the spectra of three harmonic oscillators with some hyb
frequencies.4

To find an electrodynamic response, one needs the ma
elements of the momentum operators and the position o
However, a direct calculation of wave functions and cor
sponding matrix elements is a complicated computatio
problem. To simplify these calculations, we use linear
nonical transformations of the phase space. By means
these transformations, we find a new coordinate system s
that in the new phase coordinates the wave functions h
the simplest form.

Using this method, we calculate the absorption coeffici
of the electromagnetic radiation of electrons in a 3D ani
tropic quantum well for the general case of an arbitrary
©2001 The American Physical Society16-1
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rection of the magnetic field as well as the polarization v
tor.

To calculate the absorption coefficientG(v), we use an
approach based on the method suggested in Refs. 16 an
The cases of both a nondegenerate and a degenerate g
studied. We consider two important cases in detail, nam
the Faraday geometry~the polarization vector is perpendicu
lar to the magnetic field! and the Feucht geometry~the po-
larization vector is parallel to the magnetic field!.

II. DIAGONALIZATION OF THE HAMILTONIAN

The spinless one-particle Hamiltonian of an electron i
3D anisotropic parabolic quantum well has the form

H5
1

2m*
S p2

e

c
AD 2

1
m*

2
~Vx

2x21Vy
2y21Vz

2z2!, ~1!

where A is the vector potential of a magnetic fieldB, V i
( i 5x,y,z) are the characteristic frequencies of the parab
potential, andm* is the effective electron mass.

It is convenient to choose the following gauge for t
vector potential:

A5~ 1
2 Byz2Bzy,0,Bxy2 1

2 Byx!.

In the phase space (px ,py ,pz ,x,y,z), the Hamiltonian~1!
defines a quadratic form with the sixth-order symmet
matrix.4 By means of a linear canonical transformation of t
phase space, we find new phase coordinates (P,Q) such that
H has the canonical form

H~P,Q!5
1

2m*
~P1

21P2
21P3

2!

1
m*

2
~v1

2Q1
21v2

2Q2
21v3

2Q3
2!, ~2!

where v i ( i 51,2,3) are the hybrid frequencies~they are
functions of the magnitude and direction of the magne
field B). These frequencies are obtained from the followi
sixth-order algebraic equation:4

~V1
22l2!~V2

22l2!~V3
22l2!2vxc

2 ~V1
22l2!l2

2vyc
2 ~V2

22l2!l22vzc
2 ~V3

22l2!l250, ~3!

where v i5Aulu ( i 51,2,3) andv jc5eBj /m* c ( j 5x,y,z)
are the components of the cyclotron frequency.

Hence, the spectrum of the Hamiltonian~2! has the form

Enml5\v1~n1 1
2 !1\v2~m1 1

2 !1\v3~ l 1 1
2 !

~n,m,l 50,1, . . .!, ~4!

and the corresponding wave functions in the new phase
ordinates have the form

Fnml~Q1 ,Q2 ,Q3!5Fn~Q1!Fm~Q2!F l~Q3!, ~5!

whereFk(x) are the oscillator functions.
24531
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Further, we need the transition matrixL5(aji ) ( i , j
51, . . . ,6) from the initial phase coordinate
(p1 ,p2 ,p3 ,x,y,z) to the new ones (P1 ,P2 ,P3 ,Q1 ,Q2 ,Q3):

S p1

p2

p3

x

y

z

D 5LS P1

P2

P3

Q1

Q2

Q3

D . ~6!

The matrix elementsaji are given in the Appendix.

III. ABSORPTION COEFFICIENT

Using the method suggested by Bass and Levinson,16 we
find the absorption coefficientG(v) by applying the pertur-
bation theory for the interaction of electrons with a hig
frequency field,

G~v!5
2pA«~v!

c\Nf
F12expS 2

\v

T D G
3(

nml
(

n8m8 l 8
f 0~Enml!z^n,m,l uHRun8,m8,l 8& z2

3d~Enml2En8m8 l 81\v!, ~7!

where «(v) is the real part of the dielectric constant~we
suppose there is no dispersion in the frequency range con
ered here!, f is the wave vector of photons,f 0(Enml) is the
electron distribution function for the nondegenerate gas,Nf
is the number of initial-state photons with the frequencyv,
and the factor 12exp(2\v/T) takes into account spontane
ous transitions.

The HamiltonianHR representing the interaction with th
high-frequency electromagnetic field has the form

HR5
e

m*
A2p\Nf

«~v!v
ef p8 , ~8!

whereef is the polarization vector andp85p2eA/c is the
generalized momentum.

We calculate the matrix elements ofHR in the new phase
coordinates because in this case the wave function of e
trons has the simplest form~5!. Note that it is easy to find the
momentum operatorp8 (p185px2eAx /c, p285py , p385pz

2eAz /c) from Eq.~6!. Calculation of the matrix elements o
this operator yields

^nmlupi8un8m8l 8&5a i1An11

2
dn,n821dm,m8d l ,l 8

1a i2Am11

2
dm,m821dn,n8d l ,l 8

1a i3Al 11

2
d l ,l 821dm,m8dn,n8 , ~9!
6-2
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where

a1 j5
\

i l j
S a1 j2

m*

2
vcya6 j1m* vcza5 j D

1 l j S a1,j 132
m*

2
vcya6,j 131m* vcza5,j 13D ,

~10!

a2 j5
\

i l j
a2 j1 l ja2,j 13 , ~11!

a3 j5
\

i l j
S a3 j2m* vcxa5 j1

m*

2
vcya4 j D

1 l j S a3,j 132m* vcxa5,j 131
m*

2
vcya4,j 13D ~12!

~herei , j 51,2,3).
In the general case, the direction of the polarization vec

with respect to the potential symmetry axesx,y,z depends
on the azimuth angleu and the polar anglew, respectively:

ef5 i sinu cosw1 j sinu sinw1k cosu. ~13!

Let us introduce the matrixA5(a i j ) ( i , j 51,2,3) with the
matrix elementsa i j from Eqs. ~10!–~12! and consider the
vector

X5
1

Am* \
Aef ~14!

with coordinates (X1 ,X2 ,X3).
Now we write the squares of the matrix elements of

perturbation operatorHR in terms ofX:

z^n,m,l uHRun8,m8,l 8& z2

5
e2

m*

p\2Nf

«~v!v
$X1

2~n11!dn,n821dm,m8d l ,l 8

1X2
2~m11!dm,m821dn,n8d l ,l 8

1X3
2~ l 11!d l ,l 821dn,n8dm,m8%. ~15!

Substituting Eq.~15! into Eq. ~7!, we get

G~v!5
2p2e2

cm* A«v
(

n,m,l 50

`

f 0~Enml!$X1
2~n11!d~v2v1!

1X2
2~m11!d~v2v2!1X3

2~ l 11!d~v2v3!%.

~16!

Equation~16! shows that there are three resonance frequ
cies in the general case.

The normalization constant in the distribution function f
a nondegenerate gas is determined from the equation

(
n,m,l 50

`

f 0~Emnl!5N, ~17!
24531
r
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whereN is the electron density.
To take into account the smearing of the energy lev

caused by collisions, we replace the Diracd function by the
Lorentzian function,

dt~x!5
~pt!21

t221x2
~18!

~heret is the phenomenological relaxation time!.
Substituting the function~18! into Eq.~16!, we obtain the

following expression for the absorption coefficient

G~v!

G0
5

X1
2/v

11t2~v2v1!2
1

X2
2/v

11t2~v2v2!2

1
X3

2/v

11t2~v2v3!2
, ~19!

whereG05pe2Nt/A«cm* .
It is interesting to consider the two most important cas

the polarization vector is perpendicular to the magnetic fi
~the Feucht geometry! and the polarization vector is paralle
to the magnetic field~the Faraday geometry!. Without loss of
generality, we fix they direction as the direction of the po
larization vector and vary the direction of the magnetic fie

The graphs plotted in Fig. 1 show that the absorpt
coefficientG depends on the orientation of the fieldB with
respect to the symmetry axes of the well~the anglesu and
w). The dependenceG as a function of the direction of the
polarization vector is depicted in Fig. 2.

A. Feucht geometry

In this case, the magnetic field is applied in thez direc-
tion. The hybrid frequenciesv1,2 are determined by the for
mula

v1,25
1
2 @A~Vx1Vy!21vc

26A~Vx2Vy!21vc
2#,

v35Vz . ~20!

FIG. 1. The absorption coefficientG as a function of the orien-
tation of the magnetic fieldB with respect to the symmetry axes o
the well ~the anglesu and w) at B51.5 T, v51.2531013 c21,
Vx51.931013 c21, Vy51.131013 c21, Vx51.531013 c21.
6-3
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The values ofXi
2 have a simple form,

Xi
25

v i~Vx
22v i

2!2

vc
2Vx

21~Vx
22v i

2!2
, ~21!

wherevc5vcz .
Let us consider the important case of a symmetric w

Vx5Vy[V. In this case, the hybrid frequenciesv1,2 have
the form

v1,25
1
2 @A4V21vc

26vc#, v35Vz . ~22!

Note that the absorption coefficient depends strongly
the correlation between the size quantization and the m
netic one.

In the case in which the magnetic field is weak (vc
!V), the frequenciesv1,2 can be represented in the for
v1,2;V6vc/2 up to terms of ordervc

2/V.
In this case,X1

25X2
2;V/2, and the absorption coefficien

has the form

G~v!

G0
5

V

2v F 1

11t2~v2V2vc/2!2

1
1

11t2~v2V1vc/2!2

1
Vz

V

~V22Vz
2!2

@vc
2V21~V22Vz

2!2#@11t2~v2V!2#
G .

~23!

For the case of a strong magnetic field (vc@Vx ,Vy) and
a symmetric structure (Vx5Vy[V), Eq. ~22! yields the es-
timatesv1;vc , v2;V2/vc . In this case, the resonanc
frequencyv2 becomes appreciably smaller thanv1. The
same statement is true for the quantitiesX1,2

2 : X1
2;vc , X2

2

;V4/vc
3 .

Thus, in the case of a strong magnetic field, the absorp
coefficient is given by

FIG. 2. The absorption coefficientG as a function of the direc-
tion of the polarization vector with respect to the symmetry axes
the well ~the anglesu and w) at B51.5 T, v51.2531013 c21,
Vx51.931013 c21, Vy51.131013 c21, Vx51.531013 c21.
24531
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G~v!

G0
5

vc

v

1

11t2~v2vc
2!2

1
V4

vc
3v

1

11t2~v2V2/vc!
2

1
Vz

v

~V22Vz
2!2

@vc
2V21~V22Vz

2!2#@11t2~v2Vz!
2#

.

~24!

B. Faraday geometry

In this case, the magnetic field is applied in they direction
~the polarization vector is parallel to the magnetic field!. The
hybrid frequencies are found similarly with the previo
case,

v1,35
1
2 @A~Vx1Vz!

21vc
26A~Vx2Vz!

21vc
2#,

~25!
v25Vy .

The quantitiesXi
2 can be written as

Xi
25

v i@~Vx
22v i

2!~Vz
22v i

2!2vc
2v i

2#2

vc
4Vx

41@~Vx
22v i

2!~Vz
22v i

2!2vc
2v i

2#2
, ~26!

wherevc5vcy .
Let us consider the important case in which the well

symmetric Vx5Vz[V. In this case, the frequenciesv1,3
have the form

FIG. 3. The absorption coefficientG(v) in the case of the
Feucht geometry atV51.631013 c21, Vz5231012 c21, B
50.5 T.

FIG. 4. The absorption coefficientG(v) in the case of the
Feucht geometry atV51.331013 c21, Vz51012 c21, B510 T.
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v1,35
1
2 @A4V21vc

26vc#. ~27!

It follows from Eqs.~26! and~27! that the values ofX1,3
2 are

equal to zero. Hence, we have only one resonance peak a
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frequencyv5Vy . It is interesting to note that the resonan
frequency is independent of the magnetic field. Therefore
the case of the Faraday geometry, the absorption coeffic
has the following form:
G~v!

G0
5

Vy

v

@~V22Vy
2!22vc

2Vy
2#2

$vc
4V41@~V22Vy

2!22vc
2Vy

2#2%@11t2~v2Vy!2#
. ~28!
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IV. DISCUSSION

In this paper, we have investigated the optical absorp
of a three-dimensional anisotropic quantum well subjecte
a uniform magnetic field arbitrarily directed with respect
the potential symmetry axes. Using the method of linear
nonical transformations of the phase space, we have fo
the matrix elements of the momentum operators and the
sition ones. The dependence of the absorption coefficien
the radiation frequency, on the direction of the polarizat
vector, and on the magnitude and direction of the magn
field has been studied. It has been shown that in the gen
case there are three resonance frequencies. We stress th
amplitude and the position of the resonance peaks dep
strongly on the correlations between the size quantiza
and the magnetic one. However, in some cases the disap
ance of one or two peaks is possible. Note that the reson
peaks have a similar symmetric shape. Let us consider t
cases in detail.

First of all, we consider the case of the Feucht geome
Equation~23! shows that the absorption peaks have a dou
structure in the case of a weak magnetic field. Note that
amplitudes of the peaks are approximately equal. The
tance between the doublet components is equal to the cy
tron frequencyvc . The amplitude of the peak at the fre
quencyv35Vz depends strongly on the correlation betwe
the characteristic frequencies of the parabolic potential.
example, if Vz!V or Vz@V, then the amplitude of this
peak is nearly equal to 1, whereas the amplitude of the d
blet peaks is nearly equal to12 ~Fig. 3!. Note that whenVz
5V, there are only two resonance peaks. The amplitude

FIG. 5. The absorption coefficientG(v) in the case of the
Feucht geometry atV51.331013 c21, Vz51014 c21, B510 T.
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the peak at the frequencyv35Vz is equal to zero@see Eq.
~23!#.

In the strong-field limit,vc@V, the amplitude of the peak
at the frequencyV2/vc is smaller than that at the frequenc
v15v2 ~the first amplitude is equal toV2/vc

2 times the sec-
ond one!. As one would expect, a strong absorption is o
served at the cyclotron frequency in the case of strong m
netic quantization.

In the case of a symmetrical well (Vx5Vy5Vz), the
amplitude of the peak at the frequencyv35Vz is equal to
zero. Note that this effect takes place in the case of an a
trarily directed magnetic field. The amplitude of this pe
depends on the relations between the characteristic freq
cies. However, ifVz!V, then the amplitude of this peak i
of the order of the amplitude of the peak at the resona
frequencyv25V2/vc and appreciably smaller than the am
plitude of the peak at the resonance frequencyv15vc ~Fig.
4!. In the opposite case (Vz@V), if Vz@vc , then the am-
plitude of the peak at the resonance frequencyv35Vz is of
the order of the amplitude of the peak at the resonance
quencyv15vc ~Fig. 5!. In the caseVz!vc , the amplitude
of the peak at the resonance frequencyv35Vz becomes
appreciably smaller than that for the peak at the resona
frequencyv15vc ~Fig. 6!.

Let us consider the case of the Faraday geometry. In g
eral, there are three resonance frequencies here. How
when the well is symmetric (Vx5Vz), there is only one
resonance peak at the frequencyv5Vy . We stress that if
the characteristic frequencies obey the relationV25Vy(Vy
6vc), then we cannot employ the method considered h

FIG. 6. The absorption coefficientG(v) in the case of the
Feucht geometry atV5531012 c21, Vz51013 c21, B515 T.
6-5
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because of the vanishing determinant of the transition ma
L.

Note that in the case of the degenerate gas, we obtai
expression forG(v) if we replace in Eq.~16! f 0(«nml) by
f 0(«nml)@12 f 0(«nml1\v)# @heref 0(«mnl) is the Fermi dis-
tribution#. The existence of a resonance is independent of
electron statistics.

The singularities of the curveGdeg(v) incorporate all sin-
gularities of the curveG(v). However, in the case of the
degenerate gas, there exist additional singularities cause
the degeneracy. Namely, in this case there are kinks on
curveG(v). Let us discuss the physical origin of this effec
These kinks are caused by the fact that the energym2\v
crosses the energy of the highest occupied level in the qu
tum well. A neighborhood of a kink is shown in Fig. 7~in-
set!.
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APPENDIX: THE MATRIX ELEMENTS
OF THE MATRIX L

The matrix elementsaji have the form

aji 5
f j i

~Li 135Li !, ~A1!

FIG. 7. The absorption coefficientG(v) in the case of a degen
erate gas atV51.631013 c21, Vz5231012 c21, B50.5 T; the
neighborhood of a kink is shown in the inset.
Li

.

.

2453
rix

an

he

by
the
.

an-

m
-

where

Li5$vyc
2 v i

4~vxc
2 1vyc

2 !1vxc
2 Vz

2~Vx
22v i

2!2

1vzc
2 Vx

2~Vz
22v i

2!2

1@~Vx
22v i

2!~Vz
22v i

2!2vyc
2 v i

2#2%1/2. ~A2!

The values off j i are as follows. Ifi 51,2,3, then

f 1i5
1

v i
@2vzcVx

2~Vz
22v i

2!1 1
2 vzcvyc

2 v i
2#, ~A3!

f 2i50,

f 3i5
1

v i
@vxcVz

2~Vx
22v i

2!2 1
2 vxcvyc

2 v i
2#, ~A4!

f 4i52
1

m*
vxcvycv i , ~A5!

f 5i5
1

m* v
@~Vx

22v i
2!~Vz

22v i
2!2vyc

2 v i
2#, ~A6!

f 6i52
1

m*
vycvzcv i . ~A7!

If i 54,5,6, then

f 1i52
m*

2
vxcvycv i 23~Vx

21v i 23
2 !, ~A8!

f 2i5m* @v i 23~Vx
22v i 23

2 !~Vz
22v i 23

2 !2vyc
2 v i 23

3 #,
~A9!

f 3i52
m*

2
vycvzcv i 23~Vz

21v i 23
2 !, ~A10!

f 4i5v ivzc~Vz
22v i 23

2 !, ~A11!

f 5i50,

f 6i52v ivxc~Vx
22v i 23

2 !. ~A12!
.

*Electronic address: theorphysics@mrsu.ru
1Y. Meir, O. Entin-Wohlman, and Y. Gefen, Phys. Rev. B42,

8351 ~1990!.
2G. Ihm, M.L. Falk, S.K. Noh, J.I. Lee, and S.J. Lee, Phys. Rev

46, 15 530~1992!.
3V.A. Geyler, V.A. Margulis, and I.V. Chudaev, Zh. E´ksp. Teor.

Fiz. 109, 762 ~1996! @JETP82, 409 ~1996!#.
4L.I. Filina, V.A. Geyler, V.A. Margulis, and O.B. Tomilin, Phys

Lett. A 244, 295 ~1998!.
5K. Karrai, H.D. Drew, and M.W. Lee, Phys. Rev. B39, 1426

~1989!.
B

6C.T. Liu, K. Nakamura, D.C. Tsui, K. Ismail, D. Antoniadis, and
H.I. Smith, Appl. Phys. Lett.55, 168 ~1989!.

7B. Meurer, D. Heitmann, and K. Ploog, Phys. Rev. Lett.68, 1371
~1992!.

8T. Demel, D. Heitmann, P. Grambow, and K. Ploog, Phys. Rev
Lett. 64, 788 ~1990!.

9Ch. Sikorski and U. Merkt, Phys. Rev. Lett.62, 2164~1989!.
10A.V. Madhav and T. Chakraborty, Phys. Rev. B49, 8163

~1994!.
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