PHYSICAL REVIEW B, VOLUME 63, 245314

Electromagnetic coupling and gauge invariance in the empirical tight-binding method
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We examine the requirements placed upon the Hamiltonian under the demand of gauge invariance. From
these requirements we derive the gauge-invariant form of the tight-binding Hamiltonian with electromagnetic
coupling. In our derivation we do not make recourse to a Peierls substitution and hence avoid introducing any
ambiguities of path. Our expression transparently reduces to the familiar expression in a complete basis. We
apply this Hamiltonian to study resonant magnetotunneling spectroscopy using a simple tight-binding model.
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I. INTRODUCTION blende or diamond crystals presents two obvious competing
choices: the straight line between the second-near neighbors,
One of the great attractions of the empirical tight-bindingor the two-leg path passing through their common nearest
method is its close link to atomic and molecular physicsneighbor.(It can be further argued that paths connecting only
through its description of the electronic structure of a crystathe second neighbors other than the straight line ought to be
in terms of matrix elements of the Hamiltonian between lo-considered as well.The situation rapidly becomes more
calized atomiclike orbitals centered on neighboring atdfs. confusing for more complicated crystals and/or models with
These matrix elements are reduced to a minimal set usingpore-distant-neighbor interactions.
symmetries of the crystal, and the resulting set of parameters Here we shall derive the correct expression for the tight-
is chosen to reproduce the observed energy gaps and effdginding Hamiltonian in the presence of the vector potential,
tive masses-’ Owing to the localized nature of the interac- thereby overcoming the aesthetlack of an explicit opera-
tions, the method has proven very useful in models oftor expressionand practicalambiguity of path limitations
reduced-dimensional structures as Welf Deducing inter-  of the Peierls-substitution approach. Our derivation begins
face parameters is not difficult and an applied electrostatievith the observation that the vector potential must enter the
potential is conveniently treated as a same-site, same-orbit@fuations of motion via the momentum operator and fully
only, stepwise-constant interaction. takes into account the incompleteness of the tight-binding
In contrast to the straightforward treatment of electrostatidasis. We introduce no additional parameters into the mo-
potentials, numerous schemes have been proposed for ifrentum operator, ensuring that it is the same as the momen-
cluding electromagnetic effects via the vector potertfial®  tum operator used to calculate carrier velocitiesnd slopes
many involving the introduction of new parameters. Graf andand inverse effective massésand curvaturgs (Although
Vogl*? have pointed out that this is unnecessary in theirthis treatment of the momentum operator precludes intra-
method, which is based upon the Peierls substitution and th&tomic transitions, it avoids altogether ambiguities in defin-
two-center approximation. Although their approach is sig-ing matrix elements of higher powers ofin the localized-
nificantly more systematic than most, it is an inescapable fagerbital basis—e.g.t @2 or r®r®—that arise in even very
that the Peierls substitution is, strictly speaking, valid only insimple tight-binding models.As a consequence of the in-
one dimension, where there can be no ambiguity of path. Theompleteness of the basis, the familiar textoook commutator
Peierls substitution is also aesthetically unattractive, since [tr(ﬁ),p(“)]zih&w no longer holdsand multiple commuta-
gives a prescription for a matrix element rather than an extors such agr([r# p(®]] do not necessarily vanish'®
plicit formula for the Hamiltonian operator in the presence ofresulting in an infinite series iA. Nevertheless, in a com-
the vector potential. This situation differs markedly from theplete basis our expression transparently reduces to the famil-
formalism of the minimal coupling Hamiltonian familiar iar minimal-coupling Hamiltonian.
from standard quantum mechanics, in which one has an ex- Following the derivation of the series expression for the
plicit operator and from which considerations of path areHamiltonian operator in the presence of the vector potential
completely absent. we examine its matrix elements between localized orbitals.
Graf and Vogt? address this ambiguity by choosing the Under the most common approximati¢ineatingA and its
straight line connecting the two atomic sites involved in aspatial derivatives as same-site, same-orbital interagtives
matrix element for their path, quite candidly noting the pathcan explicitly sum the power series to obtain a closed-form
dependence of their method. While the straight-line pattexpression for the matrix elements of the Hamiltonian in the
seems reasonable for a nearest-neighbor model such as theesence of the vector potential. The resulting expression is
one they employ, the situation is not so clear for modelof the sameform as that of the Peierls-substitution
having interactions with more-distant neighbors. For ex-approach? but there is no arbitrariness of path, our expres-
ample, a second-near-neighbor matrix element for zincsion being simply that which is demanded by gauge invari-
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ance in an incomplete basis. We thus firmly establish the link (n";K'N;KY= 81 nyr k- (8)
between the matrix element and operator expressions of the

Hamiltonian in the presence of the vector potential. The pa- We represent any cell-periodic operafrin the crystal
per is organized as follows. In Sec. Il we derive the electromomentum representatigh,

magnetic coupling Hamiltonian and demonstrate gauge in- ket iker

variance. In Sec. Il we apply it to some cases of interest, and Qk)=e Qe™, ©)

in Sec. IV give our conclusions. The Appendix gives impor-where in the direct-space representatidr) = Q(r +R) for
tant intermediate results and derivations needed in the devedmy direct lattice vectoR. Unless otherwise noted we ex-
opment of Secs. Il and III. press operator@ (k) in the Bloch basis, and all wave vectors

in Egs.(4)—(9) are taken to fall in the first Brillouin zone.
Il. METHOD

A. Basis set and zeroth-order Hamiltonian B. Derivation

The derivation of the electromagnetic coupling Hamil- We expect that in the incomplete basis the electromag-
tonian is simplest for a bulk crystal so we begin there. For d'€tic coupling Hamiltonian might have contributions to all

perfect crystal in the absence of applied fields we take for th@"ders in the vector potentil, so we denote the full Hamil-
Hamiltonian tonian for a particle of charg® in the presence of applied

vector (A) and scalaf®) potentials as

Ho=Hpsot Hso, (1) -
02 H=H®+U(r,1), H<A>=n§0 HP,  U(r,t)=Qd(r,t),
Hn50:ﬁ+v(r)- 2 (10)
" whereH®W is of nth order in the components af, HM
SOIW(UX VV)-p, (3) =Hg, the unperturbed Hamiltonian, and we drop th&

term. As stated in the Introduction, we do not postulate a
wherem is the free-electron mass; are the Pauli spin ma- form for the Hamiltonian; rather, we see what form is de-
trices, andV is the full crystal potentialwithin the one- Manded by gauge invariance. To that end, observe that the
electron approximation which satisfies/(r)=\V(r+R) for samevpf)hysmal system may be equally well describetiby
any direct lattice vectoR. We adopt Chadi% treatment of ~ ©F H(YD—Qaf/dt, for which A=V, the solutions of the
the spin-orbit interaction, coupling orbitals on the same site>h"ainger equation being related solely by a position-

. s T vt
only. We consider a total volume consisting ofN; primi-  dependent phase factor. In other wortls, andH"") must
tive unit cells in thea direction, i=1,2,3, wherea is a  be related by the unitary transformatfén

primitive (direct lattice translation vector, and apply cyclic H Ve ):eiQf,ﬁHoe_iQf,ﬁ’ (11)

(Born—von Kaman) boundary conditions in all three direc-

tions. Two bases are commonly encountered in tight binding: iQ 1(iQ)2

the Bloch basis and the band basis. The Bloch basis is con- HVf)=H,+ —~[f Hy]+ _(_) [f,[f.Holl+",
structed of localized atomiclike orbitals centered on each h 2! %

atom of the crystal: (12)

wheref is the gauge function; because the basis is incom-
N . o plete we use the Baker-Hausdorff identity to expand (&)
e sty = \/_Njgl exilik: (Rj+v,)]la; R +v,). yielding Eq.(12).
We deduce the electromagnetic coupling Hamiltonian in
(4)

] ) ) ] the following manner: Observe that in a complete basis with
In Eq. (4) k is the three-dimensional wave vect®; is the — —%2y2/2m+V(r), we obtain the usual minimal-

location of thejth unit cell, N=N;N,N3 the total number of coupling  Hamiltonian, H®=[(#/i)V — QA(r,t)]2/2m

ceIIs,_,u the atom Withir_l the ceII_, offse_t by, from the cell +V(r), by explicitly calculating the expression eiQ¢/
Ioca_tlon, ar_1da the_ orbital typ_e(mt_:ludmg spin. The b_and A —h2V22m+V(r)lexp(—iQf/k) and replacingVf—A.
baS|_s consists of linear combinations of stai@sthat diag-  That is, Vf plays the role ofA in the equations of motion,
onalizeHo: ensuring that the Hamiltonian takes the s&oren regardless
of the gauge chosen. As we shall demonstrate bésee the
IN;KY =2 by () (K)| s 123 K), (5)  sentences following Eq$19) and(24)], our results reduce to
ap the familiar minimal-coupling Hamiltonian in a complete ba-
Sis.
Ho|n;k) =En(k)[n;k), (6) Here we apply the same procedure, introducing Fourier

wheren is the band index and thie are expansion coeffi- representations,
cients. Both sets of states are orthonormal:

N

f=2, fedr, 13
(a';m" ;Ko iKY = 8,41 08,0 10k ks (7) % q 13
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followed by the analogous substitutions and so on. Since the Fourier components are completely ar-
(@) bitrary, terms of the Hamiltonian may be isolated by exam-
A=Vi=A@=iq@f,, IA =(iq'@)(iq®)f,, ining matrix elements of the fornja’; ' ;k+q,+qy+--
a a ar'P) q d +0aH | a; ;k) and selecting out those subexpressions
(14)  proportional to the productl, fq ---fq . Note that there are
etc. Using Eq(13) in Eq. (12), then, we find n! such terms, canceling the globahl/n Egs.(15) and(16)
o and succeeding expressions. We denote the total of all such
i . (Vf) ;
H(1Vf>=72 F L€l Hol, (15) terms as[H,, ]ququ _____ q,- Using Eqs._(A8), (A9), (A18)i
q and (A19), we make a fully symmetric Taylor expansion,

1/i0\? selecting terms proportional 1le1 and find for the first-order
H&"”ZE(?) > tof e e Holl, (16  coupling:
H q'q!

1/iQ Ho(k)  dHo(k+qy)] 1 PHo(k)  *Ho(k+0y)
viyy —_ =X (a) 2S48 _
[H1 o, = 2( h )fqlg a1 H e |t ar 2 8| g ~ e
1 P*Ho(k) d*Ho(k+0y)
il (B gy 0 0 !
T3 BZY g: 9y [ak(y)&k(ﬁ)ﬁk(a) T oKD g B @ | T 17)

Now, making use of Eq(14) along with Eqs.(A3)—(A7) to rewrite Eq.(17) in terms of the vector potential, and observing
from Egs.(Al) and(A2) that the arguments of the functions involved show the relative positions of the exponentials, we find

Q ho . 1 %
(A = = —Telr Al () . pla)gidrral@]y — -
[HV]g,=— 57 g [l TAGp @+ pleela Aql]+2!a2ﬁ -

ba.3, (5

_ P*A@ _ P2A@
X{e'ql'r— [r('}’),[r(ﬁ),p(a)]]+[r('}’),[r(ﬁ),p(a)]]elqlrW 4eee ], (18)
d a;

(a)

—ToA Al
iqq-r
O R e

(B) pla)1_1r(B) pla)]aidrr
} [r2,pr ] =7, pt e — g
dq a1

ar('}’)&r(ﬁ)

Equation(18) is now easily translated back from Fourier space to real space:

Q 1 A HAL@
(A__ < (@) (@) 4 pl@pl@ ]y = @p D IR e
HY=——— ;[Aap(“ﬂLP(“A“Hz!aEB M — e M2
! PN by g O A
p— - a,p,y a,p,y)______
+3!a,ﬁ,y g M M e | } 19

Note that in a complete basis only the single sum in#&§) survives sinceV (2“"3)= i1, 5, Mj=0, =3 and we recover the
usual expression for the first-order coupling to the vector potential.
For the second-order coupling we select out subexpressions proportio‘r@@i&gusing the same procedures as employed

with the first-order coupling. The leading tertihat without any derivatives of the vector potential shown below:

Q\?/—in\(1 2
C L B e

2 . . . .
+ ( 1 1) {Agz)ewlzr[r(ﬁ), p(a)]elqeréﬁ)_F e'qlrAgi‘)[r(ﬁ),p(a)]Agg)e|q2r}

+} (20)

In translating Eq(20) back to real space there is one complication, for when there atentical-order Fourier components
together(e.g.,e'(q1+q2)"Af{;)Agf) above, for whicl = 2), we must divide the resulting real-space expression!bgince there
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are this many permutations of the real-space functions that contribute to the same term. Likewise, a single real-space term
gives rise to the last two terms shown in E20). Taking these observations into account, we obtain the second-order coupling
Hamiltonian:

w__ T(Q)[1)72 2 V[ L @B @B 1 @B A@ B+ Al@I\ (@B AB)
M5l 2) ) (@2 | A AP Ve MR BATATT + ATIMETEA
1 3 JAP) JAB) JA@ JAB)
= (B.7) A () _A@ (@Bn) 4 ABN @B I IR (@B Ale)
+3|M,7(2,1)<M3 Ay T MR T ATIME Ry — —y METRTA
1 4 A A
= BTN @By aBre SN )
+4!a,ﬁ,7,5[(3=1)<A O Ma +My oA
2 A () 27(8) (@ HA(B)
o A aomiasra AT L IAT a2 LA AT e
31 4 ar@grm " gr(grn V4 2,221\ or™7 gr@ M4
(@ HA(B) 8) (a)
L (o A AN A A o1
4 (gr(}’) ar(g) ar(‘s) 4 (gr(}’)

Together the first- and second-order expressions, @8&. derivative terms” since Eq.22) involves products oA and

and(21), demonstrate general patterns that may be employeits second(partial derivative, while Eq(23) involves prod-

to simply write down the third-ordefand higher-ordgrcou-  ucts of two first(partia) derivatives ofA. Third, as deriva-

plings. tives accumulate, a sign change occurs when the order of a
First, note that theth-order coupling leads with the mul-  derivative on theeft-handside of the operatoM; is incre-

tiple commutatoM, and has a global factor2 due to the  mented over the preceding term, It on the right. This is

n-fold averaging. Second, theth-order coupling involves jjystrated by Eq(21), where we see that the first two terms

only n-nomial coefficients whose lower indices tell the o the triple sum lead to the first, second, fifth, and sixth

order of the derivatives involved for no derivative, 2 for a  tgrms of the quadruple sum, while the last two terms of the

first derivative, 3 for a second derivative, gtand whose 516 sum give rise to the third, fourth, and last terms of

upper indexn’ (as well as prefactor @/!) is the sum ofn the quadruple sum. Fourth, when there are fully symmetric

and the total order of the derivatives in the term. We see thi%xpressions in identical’s (or derivative on the same side
explicitly in Eqg. (21), where we have the associations be—O]c the operatoM, we divide by the number of permuta-

tween multinomial coefficients and derivatives of the vector.. . 1 . . . .
potential such as tions of the identicalA’s. This occurs in Eq(21) in the first

two terms of the double sum and the fifth and sixth terms of
the quadruple sum. Finally, all uniqgue permutationsnof

( 4 ) g A M (@B.7.5) factors of A appear in Hermitian combinatiorighe A and
317 ogr@gry) 4 ' the M; do not commute For example, in the quadruple sum
of Eq. (21) the term with anA to the left of the(anti-
Hermitian M, and a second derivative & to the right is

ABM (@B.7.0) P*AL o (22) added to the term with thé& and second derivative trans-
4 ar@gryr e posed. The terms with thA and second derivative on the
same side of théM, are of course distinct and appear in a
4 JA@ gAB) separate combination. Note too that the last term of this sum
T _MlaBrd) is already symmetric. In the triple sum of E@®1) paired
(2,2> ar('}/) ar(‘s) 4 ’

terms are subtracted since there is a global factoaofl the

M, 41 are Hermitian.

JAB) JA@) We emphasize that there is no mystery to the above-noted

MR —— (23)  patterns—they arise quite naturally from the Taylor expan-
ar ar sions and the Baker-Hausdorff identity. We discuss them

where in Eq(22) the lower indices 3 and 1 indicate a secondSimply to provide a mnemonic for writing down subsequent

derivative and no derivative, respectively, while each of theterms in the expansion dfi{™, as well as writing down

identical lower indices 2 in Eq23) indicates a first deriva- HgA) and higher-order coupling Hamiltonians. With these ob-

tive. We employ the term “order” in a generalized fashion, servations, we can simply write down the third-order Hamil-

and say that both Eq§22) and(23) above are “second-order tonian,
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H<A>:_i(9)3(i_)31(iz ( 8 )(i[Am)Aw)A(wM(a,ﬁ,mrM(a,ﬁ,wA(a)A(mA(w]
s m\2/ \n) \31.%, 1,113 s s
+ %[A(y)Mga,ﬁ,V)A(a)A(B)+A(B)A(7)M(3Q,B,V)A(a)] + ma;m (211)[% (Mﬂf“'ﬁ'%‘” j:‘((;) ABAD)
_ aﬂ'?f: ABADM @B | [ ABADM @79 ‘;’:‘((: %ME‘“'W"”AWAWN
NCINIE RN if((:)) _A<y>%§),\ﬂymﬁwa> +) (24)

Succeeding terms of Eq24) as well as the fourth-, fifth-,

(n+m) commutators applied tél,, the (h+m)! permuta-

and higher-order couplings in the vector potential can beions of thequ(”) cancel the leading I(+ m)! and we have
deduced using these same patterns. Observe that in a comenamed all terms as

plete basig21) becomes the familiar second-order coupling

and Eq.(24) and all higher-order couplings vanish.

C. Gauge invariance

o0V —=[A;+iq[gq ], j=1.2..(n+m).
(26)
In the product of f+m) factors, Eq.(26), it is clear(using

To close this section we establish gauge invariance of thghe equality of mixed partial derivativethat there is but one

electromagnetic coupling Hamiltonian whose leading termgerm A

are given in Eqs(19), (21), and(24). This involves showing
that under a gauge transformatiap for which A’=A
+Vg, U'=U-Qdg/dt, the equality

H(A+ V) — giQu/f{(A)g—iQu/h

iQ 1
=HA) ;L = (A4 —
H®+ == [g,HM]+ o

‘02
%) [9.[g.H™ ]+

(29)

holds to all orders(The scalar potentidll poses no difficulty
as it is a function ofr, not p, and thus commutes witf.)
That is, the left-hand side of Ed25) is to be computed
simply by substitutingA(®)+ ag/ar (*) for A® in Egs.(19),
(21), and (24) and succeeding coupling terms, while the

right-hand side is to be found by direct computation of the” a1 d,’

multiple commutators. Gauge invariance is established the
by demonstrating that the term withfactors ofA and m of

qlqu---Aqngqnﬂgqrwz---gqmm. Likewise, for the

right-hand side of Eq(25) there is a leading b/ due toH{")
and a further factor of ! associated with then-fold com-
mutator withg. The (h+m) Fourier sums now run over the
dummy indicess; ,S,, ...,§n+m) @and here we have renamad
leading factors
ifsjs§“JuA<;i>, j=12,...n (27)
leaving the remainingn as g4s(®. Computing the matrix
element, we see that there ae¢erms in whichq,,q,,...,d,
are distributed among th&, and for each of these there are
m! terms in which theq,,1,9n+2,.--.0n+m are distributed
amongst theg,, for a total factor (n!)(n!), canceling the
leading (1m!)(1/n!) and giving once again one term
“Aq9q,.,9q,., "9q,, Thus the left- and right-

mand sides of Eq(25) yield the same result and gauge in-
variance is established.

g is the same in the left- and right-hand expressions in Eq.

(25). On the left-hand side this term comes from the expan-

sion of H{4* V9 while on the right-hand side this term comes

from them-fold commutator ofg with H*) .

The demonstration is not difficult when done in the Fou-

D. Closed-form expression in the usual tight-binding
approximation

Thus far in the development of the gauge-invariant elec-
tromagnetic coupling Hamiltonian we have not specified

rier representation; as usual we concentrate on a single M@opw the components d& and their spatial derivatives are to

trix element between states of wave veckorand k+q;
+ 0zt "+ Qmsn)). From the discussion in Sec. 4 of the

be treated. The advantages of this procedure are that it estab-
lishes the correct form folH(* free of any assumptions be-

Appendix it is clear that the Taylor expansion resulting fromyond the requirement of formal gauge invariaridemon-

(n+m) commutators applied tbl, must be the same as that
which comes fromn commutators applied téd,, subse-
quently subjected to a furthem commutators. Thus, the

strated in Sec. || C aboyeand that it leads to an operator that
transparently reduces to the usual minimal-coupling Hamil-
tonian in a complete basis. The obvious disadvantages of the

terms will be equal if they have identical coefficients; the method are that it produces an infinite series of increasingly
averaging coefficients are obviously the same, beingumbersome terms that might fail to converge least in

27 (M for HATYY and (27 ™)(27") for the m-old com-

mutator ofg with HY) . For the left-hand side of Eq25),

certain casesand that truncating the series entails sacrificing
gauge invariance.
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We can, however, avoid these problems by treating the . RESULTS
components oA and their derivatives in the customary man-
ner: as same-site-, same-orbital-only interactions. Under this
approximation there exists a closed-form expression for the The electromagnetic coupling Hamiltonian derived in
matrix elements oH™) in the localized-orbital basis. We Sec. Il differs markedly from both the standard prescription
remark that this approximation entails no additional reduc-and that of Ref. 12 in that it includes terms involving deriva-
tion in accuracy, for it isexactlythe same treatment applied tives of the vector potential. To employ it in the usual tight-
to the matrix elements of the scalar potentfaindeed, con-  binding approximation the line integral in E¢28) must
sistency demands it. The closed-form expression, the detait§erefore be carried out exactly. Previously we employed the

and mathematical justification of which are discussed aptandard prescription for the first-order coupling in calculat-
length in Sec. 6 of the Appendix is ing the absorption of bulk GaAS, where we found only

small differences with the electric dipole approximatiam
o . hich A is assumed to be spatially unifoynThe problem of
v [H® RV whic . . ne prob
(iR V“'H o' Ry V) finding electronic states in a large magnetic field is another
Q [oRjtv, matter entirely and it is here that we focus our attention.
=exg! gf " A-dl Rather than treating bulk effects such as Landau levels or the
TR V! magnetic band structuféwe discuss a quantum well in a
X {a; ;R +V, [Hola ;" ;R +v,), (28 magnetic field parallel to the heterointerfaces, similar to
M R wltl0 MR w'/ . _
resonant magnetotunneling spectrosé8p§/ (RMS) and

where the path of integratiomy, is the straight line connect- cherzgexpenments carried out in a transverse magnetic
ing the two sites. Although Eq(28) resembles the result fi€ld." In such experiments it is argued that a chagyaun-
given in Ref. 12, there are several important differencesneling alongz a distancez in a transverse magnetic fiel!
First, in terms of its derivation neither thiorm of Eq.  =Bo® experiences a change in its in-plafiénetic) crystal
(28)—a bare Hamiltonian matrix element weighted by amomentum?k,— (7k,—QBogze,). Hence varying the ap-
path_integra|_dependent phase_nor the Straight_”ne path fd?“ecj magnetic field should allow carriers tunneling into a
the integral therein arehosenby us. Both applyonly be-  quantum well to probe the subband dispersions. Edrliese
cause the closed-form expression gives the same matrix eléerived a completely general condition on the validity of this
ments as doesl™ in this approximation. Second, the line semicl_assical interpretation, namely, that the distancc_a tun-
integral in Eq.(28) must be carried ouéxactly we do not nelt_ad into the center of the welirom, say, an accumu_latlon
approximate the integral using the trapezoidal r(far uni-  fegion, z, must be larger than the quantum well width,
form magnetic fields the two methods will give the samef(i-e.,w/z<1). Here we shall see the explicit manifestation of
result since the trapezoidal approximation is exact for lineafh€se conditions. _ o
A, and in this case our result confirms the assumptions of We consider a quantum well oriented along tuérection
Ref. 12) Third, the straight-line path in Eq28) applies for ~ (interfaces parallel to the-y plane, so that the crystal po-
both nearest- and more-distant-neighbor interactions. For ntial is translationally symmetric only in the plané(r
more-distant-neighbor matrix element, then, the correct pathRj)=V(r), where the subscriitdenotes a vector lying in
is always the straight line, the common nearer neighbors nothe x-y plane andR, is a direct lattice vector lying in the
withstanding. plane. The most natural basis for this problem in the planar-

Beyond the mathematics, which is the final arbiter, thereorbital basis(i.e., Bloch sums in the plane
are sound physical reasons for the straight-line path that ap-
pears in Eq.(28). From the development in Sec. 6 in the o .
Appendix it is not difficult to see that only the straight-line | pibiki)= \/_szl expliky- (Ry+ v+ AL)]

I

path guarantees a balanced treatment of the componeAts of
and their derivatives. That is, coefficients of like term$®, X|a; s LRy + v+ AL ), (29

(a)) ¢ (B) ic si
aA'®[or’”, etc) sampled at the two atomic sites must bewhereNH is the number of cells in the plank,is the layer

equal in magnitude for the expression to have come from ?ndex(ad'acent lavers are separated by a distancand we
Hermitian operator. Furthermore, it follows from the deriva- J Y P y an

tive of the straight-line patliA32) that in the usual tight- E\Syseur?ginaer:zﬁirt Iii-glr;iebucllf(fslé?lt/ecglclnrthfggg ?ilLr)‘} :‘(S)rasome
binding approximation the right-hand side of E@8) be- lattices such as fcc in which lattice sites in adjacent layers

comes a series of multiple commutators of the bare ! .
Hamiltonian and position to which are coupléd and its are sf_nfted N .the plane. The other symbols have th? same
derivatives. This is exactly the same coupling manifested jjneanings as in Eq(4). We place the quantum well in a
the expression for the gauge-invariant electromagnetic co _nlfprm magnetic field8=B,g, and take for the vector po-
pling Hamiltonian,H™, developed in Sec. || B abovéin a ential,
complete basis, tooA couples intoH via p; even theA?

term can be regarded as arising from the commutators

[r®) p®]=iti5, 4.) Thus Eq.(28) in some sense reflects For an electron we hav®@= —e, wheree is the magnitude
the tight-binding representations of the momentum operatoof the electronic charge, and we can directly compute the
and its multiple commutators with position. matrix element by substituting E¢B0) into Eq. (28). How-

A. General

N

A=Bgze,. (30

245314-6
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ever, explicit summation of the terniY is a helpful illus- (iR +V, [HM s iRy +V,,0)
tration of Eq.(28) and its link to the series form, so we

2
substitute Eq(30) into Eqgs.(19), (21), and(24), finding that ieBoZ(jr .., md(J G
all derivative terms vanish. The first three terms of the series ~or A
form of the electromagnetic coupling Hamiltonian thus be-
come X {a;u; R+ Vv, [Hola"; "R +v,,0),
(36)
(A) eBO (X) (x) Lo A 1. 1.
HY =ﬁ[zp +p¥z], (31 (a; ;R Vv [ HZ [a"; "Ry +v,0)
3
1 [ieBoZjr g, ﬂ>d<1 1))
. 2 =7
HYY = — x '—h (%) [Z2M 5 + 22 MG ¥ z+ M P22 . "
2! 2 ' - I
m (32) X(a,,u,RJ-‘rVM|HO|a A ,RJI+V#/>,
(37)
1 1 [eB where in Eqs(35)—(37) we define the averageposition and
HYY = 3 ﬁZ( ) [2M X0 4+ 322M XXz the x displacement of the right site with respect to the left,
m respectively, as
+3zMY X224 M X073 33 _
] ( ) Z(]/v/il):(]uu):%[RJ,+V#,+R]+VH—]ez
The pattern, of course, continues for higher-order couplings. =3[R +V, +R;+v,]?, (39
Since we employ the planar-orbital basis and do not im- "
pose cyclic boundary conditions along thedirection the dir o= RtV —Rj—v, ]-&
matrix elements appearing in Eg81)—(33) are well be- -
haved. This is usually the case in nanostructure applications =[Ry+vu =Rj=v, ] (39

in which the extent in the dimensic®) along which the ma-  continuing this pattern, we see that to all orders, including
trix elements of are evaluated is limited by hard wallsur e zeroth-order Hamiltonian, we have
case, bulklike boundaries of space-charge layers, and the

like. The only difficulty is that the only matrix elements we (a; ;R +V, |H(A>|a';ﬂ':R-r+V,u>
know are those otommutatorssuch asz,M{#"]. The

simplest expression far consistent with the multiple com- —exr{ (eBOZ(J 2.3, m)d(x
mutators is the diagonal approximation, fi Gam")Gom)

X{a;m;Rj TV, [Hola";u" ;R +v,,1). (40)

z— > | s R+ V) (Rjn 4V ) Equation(40) is of course, the answer we would have ob-
o " tained via direct computation of E¢28). As noted in Sec.
n.oon. II D, for this constant field we obtain the same result as do
X " Ryt Vo, @4 Graf and Vogl*? since the trapezoidal rule is exact for linear
A. Our result will obviously differ from theirs for a nonuni-
where the superscrigtdenotes the component of the vector  form magnetic field, as seen from the perspective of either
and we index the atomic sites with three-dimensional vectorghe series formulation or closed-form expression for the ma-
as in Eq.(4) to simplify the notation. This is the customary trix elements ofH®). In the former the derivative terms do
tight-binding approximation, used in deriving E@28),  not generally vanish; likewise in the latter the exact line in-
wherein functions of the position operator are treated asegral gives a result different from the trapezoidal rule. A
same-site, same-orbital-only interactions. With the diagonafesult similar to Eq(40) but for pseudopotentials, in which a

approximation(34) and using Eq(A28) to evaluate théM;,  region is subdivided into many layers, has been obtained by
we calculate matrix elements of Eq81)—(33) between Io- Inkson, Tan, and Edward§.
calized orbitals: Equation(40) shows that in the planar-orbital bagi9)

the net effect is to introduce a layer-dependent shift of the

<a’;/»l/;RJ'+V/L|H§|_A)|a,;/.L,;R'I+VM/> wave vector:

(o Lk [H™ @ 5L Ky

(x)
_(1€BoZr ) %) G .
- % I
= 2 qu:'kH (] MNL )(OML)]<a”LL’L’VM:H
X(a; ;R +V, [Hola"; " Ry +v,,0), i'=1

(35) FALHP e s LRV, + ALy

245314-7
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Ny

— ; (L',L) (I I
_21 expli(Ki 0,7 ) dir o K miLiv,
+AL]”|H0|CY,;,LL,;L,;R]‘ru'f‘VMrH"‘ALr‘H% (41)
(I —
d(j’,M’L’),(O,,U,,L)_(RjIH+V,U-/”+AL/1”_V/LH_ALvH)’
(42)
StL'.L)
W _ 8By
(" \m) A '
L'l
7 =3lL + Dag+ v +vi2], (43

where we recognize that the component of Eq(42) is

merely thex vector displacemen(39) and the second of

equationg43) gives the average position.
Equations(41)—(43) are fairly general so we present a

PHYSICAL REVIEW B 63 245314

DN

>
al,

0

FIG. 1. Schematic depiction of the simulated RMS experiment
considered here. Carriers emerge from a reserigiiped at the
origin and tunnel a distanceL; to the center of an unbiased quan-
tum well, widthw. The semiclassical interpretation of this experi-
ment asserts that they undergo a shift in wave vecids
=(eBL.a/h)e . In the simplified calculations the results of which
are plotted in Figs. 2 and 3 we apply hard-wéifinite well)
boundary conditions and offset the well center &l from the
origin of the vector potential.

specific application: matrix elements for a nearest-neighboflistance in traveling to the center of the well. The semiclas-

model in the zinc-blende crystal structuieeg.,sp’, sp’s*,
sp’d®, sp®d®s*). Matrix elements ofH, take one of the
forms

(a;m;Liky[Hola'; "L ky)

(LLh

_ ] Tlama’n’) cog (ky*=ky)a/4] s
"’E;:a)ﬂ) sin (ke = ky)a/4]

wherea is the conventional unit cell cube edge, thare real
(of either sign, andu and u’ differ, one beinga (anion the
otherc (cation. In Eq. (43) a,=a/2, and the anions occupy

the Bravais lattice sites with the cations displaced by

(a/4)(1,1,1) from them. Thus, from Eq&ll) and(44),

7 =L 4 L)(@12)+ (8,0+ 5,0 ) (@ld)], (45)

(@;piLiky[Hola’; 5L ky)

L’,L
ezt |a
(ama'u') CO kx+Tiky 7
- L'L
iV(L'L,) ; eBOEf,u',,u)) a
(ap,a’w')y  SIN | Kyt — *ky 7l

(46)

In Egs.(45) and(46) note that since we include only nearest-
neighbor interactions there are but two distinct possibilities:
z=La/2*+al8. The positive sign holds for the anion and cat-

ion both in layerL, the negative sign for an anion in layler
and the cation in layek — 1.

B. Two simple models

sical interpretation of this experiment asserts that they un-
dergo a shift in wave vectakk,=(eBL.a/%)e,. Below we
compare results calculated with two simple models that have
identical equations of motion in the absence of an applied
magnetic field: the singles-band, nearest-neighbor tight-
binding model on a simple-cubic lattice and the discretized
effective mass model.

For the singles-orbital tight-binding model the vectors
vy and A, in Eq. (29) are zero, and the same-site and
nearest-neighbor couplings, chosen to reproduce a conduc-
tion band of effective mass* whose minimum coincides
with the zero of energy, are

ﬁZ

(si0lHols; =ae,) = —Vs=— 55—,

a ae{Xxy,z}

(47)

2

3%
(s;0|Hq|s;0)=Eg=6Vs=—5—,

a (48)

wherea is the unit-cell cube edge. We write the wave func-
tion in the planar-orbital basis as

Wy )=2 CulsiL’;ky) (49)
=

so that the Schidinger equation for théunbiased quantum
well reads:

—VC _1+{Es—2Vscogkja)—2V,
eBgLa
X Cco kX+T a _E CL_VSCL+1:0'

(50

Figure 1 is a schematic depiction of the simulated RMS _
experiment considered here. Carriers emerge from a resefthere the symmetric quantum well extends over the (2

voir (striped at the origin and tunnel a distaneg... to the
center of an unbiased quantum well, width Thus they feel
the effect of the applied transverse magnetic felover this

+1) layers —n+L.<Lsn+L..
boundary conditions atL=L_.*n:
=0.

We apply hard-wall
Cchnflz CLC+ n+1

245314-8
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For the effective-mass calculation, we discretize the

Schralinger equation,

(eB2)?

2m*

2
2m*

=E(r),

h
im

de(r)
X

VZy(r)+ P(r)+ 5 eBoz

(51)

using the standard central difference expressions on a uni-

form (three-dimensionalmesh of spacing for the Laplac-
ian and partial derivative. Since E(1) is separable, we
write

P(r)=d(x,y){(2), (52)
and impose Bloch conditions in the plane
P(x*ra,y,z)=e""Y(x,y,2),

p(x.y, *a,2)=e""y(x,y,2) (53)

to obtain

— Vsl 1+ |Es—2Vscogk,a) —2Vscogk,a)

2 L24

2V la
Z

+ S

sin(k,a) + S —E|{L—VslL+1=0,
0

(54)
whereVg andEg are the same as in Eq&l7)—(48) and

fi={¢(aL), (55)

(56)

As before we apply hard-wall boundary conditions:
{i-n-1=4L -n+1=0. Observe that foB,=0 Eqgs.(50) and
(54) are identical so that any discrepancies in the results wil
be solely due to the different treatments of the electromag
netic coupling in the two models.

Figures 2 and 3 show calculations for three different
cases: singles-band tight-binding,k,=0, Eg. (50), solid
curve; effective-massk,=0, Eq. (54), dash-dotted curve;
and singles-band tight-binding, Eq(50), with zero magnetic
field, butk,=(eBL.a/%)e,, whereB is taken from the ab-
scissa of the grapfi.e., thek; shift isfixedfor all layers at its
midwell value in the nonzero-field caselotted curve. This
last calculation is just the semiclassical approximéatiaf-

ten used to interpret RMS experiments. For all calculations

we take a=2.8A, m*=0.07m,, and the well is 2&
=75.6 A wide. In Fig. 2 the center of the well is placed at
17%="501.2 A, while in Fig. 3 itis at 28=70A. In Fig. 2
the two tight-binding calculations agree quite well differing

by about 4.85% at 90 T, but the effective-mass result dis-

B0 T T T T T T
Tight-Binding (kx=0) ]
— - ~ - - Effective Mass (kx=0) K4
200 o Tight-Binding (kx~B) s
3 150 b
&
2 100 [
& X
50 |
0.0

0 10 20 30 40 50 60 70

Magnetic Field [T]

80 90

FIG. 2. Ground-state subband for a 75.6-A quantum \sske
text); the center of the well is at layér,.=179(501.2 A). We take
B, as indicated on the abscissa dge-k,= 0 for two of the curves,
using Eq.(50) for the solid curve and Eq54) for the dash-dotted
curve. For the dashed curve we use Esf) with Bo=0 andk,
=0 but setk,=eBL.a/%, whereB is given by the abscissa.

The relatively close agreement of the tight-binding results in
Fig. 2 and their large relative disagreement in Fig. 3 is ex-
actly what we expect in light of our earlier, general restilts,
for Fig. 2 simulates a case in which the distance from the
accumulation layer to the center of the quantum well is much
greater than the quantum-well width, while Fig. 3 simulates a
case in which this distance is slightly less than the quantum-
well width. Likewise, the different treatments of the electro-
magnetic coupling in the tight-binding and effective-mass
results show most dramatically when the carriers are subject
to the effect of the magnetic field over a greater distance.

IV. CONCLUSIONS

In summary, we have derived a gauge-invariant electro-
magnetic coupling Hamiltonian for tight-binding models. We
tdemand of the electromagnetic coupling Hamiltonian abso-

0.6 L — T T T T T ! ;
os | Tight-Binding (kx=0) 1
[ | - — - - Effective-Mass (kx=0) i
2 I Tight-Binding (kx~B) ]

04 [ ]

03 |

Energy [eV]

02 [

0.1 [

O.OZ‘I L | I 1 |

0 10 20 30 40 50 60 70 80
Magnetic Field [T]

90

FIG. 3. Ground-state subband for a 75.6-A quantum \(ssle

agrees significantly with both: about 32% at 90 T versus thexy): the center of the well is at layér,= 25 (70 A). We takeB, as
solid curve. On the other hand, in Fig. 3 the tight-bindingindicated on the abscissa akg-k,=0 for two of the curves, using
and effective-mass results agree wellthin about 0.32% at  Eq. (50) for the solid curve and Edq54) for the dash-dotted curve.
90 T) but differ significantly from the RMS tight-binding For the dashed curve we use E84) with Bo=0 andk,=0 but set
result(dashed curve a discrepancy of about 18.5% at 90 T. k,=eBL.a/%, whereB is given by the abscissa.
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lute consistency with the underlying tight-binding model andcause we employ Chadf$treatment of the spin-orbit cou-
hence we neither make an external ansatz in developing owling, the momentum and velocity operators are
results nor do we introduce additional parameters into theroportional*®

momentum operator. Instead, we simply require the Hamil-
tonian to be gauge invariant, and it is this requirement alone
that produces the equation from which we deduce the elec-
tromagnetic coupling terms. Unlike methods based directly ) ]
upon the Peierls substitution, our results naturally and transiVe list below the several of the succeeding commutators
parently reduce to the usual minimal-coupling Hamiltonian(With our shorthand notation for therfor reference:

in a complete basis. Furthermore, under the customary tight-

m JdHq(k)

@k = — @ 1ok =
p(k) == 2=[r"*,Hol( )—gw-

(A3)

H 2
binding approximation the resulting series can be summed MSB (k) =[r®, pla](k)= ELO(k) (A4)
and the result an expression of the same form as that as- 2 ’ ho ok gkl
sumed in the Peierls substitution derivation. However, in this
case there are differences: the péhstraight ling is im- 7*Ho(k)

MBI (k) =[r ), [r®) p@1](k)= —

posed since it is the only one that will permit a matrix ele- H ok gk P gk(@)

ment in this form to agree with the series and the integral (A5)
must be carried out exactly. This settles the question of how

to handle matrix elements in more-distant-neighbor tight- M{@BT () =[rO[r ) [r® pl@]]](k)

binding models: the straight line connecting the two sites

involved in the matrix element, nearer neighbors notwith- _ im J*Ho(k) AG
standing. We have shown how to calculate matrix elements Tk ok k™ gk B gk (@) (A6)

with our method and have applied it to a simulated resonant
magnetotunneling experiment, comparing the results of two Mgaﬁv%&@(k):[r(e>,[r<5)[r(y>,[r(ﬁ>,p<a)]]]](k)
simple models.

m PHo(K)

_n ‘ ’
ACKNOWLEDGMENTS h k9 k(® gk gk(B) gk(®)

(A7)

T.B.B. thanks NSF-EPSCoRAlabama EPSCoR Coop- where forn even(odd) M, is anti-Hermitian(Hermitian and
erative Agreement No. NSF-97206858nd NASA/JPL for M, is obviously invariant under permutation of the indices
supporting this work. We thank Professor Peter Vogl for®: B, v, 6, etc.

detailed and interesting discussions.
3. Multiple commutators involving complex exponentials

APPENDIX Consider the commutator involving(k),

1. Matrix elements [eiq-r,eiq’-ra(k)]:ei(q+q’)-ra(k)_eiq’-ra(k)eiq-r

From Ref. 19 the matrix elements of a cell-periodic op- i(q+q’)-r
erator() in the Bloch sum basi&) are =€ [a(k)—a(k+q)].  (A8)
' Defining
(a';u';k+01]€9"Q ;i Ky = S+ q,),(k+ )

! a" DK =aM(k)— a™(k+0ys1), N=01,2...
XK (= Oay L QK () (e » (A9)

(A1) we repeatedly employ EGA9) to reduce multiple commu-
tators such as

(@'’ skt 0y Q€ o k) [el%r [l [T, a0 (k)]]]

= 5(k+q1),(k+q)[Q(k+q)](a’,,u'),(a,,u) :[eiq3~r,[eiq2~r,eiq1~ra(1)(k)]]’ (AlO)
= Oqy,al K00 Jar, ) (e » (A2) [e% T [el% T [el%T o (k)]]]
where in Eq.(Al) and (A2) k, q, andq, all lie within the =[el% T gt r 4(2)(K)], (A11)
first Brillouin zone and any sum of wave vectors that falls
outside the first zone is to be translated back inside it. [€idsT [el% " [T o0 (Kk)]]]= e (Tt a2t T 5(3) (k).
(A12)
2. Incompleteness and multiple commutators In this progression, note that each successive commutator
of position and momentum produces two terms, so that(™(k) consists of 2 terms

Due to the incompleteness of the tight-binding basis, mulwhen reduced to componente®. For example, repeated
tiple commutators of position and momentum eXi®e-  application of Eq(A9) yields for a®(k),

245314-10
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a®¥(k)=a? (k)= a'?(k+0y), (A13)
¥ (k) =[aP(k)—aP(k+0p)]
—[aP(k+0g3) —aM(k+a,+03)], (A14)
a®¥(k)=a'%(k) = 2P (k+qy) — a9 (k+0p) — a'®(k+03)
+aO(k+0gs+ )+ P (k+0gs+0s)

+aO(k+0a+03) — a'®(k+0gy+0o+03). (AL5)

4. Taylor expansions of multiple commutators involving
complex exponentials

Consider a Taylor expansion 6f1)(k), defined as in Eq.
(A9) above. It is clear that the only way to ensure a fully

PHYSICAL REVIEW B 63 245314

Averaging Eqs(A16) and(A17), we have

QO -0 k+a) =32 ai”X()(k), (AL8)

O(k) 90 V(k+qy)
k@

Q) 1
(1) (1) — S g
XK =| @ T4 A’

?QO(k+q;)
Ik(B) gk(e)

[ 9209 (k)
é’k(ﬁ)é’k(a) -

1
_ Blgly)
tar 2 A

70 (k)
k) gk(B) gk(a@) +

>0 O(k+q;)
k(M) gk(B) k(@)

+---.(A19)

symmetric expansion and treat all wave vectors on an equal

footing is to average the expansions of &) aboutk and

k+q,. This is essential in order to obtain a Hermitian elec-

tromagnetic coupling Hamiltonian, since E¢a1) and(A2)
show that it is the position of exyg(-r) relative to() that

determines the argumerk, or k+q,. The two Taylor ex-

pansions are

Q) -V (k+ay)

aZQ<°>(k)
(9k(ﬁ)§k(a)

000k 1

:_E —a Eq Q1

P00 (k)
(a) ...
E °1} q ql E y)&k(ﬁ)(;k(a )

aﬁ7

(A16)

Q) -V (k+ay)

909 (k+qy)

5 Q' (k+ay)
Ik(B) gk (@)

(a) (B ‘939 (k+q1)
a:"'dyay” —
! Lok gk P gk

(A17)

It is apparent from Eq(A19) that the X{}) are cell-
periodic operators. Thus we may use E@s8) and(A9) to
reduce multiple commutators such as

[e9 ", [, 0Ok ]]= 3 2 '[!, e X (K],
(A20)

[eiCI2",[ein'r,Q(O)(k)]]
— el ()1 %)2;3 ayay?X(2 g (K),
(A21)

X (k)= X2 (k+gp) = —%; q¥'x2) 5 (K),
(A22)

whereX{); (k) is again a symmetric, averaged Taylor ex-
pansion, obtained by applying EGA19) twice:
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PRk PX(k+a)
KD gk®B gk gk P

XD (k) XL (k+0p)
ok(B) + ok(B)

X<2)B)(k)

1
— )
tar o

angy)(k) XK+ )

kD gk B T IO kD gk P

Zq()(ﬁ

Feoe, (A23)

2 P00k PQO(k+ay)  PQOk+q)  PQO(k+gr+0)
p K= a@t B @ T kP @ T P @
1/(3 709 (k) QO (k+a;+0y)
METAPE! zy (ay”"+a5”) KPP k@ gk gk gk(@
P0Ok+a,)  P0Ok+qy) 1((4
Y _ g 2 1 = Ngld L gVgld
+(97”—ay”) KD KB gk (@ o7k(7>ak(ﬁ)ﬁk(“)H+ 41 [(3,1)% (a1”0;”+a3"a3”)

*QOk) a*QO(k+q,) 7*QO(k+ds) #*QOk+q,+0,)
X KK KB @ T Pk D gk P gk @ Ik gk gk P gk @ T 3k gk 7 gk Pl gk (@

*Q9(k) #*QO(k+q,+0,) #*QO(k+qy)
k(D gk gkB) k(@) + KD gk gkB k(@ gk(9) gk gkB) gk(@)

4
+ o3 @ra)

7*QO(k+as)
T K@ gk gk B) g (@)

]+---. (A24)

Several important features of the Taylor expansions are ap-  (qa;u;k[r'®,Q]a’;u";k)
parent from Eqs(A18)—(A24). First,X(™ starts with thenth
derivatives of0(?), with leading factonq(“)q(ﬁ) -q{". Sec-
ond, theq!® andq$® pulled out in Eq.(A21) have no effect

on subsequent Taylor expansions—this is clear in the pro-
gression from Eqs(A20)—(A22). Thus, we could replace X{a; v, |Qla’ s u' s Rntv,), (A27)
them by anything, sayg(“— A(g)/lf » and further Taylor

expansions(due to apphcatlon of addltlonal commutatprs and we may make the general identification

would be unchanged. Third, the symmetric form chosen
treats all wave vectors on an equal footing, as required.

N
= —mzzl (Rt v, =v,) P exdik- (Rt v, —V,)]

(a;wiR+Vr'P Qe u' Ry +v,)
5. Decomposition of Bloch-basis matrix elements = —(Rjr+V,u — Rj _Vu)(ﬁ)

Matrix elements in the Bloch basi®) of commutator X (a; iR +v, | Qla’; w' ;R +Vv,,0)
[r(® 0], whereQ is a cell-periodic operator, are readily ' " ’
decomposed into matrix elements between localized orbitals. (A28)
Since we apply cyclic boundary conditions, we have from

Eq. (4), where the quantity in parentheses is simply gheomponent
N of the vector displacement of the orbital’(x") relative to
- Pl — : the orbital(«, n). Matrix elements of multiple commutators
= . + ,—
(o k| Q]a’; " K) m§=:1 XK (Rt v =V,,)] such as Eqs(A3)—(A7) in the localized-orbital basis can be

o obtained through repeated application of E428).
X(a; iV, |Qla’ ;" Ryt v,

(A25) 6. Closed-form expression for localized-orbital matrix elements
where we have placed the unit cell of the left-hand orbital at

the origin. From Eq(9) it follows that Here we give the derivation of the compact expression for

the matrix elements dfl ™ in the localized-orbital basis. We
Q(k) demonstrate that, within the approximation that the matrix
[r®,Q](k)=i ak<ﬁ> , (A26)  elements ofA and its derivatives are same-site; same-orbital-
only interactiongconsistent with the treatment of the scalar
so that potentia),
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(@; ;R M|H(A)|w';,u';ij ) where we introduce the shorthand notation
o-R;
=exp{i%j . A-dl (a) (a) (a)
Ry AGr i =AY R )HAM(R 0], (A34)
X{w;m;Rj [Holo ;" ;R 1), (A29)
where the path of integratior, is the straight line connect- gA@ A A
ing the two sites and we introduce the shorthand {—(ﬂ) =[ ) “l=@ ,
FIACE B ar ar
R —R4+ A (7)) R’ Rj .
L,=Ri+v, (A30) (A35)
by expanding both sides in a Taylor series after performing
the integral.
To compute the integral, we parametrize the path as A
arBor| :
U()\):(l_)\)R]‘r’Mr‘F)\Rj’M:Rjr”ur‘f')\(Rj‘M_Rj/”ur), (" m").Gp)
. J2A) P2A(@)
A 0—1 (A31) _ n
0',(}\):d(j,,u),(j’,;;’):(Rj,,u_Rj’,u,’)! (A32) RJ'",U" Rj,,.:,

then employ the average of the two Taylor serieA¢),

(A36)

one expansion taken about each of the end points. The result

is

fo-:Rj'/J'
O'Rr

and so forth. Observe the convention that termavienorder
partials areaddedwhile those inodd-order partials arsub-
tracted

The first few terms of the exponential in EGA29) are

_ 2 g A(a) readily evaluated with the aid of the multinomial theorem.
T 21 & A G e e G Writing the exponential as a power seriesAiras in Eq.(10)

1 SA@ for the Hamiltonian,

_2 d(o‘) d('B)

21 4% o)) o) G| gr B | '

1 (7 u"),(,p) Q o R ©

- (a) B (v) ex i_f A dl|= 7 Io=1 A37

3 a%), TG AT AN F{ hlor, Zo n» -0 (A37)

A
X | —gr—r= +.et, (A33) , ,
arBgr) G ao) J we find for the first several terms,
(a) (a) s @ ) oA
Il_lﬁ ; Ao G ) J#)+EQEB o) 83,7 1) oA _
' G"m") ()
J2A@)

d(ﬁ)

1
1 (@)
HET Z dwm w9, B G

d” (A38)

P +.-.
B ]
I G o

Q) (@) 8 (@) 8)
___(ﬁ du .07 80,67 VG .G .0
(a) (v
+(i g gl ) (8 &Aw) ‘Mw Lo
(o), (GG G DT Gow) (D T G !
2 aBve A ITPUNTIN| L L TN
JAB)
(a) (8) 8% (a)
+a% 10,7 G0, ) S G | G|
' (7 m"),(Jom)
2! J2AB)
< (a) (B) ) (5 (a) R auS ...
+ 3! aﬁEy& d(J\#)y(i’ u') d(J W' )d(J w(" )d(J e YG).G) ar M gr(d a * ' (A39)
By, (7w ()
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i (Q)’ (@) ® 8 (@) ®) &
13__§(ﬁ) LZM T N O A L N IR L AN IR LA LY R R

gAY

31
(a) (B) (v) (9) (a) (B)
d d d A A FRe

+( )Zaﬁzyéd(l WG )G G )T G G D) 7 Gaw) G DTG ) Gow)” G ) Gas)

G m’)(om)
JAB)

ar(y)

31
(a) B (y) (0) (e) (a)
+(2I)3aﬁgy5sd(1,u)1#)d(JM)(J#)dJ#)(I#dJ#(l#)dJ#(lM)A(JM)J#

G7m")(Jom)

X el +i 2 d(“) d(B d(V) d(5 d(s)
are)| ) 20 0 550 Ul PTG G DTG G DTG ) G T G m) G ")
(")) Py
PPA)
(a) (B)
XA .G ) )| grOTgr | o (A40)
(7w m)
|
We now compare these terms, when substituted into Eq. 1 @) ) .
(A29), to the corresponding ones obtained from our gauge- + aazﬁy A w96 0w 3G .G
invariant Hamiltonian. In so doing we will find it helpful to
make repeated use of E@\28) to obtain expressions such as 2@
(B) yr(v)
IO i
R (B) 1y () oD,
(@i Ry rA I Q0 1Ry ) X{(w; Ry u[Holo" ;1" s Ry i), (A43)
(@) (B) .
=0 0,67 w0 A0, (@ R Q@07 1 Ry )

which agrees with the first-order term of the exponential, Eq.
(A38), substituted into EqA29). For the second-ord¢Eq.
(21)] and third-ordefEg. (24)] terms we change the dummy
indices of summation to rewrite terms such as

(A41)

to evaluate the multiple commutators appearing in E48),

(21), and(24). Our only use of the diagonal approximation

for the position operator, Eq34), is with respect toA and

its derivatives. This is consistent with the usual treatment of ) 8) (@) 8 ()
the scalar potential as a same-site, same-orbital interattion aEB d(j,p),(j’,ﬂ’)d(j,p,),(j’,;/,’)[A (Rj ARy ) +A
and results in expressions such as '

X(Rjr ,)AP(Rr ) +2A(R; JAP(R;: )]
(0;m;R) LIP@OAD @ iRy )

im — d(”‘) d(ﬁ
— _— _ Al (@) 2
ﬁA (R, )d(lu)Ju) Gumw) (i 1D G (e
X(w; ;R uHolo';u"iRyr 1), (A42) X[AD(R; )+ADR, )]
where we have used EGA3) for p. X[AB(R; ) +AP(R; )]

Carrying out this procedure on the first-order coupling
term, Eq.(19), we find immediately

_ (@) (B) (@) (B)
_; d(l wh(j )d(l wh(j )A(l ! (LM)A(J",#'),(J',M)'

(w;,u;Rj'M|H(lA)|w’;/Jd’;R]-,YM,>
(A44)

Q Z 4@ A
Zﬁ Gom), GG "))

1
15 B
o ;5 .79

(o). (070"

oAl

i After a few manipulations of this type we obtain agreement
r

GG for the second- and third-order terms as well:
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- A . .
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JAB)
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IA
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1
1 (@) (8) ) (9) (e)
+ 21 Ey d(J'vM)!(j’ul’«/)d(jv/’«)x(j/!#/)d(] w(j"w! )d(J w7 e) ) e
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PAD

G7m")(jm)

(@) ®
XAG 1 Ga™NGwGow)
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G m")(jm)

Some aspects of this compact representation merit further comment. First, note that the straight-line path specified in Egs.
(A29)—(A32) is notchoserby us, but rather ismposedupon us by the requirement that E§29) give the same result as the
Hamiltonian derived in Sec. Il above. Second, observe thatA2zp) makes the proof of formal gauge invariance transparent,
for the line integral ofVf alongany path connecting the two points is simplyR; ,) — f(R;/ /).

Finally, we conclude with a brief discussion of integrals along a general path that provides a physical justification for the
straight line beyond the mathematical agreement of(Eg9) with the development of Sec. Il above. A general path between
two atomic sites may be parametrized as

p(N)=2 e [R, +TDO(RO-RE )], A 01 (A47)
fl90)=0, f91)=1, aeixy,z (A48)

f(a)
dP()\) 2 ()\) (RE’QJ_R}?{Y)M/), (A49)

3

where thee, are Cartesian unit vectors and the functiéf8(\) are arbitrary. Note that for the special case of a straight line
we havef®(\)=fM(\)=f@(\)=f(\) and that in this case the parameleis superfluous since it is clear from Egs.
(A47)—(A49) that p really dependslinearly) upon the single parametérso that we may simplify the equations by using just
f. Integrating the average of the two Taylor seriesA¢p), one expansion taken about each of the endpoints, we find:
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p:RJ./L 1 ()
di=Z S @R, )+ A@(R 3 @ ®)
L.Rj, Ad 2( 2 . PR R ARy )1 20 ) ey 87
. M ’

IAl®) IAL) 1
(@p)| 22 _GlaB) = (@) 8) 8%
><|Fl ar® G @ T2 % 9w d0.570 0.G71)
Ri» 1 R @Y
) I
PN A
(@.,7) (@.8.7)
><|':2 lmgm| TS Sy R (A50)
Ri'w Riu
where
@) [y 3 (@p_ [ )77
Fi —fof (\) 5 d\, Gy —fo[l—f ()] 9N (A51)
1 dfl® 1 fle)
Fg‘“ﬂ'”zfofW)()\)f(ﬁ)()\) o dN G(Z"'ﬁ'”zfo[l—f(y)()\)][l—fw()\)] N (A52)

and so forth. For the straight-line path we immediately ob- 1

tain F,G,=1/(n+1), in agreement with E4A33). Observe Fi#¥= f 27%d\ =1,

that this ensures equal weights for corresponding compo- 0

nents ofA (and their derivativesevaluated at the two end- 1

points, and therefore can be the end result of an Hermitian G(l”):J' (L1-=M)2 dA=(A2=3)\%5) =%, (A54)
operator. If, however, the path is not straight, we find un- 0

equal weights. For example, if we choose the path paramhich are obviously unequal. No Hermitian operator could
trized by sampledA@/ar ™ with different weights on the two sites.
Thus the straight-line path ensures that the line integral may
come from a Hermitian operator. Equatiokb0) reveals one

N Y=FV(\)= (@)= )2
FPO)=TP0)=A, TEO)=2% (AS3) more interesting fact: the trapezoidal ruliee., the single
sum) discardsall path information so that within it all paths
we obtain are identical.
1J. C. Slater and G. F. Koster, Phys. Red, 1498(1954). 12M. Graf and P. Vogl, Phys. Rev. B1, 4940(1995.
2Walter A. Harrison, Electronic Structure(Dover, New York, 13T Dumtrica, J. S. Graves, and R. E. Allen, Phys. Revb®
1989. 15 340(1998.
3Timothy B. Boykin, Phys. Rev. B2, 16 317(1995. 14 George Theodorou, George Tsegas, and Efthimios Kaxiras, J.
4J. P. Loehr and D. N. Talwar, Phys. Rev.5B, 4353(1997. Appl. Phys.85, 2179(1999.
5Timothy B. Boykin, Gerhard Klimeck, R. Chris Bowen, and 15 ucia Reining, R. Del Sole, M. Cini, and Jiang Guo Ping, Phys.
Roger Lake, Phys. Rev. B6, 4102(1997); Gerhard Klimeck, R. Rev. B50, 8411(1994).
Chris Bowen, Timothy B. Boykin, Carlos Salzar-Lazaro, Tho- '¢J. N. Schulman and Yia-Chung Chang, Phys. Re\31B 2069
mas A. Cwik, and Adrian Stoica, Superlattices Microstr@at,. (1985.
77 (2000; Gerhard Klimeck, R. Chris Bowen, Timothy B. 7D.J.Moss, E. Ghahramani, J. E. Sipe, and H. M. van Driel, Phys.
Boykin, and Thomas A. Cwikibid. 27, 519 (2000. Rev. B34, 8758(1986.
6Timothy B. Boykin, Phys. Rev. 56, 9613(1997. 18p. J. Moss, J. E. Sipe, and H. M. van Driel, Phys. Rev3®
"Timothy B. Boykin, Lisa J. Gamble, Gerhard Klimeck, and R.  9708(1987).
Chris Bowen, Phys. Rev. B9, 7301(1999. Timothy B. Boykin, Phys. Rev. B0, 15 810(1999.

8J. N. Schulman and Y. C. Chang, Phys. Re\3B 2056(1985.  2°D. J. Chadi, Phys. Rev. B6, 790 (1977).
9Timothy B. Boykin, Jan P. A. van der Wagt, and James S. Harris?1E. I. Blount, in Solid State Physic®dited by Frederick Seitz and

Jr., Phys. Rev. BI3, 4777(199)). David Turnbull(Academic, New York, 1962 Vol. 13, p. 305.
0p.-7. Y. Ting, E. T. Yu, and T. C. McGill, Phys. Rev. 86, 3583  ?2Claude Cohen-Tannoudji, Bernard Diu, and Franck La@ean-
(1992. tum Mechanicstranslated by Susan Reid Hemley, Nicole Os-
L. C. Lew Yan Voon, and L. R. Ram-Mohan, Phys. Rev4B trowsky, and Dan OstrowskyWiley, New York, 1977, pp.
15500(1993. 315-328.

245314-16



ELECTROMAGNETIC COUPLING AND GAUGE . ..

23Joseph CallawayQuantum Theory of the Solid Stat&cademic,
New York, 1979, Sec. 6.2.

2R. K. Hayden, D. K. Maude, L. Eaves, E. C. Valadares, M. He-
nini, F. W. Sheard, O. H. Hughes, J. C. Portal, and L. Cury,
Phys. Rev. Lett66, 1749(1991); R. K. Hayden, L. Eaves, M.
Henini, T. Takamasu, N. Minura, and V. Ekenberg, Appl. Phys.
Lett. 61, 84 (1992.

253, Lin, A. Zaslavsky, K. Hirawawa, D. C. Tsui, and J. F. Klem,
Appl. Phys. Lett.60, 601(1992.

26UIf Gennser, V. P. Kesan, D. A. Syphers, T. P. Smith, IIl, S. S.
lyer, and E. S. Yang, Phys. Rev. Le@7, 3828(1991); Appl.
Phys. Lett.63, 545(1993.

27A. Zaslavsky, T. P. Smith lIl, D. A. Gitzmacher, S. Y. Lin, T. O.
Sedgwick, and D. A. Syphers, Phys. Rev48 15 112(1993.

PHYSICAL REVIEW B 63 245314

2gee, for example, R. A. Davies, D. J. Newson, T. G. Powell, M.
J. Kelly, and H. W. Myron, Semicond. Sci. Techn@, 61
(1987; M. L. Leadbeater, L. Eaves, P. E. Simmonds, G. A.
Toombs, F. W. Sheard, P. A. Claxton, G. Hill, and M. A. Pate,
Solid-State Electron31, 707 (1988; R. E. Carnahan, M. A.
Maldonado, K. P. Martin, A. Nogaret, R. J. Higgins, L. A. Cury,
D. K. Maude, J. C. Portal, J. F. Chen, and A. Y. Cho, Appl.
Phys. Lett.62, 1385(1993; S. Ben Amor, K. P. Martin, J. J. L.
Rascol, R. J. Higgins, A. Torabi, H. M. Harris, and C. J. Sum-
mers,ibid. 53, 2540(1988.

2Timothy B. Boykin, R. E. Carnahan, and K. P. Martin, Phys. Rev.
B 50, 15 393(1994.

803, C. Inkson, Weichao Tan, and G. Edwards, Semicond. Sci.
Technol.9, 113(1994.

245314-17



