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Hybrid resonances in the optical absorption of a three-dimensional anisotropic quantum well
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The optical absorption of electromagnetic radiation by an electron gas in a three-dimensional anisotropic
guantum well subjected to a uniform magnetic field arbitrarily directed with respect to the potential symmetry
axes is investigated. The dependence of the absorption coefficient on the radiation frequency, on the direction
of the polarization vector, and on the magnitude and direction of the magnetic field is studied. It is shown that
in the general case there are three resonance frequencies on the absorption curve; the amplitude and the
position of the resonance peaks is investigated. In the Timi0 (the case of a degenerate pake absorption
curve as a function of the radiation frequency contains kinks.
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[. INTRODUCTION two-dimensional quantum dots with a few electrons was ex-
perimentally investigated by Sikorski and MefkThe elec-

The modern development of nanotechnology has enabletlonic energy levels of an anisotropic quantum well in a per-
the confinement of a finite number of electrons in a localizecpendicular magnetic field and the selection rules for dipole
space of a few hundred angstrofasiantum wells and doks  transitions were investigated by Madhav and ChakrabiSrty.
In particular, it has become possible to experimentally invesThe hybrid-phonon resonance in a 2D quantum well was
tigate wells in heterostructures with widths comparable tostudied in Ref. 11. We stress that the above investigations
the cyclotron radius. Note that the physical properties ofconsist of a model of 2D parabolic quantum dots. The effects
nanostructures cannot be extrapolated from behavior aif electron-electron interactions in quantum wells are consid-
larger sizes because of the prevalence of quantum effectsred in Refs. 12 and 13. However, as was shown in Ref. 14,
Hybridization of the size quantization and the magnetic onghe electron-electron interaction in the case of a three-
promises discoveries of new effects in such systems. Therelimensional harmonic quantum well has no effect on the
fore, quantum wells and dots are attracting a great deal dflectron transitions.
experimental and theoretical interést. For example, the In this paper, we present a theoretical study of the optical
magnetization of two-dimensiongRD) isotropic quantum absorption of an electron gas in a three-dimensional quantum
dots in perpendicular and parallel magnetic fields was studwell subjected to a uniform magnetic field arbitrarily di-
ied by Meiret al' and by Ihmet al,? respectively. The case rected with respect to the potential symmetry axes. In the
of an obligue magnetic field is investigated in Ref. 3. Theabove-mentioned papers, the parabolic potential is used as
spectrum and magnetic moment of an electron gas in a 3fhe confinement potential of quantum wells. The choice of
qguantum well is studied in Ref. 4. this potential is justified by a number of factors. On the one

It is especially important to investigate the optical prop-hand, it has been proved rigorously that for high-energy lev-
erties of nanostructures because the study of intraband opiéls, any confinement potential is well approximated by a
cal transitions yields important information about the energyparabolic oné® On the other hand, in accordance with the
spectrum, the Fermi surface of electrons, and the value of thgeneralized Kohn theoreff electron-electron interaction in
electronic effective mass. The effects of frequency hybridizathis case has no effect on the electron transitions. Finally,
tion cause the resonance absorption of electromagnetic radiaven in the presence of an external magnetic field, a para-
tion in such structures at the hybrid frequencies but not at theolic potential gives a quadratic Hamiltonian whose spec-
bare cyclotron frequencies. For example, in Ref. 5, fartrum can be obtained by a purely algebraic method, i.e., with
infrared magnetotransmission measurements on a quashe help of an appropriate linear canonical transformation of
three-dimensional semiconductor structure were reported. lthe phase space. This spectrum reduces to the algebraic sum
particular, when the sample is tilted to 13° and 30° withof the spectra of three harmonic oscillators with some hybrid
respect to the field direction, the cyclotron resonance splitrequencie$.
into two branches. This splitting is explained just by the To find an electrodynamic response, one needs the matrix
hybridization effect. In Ref. 6, the optical transitions of an elements of the momentum operators and the position ones.
electron gas in a two-dimensional symmetrical quantum welHowever, a direct calculation of wave functions and corre-
are investigated. The resonance absorption here was obponding matrix elements is a complicated computational
served at the two hybrid frequencies. For arrays of quanturproblem. To simplify these calculations, we use linear ca-
dots, the resonance absorption at the same frequencies wasnical transformations of the phase space. By means of
experimentally investigated by Meuret al.” The electrody-  these transformations, we find a new coordinate system such
namic response of quantum-dot structures containing 25+that in the new phase coordinates the wave functions have
210 electrons per dot was observed by Deetadl® In par-  the simplest form.
ticular, in a magnetic field the resonance splits into two Using this method, we calculate the absorption coefficient
branches. However, for a strong magnetic fiBid4 T, an  of the electromagnetic radiation of electrons in a 3D aniso-
additional resonance was observed. The optical absorption ¢fopic quantum well for the general case of an arbitrary di-
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rection of the magnetic field as well as the polarization vec- Further, we need the transition matrix=(a;;) (i,]
tor. =1,...,6) from the nitial phase coordinates
To calculate the absorption coefficiehi{w), we use an  (p1,p»,pPs3,X,Y,z) to the new onesR,,P,,P3,Q4,Q,,Q53):

approach based on the method suggested in Refs. 16 and 17.

The cases of both a nondegenerate and a degenerate gas are P1 Py
studied. We consider two important cases in detail, namely P, P,
the Faraday geometiyhe polarization vector is perpendicu-
lar to the magnetic fielddand the Feucht geometfyhe po- Ps —A P3 ©6)
larization vector is parallel to the magnetic figld X Q|
y Q2

II. DIAGONALIZATION OF THE HAMILTONIAN , Q
3

The spinless one-particle Hamiltonian of an electron in aThe matrix elementay; are given in the Appendix
i -

3D anisotropic parabolic quantum well has the form

2 [Il. ABSORPTION COEFFICIENT

m*
+ 7(Q§x2+ Oy +0%7%), (1)

1 e
H= --A , .
omk* (p c Using the method suggested by Bass and LevifSove
) ) o find the absorption coefficiedt(w) by applying the pertur-
where A is the vector potential of a magnetic fieBl Q  pation theory for the interaction of electrons with a high-
(i=x,y,z) are the characteristic frequencies of the paraboligrequency field,
potential, andn* is the effective electron mass.

It is convenient to choose the following gauge for the 2me(w) fo
vector potential: (w)= TohN, 1-exp — =

A=(3B,z—B,y,0B,y—3BX).
(28,27 B2y, 0By =28, xS 3 Ao EpmlinmilHeln’ ')

In the phase spacep{,py.p,.x,y,z), the Hamiltonian(1) nml n’m'1’

definei a quadratic fo_rm with th_e sixth-order s_ymmetric X 8(Enmi—Enrmyr +h), )

matrix.” By means of a linear canonical transformation of the _ . .

phase space, we find new phase coordina®e®) such that Wheree(w) is the real part of the dielectric constafwe

H has the canonical form suppose there is no dispersion in the frequency range consid-

ered herg f is the wave vector of photon$y(E,,) is the

1 electron distribution function for the nondegenerate @4s,
H(P,Q)= —*(P§+ PZ+P%) is the number of initial-state photons with the frequensy
2m and the factor + exp(—#«/T) takes into account spontane-
m* ous transitions.
+ T(wiQer w5Q5+ w3Q3), 2 The HamiltonianHR representing the interaction with the

high-frequency electromagnetic field has the form
where w; (i=1,2,3) are the hybrid frequencidthey are
functions of the magnitude and direction of the magnetic _ € 27hiNg
field B). These frequencies are obtained from the following Hr
sixth-order algebraic equatidn:

ep’, 8

_F g(w)w

whereg; is the polarization vector and’=p—eA/c is the

(Q2—A)(Q2-1)(Q2- N2 — w2 (Q2—\?)\? generalized momentum.
1 2 3 XC 1
P N We calculate the matrix elements ldf; in the new phase
— oy (D= NN = w7 (Q3-N)N°=0, (3 coordinates because in this case the wave function of elec-

trons has the simplest for(s). Note that it is easy to find the
momentum operatop’ (p;=pyx—eA/C, P;=py, P3=p,
—eA,/c) from Eq.(6). Calculation of the matrix elements of
this operator yields

where w;= [\ (i=1,2,3) andw;;=eBj/m*c (j=x,y,2)
are the components of the cyclotron frequency.
Hence, the spectrum of the Hamiltoni&?) has the form

Enmi=hor(n+3) +liwy(m+3) +fiwg(1+3)

In+1
(n,m1=0,1 ) 4) <nm||pi,|n/m,|,>:a’il T5n,n’—15m,m’5l,l’
and the corresponding wave functions in the new phase co- m+1
ordinates have the form +aiz \| 5 Omm 1000 01,10
Pnmi(Q1,Q2,Q3)=Pn(Q)Pm(Q2)Pi(Q3), (5 1
where®,(x) are the oscillator functions. iz \ 5O - 10mm S ©
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where
f m* +m* T,
== aj;i— = weagtMm as;
all II] 11 2 wcy GJ wcz 5J ‘\\“\“Q"’Q 0
\ ‘\;‘s’:’;"ﬁ’/
m* § 7 N P ‘“3"8":“:’:""Zf"’z 1.52
Hljl d1jrs™ 5 @cylpj+3t M esj+3), ‘{{\\\\\\\‘:‘f&&h '
(10) 1.47
h
a2j:”__a2j+|ja2,j+sy (11
j
h . m*
Clgj:”—_ a3]-—m wcxa5j+7wcya4j ) o ) .
j FIG. 1. The absorption coefficiet as a function of the orien-
* tation of the magnetic fiel® with respect to the symmetry axes of
1] g1 M* wgas st Twcya“”) (12)  the well (the anglesd and ¢) atB=1.5 T, 0=1.25x10" ¢!,
0,=1.9x<108 ¢!, 0,=1.1x10" ¢ %, Q,=15x108 ¢ L.

(herei,j=1,2,3). . .
In the general case, the direction of the polarization vectofhereN is the electron density.
with respect to the potential symmetry axesy,z depends To take into account the smearing of the energy levels

on the azimuth anglé and the polar angle, respectively: caused .by coIIis!ons, we replace the Di@éunction by the
Lorentzian function,

=i sinfcose+j sindsine+k cosé. (13 (7)1
mT
Let us introduce the matriA=(a;;) (i,j=1,2,3) with the 0. (X)=—— (18)
matrix elementsy;; from Egs.(10)—(12) and consider the T X
vector (herer is the phenomenological relaxation time
1 Substituting the functio(18) into Eq.(16), we obtain the
X = Ae (14) following expression for the absorption coefficient
m* #
, , (o) X3 w X3 w
with coordinates X;,X,,X3). = > > >
Now we write the squares of the matrix elements of the 0 1t(e—wy)? 1+7(0—w)
perturbation operatarg in terms ofX: 2
! 1oy +—'
K. ml[Heln’,m' 1) 1+ 20— wg)?
_ e WﬁZNf{Xz(n+1)5 5 s wherel',= 7e®N/Jecm*.
Tt e(wo L n.n’=1%mme L1 It is interesting to consider the two most important cases:
the polarization vector is perpendicular to the magnetic field
+X§(m+ 1)Smm —16nn 01 (the Feucht geometyyand the polarization vector is parallel
) to the magnetic fieldthe Faraday geometryWithout loss of
+X3(1+1) 811716007 O }- (15 generality, we fix they direction as the direction of the po-
Substituting Eq(15) into Eq. (7), we get larization vector and vary th(_e direction of the magnetic fie_ld.
The graphs plotted in Fig. 1 show that the absorption
2m2e2 = coefficientI’ depends on the orientation of the fieBdwith
INw)= — = 2 fO(Enm,){Xf(n+1)5(w—w1) respect to the symmetry axes of the wghe anglesd and
cm* Vew nnr=o ¢). The dependencE as a function of the direction of the
+X§(m+1)5(w— w2)+X§(I +1)8(w—ws)). polarization vector is depicted in Fig. 2.
(16) A. Feucht geometry
Equa;tion(l6) shows that there are three resonance frequen- |n this case, the magnetic field is applied in thelirec-
cies in the general case. tion. The hybrid frequencies; , are determined by the for-

The normalization constant in the distribution function for pyyla
a nondegenerate gas is determined from the equation

5 w17 V(0 07+ 022 (0,0, 7+ 7],
n,mz,lzo fo Emn) =N, 40 w3={;. (20)
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FIG. 3. The absorption coefficiedt(w) in the case of the
FIG. 2. The absorption coefficiefit as a function of the direc- Feucht geometry atQ=1.6<10" ¢!, Q,=2x10” c*, B
tion of the polarization vector with respect to the symmetry axes of=0.5 T.
the well (the angles and ¢) at B=1.5 T, =1.25<10'% ¢ 1,

0,=1.9x10"° ¢ %, 0,=1.1x10"° ¢!, Q,=1.5x10" ¢ " M) o 1 04 1
=— +
) r 20 2\2 3 20 02 2
The values ofX? have a simple form, 0 @1t (w-wr) e ltr(o-0%0)
o) (92_92)2
- wi(Qf— w?)? 21 +ZZ 7 PP z 5 o
i_wEQ)%-F(Q)Z(—wiZ)Z, (21 [0+ (L= Q)1+ (00— Q) ]
(24)
wherew.= w,.
Let us consider the important case of a symmetric well:
0,=Q,=0. In this case, the hybrid frequencies , have B. Faraday geometry
the form In this case, the magnetic field is applied in fheirection
(the polarization vector is parallel to the magnetic fielthe
w173 VA + 0T 0], w3=0Q,. (22)  hybrid frequencies are found similarly with the previous
case,

Note that the absorption coefficient depends strongly on

the correlation between the size quantization and the mag- ~ ®1.5= 5[ V(Qx+ Q)3+ wi+ \(Q,— Q)2+ 0?],
netic one.

(25)
In the case in which the magnetic field is wealo( wy=Qy.
<(1), the frequencieso; , can be rezpresented in the form The quantitiesxiz can be written as
w1 ,~0*w/2 up to terms of ordew/ ).
) In this caseX{=X5~Q/2, and the absorption coefficient , 0 (2= ) (02— w?)— w2w?]?
as the form =1 R N 7 350 (20
w0 +H[(Q)— ) (Q)— ) —wiw!]
I'(w) :ﬂ 1 wherew = w, .
Iy 2w 1+ (00— Q— w/2)? Let us consider the important case in which the well is
symmetricQ,=Q,=Q. In this case, the frequencies, 3
1 have the form
1+ (0 — Q+ w/2)? 0.9
Q, (Q2-02)? >
Q [020%+(02-0)?|[1+ P(0—-Q)?]] B s
239
=]
For the case of a strong magnetic field & (,,(),) and g 0.3
a symmetric structure(}, = Q, =), Eq.(22) yields the es- § )
timates w;~w., w,~0%w.. In this case, the resonance < 1
frequency w, becomes appreciably smaller than. The J
same statement is true for the quantités,: Xi~w., X5 0 s 15 25 35 w10
~Q4/w§.
Thus, in the case of a strong magnetic field, the absorption FIG. 4. The absorption coefficierf(w») in the case of the
coefficient is given by Feucht geometry a=1.3x 10" ¢ %, Q,=10'% ¢, B=10 T.
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w1 3= 3[VAO%+ 0l w.]. (27)  frequencyw=10,. Itis interesting to note that the resonance
’ frequency is independent of the magnetic field. Therefore, in
It follows from Eqgs.(26) and(27) that the values of(i3 are  the case of the Faraday geometry, the absorption coefficient
equal to zero. Hence, we have only one resonance peak at thas the following form:

T(w) 0 [(Q%-0))?~ wi0]]? -
Lo 0 {0d0+[(02-02)2- 020721+ (0 Q2]
|
IV. DISCUSSION the peak at the frequenay;=(, is equal to zerdsee Eq.

In this paper, we have investigated the optical absorptior@?’)]' , - .
of a threef)diraensional anisotropic quantum well subjected to In the strong-f|e2Id I'"_"tﬂ’c>ﬂ' the amplitude of the peak
a uniform magnetic field arbitrarily directed with respect to 2t the frequency)/w is smaller than tzhatzalt the frequency
the potential symmetry axes. Using the method of linear ca®@1= @ (the first amplitude is equal B/ w times the sec-
nonical transformations of the phase space, we have fourfnd ong. As one would expect, a strong absorption is ob-
the matrix elements of the momentum operators and the pgerved at the cyclotron frequency in the case of strong mag-
sition ones. The dependence of the absorption coefficient onetic quantization.
the radiation frequency, on the direction of the polarization In the case of a symmetrical well),=,=(),), the
vector, and on the magnitude and direction of the magnetiamplitude of the peak at the frequenag=(1, is equal to
field has been studied. It has been shown that in the generaéro. Note that this effect takes place in the case of an arbi-
case there are three resonance frequencies. We stress thattitaily directed magnetic field. The amplitude of this peak
amplitude and the position of the resonance peaks depertepends on the relations between the characteristic frequen-
strongly on the correlations between the size quantizatiowies. However, if(),<(}, then the amplitude of this peak is
and the magnetic one. However, in some cases the disappeaf-the order of the amplitude of the peak at the resonance
ance of one or two peaks is possible. Note that the resonanéequencyw,=Q?% o, and appreciably smaller than the am-
peaks have a similar symmetric shape. Let us consider thegditude of the peak at the resonance frequeagy w. (Fig.
cases in detail. 4). In the opposite cas«),>(}), if ),>w., then the am-
First of all, we consider the case of the Feucht geometryplitude of the peak at the resonance frequengy (1, is of
Equation(23) shows that the absorption peaks have a doublethe order of the amplitude of the peak at the resonance fre-
structure in the case of a weak magnetic field. Note that thguencyw,= w. (Fig. 5). In the cas€),<w., the amplitude
amplitudes of the peaks are approximately equal. The disef the peak at the resonance frequeney={), becomes
tance between the doublet components is equal to the cyclappreciably smaller than that for the peak at the resonance
tron frequencyw.. The amplitude of the peak at the fre- frequencyw;= w. (Fig. 6).
quencywz= (), depends strongly on the correlation between Let us consider the case of the Faraday geometry. In gen-
the characteristic frequencies of the parabolic potential. Foeral, there are three resonance frequencies here. However,
example, ifQ,<Q or Q,>Q, then the amplitude of this when the well is symmetric(,=(),), there is only one
peak is nearly equal to 1, whereas the amplitude of the douesonance peak at the frequensy-(),. We stress that if
blet peaks is nearly equal t (Fig. 3. Note that wher(),  the characteristic frequencies obey the relativh= Q,(Qy
=(}, there are only two resonance peaks. The amplitude of w.), then we cannot employ the method considered here

1.2
= 08¢
£ £
2 08 f J>
8 g 04
g- 04 B
| <
Ol.ﬂ I | OJJL
4 8  w@0%h 1 2 3 o (10°¢ ™
FIG. 5. The absorption coefficierlf(w) in the case of the FIG. 6. The absorption coefficierlf(w) in the case of the

Feucht geometry a2 =1.3x10'% ¢, Q,=10 ¢, B=10 T. Feucht geometry a2 =5x10"? ¢ %, 0,=10" ¢!, B=15 T.
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where

30 3
.Tg 2t \ Li={wjw(0i+ o))+ 0i 00— of)?
; Lr 20202 2
g 20 0 . . . . + wchx(Qz_ Wi )2
= 2.2 24 2.6
% +[(QF - 0) (02— o))~ wjwl 12 (A2)
=]
—ﬁ 107 The values off; are as follows. Ifi=1,2,3, then

1
‘ ‘ e 2,02_ 2y, 1 2 2

0 2 4 6 8 0)(10130_1) fii= o, [— 0, 05(Q7— o)) +3 WzcWy Wi 1, (A3)

FIG. 7. The absorption coefficieh(w) in the case of a degen- f=0,

erate gas af)=1.6x10% ¢!, 0,=2%x10"? ¢!, B=0.5 T, the
neighborhood of a kink is shown in the inset. 1
foi=—[oxQ2(QF— o)) —3oxcopeo],  (A4)
because of the vanishing determinant of the transition matrix !
A.

Note that in the case of the degenerate gas, we obtain an fo— i _ (A5)
expression fol'(w) if we replace in Eq(16) fo(e,m) by a m* Oxc@yc®i
folenm)[1—fo(enmtw)] [herefy(emn) is the Fermi dis-
tribution]. The existence of a resonance is independent of the

electron statistics. foi= [(Qi— w?)(Qg_ wf) - wicwiz]! (A6)
The singularities of the curvE%Y w) incorporate all sin- m* w
gularities of the curvd’(w). However, in the case of the
degenerate gas, there exist additional singularities caused by 1
the degeneracy. Namely, in this case there are kinks on the fei=— —, WycWz Wi (AT)
curvel'(w). Let us discuss the physical origin of this effect. m
These kinks are caused by the fact that the engreyi If =456 then
crosses the energy of the highest occupied level in the quan- e
tum well. A neighborhood of a kink is shown in Fig.(ih- m*
sed. fi=— wacwycwi73(ﬂ>2<+ wi2—3)v (A8)
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APPENDIX: THE MATRIX ELEMENTS
OF THE MATRIX A f4i:wiwzc(93_wi2—3)r (A1)
The matrix elements;; have the form
f5=0,
aji_L_i(LHS_Li)’ (A1) fei:_wiwxc(ﬂi_wi{s)- (A12)
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