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Mesoscopic scattering in the half plane: Squeezing conductance through a small hole
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We model the two-probe conductance of a quantum-point contact~QPC!, in linear response. If the QPC is
highly nonadiabatic or near to scatterers in the open-reservoir regions, then the usual distinction between leads
and reservoirs breaks down and a technique based on scattering theory in the full two-dimensional half plane
is more appropriate. Therefore we relate conductance to the transmissioncross sectionfor incident plane
waves. This is equivalent to Landauer’s formula using a radial partial-wave basis. We derive the result that an
arbitrarily small~tunneling! QPC can reach ap-wave channel conductance of 2e2/h when coupled to a suitable
reflector. If two or more resonances coincide the total conductance can even exceed this. This relates to recent
mesoscopic experiments in open geometries. We also discuss reciprocity of conductance, and the possibility of
its breakdown in a proposed QPC for atom waves.
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I. INTRODUCTION

The quantum-point contact1,2 ~QPC! has played a centra
role in the understanding of mesoscopic conductance.
the simplest example of a two-dimensional electron
2DEG system where the quantum coherent nature of
electron controls the bulk transport properties. T
Landauer-Bu¨ttiker ~LB! formalism3,4,2 reduces the calcula
tion of quantum conductance in the linear response regim
the evaluation of single-particle wave-function transmiss
amplitudes. Traditionally, these amplitudes are measured
tween traveling wave basis states in the ‘‘leads.’’ Far fro
the scattering system the leads have constant profiles of fi
width, and support a finite number of transverse mo
~channels!. Eventually it is assumed that the leads are im
dence matched~that is, without reflection! into ‘‘reservoirs’’
that act as thermalized sources of electrons at their respe
potentials; these potentials are taken to reflect the meas
bias voltage. Such theoretical constructs have been rem
ably successful at describing transport phenomena, for
stance conductance quantization,5,1,2 because the scatterin
systems involved have generally had good lead-to-reser
matching.

We consider ‘‘open’’ two-terminal mesoscopic system
namely, those where a QPC isnonadiabatic ~possessing
rapid longitudinal variation in transverse profile6,1,7! and has
short or nonexistent leads~for instance, if it suddenly abutt
onto the ‘‘reservoir’’ regions!, or those where there can b
scattering off nearby objects in the ‘‘reservoir’’ region. W
call such systems ‘‘open’’ because the fully two-dimensio
~2D! nature of the ‘‘reservoirs’’~i.e., the surrounding semi
infinite regions of free space! is important, and therefore the
cannot be modeled using the quasi-1D approach descr
above. This includes a variety of recent mesoscopic exp
ments, for example, the combination of QPC’s with nea
resonator structures8 or with a nearby depletion regio
caused by a moveable atomic force microscope~AFM! tip.9

It also includes any QPC system where elastic backscatte
from disorder in the reservoirs is significant,10 or generally
where the lead-reservoir matching is bad. In such syste
the conventional quasi-1D picture does not apply: the s
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tering system is not coupled to leads in the usual sense
deed the distinction between leads and reservoirs is no lo
clear.11 The main aim of the present work is to introduce
2D scattering theory approach that can handle such syst
and to apply it to the calculation of the maximum condu
tance of an open resonator structure of experimental
evance.

We imagine a geometry where a 2DEG exists in tw
semi-infinite half-plane regions, separated by an imp
etrable potential barrier that we align with they axis@see Fig.
1~a!#. Our general ‘‘QPC scattering system’’ is any gap
this barrier that allows coupling of the wave function on t
left and right sides. This gap can be defined by an arbitr
form of the elastic potential, and may include other nea
scattering objects or disorder@which would all be placed

FIG. 1. Schematic QPC geometry in 2D:~a! general point-
contact scatterer coupling two semi-infinite regions of free spa
The solid curves are contours of an elastic scattering potentialV(r ).
The ‘‘system’’ sizeL ~dashed box! we take to be the region wher
V(r ) has not yet reached its asympotic form~which is zero apart
from a y-invariant profile around they axis!. Also shown are an
incoming plane wave, and the coordinate system.~b! The idealized
‘‘slit’’ aperture in a thin, hard wall considered in Sec. IV.
©2001 The American Physical Society12-1
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within the box shown in Fig. 1~a!#. The only important limi-
tation is that this coupling region~the ‘‘system’’! be of finite
y extent, so that electrons that leave the system do so v
well-defined terminal: either the left (x,0) or the right (x
.0). We also assume that the system sizeL is much smaller
than both the dephasing lengthl f and the momentum relax
ation ~elastic scattering! length l e . The former requiremen
allows treatment using a coherent wave function across
system; the latter allows free-space elastic scattering c
cepts to be applied. We will stay within the noninteracti
quasiparticle picture, consider zero-applied magnetic fi
and assume spin degeneracy of 2 throughout.

The conventional distinction between ‘‘reservoir’’ an
‘‘lead’’ is no longer applicable, however at short distanc
outside the system (r .L but r ! l f andr ! l e) the two semi-
infinite free-space regions behave like leads, since they
port scattering-free ‘‘channels’’~see Sec. III!. At large dis-
tances thesame regions behave as reservoirs: forr @ l e
ergodicity ensures that the momentum distribution is unifo
in angle, and forr @ l f the energy is redistributed to ensu
equilibrium at the relevant~experimentally measured!
chemical potential of each terminal. In the intermediate
gion, there is a broad crossover from lead to reservoir.

In this work we first derive a general relation betwe
transmission cross section~a concept we define using sca
tering in the half plane! and conductance for this open g
ometry, in Sec. II. In Sec. III we show that partial-wave-ty
states, defined in the half-plane regions, can take the plac
transverse lead modes in the Landauer formula. In Sec
we discuss the maximum conductance through an ideali
highly nonadiabatic QPC~a hole in a thin hard wall! that is
reached when a resonator is placed on one side of the Q
We find a universal result, namely, a single conducta
quantum,regardlesshow small the hole is. This illuminate
the findings of a recent experiment8 in such an open geom
etry. In Sec. V we discuss attempts to exceed this unive
quantum of conductance through a single channel. A r
procity relation for cross section is derived in Sec. VI, a
the possibility of breaking this reciprocity, due to a nonth
mal reservoir occupation, is described. We discuss an ap
cation to matter-wave ‘‘conductance’’ through a 3D QP
We conclude in Sec. VII.

II. CONDUCTANCE IN TERMS OF CROSS SECTION

We consider scattering of a single-quasiparticle wa
function from the general two-terminal system described
the Introduction@see Fig. 1~a!#. The Hamiltonian isH5
2(\2/2m)¹21V(r ), for a quasiparticle massm. The elastic
scattering potentialV(r ) completely defines the system. W
imagine a monochromatic unit plane wavec I5eik•r incident
from the free-space left-hand region.12 The wave vector is
k[(k,f) in polar coordinates,f being the angle of inci-
dence. The free-space wave-vector magnitude is takenk
5kF ~corresponding to a total energyE5\2k2/2m equal to
the Fermi energy!, unless stated otherwise.

We are at liberty to choose our definition of the ‘‘unsca
tered’’ wavec0. We take it to be the wave function whic
would result from reflection of the incident wave off a wa
24531
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uniform in they direction. We can imagine creating such
wall by replacing the system box shown in Fig. 1~a! by the
surroundingy-invariant wall profile. Note thatc0 exists only
on the left side. In the left free-space region it is

c05ei (kxx1kyy)2e$ i ~2kxx1kyy1gk!%, ~1!

where the first term isc I , and the angle-dependent reflectio
phasegk of the second term depends on both (k,f) and the
wall profile.13 Upon introduction of our true system poten
tial, the full wave function becomes

c[c01cR1cT , ~2!

where the change in reflected wavecR exists only on the left
side, and the new transmitted wavecT exists only on the
right. These scattered waves have the asymptotic (r .L and
kr@1) forms of 2D scattering theory,14

cR5 f R~u!
eikr

Ar
, cT5 f T~u8!

eikr

Ar
. ~3!

See Fig. 1~a! for definitions ofu andu8.
The transmission cross sectionsT(k,f) is the ratio of

GT , the transmitted particle flux~number per unit time!, to
j I , the incident particle flux per unit length normal to th
incident beam:

sT~k,f![
GT

j I
. ~4!

Physically,sT(k,f) is the length required of an aperture
oriented normal to the incident beam in order to transmit
equivalent flux of classical particles.@Note thatsT(k,f) is
proportional to theinjection distribution1 that can be mea-
sured in mesoscopic systems.15# It depends on the inciden
angle becauseV(r ) has no radial symmetry.j I is the magni-
tude of the incoming probability flux density vectorj
[(\/m)Im@c I*“c I#, which for a unit wave givesj I5v, the
particle speed. The transmitted flux is defined as

GT[E dl n̂• j5
\

mE dl n̂•Im@cT*“cT#, ~5!

where the line integral encloses the entire transmitted wa
and the~rightwards pointing! surface normal isn̂. Applying
this and Eq.~4! to the asymptotic form gives

sT~k,f!5E
2p/2

p/2

du8u f T~u8!u2, ~6!

familiar from scattering theory apart from the restriction
the right half plane. There is a corresponding form

sR~k,f!5E
2p/2

p/2

duu f R~u!u2, ~7!

for the reflective cross section~removal from the unscattere
wave without being transmitted!.

We will calculate the conductance by assuming t
chemical potential is slightly higher on the left side than t
right, and as is usual1,4 consider only the left-to-right trans
2-2
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port of the states in this narrow energy range. We take
left region to be a large (@ l f) closed region of areaA con-
taining single-particle states, and find their decay r
through the QPC into the right side. Semiclassically ea
single-particle state occupies a phase-space volumehd,
where we haved52. Therefore the phase-space density
the 2DEG Fermi sea is 2/h2 where the factor of 2 come
from the spin degeneracy. We can project this density o
momentum space in order to find the effective number
plane-wave states impinging on the wall:16 this corresponds
to a uniform density of states ink space given by

r~k,f!k dk df5
A

2p2
k dk df. ~8!

Each state has an amplitudeA21/2 due to the requirement o
unity area normalization in the left region, so has incom
flux density j I5v/A. Substituting this into Eq.~4! gives the
decay rate of a statei as

GT
( i )5

v
A

sT~ki ,f i !. ~9!

We can now sum the decay rates of all the left-hand state
a given wave-vector rangekF to kF1dk, to get the current

dI 5e(
i

GT
( i )5

ev
A E

2p/2

p/2

dfE
kF

kF1dk

k dkr~k,f!sT~k,f!

5
ev kFdk

2p2 E
2p/2

p/2

df sT~kF ,f!, ~10!

where the last step incorporated the linear-response ass
tion thatsT is constant over the rangedk.

When a potential differencedV is applied across the
QPC, the energy range carrying current isdE5edV, which
we can equate with\vdk using the dispersion relation. Thi
can be used with Eq.~10! to write the conductance

G[
dI

dV
5

2e2

h

1

lF
E

2p/2

p/2

df sT~kF ,f! ~11a!

5
2e2

h

kF

2
^sT&f , ~11b!

where the particle wavelength islF[2p/kF . The latter form
is written in terms of the angle-averaged cross section at
Fermi energy. The weighting of this average is uniform b
cause of the ergodic assumption that incoming states are
formly distributed in angle.

Equation~11! is a key result of this paper~an independen
derivation is given by Barnett17!. Like the Landauer formula
it directly connects conductance and scattering. In a sca
ing measurement from the left side,sT appears to be the
QPC’s inelastic cross section~since the transmitted wave
never return to this side!. In a current measurement the co
responding conductance is given by Eq.~11!. Our derivation
was for temperatureT50, but it applies at a finiteT as long
as sT does not change significantly over the energy ran
24531
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kBT. This can be seen by generalizing the above to inclu
integration over the Fermi distribution.

In the limit where a QPC is adiabatic, its conductance
known to be quantized:5,1,2 G5(2e2/h)N, where N is the
integer number of open channels at the Fermi energy. Lo
ing at Eq.~11a!, this corresponds to quantization of the a
gular integral of the cross section in units oflF .

III. PARTIAL-WAVE CHANNEL MODES
FOR A TWO-TERMINAL SYSTEM

In free-space scattering theory, partial waves form a ba
in which to decompose the asymptotic (r→`) form of the
full wave functionc into incoming and outgoing states o
definite angular momentuml. In 2D the basis functions are
the cylindrical solutions to the free-space wave equation;
S matrix that takes incoming to outgoing waves can then
written in this basis.14 Because there is only a single set
incoming channels and a single set of outgoing channels,
is equivalent to a scattering system~a stub! connected to a
single lead, with an infinite number of open-channel mod
This contrasts the open two-terminal geometry we stu
where we need to account for two new related facts:~1! in
the r→` limit the potentialV no longer preserves angula
momentum, and~2! there are now distinct ways the partic
can enter and exit the system, via different leads.

We define a ‘‘half-plane partial-wave basis’’ as the sub
of the cylindrical free-space solutions that go to zero on
entirey axis. This gives independent basis functions exist
on either the left or right side of they axis. The basis is
expressed in terms of Hankel functions18 on either side

f l
2L~kr ![Hl

(2)~kr !sinF l S p

2
2u D G

f l
1L~kr ![Hl

(1)~kr !sinF l S p

2
2u D G

f l
2R~kr ![Hl

(2)~kr !sinF l S p

2
2u8D G

f l
1R~kr ![Hl

(1)~kr !sinF l S p

2
2u8D G , ~12!

where on the left~L! sideu is the angle from the negativex
axis and on the right~R! side u8 is the angle from the
positive x axis @see Fig. 1~a!#. The channel index isl
51,2,•••`, and1(2) refers to outgoing~incoming! trav-
eling waves. We note that thes wave l 50 is excluded be-
cause of they-axis barrier, leaving the first channel as thep
wave H1(kr)cos(u). Assuming the width of the barrier is
finite and constant asuyu→` @see Fig. 1~a!#, then any wave
function in ther→` limit can be written as a sum of th
above basis functions. The separability of this basis in (r ,u)
is directly analogous to the separability of convention
~constant-width! lead basis states3 into a product of trans-
verse modes and longitudinal traveling waves.

Our basis~12! is chosen such that unit-amplitude coef
cients carry equal fluxes in all incoming and outgoing cha
2-3
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nels, so flux conservation implies the unitarity of theS ma-
trix when written in this basis. As with a convention
transverse lead mode basis, the familiar Landauer formu

G5
2e2

h
Tr~ t†t !, ~13!

holds.19,20,4,17 The transmission matrixt is defined byql
1

5(mtlmpm
2 , where the outgoing~incoming! amplitude coef-

ficients arepl
1 (pl

2) on the left andql
1 (ql

2) on the right.
Note that it is possible to ‘‘mix and match’’ different bas
set types~for instance define a transmission matrix betwe
transverse lead modes on the left side and partial-w
modes on the right!, as long as equal-flux normalization, an
transverse orthogonality, are preserved.

IV. POINT CONTACT COUPLED TO A RESONATOR

Figure 2 illustrates a QPC-plus-reflector system wh
conductance has been experimentally measured.8 The circu-
lar arc reflector and the vertical wall together form a cav
that can support long-lived resonances; the energy of th
resonances can be swept by sweeping the reflector gate
age. The classical condition8 for stability of the cavity modes
is that the arc center must lie at, or to the left of the w
(x50). The cavity modes are coupled to the left terminal
the QPC, and to the right terminal via leakage of the mo
out through the cavity top and bottom. The system is int
esting because it is ‘‘open’’ in the sense that it has no C
lomb blockade,1 but ‘‘closed’’ in the sense that the dwe
time is much greater than the ballistic time~the resonances
are long lived!. It has also been studied recently in our lab
ratory using microwave measurements.21

The actual potential in a mesoscopic experiment diff
from the illustration: it has soft walls~on the scale 1/kF), it
may have deviations from the circle due to lithographic
ror, and it has modulations of the background potential d
to elastic disorder.8 However, we will not be interested in
details of the resonator on the right-hand side. Rather,
will adopt the view of a 2D scattering-theorist ‘‘looking’
from the left-hand side. In this section we discuss the ma
mum conductance of this system, when the ‘‘bare’’ QP
~i.e., without the reflector! is in the tunneling regime~con-
ductance!2e2/h).

We use an idealized slit QPC model@see Fig. 1~b!# in
which the potentialV is zero everywhere except along

FIG. 2. A tunneling-regime QPC combined with a nearby c
cular reflector, forming a stable resonant cavity open at the sid
24531
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hard, thin wall where it is taken as infinite. The QPC is a g
in the wall of size 2a. This model is highly nonadiabatic~see
Ref. 17 for a review of its transmission properties!. The hard
wall simplifies the treatment of the left-hand side scatter
problem, and we do not believe it alters our basic conclus
We consider the ‘‘unscattered’’ wave to be the incident p
reflected wave Eq.~1! when the QPC is closed (a50). This
we expand in Bessel functions,

c0~r !5e@ i ~kxx1kyy!#2e@ i ~2kxx1kyy!#

524iJ1~kr !cos~u!cos~f!1higher order terms.

~14!

The first term in the expansion is the incoming plus outgo
p wave, which in the tunneling limit will dominate in ou
consideration of the absorption.17

Now we open the slit, and replace 2J1(kr) in the above
by H1

(2)(kr)1e2idH1
(1)(kr), whered follows the usual defi-

nition of partial-wave phase shift.14 The closed slit corre-
sponds tod50. An open slit leading into a closed resonat
~imagine extending the arc in Fig. 2 to seal off the ent
right side!, in the case of infinite dephasing length, corr
sponds tod5 real, and would appear from the left side as
elastic dipole scatterer. An open slit with an open resona
corresponds to complexd with positive imaginary part, and
would appear as a general inelastic dipole scatterer. Th
fore transmission though the QPC appears, to an observe
the left side, to beabsorptionof incident waves.sT is inter-
preted as an ‘‘inelastic’’ cross section~since exiting the
right-hand terminal is equivalent to leaving in a new cha
nel!, and sR as an ‘‘elastic’’ one.sT(k,f) can be found
from integrating the net incoming flux@as in Eq.~5!# of the
total wave function on theleft side. Substitution into Eq.~4!
then givessT(k,f)54/k(12ue2idu2)cos2(f). For d→ i` the
maximal cross section is reached,

sT,max~k,f!5
4

k
cos2~f!. ~15!

This corresponds to an effective classical ‘‘area’’~size! aeff
5lF/2. This is analogous to the fact22 that in 3D the effec-
tive area of an arbitrarily small electromagnetic dipole ae
can be of orderl2. To an observer on the left side who wa
able to ‘‘see’’ the electron waves living in the energy ran
edV responsible for conductance, the QPC would stand
as a ‘‘black dot’’ of size;lF against the surrounding uni
form ‘‘gray’’ thermal luminosity reflected in the vertical wal
mirror.

The associated maximum conductance is found easily
ing Eqs.~15! and ~11! to be

Gmax5
2e2

\
, ~16!

the universal quantum of conductance~for 2 spin channels!,
independent of the size of the QPC hole, even for anarbi-
trarily small hole (ka→0). This universal resonant
tunneling maximum conductance was first fou
numerically;23,24,1however our system differs from those o

.

2-4
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Xue and Lee23 and Kalmeyer and Laughlin24 because the
resonance does not involve transmission though anisolated
~zero-dimensional! quantum dot. The dramatic increase ov
the conductance of the bare QPC@which vanishes as (ka)4,
see Ref. 17# runs counter to the naive classical expectati
namely, that the reflector woulddecreasethe left-to-right
flow of electrons because it sends back into the QPC
ticles that would otherwise exit to the right.

How do we know that it is possible to build a resona
geometry that corresponds tod→ i`? The reflector can be
described byr, the amplitude with which it returns an ou
going p wave back to the QPC as an incomingp wave. If
ur u2512ut11u2, where thep-wave transmission of the QPC
t11 as defined in Sec. III, then thep-wave channel becomes
1D Fabry-Perot resonator with mirrors of matched reflec
ity. Sweeping the round-trip phase then produces peak
complete transmission~corresponding to completep-wave
absorption on the left side!. The ratio of peak separation t
peak width is the quality factorQ;1/ut11u2. Such peaks, with
heights much greater than the bare tunneling QPC con
tance, were observed in the experiments of Katineet al.8

However, Eq.~16! has not yet been tested quantitatively b
cause of the difficulty of matching the Fabry-Perot reflecti
ties in a real 2DEG experiment. Note that the maximu
conductance~16! also follows immediately from the Land
auer formula when we realize that there can be comp
transmission of the incomingl 51 channel state~from Sec.
III !.

An interesting possibility arises when we realize17 that
higher l channels are stillslightly transmitted by the bare
QPC, whenka!1, even though they are increasingly ev
nescent. If the resonator has a high enough reflectivity
these modes, then additional Fabry-Perot conductance p
will be produced.23,25 The peaks may be extremely narrow
but can carry a full quantum of conductance because t
can transmit another incomingl channel. By careful arrange
ment of the cavity, one or more of these peaks could
brought into conjunction with an already-existingl 51 peak
at the Fermi energy.~For instance, thel 51 and l 52 reso-
nances are in different symmetry classes in Fig. 2 so th
can be an exact level crossing!. Therefore, we have the su
prising result that, in theory, a conductance of (2e2/h)n can
pass through an arbitrarily small QPC hole ifn resonances
~from n different channels! coincide at the Fermi energy
However, due to their extremely small width, such large c
ductance peaks are unlikely to be observable in a real m
scopic tunneling QPC due to finite dephasing length a
finite-temperature smearing.1

Finally, we should not overlook the fact that our expre
sions for partial cross sections are a factor of 4 greater t
those conventionally arising in 2D scattering theory from
radial potential,14 because we are measuring cross section
the reflective boundary of a semi-infinite half plane. For
stance, the maximum inelastic partial cross section fo
single channel in free space14 is s r51/k, compared to our
maximum ‘‘inelastic’’ cross section per channel Eq.~15!.
Similarly, the maximum elastic result in free space isse
54/k, compared to our maximum~normal-incidence! ‘‘elas-
24531
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occurs whend5(integer1 1

2 )p.

V. WHAT IS THE MAXIMUM CONDUCTANCE
OF A SINGLE QUANTUM CHANNEL?

The surprising theoretical results of the previous sect
might lead one to question the conductance limit 2e2/h for a
single quantum channel~by which we mean a single trans
verse mode for which the longitudinal degree of freedom i
1D Fermi gas; this includes both conventional and part
wave basis sets!. For this gedanken-experiment we will con
sider conventional electron waveguides that are single m
and long enough that evanescent waves are negligible,
which are also! l f . We try to encourage more current t
pass down a single-mode channel~E! by connecting it to a
reservoir via multiple routes (A,B,C,D), as shown in Fig.
3~a!, where two routes are used on each side. It is possibl
match the junctions so that a wave entering downA,B,C,
or D has no reflection back along the same lead. In this c
we might guess that the hypothetical left-side observer~from
the previous section! would see the single-mode entrances
guidesA andB as two ‘‘black dots,’’ giving twice the effec-
tive absorption cross section, and therefore infer a cond
tance of twice 2e2/h. We might also justify this by saying
that waves traveling downA and B will meet and continue
down E, and since they have no particular phase relati
their currents will add to give a doubled current throughE,
as would be necessary.

However there is a fundamental flaw in the above reas

FIG. 3. ~a! An attempt to increase conductance through a sin
channel by multiple connections feeding from the reservoirs.
channels are single mode and sufficiently long that the evanes
tunneling of higher modes is negligible.~b! An illustrative hard-
walled exponential horn system that has differing acceptance an
on each side: very narrow on the left, and very wide on the rig
Such a mesoscopic 2DEG system would exhibit symmetric cond
tance, however, in an atom beam context the conductance can
come unsymmetric.
2-5
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ing. The ABE junction can be designed so that if wav
come downA and B in phase, they will be adiabaticall
transformed into the lowest transverse mode ofE, so will
propagate through to the right side without reflection, car
ing a current of twice that of a usual single-mode guid
However, ifA andB arep out of phase, the same adiaba
transformation must result in the second transverse m
which is evanescent. So this latter wave will reflect perfec
back out of the left side, and carry no current. Plane wa
are impinging from the left reservoir uniformly over a
angles, and because of the.l separation of the entrance
an average over angles gives an average over relative p
in A and B. Thus we are left with no increase above t
single-channel conductance. This property of theABE junc-
tion is not merely practical; rather, it is easy to show that
333 S matrix cannot be unitary if a junction is to coup
both A→E and B→E with unity transmissions. Such a
appealing junction is therefore ruled out on the grounds
flux conservation. A consequence is that the entrancesA
andB can at most appear ‘‘half black’’ to the observer, d
to waves that enterA then exitB and vice versa.

This suggests another way to try and defeat the cond
tance limit: direct the incoming plane waves in a narro
enough angular distribution so that wavesalways come
downA andB in phase, and this will double the conductanc
~This is similar to experiments26 where the series resistanc
of two QPC’s was found to be less than the sum of
individual QPC resistances, because collimation at the ex
the first QPC illuminated the second with a narrow bea
increasing its conductance!. However, this beam is no longe
a thermaloccupation of incoming states. This illustrates t
inextricable link between thermal Fermi occupation of res
voir states and the universal quantum of conductance. AT
50, thermal occupation at a given chemical potential diff
ence implies thatall quantum states lying in the appropria
energy range are filled in the left reservoir and empty in
right. Semiclassically, this corresponds to a uniform distrib
tion in phase space, or when projected into moment
states, uniform in angle, as exemplified by Eq.~11!. The
semiclassical viewpoint allows one to see that since trans
mations in phase space cannot change the phase-space
sity ~Liouville’s theorem!, the universal conductance pe
quantum channel cannot be changed. This reminds us
unitarity in quantum mechanics is analogous to Liouville
theorem in classical mechanics.

VI. RECIPROCITY AND ‘‘CONDUCTANCE’’
OF ATOM WAVES

We can ask if the conductance~11! computed using trans
mission of left-side reservoir plane-wave states through
QPC is equal to that using right-side reservoir states. S
the two directions correspond to opposite signs ofdV, then
in order to have linear response~well-defined constantG
arounddV50) we would hope that they are equal. That t
angular average of transmission cross section is equal f
the left and right sides is not immediately apparent in a g
eral asymmetric system. For instance, consider Fig. 3~b! that
has a small acceptance angle from the left but a large f
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the right, therefore very different forms of the transmissi
cross sectionssT

L→R(k,f) andsT
R→L(k,f).

If we assumeclassicalmotion then we can imagine a ma
from a Poincare´ section~PS! (y,py) at a vertical slice atx
52x0 to another PS (y8,py8) at x51x0. At each PS we
consider only rightwards-moving (px.0) particles, and take
x0.L. A certain area of phase space (y,py) is transmitted
and is mapped to anequal area27 in phase space (y8,py8).
Time-reversal invariance holds since we consider magn
field B50, so we can negate the momenta~now considering
px,0) and find that thesamephase-space area is transmitt
right to left. When it is realized that the angle-averaged cr
section is proportional to the transmitted phase-space are
a PS, then the symmetry of the angle-averagedclassical
cross sections follows.

The same symmetry is not obvious for quantum cro
sections, but it also holds true. Comparing Eq.~11a! with Eq.
~13! gives

E
2p/2

p/2

df sT
L→R~kF ,f!5lF Tr~ t†t !, ~17!

wheret is measured from left-to-right states. It is instructiv
to derive this directly.17 This relation ties together the cros
section and Landauer views of conductance. Time-reve
invariance and flux conservation together imply28 that
Tr(t†t) is unchanged by swapping the labeling of t
leads,1,20 thus we immediately have from Eq.~17! the reci-
procity of angle-integrated quantum cross section

E
2p/2

p/2

df sT
L→R~k,f!5E

2p/2

p/2

df sT
R→L~k,f!. ~18!

So in Fig. 3~b! it is now clear that the ratio of acceptanc
angles must be balanced by the ratio of effective areas.

We now discuss a case in which nonthermal occupa
of incoming states is possible: the rapidly developing field
coherent matter-wave optics, in which potentials are defi
by microfabricated structures.29–31 There is a recent
proposal30 for observation of quantization of atomic flu
through a micron-sized 3D QPC defined by the Zeeman
fect potential of a magnetic field. The device is illuminat
by a beam of atoms passing through a vacuum, whose a
lar distribution is an experimental parameter~for instance, a
collimated oven source or a dropped cloud of cold atoms32!.
The atomic flux transmitted~per unit k, at wave vectork)
will be F(k)5Gatom(k)J0(k) whereJ0(k) is the flux inci-
dent per unit wall area, and we define the atomic ‘‘condu
tance’’ by

Gatom~k![E dV w~k,V!sT~k,V!. ~19!

As before, the quantum-transmission cross section
sT(k,V), but now there is aweighting function w(k,V)
which defines the angular distribution of the incident beam33

The weight has the normalization*dV w(k,V)cos(u)51.
@All integrals over solid angleV[(u,f) are over a range o
2p appropriate for the half-sphere.# Following the analogy
of Thywissen,30 F(k) plays the role of current,J0(k) that of
2-6



no
he
a

u

a

he
e

h
n

en
.
rn
ft-
to
e

a
d

ro
u
in

he
p

te
w
he

les,
p-
to

een
d-

n-
an
ant
n-
gy.
an-
ed

eve

se-
rsal
s

is
this
m

: an
nte-
r-

erg-
ed

rk
nd

to
for
a-

r

MESOSCOPIC SCATTERING IN THE HALF PLANE: . . . PHYSICAL REVIEW B63 245312
bias voltage. However, the name ‘‘conductance’’ does
imply any definite chemical potential difference as in t
2DEG case. For classical particles, the ‘‘conductance’’ of
aperture of areaAeff in a thin wall is simply Gatom(k)
5Aeff , regardless of the incident angular distribution. Th
Gatom(k) gives the effective areaAeff of a QPC, in an analo-
gous fashion toaeff in 2D.

For an integer number of quantum channels, the 2D qu
tization of aeff in units of l/2 becomes in 3D the
quantization30,1,34 of Aeff in units of l2/p, a result well
known from work on 3D metallic point contacts.35 As stated
by Thywissen,30 this accurate flux quantization requires t
incident beam width to be much larger than the QPC acc
tance angle.

Equation~19! is the matter-wave equivalent of Eq.~11a!,
with the important difference that it has a general weig
function. Possible nonuniformity of this weight functio
leads to a key result: thatasymmetryof the conductance is
possible given identical illumination on either side, ev
though the~center of mass! motion is time-reversal invariant
For example, if the incident flux used to illuminate the ho
QPC of Fig. 3~b! is narrow in angular spread, then the le
to-right conductance will be much larger than the right-
left conductance. This contrasts with the 2DEG case wh
the conductance is always symmetric.

Finally, it is interesting to note that for the nontherm
incident ~reservoir! distributions discussed above, the Lan
auer formula takes the modified form

G}Tr~ t†tr!, ~20!

wherer is the density matrix of the incident beam.

VII. CONCLUSIONS

Quantum-scattering theory in the 2D half plane can p
vide an alternative description of the mesoscopic cond
tance of noninteracting particles. It is especially useful
‘‘open’’ systems ~e.g., those with nearby scatterers in t
reservoir regions! where the usual transverse-channel a
proach is inappropriate. We have considered elastic po
tials in zero magnetic field, in linear response in the lo
temperature limit. Conductance is proportional to t
ol

m
on
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transmission cross section integrated over all incident ang
Eq. ~11!. We also define a half-plane partial-wave basis a
plicable with the usual Landauer formula, and relate this
our transmission cross section result. A difference betw
this and previous work is the ability to treat a direct ‘‘lea
less’’ connection to the reservoir.

Using the example of a slit QPC combined with an ope
cavity structure, we show that an arbitrarily small QPC c
carry up to a single quantum of conductance via reson
tunneling~equal to the limit in the closed-dot resonant tu
neling case!. This requires a resonance at the Fermi ener
If n coincident resonances occur for different incoming ch
nels, thenn conductance quanta can in theory be achiev
through this same tunneling QPC, a result that we beli
has not been noted until now.

We emphasize that conductance is proportional to pha
space density of the reservoir states. Therefore the unive
quantum of conductancee2/h per spin in Fermi gas system
is a direct result of the uniform phase-space density~angular
distribution! in a thermal occupation of the Fermi sea. Th
insight is supported by discussion of attempts to exceed
universal value. When the reservoir occupation differs fro
thermal, the conductance formula requires generalization
angle-dependent weight is included in the cross section i
gral ~19!; equivalently for 2DEG systems the Landauer fo
mula requires inclusion of the incoming ensemble~20!. This
result, and our approach in general, is relevant to the em
ing field of matter-wave conductance by microfabricat
structures~for instance, a quantum-point contact in 3D!, un-
der general illumination by atom waves. We hope this wo
provides new tools for the study of coherent electron a
matter-wave systems.
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