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Electromagnetic coupling and gauge invariance in the empirical tight-binding method
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We examine the requirements placed upon the Hamiltonian under the demand of gauge invariance. From
these requirements we derive the gauge-invariant form of the tight-binding Hamiltonian with electromagnetic
coupling. In our derivation we do not make recourse to a Peierls substitution and hence avoid introducing any
ambiguities of path. Our expression transparently reduces to the familiar expression in a complete basis. We
apply this Hamiltonian to study resonant magnetotunneling spectroscopy using a simple tight-binding model.
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I. INTRODUCTION

One of the great attractions of the empirical tight-bindi
method is its close link to atomic and molecular phys
through its description of the electronic structure of a crys
in terms of matrix elements of the Hamiltonian between
calized atomiclike orbitals centered on neighboring atoms1,2

These matrix elements are reduced to a minimal set u
symmetries of the crystal, and the resulting set of parame
is chosen to reproduce the observed energy gaps and e
tive masses.3–7 Owing to the localized nature of the intera
tions, the method has proven very useful in models
reduced-dimensional structures as well.8–10 Deducing inter-
face parameters is not difficult and an applied electrost
potential is conveniently treated as a same-site, same-or
only, stepwise-constant interaction.

In contrast to the straightforward treatment of electrosta
potentials, numerous schemes have been proposed fo
cluding electromagnetic effects via the vector potential,11–18

many involving the introduction of new parameters. Graf a
Vogl12 have pointed out that this is unnecessary in th
method, which is based upon the Peierls substitution and
two-center approximation. Although their approach is s
nificantly more systematic than most, it is an inescapable
that the Peierls substitution is, strictly speaking, valid only
one dimension, where there can be no ambiguity of path.
Peierls substitution is also aesthetically unattractive, sinc
gives a prescription for a matrix element rather than an
plicit formula for the Hamiltonian operator in the presence
the vector potential. This situation differs markedly from t
formalism of the minimal coupling Hamiltonian familia
from standard quantum mechanics, in which one has an
plicit operator and from which considerations of path a
completely absent.

Graf and Vogl12 address this ambiguity by choosing th
straight line connecting the two atomic sites involved in
matrix element for their path, quite candidly noting the pa
dependence of their method. While the straight-line p
seems reasonable for a nearest-neighbor model such a
one they employ, the situation is not so clear for mod
having interactions with more-distant neighbors. For e
ample, a second-near-neighbor matrix element for zi
0163-1829/2001/63~24!/245314~17!/$20.00 63 2453
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blende or diamond crystals presents two obvious compe
choices: the straight line between the second-near neighb
or the two-leg path passing through their common nea
neighbor.~It can be further argued that paths connecting o
the second neighbors other than the straight line ought to
considered as well.! The situation rapidly becomes mor
confusing for more complicated crystals and/or models w
more-distant-neighbor interactions.

Here we shall derive the correct expression for the tig
binding Hamiltonian in the presence of the vector potent
thereby overcoming the aesthetic~lack of an explicit opera-
tor expression! and practical~ambiguity of path! limitations
of the Peierls-substitution approach. Our derivation beg
with the observation that the vector potential must enter
equations of motion via the momentum operator and fu
takes into account the incompleteness of the tight-bind
basis. We introduce no additional parameters into the m
mentum operator, ensuring that it is the same as the mom
tum operator used to calculate carrier velocities~band slopes!
and inverse effective masses~band curvatures!. ~Although
this treatment of the momentum operator precludes in
atomic transitions, it avoids altogether ambiguities in defi
ing matrix elements of higher powers ofr in the localized-
orbital basis—e.g.,r (z)2 or r (x)r (y)—that arise in even very
simple tight-binding models.! As a consequence of the in
completeness of the basis, the familiar textbook commuta
@r (b),p(a)#5 i\da,b no longer holdsand multiple commuta-
tors such as†r (g)@r (b),p(a)#‡ do not necessarily vanish,3,19

resulting in an infinite series inA. Nevertheless, in a com
plete basis our expression transparently reduces to the fa
iar minimal-coupling Hamiltonian.

Following the derivation of the series expression for t
Hamiltonian operator in the presence of the vector poten
we examine its matrix elements between localized orbit
Under the most common approximation~treatingA and its
spatial derivatives as same-site, same-orbital interactions! we
can explicitly sum the power series to obtain a closed-fo
expression for the matrix elements of the Hamiltonian in
presence of the vector potential. The resulting expressio
of the same form as that of the Peierls-substitutio
approach,12 but there is no arbitrariness of path, our expre
sion being simply that which is demanded by gauge inva
©2001 The American Physical Society14-1
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BOYKIN, BOWEN, AND KLIMECK PHYSICAL REVIEW B 63 245314
ance in an incomplete basis. We thus firmly establish the
between the matrix element and operator expressions o
Hamiltonian in the presence of the vector potential. The
per is organized as follows. In Sec. II we derive the elect
magnetic coupling Hamiltonian and demonstrate gauge
variance. In Sec. III we apply it to some cases of interest,
in Sec. IV give our conclusions. The Appendix gives impo
tant intermediate results and derivations needed in the de
opment of Secs. II and III.

II. METHOD

A. Basis set and zeroth-order Hamiltonian

The derivation of the electromagnetic coupling Ham
tonian is simplest for a bulk crystal so we begin there. Fo
perfect crystal in the absence of applied fields we take for
Hamiltonian

H05Hnso1Hso, ~1!

Hnso5
p2

2m
1V~r !, ~2!

Hso5
\

4m2c2 ~s3“V!•p, ~3!

wherem is the free-electron mass,s are the Pauli spin ma
trices, andV is the full crystal potential~within the one-
electron approximation!, which satisfiesV(r )5V(r1R) for
any direct lattice vectorR. We adopt Chadi’s20 treatment of
the spin-orbit interaction, coupling orbitals on the same s
only. We consider a total volumeV consisting ofNi primi-
tive unit cells in theai direction, i 51,2,3, whereai is a
primitive ~direct! lattice translation vector, and apply cycl
~Born–von Kármán! boundary conditions in all three direc
tions. Two bases are commonly encountered in tight bind
the Bloch basis and the band basis. The Bloch basis is
structed of localized atomiclike orbitals centered on ea
atom of the crystal:

ua;m;k&5
1

AN
(
j 51

N

exp@ ik•~Rj1vm!#ua;m;Rj1vm&.

~4!

In Eq. ~4! k is the three-dimensional wave vector,Rj is the
location of thej th unit cell,N5N1N2N3 the total number of
cells, m the atom within the cell, offset byvm from the cell
location, anda the orbital type~including spin!. The band
basis consists of linear combinations of states~4! that diag-
onalizeH0 :

un;k&5(
a,m

bn,~a,m!~k!ua;m;k&, ~5!

H0un;k&5En~k!un;k&, ~6!

wheren is the band index and theb are expansion coeffi
cients. Both sets of states are orthonormal:

^a8;m8;k8ua;m;k&5da8,adm8,mdk8,k , ~7!
24531
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^n8;k8un;k&5dn8,ndk8,k . ~8!

We represent any cell-periodic operatorV in the crystal
momentum representation,21

V~k!5e2 ik•rVeik•r, ~9!

where in the direct-space representationV(r )5V(r1R) for
any direct lattice vectorR. Unless otherwise noted we ex
press operatorsV(k) in the Bloch basis, and all wave vecto
in Eqs.~4!–~9! are taken to fall in the first Brillouin zone.

B. Derivation

We expect that in the incomplete basis the electrom
netic coupling Hamiltonian might have contributions to a
orders in the vector potentialA, so we denote the full Hamil-
tonian for a particle of chargeQ in the presence of applied
vector ~A! and scalar~F! potentials as

H5H ~A!1U~r ,t !, H ~A!5 (
n50

`

Hn
~A! , U~r ,t !5QF~r ,t !,

~10!

where Hn
(A) is of nth order in the components ofA, H0

(A)

5H0 , the unperturbed Hamiltonian, and we drop thes•B
term. As stated in the Introduction, we do not postulate
form for the Hamiltonian; rather, we see what form is d
manded by gauge invariance. To that end, observe that
same physical system may be equally well described byH0

or H (“ f )2Q] f /]t, for which A5“ f , the solutions of the
Shrödinger equation being related solely by a positio
dependent phase factor. In other words,H0 andH (“ f ) must
be related by the unitary transformation22

H ~“ f !5eiQ f /\H0e2 iQ f /\, ~11!

H ~“ f !5H01
iQ

\
@ f ,H0#1

1

2! S iQ

\ D 2

†f ,@ f ,H0#‡1¯ ,

~12!

where f is the gauge function; because the basis is inco
plete we use the Baker-Hausdorff identity to expand Eq.~11!
yielding Eq.~12!.

We deduce the electromagnetic coupling Hamiltonian
the following manner: Observe that in a complete basis w
H052\2¹2/2m1V(r ), we obtain the usual minimal
coupling Hamiltonian, H (A)5@(\/ i )“2QA(r ,t)#2/2m
1V(r ), by explicitly calculating the expression exp(iQf/
\)$2\2¹2/2m1V(r )%exp(2iQf/\) and replacing“ f→A.
That is,“ f plays the role ofA in the equations of motion
ensuring that the Hamiltonian takes the sameform regardless
of the gauge chosen. As we shall demonstrate below@see the
sentences following Eqs.~19! and~24!#, our results reduce to
the familiar minimal-coupling Hamiltonian in a complete b
sis.

Here we apply the same procedure, introducing Fou
representations,19

f 5(
q

f qe
iq•r, ~13!
4-2
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followed by the analogous substitutions

A5“ f⇒Aq
~a!5 iq ~a! f q , F]A~a!

]r ~b! G
q

5~ iq ~a!!~ iq ~b!! f q ,

~14!

etc. Using Eq.~13! in Eq. ~12!, then, we find

H1
~“ f !5

iQ

\ (
q

f q@eiq•r,H0#, ~15!

H2
~“ f !5

1

2! S iQ

\ D 2

(
q,q8

f q8 f q†e
iq8•r@eiq•r,H0#‡ , ~16!
24531
and so on. Since the Fourier components are completely
bitrary, terms of the Hamiltonian may be isolated by exa
ining matrix elements of the form̂a8;m8;k1q11q21¯

1qnuHn
(“ f )ua;m;k& and selecting out those subexpressio

proportional to the productsf q1
f q2

¯ f qn
. Note that there are

n! such terms, canceling the global 1/n! in Eqs.~15! and~16!
and succeeding expressions. We denote the total of all s
terms as@Hn

(“ f )#q1 ,q2 ,...,qn
. Using Eqs.~A8!, ~A9!, ~A18!,

and ~A19!, we make a fully symmetric Taylor expansio
selecting terms proportional tof q1

and find for the first-order

coupling:
g
e find

ed

s

@H1
~“ f !#q1

52
1

2 S iQ

\ D f q1(a q1
~a!H F]H0~k!

]k~a! 1
]H0~k1q1!

]k~a! G1
1

2! (b q1
~b!F ]2H0~k!

]k~b!]k~a! 2
]2H0~k1q1!

]k~b!]k~a! G
1

1

3! (b,g
q1

~b!q1
~g!F ]3H0~k!

]k~g!]k~b!]k~a! 1
]3H0~k1q1!

]k~g!]k~b!]k~a!G1¯J . ~17!

Now, making use of Eq.~14! along with Eqs.~A3!–~A7! to rewrite Eq.~17! in terms of the vector potential, and observin
from Eqs.~A1! and~A2! that the arguments of the functions involved show the relative positions of the exponentials, w

@H1
~A!#q1

52
Q

2\ X(
a

\

m
@eiq1•rAq1

~a!p~a!1p~a!eiq1•rAq1

~a!#1
1

2! (a,b
S 2

\

mD
3H eiq1•rF]A~a!

]r ~b! G
q1

@r ~b!,p~a!#2@r ~b!,p~a!#eiq1•rF]A~a!

]r ~b! G
q1

J 1
1

3! (
a,b,g

S \

mD
3H eiq1•rF ]2A~a!

]r ~g!]r ~b!G
q1

†r ~g!,@r ~b!,p~a!#‡1†r ~g!,@r ~b!,p~a!#‡eiq1•rF ]2A~a!

]r ~g!]r ~b!G
q1

J 1¯C . ~18!

Equation~18! is now easily translated back from Fourier space to real space:

H1
~A!52

Q

2m H(
a

@A~a!p~a!1p~a!A~a!#1
1

2! (a,b
FM2

~a,b!
]A~a!

]r ~b! 2
]A~a!

]r ~b! M2
~a,b!G

1
1

3! (
a,b,g

F ]2A~a!

]r ~g!]r ~b! M3
~a,b,g!1M3

~a,b,g!
]2A~a!

]r ~g!]r ~b!G1¯J . ~19!

Note that in a complete basis only the single sum in Eq.~19! survives sinceM2
(a,b)5 i\da,b , M j50, j >3 and we recover the

usual expression for the first-order coupling to the vector potential.
For the second-order coupling we select out subexpressions proportional tof q1

f q2
using the same procedures as employ

with the first-order coupling. The leading term~that without any derivatives of the vector potential! is shown below:

@H2
~A!#q1 ,q2

5S 2
Q

2\ D 2S 2 i\

m D H 1

2! (a,b
F S 2

1,1D $ei ~q11q2!•rAq1

~a!Aq2

~b!@r ~b!,p~a!#1@r ~b!,p~a!#ei ~q11q2!•rAq1

~a!Aq2

~b!%

1S 2
1,1D $Aq2

~a!eiq2•r@r ~b!,p~a!#eiq1•rAq1

~b!1eiq1•rAq1

~a!@r ~b!,p~a!#Aq2

~b!eiq2•r%G1¯J . ~20!

In translating Eq.~20! back to real space there is one complication, for when there aren identical-order Fourier component
together~e.g.,ei (q11q2)•rAq1

(a)Aq2

(b) above, for whichn52!, we must divide the resulting real-space expression byn!, since there
4-3
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are this many permutations of the real-space functions that contribute to the same term. Likewise, a single real-sp
gives rise to the last two terms shown in Eq.~20!. Taking these observations into account, we obtain the second-order cou
Hamiltonian:

H2
~A!52

1

m S Q

2 D 2S i

\ D 221X 1

2! (a,b
S 2
1,1D S 1

2!
@A~a!A~b!M2

~a,b!1M2
~a,b!A~a!A~b!#1A~a!M2

~a,b!A~b!D
1

1

3! (
a,b,g

S 3
2,1D S M3

~a,b,g!A~a!
]A~b!

]r ~g! 2A~a!
]A~b!

]r ~g! M3
~a,b,g!1A~b!M3

~a,b,g!
]A~a!

]r ~g! 2
]A~b!

]r ~g! M3
~a,b,g!A~a!D

1
1

4! (
a,b,g,d

H S 4
3,1D S A~b!

]2A~a!

]r ~d!]r ~g! M4
~a,b,g,d!1M4

~a,b,g,d!
]2A~a!

]r ~d!]r ~g! A~b!D
1S 4

3,1D S A~b!M4
~a,b,g,d!

]2A~a!

]r ~d!]r ~g! 1
]2A~b!

]r ~d!]r ~g! M4
~a,b,g,d!A~a!D 1S 4

2,2D F 1

2! S ]A~a!

]r ~g!

]A~b!

]r ~d! M4
~a,b,g,d!

1M4
~a,b,g,d!

]A~a!

]r ~g!

]A~b!

]r ~d! D 2
]A~b!

]r ~d! M4
~a,b,g,d!

]A~a!

]r ~g! G J 1¯C . ~21!
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Together the first- and second-order expressions, Eqs.~19!
and~21!, demonstrate general patterns that may be emplo
to simply write down the third-order~and higher-order! cou-
plings.

First, note that thenth-order coupling leads with the mu
tiple commutatorMn and has a global factor 22n due to the
n-fold averaging. Second, thenth-order coupling involves
only n-nomial coefficients whosen lower indices tell the
order of the derivatives involved~1 for no derivative, 2 for a
first derivative, 3 for a second derivative, etc.! and whose
upper indexn8 ~as well as prefactor 1/n8! ! is the sum ofn
and the total order of the derivatives in the term. We see
explicitly in Eq. ~21!, where we have the associations b
tween multinomial coefficients and derivatives of the vec
potential such as

S 4
3,1D↔A~b!

]2A~a!

]r ~d!]r ~g! M4
~a,b,g,d! ,

A~b!M4
~a,b,g,d!

]2A~a!

]r ~d!]r ~g! , . . . , ~22!

S 4
2,2D↔ ]A~a!

]r ~g!

]A~b!

]r ~d! M4
~a,b,g,d! ,

]A~b!

]r ~d! M4
~a,b,g,d!

]A~a!

]r ~g! , . . . , ~23!

where in Eq.~22! the lower indices 3 and 1 indicate a seco
derivative and no derivative, respectively, while each of
identical lower indices 2 in Eq.~23! indicates a first deriva-
tive. We employ the term ‘‘order’’ in a generalized fashio
and say that both Eqs.~22! and~23! above are ‘‘second-orde
24531
ed

is
-
r

e

derivative terms’’ since Eq.~22! involves products ofA and
its second~partial! derivative, while Eq.~23! involves prod-
ucts of two first~partial! derivatives ofA. Third, as deriva-
tives accumulate, a sign change occurs when the order
derivative on theleft-handside of the operatorM j is incre-
mented over the preceding term, butnot on the right. This is
illustrated by Eq.~21!, where we see that the first two term
of the triple sum lead to the first, second, fifth, and six
terms of the quadruple sum, while the last two terms of
triple sum give rise to the third, fourth, and last terms
the quadruple sum. Fourth, when there are fully symme
expressions in identicalA’s ~or derivatives! on the same side
of the operatorM j , we divide by the number of permuta
tions of the identicalA’s. This occurs in Eq.~21! in the first
two terms of the double sum and the fifth and sixth terms
the quadruple sum. Finally, all unique permutations ofn
factors of A appear in Hermitian combinations~the A and
theM j do not commute!. For example, in the quadruple su
of Eq. ~21! the term with anA to the left of the ~anti-
Hermitian! M4 and a second derivative ofA to the right is
added to the term with theA and second derivative trans
posed. The terms with theA and second derivative on th
same side of theM4 are of course distinct and appear in
separate combination. Note too that the last term of this s
is already symmetric. In the triple sum of Eq.~21! paired
terms are subtracted since there is a global factor ofi and the
M2n11 are Hermitian.

We emphasize that there is no mystery to the above-no
patterns—they arise quite naturally from the Taylor expa
sions and the Baker-Hausdorff identity. We discuss th
simply to provide a mnemonic for writing down subseque
terms in the expansion ofH2

(A) , as well as writing down
H3

(A) and higher-order coupling Hamiltonians. With these o
servations, we can simply write down the third-order Ham
tonian,
4-4
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H3
~A!52

1

m S Q

2 D 3S i

\ D 321X 1

3! (
a,b,g

S 3
1,1,1D S 1

3!
@A~a!A~b!A~g!M3

~a,b,g!1M3
~a,b,g!A~a!A~b!A~g!#

1
1

2!
@A~g!M3

~a,b,g!A~a!A~b!1A~b!A~g!M3
~a,b,g!A~a!# D1

1

4! (
a,b,g,d

S 4
2,1,1D H 1

2! F S M4
~a,b,g,d!

]A~a!

]r ~d! A~b!A~g!

2
]A~a!

]r ~d! A~b!A~g!M4
~a,b,g,d!D 1S A~b!A~g!M4

~a,b,g,d!
]A~a!

]r ~d! 2
]A~g!

]r ~d! M4
~a,b,g,d!A~b!A~a!D G

1S A~g!M4
~a,b,g,d!A~b!

]A~a!

]r ~d! 2A~g!
]A~b!

]r ~d! M4
~a,b,g,d!A~a!D J 1¯C . ~24!
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Succeeding terms of Eq.~24! as well as the fourth-, fifth-,
and higher-order couplings in the vector potential can
deduced using these same patterns. Observe that in a
plete basis~21! becomes the familiar second-order coupli
and Eq.~24! and all higher-order couplings vanish.

C. Gauge invariance

To close this section we establish gauge invariance of
electromagnetic coupling Hamiltonian whose leading ter
are given in Eqs.~19!, ~21!, and~24!. This involves showing
that under a gauge transformationg, for which A85A
1“g, U85U2Q]g/]t, the equality

H ~A1“g!5eiQg/\H ~A!e2 iQg/\

5H ~A!1
iQ

\
@g,H ~A!#1

1

2! S iQ

\ D 2

†g,@g,H ~A!#‡1¯

~25!

holds to all orders.~The scalar potentialU poses no difficulty
as it is a function ofr , not p, and thus commutes withg.!
That is, the left-hand side of Eq.~25! is to be computed
simply by substitutingA(a)1]g/]r (a) for A(a) in Eqs.~19!,
~21!, and ~24! and succeeding coupling terms, while th
right-hand side is to be found by direct computation of t
multiple commutators. Gauge invariance is established th
by demonstrating that the term withn factors ofA andm of
g is the same in the left- and right-hand expressions in
~25!. On the left-hand side this term comes from the exp
sion ofHn1m

(A1“g) while on the right-hand side this term com
from them-fold commutator ofg with Hn

(A) .
The demonstration is not difficult when done in the Fo

rier representation; as usual we concentrate on a single
trix element between states of wave vectork and (k1q1
1q21¯1q(m1n)). From the discussion in Sec. 4 of th
Appendix it is clear that the Taylor expansion resulting fro
(n1m) commutators applied toH0 must be the same as th
which comes fromn commutators applied toH0 , subse-
quently subjected to a furtherm commutators. Thus, the
terms will be equal if they have identical coefficients; t
averaging coefficients are obviously the same, be
22(m1n) for Hn1m

(A1“g) and (22m)(22n) for the m-fold com-
mutator ofg with Hn

(A) . For the left-hand side of Eq.~25!,
24531
e
m-

e
s

n,

q.
-

-
a-

g

(n1m) commutators applied toH0 , the (n1m)! permuta-
tions of thef qq

(a) cancel the leading 1/(n1m)! and we have
renamed all terms as

i f qj
qj

~a j !→@Aqj

~a j !1 iq j
~a j !gqj

#, j 51,2,...,~n1m!.

~26!

In the product of (n1m) factors, Eq.~26!, it is clear~using
the equality of mixed partial derivatives! that there is but one
term Aq1

Aq2
¯Aqn

gqn11
gqn12

¯gqn1m
. Likewise, for the

right-hand side of Eq.~25! there is a leading 1/n! due toHn
(A)

and a further factor of 1/m! associated with them-fold com-
mutator withg. The (n1m) Fourier sums now run over th
dummy indicess1 ,s2 ,...,s(n1m) and here we have renamedn
leading factors

i f sj
sj

~a j !→Asj

~a j ! , j 51,2, . . . ,n ~27!

leaving the remainingm as ggs
(a). Computing the matrix

element, we see that there aren! terms in whichq1 ,q2 ,...,qn
are distributed among theAq and for each of these there a
m! terms in which theqn11 ,qn12 ,...,qn1m are distributed
amongst thegq , for a total factor (m!)(n!), canceling the
leading (1/m!)(1/n!) and giving once again one term
Aq1

Aq2
¯Aqn

gqn11
gqn12

¯gqn1m
. Thus the left- and right-

hand sides of Eq.~25! yield the same result and gauge i
variance is established.

D. Closed-form expression in the usual tight-binding
approximation

Thus far in the development of the gauge-invariant el
tromagnetic coupling Hamiltonian we have not specifi
how the components ofA and their spatial derivatives are t
be treated. The advantages of this procedure are that it e
lishes the correct form forH (A) free of any assumptions be
yond the requirement of formal gauge invariance~demon-
strated in Sec. II C above! and that it leads to an operator th
transparently reduces to the usual minimal-coupling Ham
tonian in a complete basis. The obvious disadvantages o
method are that it produces an infinite series of increasin
cumbersome terms that might fail to converge~at least in
certain cases! and that truncating the series entails sacrifici
gauge invariance.
4-5
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We can, however, avoid these problems by treating
components ofA and their derivatives in the customary ma
ner: as same-site-, same-orbital-only interactions. Under
approximation there exists a closed-form expression for
matrix elements ofH (A) in the localized-orbital basis. We
remark that this approximation entails no additional red
tion in accuracy, for it isexactlythe same treatment applie
to the matrix elements of the scalar potential:12 indeed, con-
sistency demands it. The closed-form expression, the de
and mathematical justification of which are discussed
length in Sec. 6 of the Appendix is

^a;m;Rj1vmuH ~A!ua8;m8;Rj 81vm8&

5expF i
Q

\ E
s;R j 81vm8

s;R j 1vm
A•dlG

3^a;m;Rj1vmuH0ua8;m8;Rj 81vm8&, ~28!

where the path of integration,s, is the straight line connect
ing the two sites. Although Eq.~28! resembles the resu
given in Ref. 12, there are several important differenc
First, in terms of its derivation neither theform of Eq.
~28!—a bare Hamiltonian matrix element weighted by
path-integral-dependent phase—nor the straight-line path
the integral therein arechosenby us. Both applyonly be-
cause the closed-form expression gives the same matrix
ments as doesH (A) in this approximation. Second, the lin
integral in Eq.~28! must be carried outexactly; we do not
approximate the integral using the trapezoidal rule.~For uni-
form magnetic fields the two methods will give the sam
result since the trapezoidal approximation is exact for lin
A, and in this case our result confirms the assumptions
Ref. 12.! Third, the straight-line path in Eq.~28! applies for
both nearest- and more-distant-neighbor interactions. F
more-distant-neighbor matrix element, then, the correct p
is always the straight line, the common nearer neighbors
withstanding.

Beyond the mathematics, which is the final arbiter, th
are sound physical reasons for the straight-line path that
pears in Eq.~28!. From the development in Sec. 6 in th
Appendix it is not difficult to see that only the straight-lin
path guarantees a balanced treatment of the componentsA
and their derivatives. That is, coefficients of like terms (A(a),
]A(a)/]r (b), etc.! sampled at the two atomic sites must
equal in magnitude for the expression to have come from
Hermitian operator. Furthermore, it follows from the deriv
tive of the straight-line path~A32! that in the usual tight-
binding approximation the right-hand side of Eq.~28! be-
comes a series of multiple commutators of the b
Hamiltonian and position to which are coupledA and its
derivatives. This is exactly the same coupling manifested
the expression for the gauge-invariant electromagnetic c
pling Hamiltonian,H (A), developed in Sec. II B above.~In a
complete basis, too,A couples intoH via p; even theA2

term can be regarded as arising from the commuta
@r (b),p(a)#5 i\da,b .! Thus Eq.~28! in some sense reflect
the tight-binding representations of the momentum oper
and its multiple commutators with position.
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III. RESULTS

A. General

The electromagnetic coupling Hamiltonian derived
Sec. II differs markedly from both the standard prescripti
and that of Ref. 12 in that it includes terms involving deriv
tives of the vector potential. To employ it in the usual tigh
binding approximation the line integral in Eq.~28! must
therefore be carried out exactly. Previously we employed
standard prescription for the first-order coupling in calcul
ing the absorption of bulk GaAs,19 where we found only
small differences with the electric dipole approximation~in
which A is assumed to be spatially uniform!. The problem of
finding electronic states in a large magnetic field is anot
matter entirely and it is here that we focus our attentio
Rather than treating bulk effects such as Landau levels or
magnetic band structure23 we discuss a quantum well in
magnetic field parallel to the heterointerfaces, similar
resonant magnetotunneling spectroscopy24–27 ~RMS! and
other experiments carried out in a transverse magn
field.28 In such experiments it is argued that a chargeQ tun-
neling alongz a distancez̄ in a transverse magnetic fieldB
5B0ey experiences a change in its in-plane~kinetic! crystal
momentum\ki→(\ki2QB0z̄ex). Hence varying the ap-
plied magnetic field should allow carriers tunneling into
quantum well to probe the subband dispersions. Earlier,29 we
derived a completely general condition on the validity of th
semiclassical interpretation, namely, that the distance
neled into the center of the well~from, say, an accumulation
region!, z̄, must be larger than the quantum well width,w
~i.e.,w/ z̄,1!. Here we shall see the explicit manifestation
these conditions.

We consider a quantum well oriented along thez direction
~interfaces parallel to thex-y plane!, so that the crystal po-
tential is translationally symmetric only in the plane:V(r
1Ri)5V(r ), where the subscripti denotes a vector lying in
the x-y plane andRi is a direct lattice vector lying in the
plane. The most natural basis for this problem in the plan
orbital basis~i.e., Bloch sums in the plane!,

ua;m;L;ki&5
1

ANi

(
j 51

Ni

exp@ iki•~Rj i1vmi1DL,i!#

3ua;m;L;Rj i1vmi1DL,i&, ~29!

whereNi is the number of cells in the plane,L is the layer
index ~adjacent layers are separated by a distanceaz and we
assume a layer is one bulk unit cell thick!, and DL,i is a
layer-dependent in-plane offset vector, necessary for so
lattices such as fcc in which lattice sites in adjacent lay
are shifted in the plane. The other symbols have the sa
meanings as in Eq.~4!. We place the quantum well in a
uniform magnetic fieldB5B0ey and take for the vector po
tential,

A5B0zex . ~30!

For an electron we haveQ52e, wheree is the magnitude
of the electronic charge, and we can directly compute
matrix element by substituting Eq.~30! into Eq. ~28!. How-
4-6
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ever, explicit summation of the termsHn
(A) is a helpful illus-

tration of Eq. ~28! and its link to the series form, so w
substitute Eq.~30! into Eqs.~19!, ~21!, and~24!, finding that
all derivative terms vanish. The first three terms of the se
form of the electromagnetic coupling Hamiltonian thus b
come

H1
~A!5

eB0

2m
@zp~x!1p~x!z#, ~31!

H2
~A!52

1

2!

i

m\ S eB0

2 D 2

@z2M2
~x,x!12zM2

~x,x!z1Mz
~x,x!z2#,

~32!

H3
~A!5

1

3!

1

m\2 S eB0

2 D 3

@z3M3
~x,x,x!13z2M3

~x,x,x!z

13zM3
~x,x,x!z21M3

~x,x,x!z3#. ~33!

The pattern, of course, continues for higher-order couplin
Since we employ the planar-orbital basis and do not

pose cyclic boundary conditions along thez direction the
matrix elements appearing in Eqs.~31!–~33! are well be-
haved. This is usually the case in nanostructure applicat
in which the extent in the dimension~s! along which the ma-
trix elements ofr are evaluated is limited by hard walls~our
case!, bulklike boundaries of space-charge layers, and
like. The only difficulty is that the only matrix elements w
know are those ofcommutatorssuch as@z,M3

(a,b,g)#. The
simplest expression forz consistent with the multiple com
mutators is the diagonal approximation,

z→ (
a9,m9, j 9

ua9;m9;Rj 91vm9&~Rj 91vm9!
~z!

3^a9;m9;Rj 91vm9u, ~34!

where the superscriptzdenotes thezcomponent of the vecto
and we index the atomic sites with three-dimensional vec
as in Eq.~4! to simplify the notation. This is the customar
tight-binding approximation, used in deriving Eq.~28!,
wherein functions of the position operator are treated
same-site, same-orbital-only interactions. With the diago
approximation~34! and using Eq.~A28! to evaluate theM j ,
we calculate matrix elements of Eqs.~31!–~33! between lo-
calized orbitals:

^a;m;Rj1vmuH1
~A!ua8;m8;Rj 81vm8&

5S ieB0z̄~ j 8,m8!,~ j ,m!d~ j 8,m8!,~ j ,m!

~x!

\
D

3^a;m;Rj1vmuH0ua8;m8;Rj 81vm8&,

~35!
24531
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^a;m;Rj1vmuH2
~A!ua8;m8;Rj 81vm8&

5
1

2!
S ieB0z̄~ j 8,m8!,~ j ,m!d~ j 8,m8!,~ j ,m!

~x!

\
D 2

3^a;m;Rj1vmuH0ua8;m8;Rj 81vm8&,

~36!

^a;m;Rj1vmuH3
~A!ua8;m8;Rj 81vm8&

5
1

3!
S ieB0z̄~ j 8,m8!,~ j ,m!d~ j 8,m8!,~ j ,m!

~x!

\
D 3

3^a;m;Rj1vmuH0ua8;m8;Rj 81vm8&,

~37!

where in Eqs.~35!–~37! we define the averagez position and
the x displacement of the right site with respect to the le
respectively, as

z̄~ j 8,m8!,~ j ,m!5
1
2 @Rj 81vm81Rj1vm#•ez

5 1
2 @Rj 81vm81Rj1vm#~z!, ~38!

d
~ j 8,m8!,~ j ,m!

~x!
5@Rj 81vm82Rj2vm#•ex

5@Rj 81vm82Rj2vm#~x!. ~39!

Continuing this pattern, we see that to all orders, includ
the zeroth-order Hamiltonian, we have

^a;m;Rj1vmuH ~A!ua8;m8;Rj 81vm8&

5expF i S eB0z̄~ j 8,m8!,~ j ,m!

\ Dd
~ j 8,m8!,~ j ,m!

~x! G
3^a;m;Rj1vmuH0ua8;m8;Rj 81vm8&. ~40!

Equation~40! is of course, the answer we would have o
tained via direct computation of Eq.~28!. As noted in Sec.
II D, for this constant field we obtain the same result as
Graf and Vogl,12 since the trapezoidal rule is exact for line
A. Our result will obviously differ from theirs for a nonuni
form magnetic field, as seen from the perspective of eit
the series formulation or closed-form expression for the m
trix elements ofH (A). In the former the derivative terms d
not generally vanish; likewise in the latter the exact line
tegral gives a result different from the trapezoidal rule.
result similar to Eq.~40! but for pseudopotentials, in which
region is subdivided into many layers, has been obtained
Inkson, Tan, and Edwards.30

Equation~40! shows that in the planar-orbital basis~29!
the net effect is to introduce a layer-dependent shift of
wave vector:

^a;m;L;kiuH ~A!ua8;m8;L8;ki&

5 (
j 851

Ni

exp@ iki•d
~ j 8,m9,L8!,~0,m,L !

~ i !
#^a;m;L;vm,i

1DL,iuH ~A!ua8;m8;L8;Rj 8i1vm8i1DL8,i&
4-7
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5 (
j 851

Ni

exp@ i ~ki1b
~m8,m!

~L8,L !
!•d

~ j 8,m8,L8!~0,m,L !

~ i !
#^a;m;L;vmi

1DL,iuH0ua8;m8;L8;Rj 8i1vm8i1DL8,i&, ~41!

d
~ j 8,m8L8!,~0,m,L !

~ i !
5~Rj 8i1vm8i1DL8,i2vmi2DL,i!,

~42!

b
~m8,m!

~L8,L !
5

eB0z̄
~m8,m!

~L8,L !

\
ex ,

z̄
~m8,m!

~L8,L !
5 1

2 @~L81L !az1vm8
~z!

1vm
~z!#, ~43!

where we recognize that thex component of Eq.~42! is
merely thex vector displacement~39! and the second o
equations~43! gives the averagez position.

Equations~41!–~43! are fairly general so we present
specific application: matrix elements for a nearest-neigh
model in the zinc-blende crystal structure~e.g.,sp3, sp3s* ,
sp3d5, sp3d5s* !. Matrix elements ofH0 take one of the
forms

^a;m;L;kiuH0ua8;m8;L8;ki&

5H n
~am,a8m8!

~L,L8! cos@~kx6ky!a/4#

in
~am,a8m8!

~L,L8! sin@~kx6ky!a/4#
~44!

wherea is the conventional unit cell cube edge, then are real
~of either sign!, andm andm8 differ, one beinga ~anion! the
otherc ~cation!. In Eq. ~43! az5a/2, and the anions occup
the Bravais lattice sites with the cations displaced
(a/4)(1,1,1) from them. Thus, from Eqs.~41! and ~44!,

z̄
~m8,m!

~L8,L !
5 1

2 @~L81L !~a/2!1~dm,c1dm8,c!~a/4!#, ~45!

^a;m;L;kiuH0ua8;m8;L8;ki&

55 n
~am,a8m8!

~L,L8!
cosF S kx1

eB0z̄
~m8,m!

~L8,L !

\
6kyD a

4
G

in
~am,a8m8!

~L,L8!
sinF S kx1

eB0z̄
~m8,m!

~L8,L !

\
6kyD a

4
G .

~46!

In Eqs.~45! and~46! note that since we include only neares
neighbor interactions there are but two distinct possibiliti
z̄5La/26a/8. The positive sign holds for the anion and ca
ion both in layerL, the negative sign for an anion in layerL
and the cation in layerL21.

B. Two simple models

Figure 1 is a schematic depiction of the simulated RM
experiment considered here. Carriers emerge from a re
voir ~striped! at the origin and tunnel a distanceaLc to the
center of an unbiased quantum well, widthw. Thus they feel
the effect of the applied transverse magnetic fieldB over this
24531
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distance in traveling to the center of the well. The semicl
sical interpretation of this experiment asserts that they
dergo a shift in wave vectorDki5(eBLca/\)ex . Below we
compare results calculated with two simple models that h
identical equations of motion in the absence of an app
magnetic field: the singles-band, nearest-neighbor tigh
binding model on a simple-cubic lattice and the discretiz
effective mass model.

For the singles-orbital tight-binding model the vector
vmi and DL,i in Eq. ~29! are zero, and the same-site an
nearest-neighbor couplings, chosen to reproduce a con
tion band of effective massm* whose minimum coincides
with the zero of energy, are

^s;0uH0us;6aea&52Vs52
\2

2m* a2 , aP$x,y,z%

~47!

^s;0uH0us;0&5Es56Vs5
3\2

m* a2 , ~48!

wherea is the unit-cell cube edge. We write the wave fun
tion in the planar-orbital basis as

uCki
&5(

L8
CL8us;L8;ki& ~49!

so that the Schro¨dinger equation for the~unbiased! quantum
well reads:

2VsCL211H Es22Vs cos~kya!22Vs

3cosF S kx1
eB0La

\ DaG2EJ CL2VsCL1150,

~50!

where the symmetric quantum well extends over the (n
11) layers 2n1Lc<L<n1Lc . We apply hard-wall
boundary conditions atL5Lc6n: CLc2n215CLc1n11

50.

FIG. 1. Schematic depiction of the simulated RMS experim
considered here. Carriers emerge from a reservoir~striped! at the
origin and tunnel a distanceaLc to the center of an unbiased qua
tum well, width w. The semiclassical interpretation of this expe
ment asserts that they undergo a shift in wave vectorDki

5(eBLca/\)er . In the simplified calculations the results of whic
are plotted in Figs. 2 and 3 we apply hard-wall~infinite well!
boundary conditions and offset the well center byaLc from the
origin of the vector potential.
4-8
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For the effective-mass calculation, we discretize
Schrödinger equation,

2
\2

2m*
¹2c~r !1

~eB0z!2

2m*
c~r !1

\

im*
eB0z

dc~r !

]x

5Ec~r !, ~51!

using the standard central difference expressions on a
form ~three-dimensional! mesh of spacinga for the Laplac-
ian and partial derivative. Since Eq.~51! is separable, we
write

c~r !5f~x,y!z~z!, ~52!

and impose Bloch conditions in the plane

c~x6a,y,z!5e6 ikxac~x,y,z!,

c~x,y,6a,z!5e6 ikyac~x,y,z! ~53!

to obtain

2VszL211FEs22Vs cos~kya!22Vs cos~kxa!

1
2VsLa2

z0
2 sin~kxa!1

VsL
2a4

z0
4 2EGzL2VszL1150,

~54!

whereVs andEs are the same as in Eqs.~47!–~48! and

zL5z~aL!, ~55!

1

z0
2 5

eB0

\
. ~56!

As before we apply hard-wall boundary condition
zLc2n215zLc2n1150. Observe that forB050 Eqs.~50! and
~54! are identical so that any discrepancies in the results
be solely due to the different treatments of the electrom
netic coupling in the two models.

Figures 2 and 3 show calculations for three differe
cases: singles-band tight-binding,ki50, Eq. ~50!, solid
curve; effective-mass,ki50, Eq. ~54!, dash-dotted curve
and singles-band tight-binding, Eq.~50!, with zero magnetic
field, but ki5(eBLca/\)ex , whereB is taken from the ab-
scissa of the graph~i.e., theki shift is fixedfor all layers at its
midwell value in the nonzero-field case!, dotted curve. This
last calculation is just the semiclassical approximation29 of-
ten used to interpret RMS experiments. For all calculatio
we take a52.8 Å, m* 50.07m0 , and the well is 27a
575.6 Å wide. In Fig. 2 the center of the well is placed
179a5501.2 Å, while in Fig. 3 it is at 25a570 Å. In Fig. 2
the two tight-binding calculations agree quite well differin
by about 4.85% at 90 T, but the effective-mass result d
agrees significantly with both: about 32% at 90 T versus
solid curve. On the other hand, in Fig. 3 the tight-bindi
and effective-mass results agree well~within about 0.32% at
90 T! but differ significantly from the RMS tight-binding
result~dashed curve!, a discrepancy of about 18.5% at 90
24531
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The relatively close agreement of the tight-binding results
Fig. 2 and their large relative disagreement in Fig. 3 is
actly what we expect in light of our earlier, general results29

for Fig. 2 simulates a case in which the distance from
accumulation layer to the center of the quantum well is mu
greater than the quantum-well width, while Fig. 3 simulate
case in which this distance is slightly less than the quantu
well width. Likewise, the different treatments of the electr
magnetic coupling in the tight-binding and effective-ma
results show most dramatically when the carriers are sub
to the effect of the magnetic field over a greater distance

IV. CONCLUSIONS

In summary, we have derived a gauge-invariant elec
magnetic coupling Hamiltonian for tight-binding models. W
demand of the electromagnetic coupling Hamiltonian ab

FIG. 2. Ground-state subband for a 75.6-Å quantum well~see
text!; the center of the well is at layerLc5179 ~501.2 Å!. We take
B0 as indicated on the abscissa andkx5ky50 for two of the curves,
using Eq.~50! for the solid curve and Eq.~54! for the dash-dotted
curve. For the dashed curve we use Eq.~54! with B050 andky

50 but setkx5eBLca/\, whereB is given by the abscissa.

FIG. 3. Ground-state subband for a 75.6-Å quantum well~see
text!; the center of the well is at layerLc525 ~70 Å!. We takeB0 as
indicated on the abscissa andkx5ky50 for two of the curves, using
Eq. ~50! for the solid curve and Eq.~54! for the dash-dotted curve
For the dashed curve we use Eq.~54! with B050 andky50 but set
kx5eBLca/\, whereB is given by the abscissa.
4-9
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lute consistency with the underlying tight-binding model a
hence we neither make an external ansatz in developing
results nor do we introduce additional parameters into
momentum operator. Instead, we simply require the Ham
tonian to be gauge invariant, and it is this requirement al
that produces the equation from which we deduce the e
tromagnetic coupling terms. Unlike methods based dire
upon the Peierls substitution, our results naturally and tra
parently reduce to the usual minimal-coupling Hamiltoni
in a complete basis. Furthermore, under the customary ti
binding approximation the resulting series can be summ
and the result an expression of the same form as that
sumed in the Peierls substitution derivation. However, in t
case there are differences: the path~a straight line! is im-
posed, since it is the only one that will permit a matrix ele
ment in this form to agree with the series and the integ
must be carried out exactly. This settles the question of h
to handle matrix elements in more-distant-neighbor tig
binding models: the straight line connecting the two si
involved in the matrix element, nearer neighbors notwi
standing. We have shown how to calculate matrix eleme
with our method and have applied it to a simulated reson
magnetotunneling experiment, comparing the results of
simple models.
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APPENDIX

1. Matrix elements

From Ref. 19 the matrix elements of a cell-periodic o
eratorV in the Bloch sum basis~4! are

^a8;m8;k1q1ueiq"rVua;m;k&5d~k1q1!,~k1q!

3@V~k!#~a8,m8!,~a,m!5dq1 ,q@V~k!#~a8,m8!,~a,m! ,

~A1!

^a8;m8;k1q1uVeiq"rua;m;k&

5d~k1q1!,~k1q!@V~k1q!#~a8,m8!,~a,m!

5dq1 ,q@V~k1q1!#~a8,m8!,~a,m! , ~A2!

where in Eq.~A1! and ~A2! k, q, andq1 all lie within the
first Brillouin zone and any sum of wave vectors that fa
outside the first zone is to be translated back inside it.

2. Incompleteness and multiple commutators
of position and momentum

Due to the incompleteness of the tight-binding basis, m
tiple commutators of position and momentum exist.3 Be-
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cause we employ Chadi’s20 treatment of the spin-orbit cou
pling, the momentum and velocity operators a
proportional:19

p~a!~k!52
im

\
@r ~a!,H0#~k!5

m

\

]H0~k!

]k~a! . ~A3!

We list below the several of the succeeding commutat
~with our shorthand notation for them! for reference:

M2
~a,b!~k!5@r ~b!,p~a!#~k!5

im

\

]2H0~k!

]k~b!]k~a! , ~A4!

M3
~a,b,g!~k!5†r ~g!,@r ~b!,p~a!#‡~k!52

m

\

]3H0~k!

]k~g!]k~b!]k~a! ,

~A5!

M4
~a,b,g,d!~k!5@r ~d!

†r ~g!,@r ~b!,p~a!#‡#~k!

52
im

\

]4H0~k!

]k~d!]k~g!]k~b!]k~a! , ~A6!

M5
~a,b,g,d,e!~k!5†r ~e!,@r ~d!

†r ~g!,@r ~b!,p~a!#‡#‡~k!

5
m

\

]5H0~k!

]k~e!]k~d!]k~g!]k~b!]k~a! , ~A7!

where forn even~odd! Mn is anti-Hermitian~Hermitian! and
Mn is obviously invariant under permutation of the indic
a, b, g, d, etc.

3. Multiple commutators involving complex exponentials

Consider the commutator involvinga(k),

@eiq•r,eiq8•ra~k!#5ei ~q1q8!•ra~k!2eiq8•ra~k!eiq•r

5ei ~q1q8!•r@a~k!2a~k1q!#. ~A8!

Defining

a~n11!~k!5a~n!~k!2a~n!~k1qn11!, n50,1,2, . . .
~A9!

we repeatedly employ Eq.~A9! to reduce multiple commu-
tators such as

@eiq3•r,†eiq2•r,@eiq1•r,a~0!~k!#‡#

5†eiq3•r,@eiq2•r,eiq1•ra~1!~k!#‡, ~A10!

@eiq3•r,†eiq2•r,@eiq1•r,a~0!~k!#‡#

5@eiq3•r,ei ~q11q2!•r,a~2!~k!#, ~A11!

@eiq3•r,†eiq2•r,@eiq1•r,a~0!~k!#‡#5ei ~q11q21q3!•ra~3!~k!.

~A12!

In this progression, note that each successive commut
produces two terms, so thata (n)(k) consists of 2n terms
when reduced to componentsa (0). For example, repeate
application of Eq.~A9! yields for a (3)(k),
4-10
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a~3!~k!5a~2!~k!2a~2!~k1q3!, ~A13!

a~3!~k!5@a~1!~k!2a~1!~k1q2!#

2@a~1!~k1q3!2a~1!~k1q21q3!#, ~A14!

a~3!~k!5a~0!~k!2a~0!~k1q1!2a~0!~k1q2!2a~0!~k1q3!

1a~0!~k1q11q2!1a~0!~k1q11q3!

1a~0!~k1q21q3!2a~0!~k1q11q21q3!. ~A15!

4. Taylor expansions of multiple commutators involving
complex exponentials

Consider a Taylor expansion ofV (1)(k), defined as in Eq.
~A9! above. It is clear that the only way to ensure a fu
symmetric expansion and treat all wave vectors on an e
footing is to average the expansions of theV (0) aboutk and
k1q1 . This is essential in order to obtain a Hermitian ele
tromagnetic coupling Hamiltonian, since Eqs.~A1! and~A2!
show that it is the position of exp(iq•r ) relative toV that
determines the argument,k or k1q1 . The two Taylor ex-
pansions are

V~0!~k!2V~0!~k1q1!

52(
a

q1
~a!

]V~0!~k!

]k~a! 2
1

2! (a,b
q1

~a!q1
~b!

]2V~0!~k!

]k~b!]k~a!

2
1

3! (
a,b,g

q1
~a!q1

~b!q1
~g!

]3V~0!~k!

]k~g!]k~b!]k~a!2¯ ,

~A16!

V~0!~k!2V~0!~k1q1!

52(
a

q1
~a!

]V~0!~k1q1!

]k~a!

1
1

2! (a,b
q1

~a!q1
~b!

]2V~0!~k1q1!

]k~b!]k~a!

2
1

3! (
a,b,g

q1
~a!q1

~b!q1
~g!

]3V~0!~k1q1!

]k~g!]k~b!]k~a! 2¯ .

~A17!
24531
al

-

Averaging Eqs.~A16! and ~A17!, we have

V~0!~k!2V~0!~k1q1!52 1
2 (

a
q1

~a!X~a!
~1! ~k!, ~A18!

X~a!
~1! ~k!5F]V~0!~k!

]k~a! 1
]V~0!~k1q1!

]k~a! G1
1

2! (b q1
~b!

3F ]2V~0!~k!

]k~b!]k~a! 2
]2V~0!~k1q1!

]k~b!]k~a! G1
1

3! (b,g
q1

~b!q1
~g!

3F ]3V~0!~k!

]k~g!]k~b!]k~a! 1
]3V~0!~k1q1!

]k~g!]k~b!]k~a!G1¯ . ~A19!

It is apparent from Eq.~A19! that the X(a)
(1) are cell-

periodic operators. Thus we may use Eqs.~A8! and ~A9! to
reduce multiple commutators such as

†eiq2•r,@eiq1•r,V~0!~k!#‡52 1
2 (

a
q1

~a!@eiq2•r,eiq1•rX~a!
~1! ~k!#,

~A20!

†eiq2•r,@eiq1•r,V~0!~k!#‡

5ei ~q11q2!•r~2 1
2 !2(

a,b
q1

~a!q2
~b!X~a,b!

~2! ~k!,

~A21!

X~a!
~1! ~k!2X~a!

~1! ~k1q2!52 1
2 (

b
q2

~b!X~a,b!
~2! ~k!,

~A22!

whereX(a,b)
(2) (k) is again a symmetric, averaged Taylor e

pansion, obtained by applying Eq.~A19! twice:
4-11
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X~a,b!
~2! ~k!5F ]X~a!

~1! ~k!

]k~b! 1
]X~a!

~1! ~k1q2!

]k~b! G1
1

2! (g
q2

~g!F ]2X~a!
~1! ~k!

]k~g!]k~b! 2
]2X~a!

~1! ~k1q2!

]k~g!]k~b! G
1

1

3! (g,d
q2

~g!q2
~d!F ]3X~a!

~1! ~k!

]k~d!]k~g!]k~b! 1
]3X~a!

~1! ~k1q2!

]k~d!]k~g!]k~b!G1¯ , ~A23!

X~a,b!
~2! ~k!5F ]2V~0!~k!

]k~b!]k~a! 1
]2V~0!~k1q1!

]k~b!]k~a! 1
]2V~0!~k1q2!

]k~b!]k~a! 1
]2V~0!~k1q11q2!

]k~b!]k~a! G
1

1

3! S 3
2,1D(g

H ~q1
~g!1q2

~g!!F ]3V~0!~k!

]k~g!]k~b!]k~a! 2
]3V~0!~k1q11q2!

]k~g!]k~b!]k~a! G
1~q1

~g!2q2
~g!!F ]3V~0!~k1q2!

]k~g!]k~b!]k~a!2
]3V~0!~k1q1!

]k~g!]k~b!]k~a!G J 1
1

4! H S 4
3,1D(g,d

~q1
~g!q1

~d!1q2
~g!q2

~d!!

3F ]4V~0!~k!

]k~d!]k~g!]k~b!]k~a! 1
]4V~0!~k1q1!

]k~d!]k~g!]k~b!]k~a! 1
]4V~0!~k1q2!

]k~d!]k~g!]k~b!]k~a! 1
]4V~0!~k1q11q2!

]k~d!]k~g!]k~b!]k~a!G
1S 4

2,2D(g,d
~q1

~g!q2
~d!!F ]4V~0!~k!

]k~d!]k~g!]k~b!]k~a! 1
]4V~0!~k1q11q2!

]k~d!]k~g!]k~b!]k~a!2
]4V~0!~k1q1!

]k~d!]k~g!]k~b!]k~a!

2
]4V~0!~k1q2!

]k~d!]k~g!]k~b!]k~a!G J 1¯ . ~A24!
a

r

s
e

ly
ta
m

l a

s
e

for

trix
tal-
ar
Several important features of the Taylor expansions are
parent from Eqs.~A18!–~A24!. First,X(n) starts with thenth
derivatives ofV (0), with leading factorq1

(a)q2
(b)

¯qn
(n) . Sec-

ond, theq1
(a) andq2

(b) pulled out in Eq.~A21! have no effect
on subsequent Taylor expansions—this is clear in the p
gression from Eqs.~A20!–~A22!. Thus, we could replace
them by anything, say,qj

(j)→Aqj

(j)/ i f qj
, and further Taylor

expansions~due to application of additional commutator!
would be unchanged. Third, the symmetric form chos
treats all wave vectors on an equal footing, as required.

5. Decomposition of Bloch-basis matrix elements

Matrix elements in the Bloch basis~4! of commutator
@r (a),V#, where V is a cell-periodic operator, are readi
decomposed into matrix elements between localized orbi
Since we apply cyclic boundary conditions, we have fro
Eq. ~4!,

^a;m;kuVua8;m8;k&5 (
m51

N

exp@ ik•~Rm1vm82vm!#

3^a;m;vmuVua8;m8;Rm1vm8&,

~A25!

where we have placed the unit cell of the left-hand orbita
the origin. From Eq.~9! it follows that

@r ~b!,V#~k!5 i
]V~k!

]k~b! , ~A26!

so that
24531
p-

o-

n

ls.

t

^a;m;k@r ~b!,V#a8;m8;k&

52 (
m51

N

~Rm1vm82vm!~b! exp@ ik•~Rm1vm82vm!#

3^a;m;vmuVua8;m8;Rm1vm8&, ~A27!

and we may make the general identification

^a;m;R1vmur ~b!,Vua8;m8Rj 81vm8&

52~Rj 81vm82Rj2vm!~b!

3^a;m;Rj1vmuVua8;m8;Rj 81vm8&,

~A28!

where the quantity in parentheses is simply theb component
of the vector displacement of the orbital (a8,m8) relative to
the orbital~a, m!. Matrix elements of multiple commutator
such as Eqs.~A3!–~A7! in the localized-orbital basis can b
obtained through repeated application of Eq.~A28!.

6. Closed-form expression for localized-orbital matrix elements

Here we give the derivation of the compact expression
the matrix elements ofH (A) in the localized-orbital basis. We
demonstrate that, within the approximation that the ma
elements ofA and its derivatives are same-site; same-orbi
only interactions~consistent with the treatment of the scal
potential!,
4-12
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^v;m;Rj ,muH ~A!uv8;m8;Rj 8,m8&

5expF i
Q

\ E
s•Rj 8,m8

s•Rj ,m
A•dlG

3^v;m;Rj ,muH0uv8;m8;Rj 8,m8&, ~A29!

where the path of integration,s, is the straight line connect
ing the two sites and we introduce the shorthand

Rl ,n5Rl1vn ~A30!

by expanding both sides in a Taylor series after perform
the integral.

To compute the integral, we parametrize the path as

s~l!5~12l!Rj 8,m81lRj ,m5Rj 8,m81l~Rj ,m2Rj 8,m8!,

l: 0→1 ~A31!

s8~l!5d~ j ,m!,~ j 8,m8!5~Rj ,m2Rj 8,m8!, ~A32!

then employ the average of the two Taylor series ofA(s),
one expansion taken about each of the end points. The r
is

E
s:Rj 8,m8

s:Rj ,m
A•dl

5
1

2H(a d
~ j ,m!,~ j 8,m8!

~a! A
~ j 8,m8!,~ j ,m!

~a!

1
1

2! (a,b
d

~ j ,m!,~ j 8,m8!

~a! d
~ j ,m!,~ j 8,m8!

~b! F]A~a!

]r ~b! G
~ j 8,m8!,~ j ,m!

1
1

3! (
a,b,g

d
~ j ,m!~ j 8,m8!

~a! d
~ j ,m!,~ j 8,m8!

~b! d
~ j ,m!,~ j 8,m8!

~g!

3F ]2A~a!

]r ~b!]r ~g!G
~ j 8,m8!,~ j ,m!

1¯J , ~A33!
24531
g
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where we introduce the shorthand notation

A
~ j 8,m8!,~ j ,m!

~a!
5@A~a!~Rj ,m!1A~a!~Rj 8,m8!#, ~A34!

F]A~a!

]r ~b! G
~ j 8,m8!,~ j ,m!

5H F]A~a!

]r ~b! G
Rj 8,m8

2F]A~a!

]r ~b! G
Rj ,m

J ,

~A35!

F ]2A~a!

]r ~b!]r ~g!G
~ j 8,m8!,~ j ,m!

5H F ]2A~a!

]r ~b!]r ~g!G
Rj 8,m8

1F ]2A~a!

]r ~b!]r ~g!G
Rj ,m

J ,

~A36!

and so forth. Observe the convention that terms ineven-order
partials areaddedwhile those inodd-order partials aresub-
tracted.

The first few terms of the exponential in Eq.~A29! are
readily evaluated with the aid of the multinomial theore
Writing the exponential as a power series inA as in Eq.~10!
for the Hamiltonian,

expF i
Q

\ E
s:Rj 8,m8

s:Rj ,m
A•dlG5 (

n50

`

In , I051 ~A37!

we find for the first several terms,
I15 i
Q

2\ H(
a

d
~ j ,m!,~ j 8,m8!

~a! A
~ j 8,m8!,~ j ,m!

~a!
1

1

2! (a,b
d

~ j ,m!,~ j 8,m8!

~a! d
~ j ,m!,~ j 8m8!

~b! F]A~a!

]r ~b! G
~ j 8,m8!,~ j ,m!

1
1

3! (
a,b,g

d
~ j ,m!,~ j 8,m8!

~a! d
~ j ,m!,~ j 8,m8!

~b! d
~ j ,m!,~ j 8,m8!

~g! F ]2A~a!

]r ~b!]r ~g!G
~ j 8,m8!,~ j ,m!

1¯J , ~A38!

I252
1

2! S Q

2\ D 2H(
a,b

d
~ j ,m!,~ j 8,m8!

~a! d
~ j ,m!,~ j 8,m8!

~b! A
~ j 8,m8!,~ j ,m!

~a! A
~ j 8,m8!,~ j ,m!

~b!

1S 1

2! D
2

(
a,b,g,d

d
~ j ,m!,~ j 8,m8!

~a! d
~ j ,m!,~ j 8,m8!

~b! d
~ j ,m!,~ j 8,m8!

~g! d~ j ,m!, j 8,m8
~d! F]A~a!

]r ~b! G
~ j 8,m8!,~ j ,m!

F]A~g!

]r ~d! G
~ j 8,m8!,~ j ,m!

1¯

1 (
a,b,g

d
~ j ,m!,~ j 8,m8!

~a! d
~ j ,m!,~ j 8,m8!

~b! d
~ j ,m!,~ j 8,m8!

~g! A
~ j 8,m8!,~ j ,m!

~a! F]A~b!

]r ~g! G
~ j 8,m8!,~ j ,m!

1
2!

3! (
a,b,g,d

d
~ j ,m!,~ j 8,m8!

~a! d
~ j ,m!,~ j 8,m8!

~b! d
~ j ,m!,~ j 8,m8!

~g! d
~ j ,m!,~ j 8,m8!

~d! A
~ j 8,m8!,~ j ,m!

~a! F ]2A~b!

]r ~g!]r ~d!G
~ j 8,m8,~ j ,m!

1¯J , ~A39!
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I352
i

3! S Q

2\ D 3H (
a,b,g

d
~ j ,m!,~ j 8,m8!

~a! d
~ j ,m!,~ j 8,m8!

~b! d
~ j ,m!,~ j 8,m8!

~g! A
~ j 8,m8!,~ j ,m!

~a! A
~ j 8,m8!,~ j ,m!

~b! A
~ j 8,m8!,~ j ,m!

~g!
1¯

1
3!

~2! !2 (
a,b,g,d

d
~ j ,m!,~ j 8,m8!

~a! d
~ j ,m!,~ j 8,m8!

~b! d
~ j ,m!,~ j 8,m8!

~g! d
~ j ,m!,~ j 8,m8!

~d! A
~ j 8,m8!,~ j ,m!

~a! A
~ j 8,m8!,~ j ,m!

~b! F]A~g!

]r ~d! G
~ j 8,m8!,~ j ,m!

1
3!

~2! !3 (
a,b,g,d,«

d
~ j ,m!,~ j 8,m8!

~a! d
~ j ,m!,~ j 8,m8!

~b! d
~ j ,m!,~ j 8,m8!

~g! d
~ j ,m!,~ j 8,m8!

~d! d
~ j ,m!,~ j 8,m8!

~«! A
~ j 8,m8!,~ j ,m!

~a! F]A~b!

]r ~g! G
~ j 8,m8!,~ j ,m!

3F]A~d!

]r ~«! G
~ j 8,m8!,~ j ,m!

1
1

2! (
a,b,g,d,«

d
~ j ,m!,~ j 8,m8!

~a! d
~ j ,m!,~ j 8,m8!

~b! d
~ j ,m!,~ j 8,m8!

~g! d
~ j ,m!,~ j 8,m8!

~d! d
~ j ,m!,~ j 8,m8!

~«!

3A
~ j 8,m8!,~ j ,m!

~a! A
~ j 8,m8!,~ j ,m!

~b! F ]2A~g!

]r ~d!]r ~«!G
~ j 8,m8!,~ j ,m!

1¯J . ~A40!
E
ge

s

n

t o
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ng
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y
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We now compare these terms, when substituted into
~A29!, to the corresponding ones obtained from our gau
invariant Hamiltonian. In so doing we will find it helpful to
make repeated use of Eq.~A28! to obtain expressions such a

^v;m;Rj ,mur ~b!,[ r ~a!,V#uv8;m8;Rj 8,m8&

5d
~ j ,m!,~ j 8,m8!

~a! d
~ j ,m!,~ j 8,m8!

~b!
^v;m;Rj ,muVuv8;m8;Rj 8,m8&

~A41!

to evaluate the multiple commutators appearing in Eqs.~19!,
~21!, and ~24!. Our only use of the diagonal approximatio
for the position operator, Eq.~34!, is with respect toA and
its derivatives. This is consistent with the usual treatmen
the scalar potential as a same-site, same-orbital interact12

and results in expressions such as

^v;m;Rj ,mup~a!A~a!uv8;m8;Rj 8,m8&

52
im

\
A~a!~Rj 8,m8!d~ j ,m!,~ j 8,m8!

~a!

3^v;m;Rj ,muH0uv8;m8;Rj 8,m8&, ~A42!

where we have used Eq.~A3! for p.
Carrying out this procedure on the first-order coupli

term, Eq.~19!, we find immediately

^v;m;Rj ,muH1
~A!uv8;m8;Rj 8,m8&

5 i
Q

2\ H(
a

d
~ j ,m!,~ j 8,m8!

~a! A
~ j 8,m8!,~ j ,m!

~a!

1
1

2! (a,b
d

~ j ,m!,~ j 8,m8!

~a! d
~ j ,m!,~ j 8,m8!

~b! F]A~a!

]r ~b! G
~ j 8,m8!,~ j ,m!
24531
q.
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f

1
1

3! (
a,b,g

d
~ j ,m!,~ j 8,m8!

~a! d
~ j ,m!,~ j 8,m8!

~b! d
~ j ,m!,~ j 8,m8!

~g!

3F ]2A~a!

]r ~b!]r ~g!G
~ j 8,m8!,~ j ,m!

1¯J
3^v;m;Rj ,muH0uv8;m8;Rj 8,m8&, ~A43!

which agrees with the first-order term of the exponential, E
~A38!, substituted into Eq.~A29!. For the second-order@Eq.
~21!# and third-order@Eq. ~24!# terms we change the dumm
indices of summation to rewrite terms such as

(
a,b

d
~ j ,m!,~ j 8,m8!

~a! d
~ j ,m!,~ j 8,m8!

~b!
@A~a!~Rj ,m!A~b!~Rj ,m!1A~a!

3~Rj 8,m8!A
~b!~Rj 8,m8!12A~a!~Rj ,m!A~b!~Rj 8,m8!#

5(
a,b

d
~ j ,m!,~ j 8,m8!

~a! d
~ j ,m!,~ j 8,m8!

~b!

3@A~a!~Rj ,m!1A~a!~Rj 8,m8!#

3@A~b!~Rj ,m!1A~b!~Rj 8,m8!#

5(
a,b

d
~ j ,m!,~ j 8,m8!

~a! d
~ j ,m!,~ j 8,m8!

~b! A
~ j 8,m8!,~ j ,m!

~a! A
~ j 8,m8!,~ j ,m!

~b! .

~A44!

After a few manipulations of this type we obtain agreeme
for the second- and third-order terms as well:
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^v;m;Rj ,muH2
~A!uv8;m8;Rj 8,m8&

52
1

2! S Q

2\ D 2H(
a,b

d
~ j ,m!,~ j 8,m8!

~a! d
~ j ,m!,~ j 8,m8!

~b! A
~ j 8,m8!

~a! A
~ j 8,m8!,~ j ,m!

~b!

1S 1

2! D
2

(
a,b,g,d

d
~ j ,m!,~ j 8,m8!

~a! d
~ j ,m!,~ j 8,m8!

~b! d
~ j ,m!,~ j 8,m8!

~g! d
~ j ,m!,~ j 8,m8!

~d! F]A~a!

]r ~b! G
~ j 8,m8!,~ j ,m!

F]A~g!

]r ~d! G
~ j 8,m8!,~ j ,m!

1¯

1 (
a,b,g

d
~ j ,m!,~ j 8,m8!

~a! d
~ j ,m!,~ j 8,m8!

~b! d
~ j ,m!,~ j 8,m8!

~g! A
~ j 8,m8!,~ j ,m!

~a! F]A~b!

]r ~g! G
~ j 8,m8!,~ j ,m!

1
2!

3! (
a,b,g,d

d
~ j ,m!,~ j 8,m8!

~a! d
~ j ,m!,~ j 8,m8!

~b! d
~ j ,m!,~ j 8,m8!

~g! d
~ j ,m!,~ j 8,m8!

~d! A
~ j 8,m8!,~ j ,m!

~a! F ]2A~b!

]r ~g!]r ~d!G
~ j 8,m8!,~ j ,m!

1¯J
3^v;m;Rj ,muH0uv8;m8;Rj 8,m8&, ~A45!

^v;m;Rj ,muH3
~A!uv8;m8;Rj 8,m8&

52
i

3! S Q

2\ D 3H (
a,b,g

d
~ j ,m!,~ j 8,m8!

~a! d
~ j ,m!,~ j 8,m8!

~b! d
~ j ,m!,~ j 8,m8!

~g! A
~ j 8,m8!,~ j ,m!

~a! A
~ j 8,m8!,~ j ,m!

~b! A
~ j 8,m8!,~ j ,m!

~g!
1¯

1
3!

~2! !2 (
a,b,g,d

d
~ j ,m!,~ j 8,m8!

~a! d
~ j ,m!,~ j 8,m8!

~b! d
~ j ,m!,~ j 8,m8!

~g! d
~ j ,m!,~ j 8,m8!

~d! A
~ j 8,m8!,~ j ,m!

~a! A
~ j 8,m8!,~ j ,m!

~b! F]A~g!

]r ~d! G
~ j 8,m8!,~ j ,m!

1
3!

~2! !3 (
a,b,g,d,«

d
~ j ,m!,~ j 8,m8!

~a! d
~ j ,m!,~ j 8,m8!

~b! d
~ j ,m!,~ j 8,m8!

~g! d
~ j ,m!,~ j 8,m8!

~d! d
~ j ,m!,~ j 8,m8!

~«! A
~ j 8,m8!,~ j ,m!

~a!

3F]A~b!

]r ~g! G
~ j 8,m8!,~ j ,m!

F]A~d!

]r ~«! G
~ j 8,m8!,~ j ,m!

1
1

2! (
a,b,g,d,«

d
~ j ,m!,~ j 8,m8!

~a! d
~ j ,m!,~ j 8,m8!

~b! d
~ j ,m!,~ j 8,m8!

~g! d
~ j ,m!,~ j 8,m8!

~d! d
~ j ,m!,~ j 8,m8!

~«!

3A
~ j 8,m8!,~ j ,m!

~a! A
~ j 8,m8!,~ j ,m!

~b! F ]2A~g!

]r ~d!]r ~«!G
~ j 8,m8!,~ j ,m!

1¯J ^v;m;Rj ,muH0uv8;m8;Rj 8,m8&. ~A46!

Some aspects of this compact representation merit further comment. First, note that the straight-line path specifie
~A29!–~A32! is notchosenby us, but rather isimposedupon us by the requirement that Eq.~A29! give the same result as th
Hamiltonian derived in Sec. II above. Second, observe that Eq.~A29! makes the proof of formal gauge invariance transpare
for the line integral of“ f alongany path connecting the two points is simplyf (Rj ,m)2 f (Rj 8,m8).

Finally, we conclude with a brief discussion of integrals along a general path that provides a physical justification
straight line beyond the mathematical agreement of Eq.~A29! with the development of Sec. II above. A general path betw
two atomic sites may be parametrized as

r~l!5(
a

ea@Rj 8,m8
~a!

1 f ~a!~l!~Rj ,m
~a!2Rj 8,m8

~a!
!#, l: 0→1 ~A47!

f ~a!~0!50, f ~a!~1!51, aP$x,y,z% ~A48!

dr~l!

dl
5(

a
ea

d f ~a!~l!

dl
~Rj ,m

~a!2Rj 8,m8
~a!

!, ~A49!

where theea are Cartesian unit vectors and the functionsf (a)(l) are arbitrary. Note that for the special case of a straight
we have f (x)(l)5 f (y)(l)5 f (z)(l)5 f (l) and that in this case the parameterl is superfluous since it is clear from Eq
~A47!–~A49! thatr really depends~linearly! upon the single parameterf, so that we may simplify the equations by using ju
f. Integrating the average of the two Taylor series ofA(r), one expansion taken about each of the endpoints, we find:
245314-15
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E
r:Rj 8,m8

r:Rj ,m
A•dl5

1

2 X(
a

d
~ j ,m!,~ j 8,m8!

~a!
@A~a!~Rj ,m!1A~a!~Rj 8,m8!#1(

a,b
d

~ j ,m!,~ j 8,m8!

~a! d
~ j ,m!,~ j 8,m8!

~b!

3H F1
~a,b!F]A~a!

]r ~b! G
Rj 8,m8

2G1
~a,b!F]A~a!

]r ~b! G
Rj ,m

J 1
1

2! (
a,b,g

d
~ j ,m!,~ j 8,m8!

~a! d
~ j ,m!,~ j 8,m8!

~b! d
~ j ,m!,~ j 8,m8!

~g!

3H F2
~a,b,g!F ]2A~a!

]r ~b!]r ~g!G
Rj 8,m8

1G2
~a,b,g!F ]2A~a!

]r ~b!]r ~g!G
Rj ,m

J 1¯C , ~A50!

where

F1
~a,b!5E

0

1

f ~b!~l!
d f ~a!

dl
dl, G1

~a,b!5E
0

1

@12 f ~b!~l!#
d f ~a!

dl
dl, ~A51!

F2
~a,b,g!5E

0

1

f ~g!~l! f ~b!~l!
d f ~a!

dl
dl, G2

~a,b,g!5E
0

1

@12 f ~g!~l!# @12 f ~b!~l!#
d f ~a!

dl
dl, ~A52!
b

p
-
tia
n

am ld
.
ay

s

and so forth. For the straight-line path we immediately o
tain FnGn51/(n11), in agreement with Eq.~A33!. Observe
that this ensures equal weights for corresponding com
nents ofA ~and their derivatives! evaluated at the two end
points, and therefore can be the end result of an Hermi
operator. If, however, the path is not straight, we find u
equal weights. For example, if we choose the path par
trized by

f ~x!~l!5 f ~y!~l!5l, f ~z!~l!5l2, ~A53!

we obtain
d

o-

.

R.

ris
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o-

n
-
-

F1
~z,x!5E

0

1

2l2dl5 2
3 ,

G1
~z,x!5E

0

1

~12l!2l dl5~l22 2
3 l3u0

1!5 1
3 , ~A54!

which are obviously unequal. No Hermitian operator cou
sample]A(z)/]r (x) with different weights on the two sites
Thus the straight-line path ensures that the line integral m
come from a Hermitian operator. Equation~A50! reveals one
more interesting fact: the trapezoidal rule~i.e., the single
sum! discardsall path information so that within it all path
are identical.
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