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Role of bound pairs in the optical properties of highly excited semiconductors:
A self-consistent ladder approximation approach
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The presence of bound paifsxcitong in a low-temperature electron-hole plasma is accounted for by
including correlation between fermions at the ladder level. Using a simplified one-dimensional model with
on-site Coulomb interaction, we calculate the one-particle self-energies, chemical potential, and optical re-
sponse. The results are compared to those obtained in the Born approximation, which does not account for
bound pairs. In the self-consistent ladder approximation the self-energy and spectral function show a charac-
teristic correlation peak at the exciton energy for low temperature and density. In this regime the Born
approximation overestimates the chemical potential. Provided the appropriate vertex correction in the interac-
tion with the photon is included, both ladder and Born approximations reproduce the excitonic and free pair
optical absorption at low density, and the disappearance of the exciton absorption peak at larger density.
However, line shapes and energy shifts of the absorption and photoluminescence peaks with density are
drastically different. In particular, the photoluminescence emission peak is much more stable in the ladder
approximation. Moreover, even though at low temperature and density a sizable optical gain is produced in
both approximations just below the excitonic peak, this gain shows unphysical features in the Born approxi-
mation.
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I. INTRODUCTION hole pair with the photofiIn particular, excitonic absorption
is found in an empty crystal, when a background electron-

The binding of a gas of oppositely charged fermions leadhole plasma is absent. However, when carriers are electri-
ing to a gas of bosons has a fundamental interest in corzally or optically injected, they reach quasithermal equilib-
densed matter physics, in problems ranging from the state afum through scattering, and a background electron-hole
hydrogen to the nature of the electron-hole plasma in Si anglasma is eventually formed. In this typical situation the ab-
Ge. This pairing takes its origin from the Coulomb correla-sorption is modified, and spontaneous emisgjamtolumi-
tion between the charged fermions, and strongly affects theescencealso takes place. Absorption and emission give
statistical and thermodynamic properties of these systems. waluable information about the state of the plasma, but a
semiconductor physics, the role of the Coulomb correlatiortheory describing both the thermodynamics and optical prop-
and pairing in the description of the electron-hole plasma irerties of the plasma is required in order to extract this infor-
Si and Ge has been extensively investigated. Refined denation. Semiconductor Bloch equations and their evolutions
scriptions of both the ground state and the thermodynamieare certainly among the most known and used theories for
properties of this system have been developed over the pattis purpose.In these theories, the electron-hole plasma has
30 years. In particular, an excitonic insulator ground statébeen originally treated at the Hartree-Fock I€vahd even-
was first proposed and then shown to be less stable thantaally screening of the Coulomb interaction was also in-
simpler electron-hole liquid in Si and Ge, due to band-cluded at various levels of approximatidrHowever, none
structure effectd. Thermodynamics of the electron-hole gas of these refinements accounts for the existence of bound ex-
in simpler crystals was also addressed by Haagd Zhu citons in the plasma. This is certainly a weak point at low
et al® aiming at deriving a complete phase diagram fromtemperatures, when simple thermodynamic arguments show
variational approaches. that condensation of the electron-hole gas into a gas of

In this paper we will deal with direct gap semiconductorsbound electron-hole pairs is favorable in a wide range of
and we will discuss the thermodynamics of the photoexcitediensities.
electron and holes at quasithermal equilibrium. Our main In the following sections we will show the relevant
concern is to determine how the inclusion of pairing effectschanges in the optical properties of the semiconductor when
in the theoretical description, as done for the systems merthe existence of excitons at low temperatures is taken into
tioned above, can affect predictions on the shape of opticaccount. Our purpose is qualitative, but we can still gain
spectra. In the optical properties of semiconductors, the efsolid understanding of the underlying physics. We thus con-
fect of the Coulomb electron-hole correlation comes intosider an accurately solvable model, where the system is one-
play to explain the characteristic excitonic absorption andlimensional, the Coulomb interaction is on-site, and electron
emission. These excitonic features can be described by irand holes are spin-polarized. Excitonic correlation is also
cluding vertex corrections in the interaction of the electron-expected to be stronger in one dimension than higher dimen-
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sions. Moreover, for the single-pair problem, exactly a singleanalyzed in Sec. Ill, where we show the appearance of exci-
bound state is obtained with the on-site interaction. In outtonic correlation structures in the electron and hole spectral
description of the electron-hole plasma, we either includgunctions. Chemical potentials and self-energies are then
carrier scattering at the Born level, which does not describgompared. In Sec. IV we analytically show how the SCLA at

bound pairs in the plasma, or we include enough correlatiotow temperature and density describes an interacting exciton
so as to describe the pairing into bound states. For this pugas. Optical properties of a semiconductor quantum wire are

pose, ladder diagrams in the electron-hole scatteringalculated in Sec. V for the three approximations. Absorp-
kernel~? are included, and the electron and hole self-ion and emission as functions of density are also presented

energies calculated with ¥ The resulting Dyson equations and discussed in this section. Conclusions are drawn is Sec.

for the Green functions are solved self-consistently. The ap\-/"

proximation is therefore called the self-consistent ladder ap-

proximation (SCLA). Screening is expected to be weak in Il. BORN AND SELF-CONSISTENT LADDER
one dimensiori! due to reduced screening phase space, and APPROXIMATIONS

we neglect it altogether. We remark that in the SCLA we
calculate the single-particle propagators and self-energiel§I

only; thus in this sense, the theory remains purely fermionchom approximation(SCBA). We assume thermal equilib-
We do not map the model onto bound and unbound states ﬁhm in the electron-hole plasma, but, in order to avoid ana-

any time. However, it is pos.s'ible to show'analytically that atI tic continuation problems, we do not resort to the Matsub-
low temperatures and densities, a bosonic gas of excitons a  Green's function ’techniq&é which  becomes
_effectlvely deSC”b?d’ and that self-con5|s'Fency eﬁceCt'velynumerically delicate when the spectral function shows a
introduces scattering between these excitons. When th

analoay is extended to larger densiti dt t rge number of poles. Instead, we work directly in the real
9y 1S ex g ensities and tempera ureIsrme/frequency space. This has the additional advantage that
where bound and free carriers are expected to coexist,

. . the approach can be readily extended to nonequilibrium
understand that self-consistency also accounts for multipl€ - 4ii0<14 \We thus consider four single-particle Green's
exciton—free-carrier and free-carrier-free-carrier scatterin :

Thus, a large amount of correlation, well beyond that de?functions.l‘r’ the retarded, advanced, lesser, and greater
’ 9 ’ y Green’s functions defined as

scribed in simpler Born approximations, is included in the

In this section we introduce the SCLA, the simpler
arkov-Born approximation(MBA), and self-consistent

SCLA. We remark that we also assume quasithermal equi- G (1,2 =—i6(t;—t,)(T[c(1)cT(2)],), (1a)
librium in the electron-hole gas, which is well justified as the

characteristic radiative recombinatigeeveral hundreds of G (1,2=i6(t,—t)(T[c(1)cT(2)].), (1b)
picosecondsis much slower than the typical scattering time

in the density range considered. We finally show how to G<(1,2=i(c’(2)c(1)), (10)
correctly calculate photon absorption and emis$jamtolu-

minescence(PL)] in a conserving sense, i.e., respecting G~ (1,2 =—i{c(1)c(2)). (1d)
f-sum rules. We only neglect polaritonic effects, which are

very weak in one dimensioff. Here T is the time ordering operator, and=Xx,,t,04),

Within the considered models, we highlight the following wherex, is the positiont, the time, andr; is the spin index.
trends in optical and thermodynamic properties. First, Borrc(1) is the electron annihilation operator afd, is the
approximations overestimate the chemical potential at lowanticommutator. Similar expressions for the hole Green'’s
temperatures when a consistent fraction of pairs is bounéunctions hold, withd(1) andd’(1) the hole annihilation
into excitons. Second, energetic stability of the excitonicand creation, respectively. Only two of the four functions
emission peak as a function of density is better described iabove are independent, and in particular, we will consider
the SCLA, even well beyond disappearance of excitonic abthe retarded and lessear correlation functions. Formally, a
sorption peak at large excitation densities. Third, the largsingle Green’s functiols(xy,71,X,,7,) may be introduced
excitonicgain at densities just below those where excitonicfor compactness of notation, withy and , defined on the
absorption disappears is clearly incorrectly described in simKeldysh contour. Following simple rules, any equation with
pler Born approximations. As these trends have a cleatimes defined on the Keldysh contour can be written in a set
physical origin, they are expected to hold qualitatively evenof equations defined on the ordinary time axis for the four
when more realistic interaction potentigéentually includ- ~ Green functions abovésee, for instance, Ref. 15
ing screeningare considered. These results signal the neces- The statistical averages are done in the macrocanonical
sity of an adequate description of the excited semiconductognsemble: (- --)=Tr{p---}, with p=e AHreNe~rnNn)/
in the low-temperature region. For example, the current deTr{e A(H~#eNe~#nN)l - Here B=1/T and H is the total
scription of the electron-hole plasma in the semiconductoHamiltonian of the interacting electron-hole system. In prin-
Bloch equations is clearly insufficient to address excitonicciple, electrons and holes have independent chemical poten-
(inversionlesslasing. tials and densities. However, we are interested in the descrip-

The paper is organized as follows. In Sec. Il we introducetion of a laser-excited semiconductor where the density of
and explain how to implement the self-consistent ladder apelectrons and holes is the same and the charge is balanced.
proximation, the Markov-Born approximation, and the self-We will also assume that the temperature of the two compo-
consistent Born approximation. Single-particle properties ar@ents of the interacting gas is the same. In fact, after excita-
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tion, thermalization of carriers is mainly driven by exchangeonly interaction with opposite spin is allowed in the intra-
of energy with the phonon thermal bath, which, at equilib-band term for a contact potential. In the following, we as-
rium, leads toT.=T,=T. Moreover, for simplicity we con- sume a spin-polarized system of electrons and holes, so that
sider the same electron and hole masses, giviRg 1,  We keep only the last term describing the electron-hole inter-
= and the same Green’s functions and self-energies. Exaction in the Hamiltoniari4). Generalization to both spins is
tension of the theory to different masses is straightforwardstraightforward.
Finally, the Green'’s functions above depend only on the time The Dyson equation for the single partic1,2) propa-
differencet,—t; as the system is stationary and on the rela-gators read
tive distancex,—x; as the system is homogeneous.

In this thermal regime, the retarded and lesser Green func-
tions defined above are also related by the Kubo-Martin-

G(1,2)=GO(1,2)+f d3d4Gy(1,3)3(3,4)G(4,2), (5)
Schwinger relation'd

where time integrations are over the Keldysh cont@y.is
G (k,w)=—2IMG"(k,w)]f(o—pu), (2a  the free propagator. The functional dependence of the self-
energy2 on the single-particle Green’s functions determines
G”(k,w)=2IMG*(k,w)][1-f(w—pu)], (20) the degree of approximation. In particular, it can be ex-
pressed through an electron-hole scattering kernel
where we considered the Fourier transforms with respect ta(1,2;1',2'):
the relative time; —t, and with respect to the relative posi-
tion X;—X,. The function f(w)=[exp@/T)+1]* is the i
Fermi function. In the stationary cas&s™(k,»,0) 2(12)=i
=G *(k,w,o) contain the information on the spectral prop- o
erties of the quasiparticles, given by the one particle spectrdl the Born approximation,
function A(k,w,0)=—2Im[G*(k,w,0)]. The correlation
functions instead contain information on the quasiparticle oc-

d1’d2'T(1,1;2,2/)G(2',1). (6)

T(1,1;2,2)=V(1,1)+V(1,1)iG(1,2G(1',2")V(2,2),

cupation number G<(k,t;=t,=t,0)=N(k,t,0) and @)

G7(kty=t,=t,0)=1—-N(k,t,0) where N(k,to) are the where V(1,1')=V(x;—X;/)8(t3,t;,), and 8(r,7') is the

occupation numbers. Dirac & function extended on the Keldysh contour. The self-
The on-site Coulomb interaction reads energy3 (k,w) can be calculated at the single-particle pole

. w=k?/4. In this case we are neglecting memory terms in the
V(x)==xad(x), 3) scattering and thus using a Markov approximation; this cor-

and the potential is repulsive for electron-electron and hole/®Sponds to the MBA and is a non-self-consistent approxi-
hole interactions and attractive for the electron-hole interacation. In the SCBA, the same scattering kernel of &gjis
tion. An attractives-function-like potential between the elec- used, but the full energy-dependent structure of the resulting
trons and the holes gives one bound state only for the pait€!f-energy given in Eq6) is used in the Dyson equations,
problem, anch can be chosen such to reproduce the excitorf-d- (5)- The problem is then solved self-consistently, as ex-
binding energy measured in the limit of low density. The Plained later. In this case, memory effects, beyond the Mar-
constant has the dimensions of (energy]length), the ex- kov appro/mma/tlor_\, are also m_cluded. In the SCLA, the ker-
citon Bohr radius is given bpg=%2/(ma) and the exciton N€l T(1,1:2,2') is the solution of the Bethe-Salpeter
binding energy isE,=ma%/2h2, wherem is the reduced equations in the ladder approximation, which for a generic
mass of the electron-hole system. We will use the uhits Potential reads

=a=m=1 throughout the paper. In these ungts=1 and

E,=0.5. We remind thg reader that typical values for semi- T(1,1’;2,2’)=V(1,1’)+f d3d3’V(1,1)iG(1,3)
cond%ctor quantum wires arag=10"° cm and E,=10

meV.*" With the above effective potential of E¢B) the in- B S
teraction Hamiltonian is XG(17,3")T(3,3",2,2). (8)
1 For a 6-like potential, V(1,1')=—46(1,1') and T depends
- t trqr , only on 2—1. The reduced equation reads:

He=7 2 ¢'(1)e'(1)e(1)e(1)

1 T(1;2):—1—if d3G(1,3)G(1,3)T(3;2). 9)
+§; d'(1)d"(1")d(1")d(1)
Equations(5), (6), and (8) are schematically represented in
T ta , Fig. 1 for both the SCBA and the SCLA.
_; c'(1d'(1)e(Hd(1). (4) In the self-consistent approximation we solve E&$and
(6) self-consistently with the scattering kernels given by Eq.
Here 1 =(x4,t,,0' # o) for the electron-electron and hole- (7) or (8) in the Born or SCLA case, respectively. We ex-
hole interactions, while = (x,,t,,0") for the electron-hole plain in detail how numerical self-consistency for a fixed
interaction, as due to the fermionic nature of the carrierstemperature and chemical potenfiahas been implemented.
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(iv) The electron self-energy is then calculated in real
space as in Eq6). The retarded and correlation functions,
defined on the usual time axis, read

(a)

SE(r)=iT(r, )G (—r,—t)=—iT=(r,t)[G™(r,1)]*,

© 1 SHrD)=+HIT(r )G (=1, —)+iTH(r,)G<(—r,—1)

=HT(r,O[GT(r,t)]* =iT (r,t)[G=(r,t)]*.

(v) The new electron Green'’s functions are then calcu-
lated as

G*(kw)=[w—K¥4—3" (k,w)+iy] ",

(15
G (k,w)=—2IMG"(k,w)]f(0—u).
1_._3 2 The procedure is repeated through st@p until self-
- B T consistency is reached. Fast Fourier transforms are per-
formed on a finite grid of 16384128 points for the fre-
1 > 3 2 quency and wave-vector domains, respectively. The

frequency and wave-vector domaitk,{) is (—20,20)X
FIG. 1. (8 The Dyson equation: thick lines are the dressed( 3 3). Due to the finitek range, we obtairE,=0.4. The
0”;:_‘ particle GtLe‘:’t:‘ funcﬂon ang thgdlnze)s ;hetﬁare 0(:‘*)Sghe externaly>0 in step(v) is adiabatically switched off during
sell-energy with the scatlering kem or theon-site LouU- gelt_consistency. In this way the imaginary part of the figal
Iomp pot.ential.(c) The scatte.ring kerneT(1;2).for theBorn ap- is provided b))// the intergction or?Iy. |33/0pr the non-self-
S:gi:m:ﬂgz&éﬂz;h& fﬁ:ttggt%ge_gzgig f;u;i;rr:eladder aP- consistent Born approximatidor Markov-Born, we use the
’ ' frequency-independent, on-pols; (w=k>?/4) in the Green
(i) We start withG* (k, ) of the form G* = (w— k%4 function, and stop the procedure at step
+iy)"L, andG=o(k, )= — 2 IM[G* o(k, ) | f(w— ) All of the considered approximations are conserving in
(ii) In order to take advantage of the local character of thé€ Sense of Baym and Kadanoffthe total density, total

electron-hole interaction, we use the Fourier transform of tha"oMentum, total energy, and total angular momentum of the
Green’s functions of Eq(1), G(1,2), which actually have system are conserved. This is a fundamental property of any

only a spatial dependence am=x;—X, as the system is approximation for the self-energy; otherwise unphysical re-

homogeneous. We calculate the free pair propagator defmercdJItS may result. We will come back to this point again in the
as calculation of the optical response of the system in the vari-

ous approximations.
H(1;2)=iG(1,2G(1,2). (10) The polarized electron-hole gas with a contact potential
interaction that we consider here can be mapped onto a
The retarded and correlation parts are calculated paSS|r§;ng|e band Hubbard model with spin 1/2 and attractive in-
from the Keldysh contours to the usual time axis: teraction, in the limit of infinite width of the band, and infi-
- P < nite on-site interaction so as to produce firltg (continuum
HE(r.O=1G=(r,)G=(r.1), (11) limit). For the Hubbard model with a repulsive interaction,
4 4 " R - the self-consistent ladder approximation is known as the
HT(r)=IGT(r, )G (r,) +2iG7(r,HG(r.). fluctuation exchange approximati¢RLEX).'° Even though
12 . : ) 4
in this repulsive case the opening of a Hubbard gap is not
The dependence on the relative distance has been explicithgproduced, in the attractive case the gap is of a different
shown. The dependence on the relative propagation time nature and is notoriously well described within this
=t,—t, stems from the stationary condition. The pair propa-approximatiorf’
gator is then Fourier transformed th, (v) space.

(iiia) For the Born approximations, we use E@): IIl. SINGLE-PARTICLE PROPERTIES
+ — _ +
T7(Q,0)=~1+H"(g,0), (133 We plot in Fig. 2 the electron spectral functiorkat O for
different densities obtained in the SCLA. The temperature
T= =H*< . 1 . . -
(@) (@) (139 T=0.1<E,=0.5. For this particular figure we used thke

(iiib) For the SCLA case, Eq9) is readily solved as range (-6,6) in the numerical solution. Fa1~0.001 the
electron spectral function has a very narrow Lorentzian

THq,0)=—[1+H"(q,0)] %, (149 shape. For larger densities, a satellite structure appears in the
low-energy side of the spectral function. This structure is
T5(q,0)=|T"(q,0)|?H=(q,0). (14  located at the exciton binding energy, below the main peak,
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10° T T T T ) ' ) ' ) ' ) ' ) '

A, (k=0,0)

-15 -1.0 -0.5 0.0 0.5 1.0 1.5

FIG. 2. Electron spectral function &&= 0 as a function of the
total carrier densityT=0.1.

and accounts for the correlation of the electronkgt0
bound with holes in othek, states. Excitons with all values FIG. 3. Self-energy. (k=0,0) for T=0.1 and different densi-
of the center of mass wave vectors are involved in this feakfies given in the figure, in the self-consistent Born approximation
as we will also show in the next section. This correlation(SCBA) and self-consistent ladder approximati@CLA).
structure is of course not present in the Born approximations,
which maintain their single quasiparticle peak structure abecome dominant, and broadening at the quasiparticle peak
any density. As the density rises, the relative weight of thebecomes much larger in the SCLA than in SCBA. This trend
satellite structure in the SCLA spectral function with respectis observed up tm=0.15, indicating the relevance of corre-
to the main quasiparticle peak increases. Moreover, bottated states in the plasma even at this large density. How-
structures become broader. For densities0.1, it becomes ever, the heuristic interpretation of the broadening based on
difficult to distinguish between the excitonic and the mainthe action mass law given above becomes meaningless, as it
peak, and a single, broad, redshifted quasiparticle structurig not possible to distinguish between two chemical species
appears. anymore. At the highest considered density0.4, we

In Fig. 3 we show the imaginary part of the electron self-clearly observe a dip to very small broadening in the self-
energy for different densities. We will also refer in the fol- energy for the SCBA case. This dip is around the Fermi
lowing to this quantity agenergy-dependenbroadening. In  energy and accounts for the blocking of the scattering inside
the SCLA Im) shows two peaks corresponding to dephasthe Fermi sea. In fact, only at this large density does the
ing experienced by an unbound or a bound state propagatétermi gas become degenerdféermi energy much larger
in the system. Both peaks increase with density. At low denthanT). In the SCLA, the broadening never vanishes but is
sity, n=0.01, dephasing at the exciton energy dominatesonly partially reduced at the Fermi level. This is indicative of
while at n=0.05 both peaks become comparable. In thea more complicated structure of the electron-hole plasma and
SCBA, the peak of Im{) at —E, is obviously absent, as of the broadening process, where Pauli blocking looses much
propagation of bound pairs is not allowed in the theory. In-of its effectiveness, and is suggestive of a non-Fermi liquid
stead at low densitypy=0.01, the broadening at the main behavior. We finally noticed that REJ is comparable to
quasiparticle energy«=0) is similar in the SCLA and Im(X) at any density in the SCLA, and thus felt that the
SCBA. Indeed, few excitons are expected in the plasma, anéxcitonic satellite peak in the spectral function does not cor-
scattering mainly originates from free carriers. A heuristicrespond to a zero ab— R 2 (w)]. Indeed, we do not ex-
understanding may be obtained with the action mass lawect the appearance of another simple quasiparticle in the
relating the concentration of different chemical species in glasma. Foro~—E,, and for E,>|Im(X)|, we have
reaction. In our case, electreole — exciton, and the law  A,_~|Im(2)|/|Ep|2. Thus, the correlation satellite in the
statesn2/ny=n* (T), wheren, andny represent the density spectral function follows the peak of Il at w= —E,.
of unbound carriers and excitons, respectively(T) is a In Fig. 4 we show the density dependence of the electron
crossover density that depends only on the temperature, aridr hole chemical potential as a function of the density for
atT=0.1,n*~0.005. Fom<n*, ny<n. Therefore, a small T=0.1, in the three considered approximations. At very low
density of excitons is expected it 0.01~n*. At this den-  density,n<0.01, the chemical potential jg<—0.4, and its
sity the exciton—free-carrier contribution to free-carriervalue is similar in all approximations. In this case, we are
broadening is weaker than the free-carrier—free-carrier cordescribing free electron-hole pairs, as also suggested by a
tribution. At larger density, bound excitons in the plasmalaw of mass action, which gives a crossover density of about
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FIG. 4. Chemical potentigk in the three approximations, &t

=0.1. The short-dashed line shows half the chemical potential of i }2 4

noninteracting bosons, with ground state energy-&, .

FIG. 5. Contour plot ofA¢(k,w) at T=0.04 andn=0.02.
n*=0.005 atT=0.1. In this case the description @f is
rather good even in approximations that neglect the existenagextends into a region df of the order of 1(i.e., ofag Holts
of bound states. shape(dispersion is related to the exciton wave function, as
However, forn>0.01, the chemical potential in the Born we show in the following.
approximations is much larger than for the SCLA. In fact, in  In a low-density, low-temperature limit, we can start to
the SCLA we are also describing the fraction of cold inter-considerG= G, and analytically calculate the retarded pair
acting excitons in the plasma. As the ground state energy gfropagatoH * (k,) from Eq. (12), neglectingGy , which
this part of the plasma is at abottE,, the total energy of is of the order of the density. We obtain
the system is thus reduced with respect to that of a gas of
unbound particles. In order to clarify this point further, we -1
plot on the same graph half of the chemical potential of HO" (k,w)~ —
V2\Jw—K%I8+ 2iy
bosons at a ground state energy-oE,, and mass equal to
the exciton mass. This is the chemical potential of a gas ofvhere y>0 is the usual regularization number. Solving for
electron(and holes completely bound into bosonic excitons. the T matrix with the Bethe-Salpeter equatiét¥a and ex-
The halving comes from the equilibrium conditigty=pu.  panding around its pole, we obtain
+up=2u. The chemical potential of bosons compares rea-
sonably well with the chemical potential calculated in the
SCLA, up to u<—0.25, n<0.1. Above this limit, the
chemical potential from the SCLA grows faster. There are
two reasons for this faster growth: first, the exciton gas isThus, theT matrix at the lowest order for the contact poten-
repulsively interacting, second, the exciton gas eventuallyial has the form of a free propagator, for particles at an
ionizes into free carriers. At densities>0.2, the SCLA and  energy— 1/2+k?/8, having a mass that is twice the electron
SCBA are indeed comparable, and at even larger density, th@ass, i.e., the electron plus hole mass. Expanding the Bethe-
MBA is also reasonable. This shows that the SCLA is aSalpeter equation to higher order, we obtain
powerful tool for the investigation of the intermediate regime

TO*(k,w)=

w+i-K8+2iy

of densities, where deviations from both tm®ninteracting TO* (k) =TO* (k) HD* (K, 0) TO* (k).
bosonic and pure fermionic models are important. Therefore, we may interprét®+ (k,w) as the free-exciton
(boson Green function, antiV)* (k,w) as the lowest-order
IV. MAPPING THE SCLA TO A BOSONIC MODEL self-energy?l In particular,
AT LOW DENSITY AND TEMPERATURE
(1) =2ig(®)

In Fig. 5 we plotA(k, ) for T=0.043 andn=0.02. We H(1,9=2iG(1.9Go(1.2), (16
can observe the parabolic dispersion of the main quasiparti- (1) _ (0)
cle peak, broadened by the scatterifwghite region in the Gk, ) =Golk, @)Xk, @) Go(k, ), 17
plot). Broadening is larger at smalldue to the larger phase 30(1,2)=iT(1,2G4(2,1).

space in one dimension. Far<0, we have the correlation
structure shown fok=0 in Fig. 2, which is also present at As T(©(k,») is peaked close te=—1/2, we may neglect
largerk. We remark that this region of correlated electronsG; (k,) in this region, and use
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(0) 6 -
H = 0
T( )

(1) @ _
H=2 7> =2 ;

FIG. 6. The perturbation expansion to lowest order for the boson 5 L
(exciton self-energy, and the four-particle vert&®. Thin lines
are the bare electrofor hole propagator. The shaded two-particle
Green function is the bare exciton propagator.

) dq dw, _ 1 1 1
E(O)Jr(k,a))’vlf > T(O)<(q,w')G0(k+q,w+w’). 00 1 2 3 4
(2m) q
Integrating aroundn’ = —1/2, we obtain . . . . .
FIG. 7. The exciton-exciton interaction potentialV,
=FO(q,w0).
SO (0)
w+3+Kk/8+iy This function rapidly drops to zero gt>1 as expected, and

wheren is the total density. This is the structure shown inF(O)(O’(‘)O):6' This value is also obtained from standard
Y- boson-boson exchange-interaction expressigsse, e.g.,

Fig. 3. atw=—1/2, which produces_ the satellltc_a co_rrelatlon Ref. 22 when only the electron-hole interaction is used. We
peak in the electron spectral function, shown in Fig. 5. We

. ' >0 : _"“show the full structure oF (9)(q,w,) in Fig. 7.
also notice that this structure haggativedispersion, as is We are now in a position to discuss some of the qualita-
also apparent in Fig. 5.

We can now define an exciton-exciton interaction at Iowtlve changes introduced by simplifying the Coulomb interac-

. . Co tion to an on-site one. In the limit of low density, we may in
denS|ty3 fro_m Eqs(16) and(l?) above, wh|qh are plcto_rlally fact compare the exciton-exciton interaction calculated
shown in Fig. 6. We thus define a four-point interaction ker-

0 1 . . above with that calculated using a realistic Coulomb interac-
nel F(%), and the boson self-energy!(1,2) is written as tion, as a standard boson-boson exchange expression at small
momenta existé® In a realistic wire, a short-range cutoff is

H(l)(1,2)=f d1d2F©)(1,2;1,2)T(2,1). (18 introduced by the finite size of the electron and hole wave
functions in the confinement directions. A typical cutoff is of
We can see from Fig. 6 th&® represents the electrqor ~ the order of the Bohr radius or smaller. Typically, we have to

hole) exchange in the scattering of the two excitons. Thus consider tight confinements in order to avoid participation of
higher confined levels into the exciton wave function. The

F(0(1,2;1'2")=2iG(1,2Go(1",2')Go(1,2)Gy(1',2). Coulomb interaction is then reasonably represented by a
(190  functionV,=A/(r +rg), wherer is a cutoff distance, and

is then chosen such th&t,=—1/2. We used ,=0.1, and

A=0.18. In this case the resulting Bohr radius is 1, indicat-

ing tight confinement of the carriers in the confinement

plane. The exciton-exciton exchange interaction at sl

calculated in the smatj<ag* limit,

If we neglect retardatiofor memory effects, we may define
an instantaneous potential at the exciton energy using
=171,, 1= Ty and calculating the resulting at the exciton
frequency wg=—1/2=Eg. For simplicity, we also use
k,k’~0 for the incoming excitons, and find

Wi =22, V,(k—K')p15(K) p1s(K')

FO(q,00)~2i 2 Gé(q’,%ﬂ)’

. K.k’
q.,0
) g ) X[ ¢1s(k)|*= p1s(K) p1s(k)]~ 1.4, (21)
XGgl —q', 5~
0 2 where ¢,4(k") is the 1s wave function of the exciton. The
© ® positive term in Eq.(21) is the exchange term due to the
XGg|a-q', 5+ o’ Gg(q’—q,—o_w') attractive electron-hole interaction, while the negative term
2 2 is due to the electron-electron and hole-hole repulsive inter-
v actions. In thes-function-like potential the negative term is
= % 2VaAta—(4-q’) ] (20) absent because of locality. In the long-range case instead, the
q° (4+0?)? electron-electron and hole-hole interactions largely cancel
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the electron-hole interaction in the exchange integral, result- I,(7, T’):<Tp£(7-) Po(7)). (23

ing in an exciton-exciton interaction that is four times ) ) )

smaller when compared with the value of 6 obtained forHowever, this correlation function has to be calculated
F(O(q=0,0,). We conclude that local interaction leads to within some approximation, and also using approximate
an overestimation of the boson-boson interaction at a giveRropagators. The resulting self-energy may not be conserv-
density and therefore of broadening. However, this does ndfd- In particular, particle flux conservation at the vertex
imply that broadening effects arqualitatively different. ~ translates in the longitudindtsum rule;” which has to be
Moreover, we also stress that this overestimation does nd€sSPected in any reasonable approximation. _
concern at all the comparison of the SCLA with the other In order to shed light on this important issue, we consider

simpler approximations considered in this work, as all ar¢h€ problem of interaction of photons with the plasma from a
carried out using the same interaction potential. different viewpoint. As we are only interested in the linear

response to the external electromagnetic field, the correct
photon self-energy is also given by the linear response of the
plasma to eclassicalelectromagnetic field, i.e., considering
We now consider interaction of the electron-hole systenthe photon creation and destruction operators in(22).asc
with a transverse electromagnetic field in the dipole approxinumbers. Baym and Kadanoff give a method for constructing
mation: a conserving expression for this response function in Ref. 18.
When an external coherent electromagnetic field is applied to

V. OPTICAL PROPERTIES

_ t, .1 the plasma, coherence develops in the plasma, and pair
HP_% Cq.a(3q,aPqT2q,4Pq). (22) propagators additionally have to be defined along with the
single-particle propagators. They are analogous to anoma-
where lous propagators in the theory of superconductivity. The
electron-hole anomalous propagator reads
ep,, [4mhc
a4 mec V qV (@, Gen(1,2=i(Td(2)c(1)). (24)

is the dipole matrix element, which includes also the overlaplimes are defined on the Keldysh contour as usual. Another
integral of the electromagnetic field with the confined carri-anomalous propagat@. can be similarly defined for con-
ersl|. Hereq represents two-dimensionéD) wavevectors venience, and notation regroupe_d into a matrix notation, as
in the plane orthogonal to the wire axigare wave vectors for  Nambu  propagators in  the problem  of
along the wire, whilegq?=g?+q?, my is the free-electron 'superconductivit)?.4 The Dyson equatiori5) is extended to
mass,c the velocity of light, andp., the momentum matrix |nc[ude both anomalous propagators and the external inter-
element between the conduction and hole baags.is the ~ actionHy:

photon destruction operator, atj}, is the polarization op-

erator, defined aBq=2Xdq_Ck, i.e., local in real space in f dEGgl(l,E)G(EB)

the dipole approximation. As the section of the wires is al-

ways much smaller than the wavelength of light, we have L o o
I)~ 1. Moreoverg,~ Eg,,/(%ic) is almost constant; thus we = 5(1,3)+f d42(1,4)G(4,3)+f d4%.n(1,4)
use arbitrary units from now on, wit=1. Actual values of

absorption and gain are easily calculated by using the appro- X Ghe(4,3)—A(1)Gpe(1,3) (25)

priate value ofC for the given material.
In the process of scattering of light from the system, an
absorbed photon creates a coherent electron-hole pair that
propagates in the crystal, interacts with the background f dgGal(lf)Geh(EB)
plasma, then recombines, and a photon is emitted. When we
introduce photon propagators, the interaction process is rep-

resented by a photon self-energy. We will not solve the pho- =J dZE(lZ)Geh(Z,S)qu d43..(1,4)G(4,3)
ton Dyson equation, nor we will dress the electron and hole
propagation with the photon interaction. In other words, we —A(1)G(3,1). (26)

neglect both polaritonic effects and higher-order nonlinear

interactions. In fact, we are restricting our attention to weak As a general rule for generating a conserving approxima-
external fields, i.e., assuming interaction of the plasma withion, the self-energies have to be obtained from the func-
the photon field to be weak. Otherwise, it could be possibldional derivation of a grand potential with respect to the
for the system to be driven out of equilibrium, because thepropagators. The normal self-energies have been already in-
photon chemical potential is zero and far below that of theiroduced. For the anomalous self-eneiy(1,2), we need
electron-hole plasma. This equilibrium condition is well ful- to generalize the expression of the grand potential including
filled in real systems, and an exception made for the stronterms where the normal propagators are replaced by the
gest laser fields. Within this weak-interaction approximation,anomalous ones. The anomalous propagdqfsare at least

the photon self-energy is exactly given by the pair correlafirst order in the external potenti@d, as spontaneous sym-
tion function metry breaking is ruled out by the Mermin-Wagner theorem.
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For the linear response, we need the anomalous self-energy
2 ch Up to linear terms in the external potential only, thus at
most linear terms in the anomalous propagators. Conse-
quently, we need at most quadratic terms in these propaga-
tors in the grand potential to obtain thg,, from the func-
tional derivative. We conclude that the only term to be
considered is the anomalous Fock term, which is the usual
Fock term with anomalous propagators replacing normal
ones. As the approximation is conserving, we are also guar-
anteed that absorption fulfills tHesum rulé® for any value

of density and temperature. The anomalous self-energy ob-

PHYSICAL REVIEW B 63 245308

n=0.03
n=0.1
-—--n=0.2
——=n=0.35 |

tained from the anomalous Fock term reads

Sen(1,2=—iGen(1,2 + O(A?). (27

Normal G are at least second order in the external potential

A, while both G, and X, are at least first order. The
anomalous Dyson equatid@6) to lowest order becomes

f d2G 4(1,2)Ger(2,9)

=—j f d4Ggn(1,4)G(4,3) — A(1)G(1,3).

(28)
Introducing the response function
~ 6Gen(1,D
n12=—i———— , 29

and taking the first-order variation of E(®8), we obtain the
equation forll(1,2):

ﬁ(1,2)=iG(1,2)G(1,2)—if d3G(1,3)

><G<1§>ﬁ(§,2>H(1;2>—f d3H(1;3)11(3,2),

(30

which is easily solved and gives

ﬁ(1,2)=H(1;2)+f d3d4H(1;3)T(3;4)H(4;2).
(31
It is straightforward to show thafl(1,2) obeys bosonic

Kubo-Martin-Schwinger relations, as both and T do. In
particular, we have

f1*(q,0)=H"(q,0)|T(q,0)|?, (32

=(q,0)=H~(q,0)|T"(q,0)|?.

Absorptiona(w) and photoluminescence Phf atq=0 are
derived as a(w)=-IM[II7(0,w)] and PL@)
=— Im[II=(0,w)], respectively.

We remark that terms of order higher than the anomalou

(33

Absorption (arb. units)

FIG. 8. Absorption spectra in the Markof-Born approximation
(MBA), self-consistent Born approximatio(SCBA), and self-
consistent ladder approximatid@CLA) for different densities in-
dicated in the figure.

as in the case of a strong laser field. Anomalous Born terms
calculated in the Markov approximation have been consid-

ered in the semiconductor Bloch equations by Lindberg and
Koch in Ref. 25, and called polarization-polarization scatter-

ing terms. Here we do not further pursue such extensions,
which are clearly beyond the scope of the present paper. We
only note that our approach is easily extended to such con-
ditions, while keeping full control of the conservation laws.

A. Optical spectra and stability of the excitonic emission

We show in Fig. 8, the absorption spectra in the normal
direction (@=0) at T=0.2, for different densities, in the
MBA, SCBA, and SCLA. In the absorption spectrum, we
note the characteristic excitonic peak and the continuum ab-
sorption at low density. The exciton linewidth is extremely
narrow in the SCBA, and much broader in the MBA. The
SCLA linewidth is intermediate. In the SCBA there is a very
small broadening at the exciton energy, as no excitons are
gepresented in the theory, while in the MBA, the free-carrier

Fock term have to be considered in the anomalous selforoadening atw=0 is assumed. This is somewhat larger

energy expansion whenfiite external field is present, such

than the broadening in the SCLA at=0.2. For large den-
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10 O—©OPL peak, SCBA
-0.1 + @—@ PL peak, SCLA
A—ABGR, SCBA
4 A—ABGR, SCLA
10 -0.2 + A
-0.3 - -
10° s
-04 -
@ 1 -05 4
g 10
g -0.6 1
G 0
- 10 :
o -0.7
= 0.0 0.1 0.2 0.3 0.4
g 10" n
< FIG. 10. The band-gap renormalizatigBGR) and emission
10°% peak energy in the SCBA and SCLA as indicated in the figure.

10’ sity, the two features at different energy merge into a unique
one, due to increased broadening. A single peak is also ob-
served in experiments, where finite noise in the data and
large inhomogeneous broadening mask any minor feafure.
For this reason, it is in practice very delicate to establish the
position of the band gafbottom of the free-carrier bands
directly from emission dat® Third, we note that the low-
energy shoulder of the PL emission in the MBA is Lorentz-
ian because of the Markov approximation, and the broaden-
ing is largely overestimated also at low energies. The

linewidth in the SCBA is instead underestimated at low den-
® sity, as for absorption.

An interesting—and directly observed—physical quantity
is the energy of the PL peak. As noted above, emission is
excitonic due to the correlation of the coherent electron-hole
pair emitted. In Fig. 10 we plot the position of this peak in
sitiesn>0.2, the excitonic peak is bleached in all approxi-the PL as a function of the carrier density, together with the
mations, and a region of negative absorption, i.e., opticaband-gap renormalizatioiBGR) defined as twice the energy
gain, appears. The absorption changes sigmatu.+w,  Of the main peak of the spectral function. Interestingly, ex-
=2u, coinciding with the change of sign of the Bose factor citon bleaching in absorption appears at a density that is
and resulting in a well defined—i.e., positive— comparable to the density where the band-gap renormaliza-
photoluminescence through the Kubo-Martin-Schwinger retion crosses the emission energy, ire- 0.15. There are two
lation. interesting features to be observed in Fig. 10: first, the band-

We plot the emission or PL spectra in Fig. 9. First wegap renormalization is negligible in the SCLA for<0.1;
notice the different scale for the MBA, where a smaller peaksecond, emission energy is constant in this range of densities
emission is calculated even for the largest considered densind blueshifting less than that in the SCBA for larger den-
ties. For large densitpy>0.2, we observe a saturation of the sity. Comparison with the MBA is vitiated by excessive
intensity. This can be understood in terms of the fermionicdbroadening in this approximation. The simple Hartree-Fock
nature of the carriers, when the electron-hole plasma beapproximation instead gives results that are similar to those
comes degenerate. Second, we notice excitonlike emissiasbtained in the SCBA for the band-gap renormalization and
even when excitonic absorption is bleached in all models. Ithe PL emission peak, apart from more pronounced
fact, vertex corrections place the free-carrier emission at thblueshifts!® Stability of the emission peak is usually inter-
exciton energy, even when no bound excitons are describgoreted as a partial compensation of the self-energy and ver-
in the gas. tex corrections. Since in the Hartree-Fock approximation the

Eventually, only at very small density do the free-carrierbroadening effects are missing, we deduce that these effects
and excitonic emission become distinguishable, as we noticare indeed relevant for the cancellation found in the SCBA
an exponential emission shoulder at high enasgy0 in the  and in the SCLA at high density and explain the reduction
SCLA and SCBA, reminding us of a fermionic emission tail of the blueshift with respect to simple Hartree-Fock
at small degeneradiBoltzmann distribution At larger den-  calculations.

FIG. 9. Photoluminescence spectra in the MBA, SCBA, and
SCLA for different densities indicated in the figure.
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n=0.03
2 v T n=0.05
----n=0.1

B. Excitonic gain

Optical gain is usually considered in the regime of degen-
erate electron-hole plasma. In this regime, spectral functions
can be assumed to be simple Lorentzians, and the absorption
can be written as 1

-

dk 1—2f(k?/4— )

27 (0—k22)%+ 42 39

a(w)o

where vy is the spectral broadening. Then, negative absorp-
tion or gain occurs only when the Pauli blocking facfdr
—2f(k?/4— )] becomes negative, which necessarily re-
quires a chemical potential above the band gap, or in other
words, inversion. However, both vertex corrections and de-
viations of the spectral function from simple Lorentzian
should be taken into account at lower density and tempera-
ture. In this case, the absorption can be written as

Absorption (arb. units)

N ) dk dw’ )
a(w)oc|T (q:O,w)| Ez[l—f((g—w —u) \

B -
-

—flo' - ]Alo—0")A(w"), (39

The term in square bracketsTf(w— o' — u) —f(w'—u) is
the generalization of the Pauli blocking factor for a system 1F
where the quasiparticles are described by arbitrary spectral

functions, and clearly one of the Fermi functions refers to

electron occupation, the other to hole occupation. This ex- 0
pression of the absorption is valid only in the case of the o)
short-range potential, and for the long-range c&se de-
pends also on the relative momentum of the pa#md be- ,
comes part of the integral kernel. Using the definition of -1 0 1
Fermi and Bose functions, the absorption can be recast in the ®

form

e ..

FIG. 11. Absorption spectra at=0.1 for the MBA, SCBA, and
|T+(q:0,w)|2 dk dw’ SCLA, and low densities indicated in the figure.

o—2p) ) 27 2a (@O )
X (0 — ) Al w— o)Al o), (36) ties n<Q.1, gain coexists with the exci.tonic resonance in
absorption. Only for the MBA ah=0.1 is the absorption

where g(w—2u) is the Bose function. Therefore, gain peak completely shifted to higher energies, and we can no
clearly occurs below twice the chemical potential(i.e., longer speak of excitonic absorption. As usual, the broaden-
met mp), even when the chemical potential ielow the  ing in the exciton spectral region is too small and unphysical
band gap. However, for it to be sizable, the spectral functionin the SCBA, resulting in very sharp and unphysical features.
must have non-negligible weight in this region of the spec-Gain in the SCLA is instead over a larger spectral region,
trum. In the MBA and SCBA cases, this weight is clearly and its value is larger than that predicted in the MBA at large
given by broadening effects alone, while in the SCLA it is densityn>0.3 shown in Fig. 8. Excitonic gain clearly origi-
also due to the presence of the excitonic correlation peak inates from inclusion of excitons in the plasma for the SCLA.
the spectral function as shown in Fig. 2. A sizable enhanceln fact, reasonable broadening is calculated in the exciton
ment of the gain is found in correspondence to the excitonispectral region, mainly originating from exciton-exciton
resonance because of the vertex correction, given by thgcattering as shown in Sec. IV. We conclude that the SCLA
|T*|? factor in Eq.(36). When 2u<—Eg, both gain and indicates that sizable excitonic gain can be obtained at mod-
excitonic absorption coexist. In this case, we tallerfitonic  erate density and temperature, in a reasonably large spectral
gain. The system is inversionless in the sense of 84)  region of the order of a fraction d&g.
above. However, only in the SCLA do we describe gain due Excitonic gain has been widely studied in 1I-VI quantum
to the presence and scattering of excitons in the lowwells?’ However, these are two-dimensional systems, and
temperature, low-density plasma, while in the other approxi€excitonic correlations are expected to be less pronounced in
mations, gain is purely related to dynamical effects in thethis systems, so at this stage it is not reasonable to make even
interaction vertex with the photon. a qualitative comparison. For quantum wires, sizable gain at

In Fig. 11 we plot the absorption spectra close to thel0 K (T~0.05) for an estimated carrier density well below

a(w)=
exciton resonance dt=0.1<Eg. For the considered densi-
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the Mott transition has been recently claimed by Siriguappropriate density, which is similar to what we have found
et al?® This is a first indication that excitonic gain might be for the SCBA. This unphysical result provides a strong ex-
relevant in these systems. However, a qualitative and quamperimental test to unvalidate the approach in this particular
titative understanding of this experiment is clearly prema-regime. Also the recent theory by Hannewaldal,*° while

ture. From the experimental side, inhomogeneous broadeimnterestingly addressing the nonequilibrium theory of many-
ing due to interface disorder has to be decreased well belowody effects in the optical response of the electron-hole sys-
the binding energy, while a more realistic Coulomb interac-tem, remains within a nondynamical scheme insufficient to

tion has to be addressed by the theory. include the existence and formation of bound pairs in the
gas.
VI. CONCLUSIONS A last issue concerns the intrinsic limitations of the

] o SCLA. A clear determination of the limits of validity of the

We have presented a model that includes excitonic corresc A as a function of the strength of the coupling and di-
lation in the description of a highly excited semiconductor|yteness of the system is a nontrivial task. To our knowledge
quantum wire. The model has been simplified using a shorte most complete discussion has been provided by Bdzatu.
range potential and consideration of a polarized gas. Corrgp, 1D, a direct test of the SCLAin the case of a contact
lation has been calculated self-consistently at the ladder |eV‘?Jotentia} is possible due to the availability of the exact so-
(SCLA). We have shown that bound states appear as a loWgtion by the Bethe ansatz. Buzatu shows that, in the calcu-
energy correlation peak in the spectral function of electronsation of the ground state energy, the results obtained using
and holes. We compared the results obtained with the SCLAne fermionic ladder approximation can be improved using a
to the ones obtained within lower-order approximations thakjmplified self-consistent treatment, and become close to the
do not include excitonic correlatiofBorn approximations  exact results in a large range of parameters. In the dilute limit
Even though the model is purely fermionic, we have showme aiso shows that self-consistent and non-self-consistent re-
how it can be effectively mapped at low temperatures andits merge and coincide with the exact results. On the other
density to a gas of interacting excitons. We have thus denveﬁand, it has been recently demonstrated by Pieri and
an analytical expression for the effective exciton-exciton in-sirinatf2 using a diagrammatic analysis for 3D systems that,
teraction. The linear optical properties of the system haven order to correctly describe the weak residual interaction
been calculated including vertex corrections at the Foclpetween excitons in the very dilute limit, ladder diagrams for
level. This ensures the conservation of sum rules in the ope composite bosons should be included. Quantitatively, this
tical response. The excitonic absorption at low density engmounts to an overestimation of the vanishingly small scat-
sues both in ladder and Born approaches, but the broadegsring length between excitons in the SCLA. However, we
ings at the exciton energy are either too small or too large ifemark that in the present work we have been considering a
the Born approximations, depending on whether frequencyange of densities and temperatures that places us well above
dependence of the broadening is included or not. Excitonignis very dilute limit. This is exemplified in the relevance of
emission well beyond exciton bleaching is also predicted ifree carriers that is expected in this intermediate regime.
all models, but the peak shifts are more pronounced in thgjearly, a small parameter for selecting the most relevant
Born approximations, showing that a bet_ter cancellation bediagrams in the self-energy expansion is lacking here, and
tween the self-energy and vertex correction results from thgn|y comparisons to exact results can establish the real qual-
introduction of excitons. We have also shown that sizable,ty of the different approximations.
excitonic gain can be predicted at low temperature and den-" |5 conclusion, we have clearly shown that in the definite
sity, when the_electron plus hole che_mical potential i_s jgsrand important physical region af<E, inclusion of exci-
below the exciton energy. However, its correct descriptiongnic correlation in the electron-hole plasma is relevant and
must include exciton broadening from exciton-exciton SCalnecessary, and that the simplified model presented in this
tering, and unphysical values are thus obtained in the Bor aper is a well-understood starting point for this purpose.

approximations. These qualitative conclusions clearly holdrpys its further developments to address realistic systems in
even for more refined descriptions of the electron-holeyigher dimensions are well motivated.

plasma than the Born approximations considered here when
these descriptions fail to account for excitons in the plasma.
This is also the case for the model recently presented by Das
Sarma and Wang in Ref. 29, which includes screening at the We thank A. Quattropani, P. Schwendimann, V. Savona,
plasmon-pole approximation level, but no excitons in theC. Ciuti, and L. J. Sham for stimulating discussions. One of
electron-hole gas. The excitonic gain calculated using thishe authors(C.P) acknowledges support by the Swiss Na-
approximation shows a divergent behavior close-tg, at  tional Foundation for the Scientific Research.
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