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Mesoscopic scattering in the half plane: Squeezing conductance through a small hole
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We model the two-probe conductance of a quantum-point cot@R©), in linear response. If the QPC is
highly nonadiabatic or near to scatterers in the open-reservoir regions, then the usual distinction between leads
and reservoirs breaks down and a technique based on scattering theory in the full two-dimensional half plane
is more appropriate. Therefore we relate conductance to the transmasiss sectiorfor incident plane
waves. This is equivalent to Landauer’s formula using a radial partial-wave basis. We derive the result that an
arbitrarily small(tunneling QPC can reach p-wave channel conductance a2h when coupled to a suitable
reflector. If two or more resonances coincide the total conductance can even exceed this. This relates to recent
mesoscopic experiments in open geometries. We also discuss reciprocity of conductance, and the possibility of
its breakdown in a proposed QPC for atom waves.
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[. INTRODUCTION tering system is not coupled to leads in the usual sense, in-
deed the distinction between leads and reservoirs is no longer
The quantum-point contdct (QPO has played a central clear!! The main aim of the present work is to introduce a
role in the understanding of mesoscopic conductance. It i€D Scattering theory approach that can handle such systems,
the simplest example of a two-dimensional electron ga@nd t© apply it to the calculation of the maximum conduc-

2DEG system where the quantum coherent nature of th nce of an open resonator structure of experimental rel-
€vance.

electron controls the bulk transport properties. The : . e
- . 342 We imagine a geometry where a 2DEG exists in two
Landauer-Bttiker (LB) formalism*? reduces the calcula- semi-infinite half-plane regions, separated by an impen-

tion of quantum conductance in the linear response regime Qrable potential barrier that we align with thexis[see Fig.
the evaluation of single-particle wave-function transmissionl(a)]_ Our general “QPC scattering system” is any gap in
amplitudes. Traditionally, these amplitudes are measured benis harrier that allows coupling of the wave function on the
tween traveling wave basis states in the “leads.” Far fromieft and right sides. This gap can be defined by an arbitrary
the scattering system the leads have constant profiles of finifgrm of the elastic potential, and may include other nearby
width, and support a finite number of transverse modescattering objects or disordéwhich would all be placed
(channels Eventually it is assumed that the leads are impe-
dence matche@hat is, without reflectioninto “reservoirs” a)
that act as thermalized sources of electrons at their respective
potentials; these potentials are taken to reflect the measured
bias voltage. Such theoretical constructs have been remark-
ably successful at describing transport phenomena, for in-
stance conductance quantizatior? because the scattering
systems involved have generally had good lead-to-reservoir
matching.

We consider “open” two-terminal mesoscopic systems,
namely, those where a QPC monadiabatic (possessing
rapid longitudinal variation in transverse profife) and has
short or nonexistent leadfor instance, if it suddenly abutts b)
onto the “reservoir” regiong or those where there can be
scattering off nearby objects in the “reservoir” region. We 2iL
call such systems “open” because the fully two-dimensional
(2D) nature of the “reservoirs’(i.e., the surrounding semi- T
infinite regions of free spag¢és important, and therefore they
cannot be modeled using the quasi-1D approach described

above. This includes a variety of recent mesoscopic experi- £ 1. Schematic QPC geometry in 208) general point-
ments, for example, the combination of QPC’s with nearbyontact scatterer coupling two semi-infinite regions of free space.
resonator structursor with a nearby depletion region The solid curves are contours of an elastic scattering potérgial
caused by a moveable atomic force microscOpeM) tip. The “system” sizeL (dashed boxwe take to be the region where

It also includes any QPC system where elastic backscattering(r) has not yet reached its asympotic fofmhich is zero apart
from disorder in the reservoirs is significdfitor generally  from ay-invariant profile around thg axis). Also shown are an
where the lead-reservoir matching is bad. In such systemscoming plane wave, and the coordinate systésnThe idealized
the conventional quasi-1D picture does not apply: the scatslit” aperture in a thin, hard wall considered in Sec. IV.

remmaddonnnng
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within the box shown in Fig. )]. The only important limi-  uniform in they direction. We can imagine creating such a
tation is that this coupling regiofthe “system”) be of finite  wall by replacing the system box shown in Figajlby the

y extent, so that electrons that leave the system do so via surroundingy-invariant wall profile. Note thai/, exists only
well-defined terminal: either the leftx&0) or the right ¢  on the left side. In the left free-space region it is

>0). We also assume that the system &ize much smaller
than both the dephasing lendth and the momentum relax-

ation (elastic scatteringlengthl. The former requirement \yhere the first term ig,, and the angle-dependent reflection
allows treatment using a coherent wave function across thghasey, of the second term depends on bokhe) and the

system; the latter allows free-space elastic scattering CoRga| profile 1> Upon introduction of our true system poten-
cepts to be applied. We will stay within the noninteractingig| the full wave function becomes

guasiparticle picture, consider zero-applied magnetic field,
and assume spin degeneracy of 2 throughout. W= o+ brt b, (2
The conventional distinction between “reservoir” and
“lead” is no longer applicable, however at short distances
outside the systenr &L butr <l , andr <l,) the two semi-
infinite free-space regions behave like leads, since they su
port scattering-free “channelsi’see Sec. Il At large dis-
tances thesameregions behave as reservoirs: forl, ikr ikr
ergodicity ensures that the momentum distribution is uniform
in angle, and for>1, the energy is redistributed to ensure
equmk_)num at _the relevant(experlmentally measgréad See Fig. 1a) for definitions ofg and 6’
chemical potential of each terminal. In the intermediate re- The transmission cross sectiary(k,4) is the ratio of
gion, there is a broad crossover from lead to reservoir. I the t tted ticle fl b,  time t
In this work we first derive a general relation between. T € transmilted particie uinum_ er per unit timk to
transmission cross sectiga concept we define using scat- J".the |nC|der.1t particle flux per unit length normal to the
tering in the half planeand conductance for this open ge- incident beam:
ometry, in Sec. Il. In Sec. lll we show that partial-wave-type Tt
states, defined in the half-plane regions, can take the place of or(k,p)=—. 4)
transverse lead modes in the Landauer formula. In Sec. IV h
we discuss the maximum conductance through an idealized®hysically, o(k, ¢) is the length required of an aperture-
highly nonadiabatic QPCa hole in a thin hard wallthat is  oriented normal to the incident beam in order to transmit an
reached when a resonator is placed on one side of the QPggquivalent flux of classical particleENote thator(k,¢) is
We find a universal result, namely, a single conductancroportional to theinjection distributiort that can be mea-
guantum regardlesshow small the hole is. This illuminates sured in mesoscopic Systeﬁ?$,|t depends on the incident
the findings of a recent experimérin such an open geom- angle becaus¥(r) has no radial symmetry, is the magni-
etry. In Sec. V we discuss attempts to exceed this universalide of the incoming probability flux density vectgr
guantum of conductance through a single channel. A reciE(ﬁ/m)|m[¢fv¢l], which for a unit wave give§,=v, the

procity relation for cross section is derived in Sec. VI, andparticle speed. The transmitted flux is defined as
the possibility of breaking this reciprocity, due to a nonther-

mal reservoir occupation, is described. We discuss an appli- B ~ . h - .
cation to matter-wave “conductance” through a 3D QPC. Iy=[dinj=_]dlnImy7Viys], ©)
We conclude in Sec. VILI.

%:ei(kxx+kyy)_e{i(kax+kyy+ s 1)

where the change in reflected wayg exists only on the left

side, and the new transmitted wayg exists only on the
ight. These scattered waves have the asymptoticl( and
r>1) forms of 2D scattering theory},

'ﬁR:fR(@)\/—: l//T:fT(G')\/— (3

r r

where the line integral encloses the entire transmitted wave,

and the(rightwards pointing surface normal i%. Applying
this and Eq.(4) to the asymptotic form gives

We consider scattering of a single-quasiparticle wave
function from the general two-terminal system described in O'T(k:d’):f
the Introduction[see Fig. 1a)]. The Hamiltonian isH=
—(#212m)V2+\V(r), for a quasiparticle mass. The elastic
scattering potentiaV/(r) completely defines the system. We
imagine a monochromatic unit plane wage=e'*"" incident
from the free-space left-hand regithThe wave vector is w2

. . . L — 2
k=(k,¢) in polar coordinatesgp being the angle of inci- UR(k,¢)—f dolfr(6)|7, (7)
. K — /2

dence. The free-space wave-vector magnitude is takén as
=k (corresponding to a total ener@/~=7%2k?2m equal to  for the reflective cross sectidremoval from the unscattered
the Fermi energy unless stated otherwise. wave without being transmitted

We are at liberty to choose our definition of the “unscat- We will calculate the conductance by assuming the
tered” wave 5. We take it to be the wave function which chemical potential is slightly higher on the left side than the
would result from reflection of the incident wave off a wall right, and as is usubf consider only the left-to-right trans-

II. CONDUCTANCE IN TERMS OF CROSS SECTION

/2
/2d0’|fT(0’)|2, (6)

— T

familiar from scattering theory apart from the restriction to
the right half plane. There is a corresponding form
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port of the states in this narrow energy range. We take th,T. This can be seen by generalizing the above to include
left region to be a largext|,) closed region of areA con-  integration over the Fermi distribution.
taining single-particle states, and find their decay rate |n the limit where a QPC is adiabatic, its conductance is
through the QPC into the right side. Semiclassically eactknown to be quantizeti!> G=(2e?/h)N, whereN is the
single-particle state occupies a phase-space volithe integer number of open channels at the Fermi energy. Look-
where we havel=2. Therefore the phase-space density ining at Eq.(11a), this corresponds to quantization of the an-
the 2DEG Fermi sea is 87 where the factor of 2 comes gular integral of the cross section in units f.
from the spin degeneracy. We can project this density onto
momentum space in order to find the effective number of IIl. PARTIAL-WAVE CHANNEL MODES
plane-wave states impinging on the wHlithis corresponds FOR A TWO-TERMINAL SYSTEM
to a uniform density of states ik space given by
In free-space scattering theory, partial waves form a basis
A in which to decompose the asymptotic—¢o) form of the
p(k,d)k dk dp=——k dk de. (8)  full wave function ¢ into incoming and outgoing states of
2m definite angular momentum In 2D the basis functions are
Each state has an amplitude 2 due to the requirement of the cylindrical solutions to the free-space wave equation; the
unity area normalization in the left region, so has incomingS Matrix that takes incoming to outgoing waves can then be
flux densityj,=v/A. Substituting this into Eq(4) gives the  Written in this basig’ Because there is only a single set of

decay rate of a stateas incoming channels and a single set of outgoing channels, this
is equivalent to a scattering systdgan stub) connected to a

) single lead, with an infinite number of open-channel modes.

F%'I):KO'T(ki b)) (9 This contrasts the open two-terminal geometry we study,

where we need to account for two new related fatts:in
We can now sum the decay rates of all the left-hand states ithe r —o limit the potentialV no longer preserves angular
a given wave-vector rande- to ke+ ok, to get the current  momentum, and2) there are now distinct ways the particle
can enter and exit the system, via different leads.
We define a “half-plane partial-wave basis” as the subset
of the cylindrical free-space solutions that go to zero on the
entirey axis. This gives independent basis functions existing

ey (2 ket ok
51=e3 195" o[k akotk d)orik.o)
i — /2 ke

ev kpdk (72 on either the left or right side of thg axis. The basis is
=2 f—w/zdd) or(ke, 9), (100 expressed in terms of Hankel functidhsn either side
v_vhere the |§.St step incorporated the linear-response assump- ¢|L(kr)EHf2)(kr)sir{l<z— 0)
tion thatot is constant over the rangsk.

When a potential differencéV is applied across the
QPC, the energy range carrying currentsis=esV, which Lo =HO(k)sin | m o
we can equate withhv 5k using the dispersion relation. This ¢ (kN =Hi(kn)si 2
can be used with EJ10) to write the conductance

8l 28?1 (w2 ¢|_R(kr)EH,(2)(kr)sinI(g—e’”
GZW:TA_,:J_W/Zd¢ or(Ke, é) (113
262 ke & R(kr)=HM(kr)sin |(§—a’”, (12)
=5 2 (s (11b

where on the leftL) side 6 is the angle from the negative

where the particle wavelengthlis=2n/ke. The latter form axis and on the righ{R) side 6" is the angle from the
is written in terms of the angle-averaged cross section at thpositive x axis [see Fig. 1a)]. The channel index id
Fermi energy. The weighting of this average is uniform be-=1,2,- - -o, and + (—) refers to outgoingincoming trav-
cause of the ergodic assumption that incoming states are unéling waves. We note that thewavel =0 is excluded be-
formly distributed in angle. cause of they-axis barrier, leaving the first channel as fhe

Equation(11) is a key result of this papéan independent wave H,(kr)cos@). Assuming the width of the barrier is
derivation is given by Barnéth). Like the Landauer formula, finite and constant dy/|— [see Fig. 18], then any wave
it directly connects conductance and scattering. In a scattefunction in ther — limit can be written as a sum of the
ing measurement from the left side; appears to be the above basis functions. The separability of this basis jw)
QPC'’s inelastic cross sectigisince the transmitted waves is directly analogous to the separability of conventional
never return to this sideln a current measurement the cor- (constant-width lead basis statdsnto a product of trans-
responding conductance is given by Etfl). Our derivation  verse modes and longitudinal traveling waves.
was for temperaturé =0, but it applies at a finitd as long Our basis(12) is chosen such that unit-amplitude coeffi-
as o7 does not change significantly over the energy rangeients carry equal fluxes in all incoming and outgoing chan-
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hard, thin wall where it is taken as infinite. The QPC is a gap
in the wall of size &. This model is highly nonadiabat{see
Ref. 17 for a review of its transmission properjiebhe hard
wall simplifies the treatment of the left-hand side scattering
problem, and we do not believe it alters our basic conclusion.
We consider the “unscattered” wave to be the incident plus
reflected wave Eq.l) when the QPC is closeda&0). This

we expand in Bessel functions,

o(r)= eli(kax+kyy)]_ gli(—kex+kyy)]

FIG. 2. A tunneling-regime QPC combined with a nearby cir- = —4iJ,(kr)cog #)cog ¢) + higher order terms.
cular reflector, forming a stable resonant cavity open at the sides. (14)

nels, so flux conservation implies the unitarity of tBena-  The first term in the expansion is the incoming plus outgoing
trix when written in this basis. As with a conventional p wave, which in the tunneling limit will dominate in our
transverse lead mode basis, the familiar Landauer formula consideration of the absorptidh.

Now we open the slit, and replacel Zkr) in the above
by H{®(kr)+e?*H{"(kr), where s follows the usual defi-
nition of partial-wave phase shiff. The closed slit corre-
o _ i sponds to5=0. An open slit leading into a closed resonator
h0|d5-19'20L4’17The transmission matrix is defined bya," (i?nagine extending E[)he arc in Figg 2 to seal off the entire
=ZntimPm ,» Where the outgoingincoming amplitude coef-  yight side, in the case of infinite dephasing length, corre-
ficients arep,” (p;’) on the left andg,” (q;) on the right.  sponds tas= real, and would appear from the left side as an
Note that it is possible to “mix and match” different basis elastic dipole scatterer. An open slit with an open resonator
set typegfor instance define a transmission matrix betweerncorresponds to comple& with positive imaginary part, and
transverse lead modes on the left side and partial-wavgould appear as a general inelastic dipole scatterer. There-
modes on the right as long as equal-flux normalization, and fore transmission though the QPC appears, to an observer on

2e?
G= TTr(tT t), (13

transverse orthogonality, are preserved. the left side, to babsorptionof incident waveso is inter-
preted as an “inelastic” cross sectiofsince exiting the
IV. POINT CONTACT COUPLED TO A RESONATOR right-hand terminal is equivalent to leaving in a new chan-

nel), and og as an “elastic” one.o(k,¢) can be found

Figure 2 illustrates a QPC-plus-reflector system whosq : . - . :
; : rom integrating the net incoming flupas in Eq.(5)] of the
conductance has been experimentally meastif circu- total wave function on théeft side. Substitution into Eq4)

lar arc reflector and the vertical wall together form a cavity : _ 12812 :

that can support long-lived resonances; the energy of the then giveso(k, ) =4k(1—|e*?*)cos(¢). For 5—io the

resonances can be swept by sweeping the reflector gate volt-

age. The classical conditibfor stability of the cavity modes 4

is that the arc center must lie at, or to the left of the wall O'T,maX(k-d’):E

(x=0). The cavity modes are coupled to the left terminal via

the QPC, and to the right terminal via leakage of the modeshis corresponds to an effective classical “are@ize) a

out through the cavity top and bottom. The system is inter—) /2. This is analogous to the f&éthat in 3D the effec-

esting because it is “open” in the sense that it has no Coutive area of an arbitrarily small electromagnetic dipole aerial

lomb blockadé, but “closed” in the sense that the dwell can be of orden2. To an observer on the left side who was

time is much greater than the ballistic tinfihe resonances aple to “see” the electron waves living in the energy range

are long lived. It has also been studied recently in our labo-e sV responsible for conductance, the QPC would stand out

ratory using microwave measuremefits. as a “black dot” of size~\g against the surrounding uni-
The actual potential in a mesoscopic experiment differgorm “gray” thermal luminosity reflected in the vertical wall

from the illustration: it has soft wallgon the scale X)), it mirror.

may have deviations from the circle due to lithographic er-  The associated maximum conductance is found easily us-

ror, and it has modulations of the background potential dugng Eqs.(15) and(11) to be

to elastic disordet.However, we will not be interested in

details of the resonator on the right-hand side. Rather, we 2e?

will adopt the view of a 2D scattering-theorist “looking” Gmax=—7"" (16)

from the left-hand side. In this section we discuss the maxi-

mum conductance of this system, when the “bare” QPCthe universal quantum of conductander 2 spin channe)s

(i.e., without the reflectgris in the tunneling regimécon-  independent of the size of the QPC hole, even foragsi-

ductance<2e?/h). trarily small hole (ka—0). This universal resonant-
We use an idealized slit QPC modalee Fig. b)] in  tunneling maximum conductance was first found

which the potentialV is zero everywhere except along a numerically?®>?**however our system differs from those of

aximal cross section is reached,

co( ). (15
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Xue and Leé® and Kalmeyer and Laughftfh because the a)
resonance does not involve transmission thouglsatated
(zero-dimensionalqguantum dot. The dramatic increase over

the conductance of the bare QP@hich vanishes ask@)?,

see Ref. 17runs counter to the naive classical expectation,

namely, that the reflector wouldecreasethe left-to-right

flow of electrons because it sends back into the QPC par-

ticles that would otherwise exit to the right.

How do we know that it is possible to build a resonant
geometry that corresponds ®—io«? The reflector can be b)
described by, the amplitude with which it returns an out-
going p wave back to the QPC as an incomipgvave. If
[r|?=1—t,4%, where thep-wave transmission of the QPC is ‘ ‘ ‘ ‘ ‘ ‘

/>
N\

b

t,; as defined in Sec. lll, then thpwave channel becomes a
1D Fabry-Perot resonator with mirrors of matched reflectiv-
ity. Sweeping the round-trip phase then produces peaks of
complete transmissiofcorresponding to completp-wave
absorption on the left sideThe ratio of peak separation to
peak width is the quality factd®~ 1/|t,,|%. Such peaks, with
heights much greater than the bare.tunnellng QP,C C%ndu%'hannel by multiple connections feeding from the reservoirs. All
tance, were observed in the experiments of Kate_meal. channels are single mode and sufficiently long that the evanescent
However, Eq(16) has not yet been tested quantitatively be-nneling of higher modes is negligibléh) An illustrative hard-

cause of the difficulty of matching the Fabry-Perot reflectivi-walled exponential horn system that has differing acceptance angles
ties in a real 2DEG experiment. Note that the maximumon each side: very narrow on the left, and very wide on the right.
conductancg16) also follows immediately from the Land- Such a mesoscopic 2DEG system would exhibit symmetric conduc-
auer formula when we realize that there can be complet&énce, however, in an atom beam context the conductance can be-
transmission of the incoming=1 channel staté¢from Sec. = come unsymmetric.
).

An interesting possibility arises when we realiz¢hat  tic” cross section per channelr na—=16k. This latter case
higher | channels are stilslightly transmitted by the bare occurs whens= (integert+ ).
QPC, whenka<1, even though they are increasingly eva-
nescent. If the resonator has a high enough reflectivity for
these modes, then additional Fabry-Perot conductance peaks
will be produced®?° The peaks may be extremely narrow,
but can carry a full quantum of conductance because they The surprising theoretical results of the previous section
can transmit another incomidghannel. By careful arrange- might lead one to question the conductance lingt/a for a
ment of the cavity, one or more of these peaks could baingle quantum channéby which we mean a single trans-
brought into conjunction with an already-existihg 1 peak verse mode for which the longitudinal degree of freedom is a
at the Fermi energy(For instance, thé=1 andl=2 reso- 1D Fermi gas; this includes both conventional and partial-
nances are in different symmetry classes in Fig. 2 so therezave basis setsFor this gedanken-experiment we will con-
can be an exact level crossjndherefore, we have the sur- sider conventional electron waveguides that are single mode
prising result that, in theory, a conductance oéf/h)n can  and long enough that evanescent waves are negligible, but
pass through an arbitrarily small QPC holenifresonances which are also<l,. We try to encourage more current to
(from n different channelscoincide at the Fermi energy. pass down a single-mode chanfE) by connecting it to a
However, due to their extremely small width, such large con+eservoir via multiple routesA,B,C,D), as shown in Fig.
ductance peaks are unlikely to be observable in a real mes@(a), where two routes are used on each side. It is possible to
scopic tunneling QPC due to finite dephasing length andnatch the junctions so that a wave entering doiB,C,
finite-temperature smearirg. or D has no reflection back along the same lead. In this case

Finally, we should not overlook the fact that our expres-we might guess that the hypothetical left-side obse(frem
sions for partial cross sections are a factor of 4 greater thathe previous sectionvould see the single-mode entrances to
those conventionally arising in 2D scattering theory from aguidesA andB as two “black dots,” giving twice the effec-
radial potentiat* because we are measuring cross section otive absorption cross section, and therefore infer a conduc-
the reflective boundary of a semi-infinite half plane. For in-tance of twice 22/h. We might also justify this by saying
stance, the maximum inelastic partial cross section for ahat waves traveling dowA and B will meet and continue
single channel in free spaeis o, =1/k, compared to our down E, and since they have no particular phase relation,
maximum “inelastic” cross section per channel EG@5). their currents will add to give a doubled current through
Similarly, the maximum elastic result in free spacedis  as would be necessary.
=4/k, compared to our maximurfmormal-incidencg‘elas- However there is a fundamental flaw in the above reason-

)

FIG. 3. (a) An attempt to increase conductance through a single

V. WHAT IS THE MAXIMUM CONDUCTANCE
OF A SINGLE QUANTUM CHANNEL?
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ing. The ABE junction can be designed so that if wavesthe right, therefore very different forms of the transmission
come downA and B in phase, they will be adiabatically cross sections~R(k,¢) ando¥ " (k, ¢).

transformed into the lowest transverse modeEopfso will If we assumeclassicalmotion then we can imagine a map
propagate through to the right side without reflection, carryfrom a Poincaresection(PS (y,p,) at a vertical slice ak

ing a current of twice that of a usual single-mode guide.=—x, to another PS)(',PQ at x=+Xx,. At each PS we
However, if A andB are 7 out of phase, the same adiabatic consider only rightwards-movinga(>0) particles, and take
transformation must result in the second transverse modg, >|. A certain area of phase space, 8,) is transmitted
which is evanescent. So this latter wave will reflect perfectlyang is mapped to aequal ared” in phase spacey(,p,).
back out of the left side, and carry no current. Plane wavegime.-reversal invariance holds since we consider magnetic
are impinging from the left reservoir uniformly over all fie|g B=0, so we can negate the momefitaw considering
angles, and because of the\ separation of the entrances, , —0) and find that theamephase-space area is transmitted
an average over angles gives an average over relative phaggnt to left. When it is realized that the angle-averaged cross
in A and B. Thus we are left with no increase above thegection is proportional to the transmitted phase-space area on
single-channel conductance. This property of #E junc- 5 ps then the symmetry of the angle-averagtassical
tion is not merely practical; rather, it is easy to show that its;rgss sections follows.

3% 3 S matrix cannot be unitary if a junction is to couple  The same symmetry is not obvious for quantum cross

both A—E and B—E with unity transmissions. Such an gsections, but it also holds true. Comparing Bl with Eq.
appealing junction is therefore ruled out on the grounds o{13) gives

flux conservation. A consequence is that the entrancds to
andB can at most appear “half black” to the observer, due 2 LR B "
to waves that enteA then exitB and vice versa. f led‘f’ o7 (ke @)=\ Tr(t'0), (17)

This suggests another way to try and defeat the conduc-
tance limit: direct the incoming plane waves in a narrowwheret is measured from left-to-right states. It is instructive
enough angular distribution so that wavaesvays come to derive this directly” This relation ties together the cross
downA andB in phase, and this will double the conductance.section and Landauer views of conductance. Time-reversal
(This is similar to experiment& where the series resistance invariance and flux conservation together infBlythat
of two QPC'’s was found to be less than the sum of theTr(t't) is unchanged by swapping the labeling of the
individual QPC resistances, because collimation at the exit deads!?° thus we immediately have from E@L7) the reci-
the first QPC illuminated the second with a narrow beamprocity of angle-integrated quantum cross section
increasing its conductancéHowever, this beam is no longer - -
a thermaloccupation of incoming states. This illustrates the T L—R _ 7 R—L
inextricable link between thermal Fermi occupation of reser- J /zd(lS or (k’(ﬁ)_j /2d¢ or ~(ke). (19
voir states and the universal quantum of conductancel At
=0, thermal occupation at a given chemical potential differ- . .
ence implies thaall quantum states lying in the appropriate angles must be balanced by the ratio of effective areas.

energy range are filled in the left reservoir and empty in the We now d|scuss_ acase n which nonthermal _occupatmn
of incoming states is possible: the rapidly developing field of

right. Semiclassically, this corresponds to a uniform distribu- S ; . .
tion in phase space, or when projected into momenturﬁ:Oherem matter-wave optics, in which potentials are defined

states, uniform in angle, as exemplified by Efl). The by mlggf?br|czted s;ructufrég. t'T hﬁre 'Sf ? rgcilr\t

semiclassical viewpoint allows one to see that since tr<'insf0|9r0posh or o se_rvad|03nDo Pq(L:Ja(\jn ]lc_za 'C(])T) 0 ha ;mlc ux f
mations in phase space cannot change the phase-space d ough a micron-size . Q etined by t 1€ zeeman et-
sity (Liouville's theorem, the universal conductance per ect potential of a magnetic field. The device is illuminated

guantum channel cannot be changed. This reminds us th 4 Z_b;a%mtpf atoms passing th:olugh avacé;“’.‘" \t/vhose angu-
unitarity in quantum mechanics is analogous to Liouville's ar distribution IS an experimenta parame(far instance, a
theorem in classical mechanics collimated oven source or a dropped cloud of cold afms

The atomic flux transmittedper unitk, at wave vectok)
will be F(K)=G4on{k)Jo(k) whereJy(k) is the flux inci-
VI. RECIPROCITY AND “CONDUCTANCE” dent per unit wall area, and we define the atomic “conduc-
OF ATOM WAVES tance” by

—y — T

So in Fig. 3b) it is now clear that the ratio of acceptance

We can ask if the conductan¢&l) computed using trans-
mission of left-side reservoir plane-wave states through the Gaton{k)zf dQ w(k,Q)or(k,Q). (19
QPC is equal to that using right-side reservoir states. Since
the two directions correspond to opposite signssdf then As before, the quantum-transmission cross section is
in order to have linear respongwell-defined constanG  o(k,{}), but now there is aweighting function \k,()
aroundsV=0) we would hope that they are equal. That thewhich defines the angular distribution of the incident bédm.
angular average of transmission cross section is equal fromihe weight has the normalizatiofidQ w(k,{)cos@)=1.
the left and right sides is not immediately apparent in a genfAll integrals over solid angl€)= (6, ¢) are over a range of
eral asymmetric system. For instance, consider Rig). that 27 appropriate for the half-spheteFollowing the analogy
has a small acceptance angle from the left but a large fromf Thywisser° F(k) plays the role of current]y(k) that of
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bias voltage. However, the name “conductance” does notransmission cross section integrated over all incident angles,
imply any definite chemical potential difference as in theEg. (11). We also define a half-plane partial-wave basis ap-
2DEG case. For classical particles, the “conductance” of arplicable with the usual Landauer formula, and relate this to
aperture of areaA.4 in a thin wall is simply G on(k) our transmission cross section result. A difference between
=A.i, regardless of the incident angular distribution. Thusthis and previous work is the ability to treat a direct “lead-
Gaon(K) gives the effective are@ of a QPC, in an analo- less” connection to the reservoir.
gous fashion t@g in 2D. Using the example of a slit QPC combined with an open-
For an integer number of quantum channels, the 2D quarsavity structure, we show that an arbitrarily small QPC can
tization of a.s in units of A\/2 becomes in 3D the carry up to a single quantum of conductance via resonant
quantizatiof®!3* of Ay in units of A%/, a result well tunneling(equal to the limit in the closed-dot resonant tun-
known from work on 3D metallic point contactsAs stated  neling casg This requires a resonance at the Fermi energy.
by Thywisser? this accurate flux quantization requires the If n coincident resonances occur for different incoming chan-
incident beam width to be much larger than the QPC acceprels, thenn conductance quanta can in theory be achieved
tance angle. through this same tunneling QPC, a result that we believe
Equation(19) is the matter-wave equivalent of Ed.1a,  has not been noted until now.
with the important difference that it has a general weight We emphasize that conductance is proportional to phase-
function. Possible nonuniformity of this weight function space density of the reservoir states. Therefore the universal
leads to a key result: thasymmetryof the conductance is quantum of conductanae?/h per spin in Fermi gas systems
possible given identical illumination on either side, evenis a direct result of the uniform phase-space densitgular
though the(center of massmotion is time-reversal invariant. distribution in a thermal occupation of the Fermi sea. This
For example, if the incident flux used to illuminate the horninsight is supported by discussion of attempts to exceed this
QPC of Fig. 3b) is narrow in angular spread, then the left- universal value. When the reservoir occupation differs from
to-right conductance will be much larger than the right-to-thermal, the conductance formula requires generalization: an
left conductance. This contrasts with the 2DEG case wherangle-dependent weight is included in the cross section inte-
the conductance is always symmetric. gral (19); equivalently for 2DEG systems the Landauer for-
Finally, it is interesting to note that for the nonthermal mula requires inclusion of the incoming ensem(i6). This
incident (reservoiy distributions discussed above, the Land-result, and our approach in general, is relevant to the emerg-

auer formula takes the modified form ing field of matter-wave conductance by microfabricated
: structureqfor instance, a quantum-point contact in)3Dn-
GocTr(t'tp), (200 der general illumination by atom waves. We hope this work

provides new tools for the study of coherent electron and

wherep is the density matrix of the incident beam.
matter-wave systems.

VII. CONCLUSIONS
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