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Role of bound pairs in the optical properties of highly excited semiconductors:
A self-consistent ladder approximation approach
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~Received 12 September 2000; revised manuscript received 1 February 2001; published 4 June 2001!

The presence of bound pairs~excitons! in a low-temperature electron-hole plasma is accounted for by
including correlation between fermions at the ladder level. Using a simplified one-dimensional model with
on-site Coulomb interaction, we calculate the one-particle self-energies, chemical potential, and optical re-
sponse. The results are compared to those obtained in the Born approximation, which does not account for
bound pairs. In the self-consistent ladder approximation the self-energy and spectral function show a charac-
teristic correlation peak at the exciton energy for low temperature and density. In this regime the Born
approximation overestimates the chemical potential. Provided the appropriate vertex correction in the interac-
tion with the photon is included, both ladder and Born approximations reproduce the excitonic and free pair
optical absorption at low density, and the disappearance of the exciton absorption peak at larger density.
However, line shapes and energy shifts of the absorption and photoluminescence peaks with density are
drastically different. In particular, the photoluminescence emission peak is much more stable in the ladder
approximation. Moreover, even though at low temperature and density a sizable optical gain is produced in
both approximations just below the excitonic peak, this gain shows unphysical features in the Born approxi-
mation.

DOI: 10.1103/PhysRevB.63.245308 PACS number~s!: 78.55.2m, 71.35.Ee
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I. INTRODUCTION

The binding of a gas of oppositely charged fermions le
ing to a gas of bosons has a fundamental interest in c
densed matter physics, in problems ranging from the stat
hydrogen to the nature of the electron-hole plasma in Si
Ge. This pairing takes its origin from the Coulomb corre
tion between the charged fermions, and strongly affects
statistical and thermodynamic properties of these system
semiconductor physics, the role of the Coulomb correlat
and pairing in the description of the electron-hole plasma
Si and Ge has been extensively investigated. Refined
scriptions of both the ground state and the thermodyna
properties of this system have been developed over the
30 years. In particular, an excitonic insulator ground st
was first proposed and then shown to be less stable th
simpler electron-hole liquid in Si and Ge, due to ban
structure effects.1 Thermodynamics of the electron-hole g
in simpler crystals was also addressed by Haug2 and Zhu
et al.3 aiming at deriving a complete phase diagram fro
variational approaches.

In this paper we will deal with direct gap semiconducto
and we will discuss the thermodynamics of the photoexc
electron and holes at quasithermal equilibrium. Our m
concern is to determine how the inclusion of pairing effe
in the theoretical description, as done for the systems m
tioned above, can affect predictions on the shape of opt
spectra. In the optical properties of semiconductors, the
fect of the Coulomb electron-hole correlation comes in
play to explain the characteristic excitonic absorption a
emission. These excitonic features can be described by
cluding vertex corrections in the interaction of the electro
0163-1829/2001/63~24!/245308~13!/$20.00 63 2453
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hole pair with the photon.4 In particular, excitonic absorption
is found in an empty crystal, when a background electr
hole plasma is absent. However, when carriers are ele
cally or optically injected, they reach quasithermal equil
rium through scattering, and a background electron-h
plasma is eventually formed. In this typical situation the a
sorption is modified, and spontaneous emission~photolumi-
nescence! also takes place. Absorption and emission g
valuable information about the state of the plasma, bu
theory describing both the thermodynamics and optical pr
erties of the plasma is required in order to extract this inf
mation. Semiconductor Bloch equations and their evolutio
are certainly among the most known and used theories
this purpose.5 In these theories, the electron-hole plasma h
been originally treated at the Hartree-Fock level,6 and even-
tually screening of the Coulomb interaction was also
cluded at various levels of approximation.5 However, none
of these refinements accounts for the existence of bound
citons in the plasma. This is certainly a weak point at lo
temperatures, when simple thermodynamic arguments s
that condensation of the electron-hole gas into a gas
bound electron-hole pairs is favorable in a wide range
densities.

In the following sections we will show the relevan
changes in the optical properties of the semiconductor w
the existence of excitons at low temperatures is taken
account. Our purpose is qualitative, but we can still g
solid understanding of the underlying physics. We thus c
sider an accurately solvable model, where the system is o
dimensional, the Coulomb interaction is on-site, and elect
and holes are spin-polarized. Excitonic correlation is a
expected to be stronger in one dimension than higher dim
©2001 The American Physical Society08-1
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sions. Moreover, for the single-pair problem, exactly a sin
bound state is obtained with the on-site interaction. In
description of the electron-hole plasma, we either inclu
carrier scattering at the Born level, which does not desc
bound pairs in the plasma, or we include enough correla
so as to describe the pairing into bound states. For this
pose, ladder diagrams in the electron-hole scatte
kernel7–9 are included, and the electron and hole se
energies calculated with it.10 The resulting Dyson equation
for the Green functions are solved self-consistently. The
proximation is therefore called the self-consistent ladder
proximation ~SCLA!. Screening is expected to be weak
one dimension,11 due to reduced screening phase space,
we neglect it altogether. We remark that in the SCLA w
calculate the single-particle propagators and self-ener
only; thus in this sense, the theory remains purely fermio
We do not map the model onto bound and unbound state
any time. However, it is possible to show analytically that
low temperatures and densities, a bosonic gas of exciton
effectively described, and that self-consistency effectiv
introduces scattering between these excitons. When
analogy is extended to larger densities and temperatu
where bound and free carriers are expected to coexist
understand that self-consistency also accounts for mult
exciton–free-carrier and free-carrier-free-carrier scatter
Thus, a large amount of correlation, well beyond that
scribed in simpler Born approximations, is included in t
SCLA. We remark that we also assume quasithermal e
librium in the electron-hole gas, which is well justified as t
characteristic radiative recombination~several hundreds o
picoseconds! is much slower than the typical scattering tim
in the density range considered. We finally show how
correctly calculate photon absorption and emission@photolu-
minescence~PL!# in a conserving sense, i.e., respecti
f-sum rules. We only neglect polaritonic effects, which a
very weak in one dimension.12

Within the considered models, we highlight the followin
trends in optical and thermodynamic properties. First, B
approximations overestimate the chemical potential at
temperatures when a consistent fraction of pairs is bo
into excitons. Second, energetic stability of the excito
emission peak as a function of density is better describe
the SCLA, even well beyond disappearance of excitonic
sorption peak at large excitation densities. Third, the la
excitonicgain at densities just below those where exciton
absorption disappears is clearly incorrectly described in s
pler Born approximations. As these trends have a c
physical origin, they are expected to hold qualitatively ev
when more realistic interaction potentials~eventually includ-
ing screening! are considered. These results signal the nec
sity of an adequate description of the excited semicondu
in the low-temperature region. For example, the current
scription of the electron-hole plasma in the semiconduc
Bloch equations is clearly insufficient to address excito
~inversionless! lasing.

The paper is organized as follows. In Sec. II we introdu
and explain how to implement the self-consistent ladder
proximation, the Markov-Born approximation, and the se
consistent Born approximation. Single-particle properties
24530
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analyzed in Sec. III, where we show the appearance of e
tonic correlation structures in the electron and hole spec
functions. Chemical potentials and self-energies are t
compared. In Sec. IV we analytically show how the SCLA
low temperature and density describes an interacting exc
gas. Optical properties of a semiconductor quantum wire
calculated in Sec. V for the three approximations. Abso
tion and emission as functions of density are also prese
and discussed in this section. Conclusions are drawn is
VI.

II. BORN AND SELF-CONSISTENT LADDER
APPROXIMATIONS

In this section we introduce the SCLA, the simpl
Markov-Born approximation~MBA !, and self-consisten
Born approximation~SCBA!. We assume thermal equilib
rium in the electron-hole plasma, but, in order to avoid a
lytic continuation problems, we do not resort to the Matsu
ara Green’s function technique,13 which becomes
numerically delicate when the spectral function shows
large number of poles. Instead, we work directly in the r
time/frequency space. This has the additional advantage
the approach can be readily extended to nonequilibri
conditions.14 We thus consider four single-particle Green
functions:15 the retarded, advanced, lesser, and grea
Green’s functions defined as

G1~1,2!52 iu~ t12t2!^T@c~1!c†~2!#1&, ~1a!

G2~1,2!5 iu~ t22t1!^T@c~1!c†~2!#1&, ~1b!

G,~1,2!5 i ^c†~2!c~1!&, ~1c!

G.~1,2!52 i ^c~1!c†~2!&. ~1d!

Here T is the time ordering operator, and 15(x1 ,t1 ,s1),
wherex1 is the position,t1 the time, ands1 is the spin index.
c(1) is the electron annihilation operator and@ #1 is the
anticommutator. Similar expressions for the hole Gree
functions hold, withd(1) and d†(1) the hole annihilation
and creation, respectively. Only two of the four functio
above are independent, and in particular, we will consi
the retarded and lesser~or correlation! functions. Formally, a
single Green’s functionG(x1 ,t1 ,x2 ,t2) may be introduced
for compactness of notation, witht1 and t2 defined on the
Keldysh contour. Following simple rules, any equation w
times defined on the Keldysh contour can be written in a
of equations defined on the ordinary time axis for the fo
Green functions above~see, for instance, Ref. 15!.

The statistical averages are done in the macrocanon
ensemble: ^•••&5Tr$r•••%, with r5e2b(H2meNe2mhNh)/
Tr$e2b(H2meNe2mhNh)%. Here b51/T and H is the total
Hamiltonian of the interacting electron-hole system. In pr
ciple, electrons and holes have independent chemical po
tials and densities. However, we are interested in the desc
tion of a laser-excited semiconductor where the density
electrons and holes is the same and the charge is balan
We will also assume that the temperature of the two com
nents of the interacting gas is the same. In fact, after exc
8-2
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tion, thermalization of carriers is mainly driven by exchan
of energy with the phonon thermal bath, which, at equil
rium, leads toTe5Th5T. Moreover, for simplicity we con-
sider the same electron and hole masses, givingme5mh
5m and the same Green’s functions and self-energies.
tension of the theory to different masses is straightforwa
Finally, the Green’s functions above depend only on the ti
differencet22t1 as the system is stationary and on the re
tive distancex22x1 as the system is homogeneous.

In this thermal regime, the retarded and lesser Green fu
tions defined above are also related by the Kubo-Mar
Schwinger relations16

G,~k,v!522 Im@G1~k,v!# f ~v2m!, ~2a!

G.~k,v!52 Im@G1~k,v!#@12 f ~v2m!#, ~2b!

where we considered the Fourier transforms with respec
the relative timet12t2 and with respect to the relative pos
tion x12x2. The function f (v)5@exp(v/T)11#21 is the
Fermi function. In the stationary caseG1(k,v,s)
5G2* (k,v,s) contain the information on the spectral pro
erties of the quasiparticles, given by the one particle spec
function A(k,v,s)522 Im@G1(k,v,s)#. The correlation
functions instead contain information on the quasiparticle
cupation number G,(k,t15t25t,s)5N(k,t,s) and
G.(k,t15t25t,s)512N(k,t,s) where N(k,ts) are the
occupation numbers.

The on-site Coulomb interaction reads

V~x!56ad~x!, ~3!

and the potential is repulsive for electron-electron and ho
hole interactions and attractive for the electron-hole inter
tion. An attractived-function-like potential between the elec
trons and the holes gives one bound state only for the
problem, anda can be chosen such to reproduce the exci
binding energy measured in the limit of low density. T
constanta has the dimensions of (energy)3(length), the ex-
citon Bohr radius is given byaB5\2/(ma) and the exciton
binding energy isEb5ma2/2\2, where m is the reduced
mass of the electron-hole system. We will use the units\
5a5m51 throughout the paper. In these unitsaB51 and
Eb50.5. We remind the reader that typical values for se
conductor quantum wires areaB51026 cm and Eb510
meV.17 With the above effective potential of Eq.~3! the in-
teraction Hamiltonian is

HC5
1

2 (
1

c†~1!c†~18!c~18!c~1!

1
1

2 (
1

d†~1!d†~18!d~18!d~1!

2(
1

c†~1!d†~18!c~1!d~18!. ~4!

Here 185(x1 ,t1 ,s8Þs) for the electron-electron and hole
hole interactions, while 185(x1 ,t1 ,s8) for the electron-hole
interaction, as due to the fermionic nature of the carrie
24530
-

x-
.
e
-

c-
-

to

al

-

-
-

ir
n

i-

,

only interaction with opposite spin is allowed in the intr
band term for a contact potential. In the following, we a
sume a spin-polarized system of electrons and holes, so
we keep only the last term describing the electron-hole in
action in the Hamiltonian~4!. Generalization to both spins i
straightforward.

The Dyson equation for the single particleG(1,2) propa-
gators read

G~1,2!5G0~1,2!1E d3̄d4̄G0~1,3̄!S~ 3̄,4̄!G~ 4̄,2!, ~5!

where time integrations are over the Keldysh contour.G0 is
the free propagator. The functional dependence of the s
energyS on the single-particle Green’s functions determin
the degree of approximation. In particular, it can be e
pressed through an electron-hole scattering ker
T(1,2;18,28):

S~1,2!5 i E d1̄8d2̄8T~1,1̄8;2,2̄8!G~ 2̄8,1̄8!. ~6!

In the Born approximation,

T~1,18;2,28!5V~1,18!1V~1,18!iG~1,2!G~18,28!V~2,28!,
~7!

where V(1,18)5V(x12x18)d(t1 ,t18), and d(t,t8) is the
Dirac d function extended on the Keldysh contour. The se
energyS(k,v) can be calculated at the single-particle po
v5k2/4. In this case we are neglecting memory terms in
scattering and thus using a Markov approximation; this c
responds to the MBA and is a non-self-consistent appro
mation. In the SCBA, the same scattering kernel of Eq.~7! is
used, but the full energy-dependent structure of the resul
self-energy given in Eq.~6! is used in the Dyson equations
Eq. ~5!. The problem is then solved self-consistently, as
plained later. In this case, memory effects, beyond the M
kov approximation, are also included. In the SCLA, the k
nel T(1,18;2,28) is the solution of the Bethe-Salpete
equations in the ladder approximation, which for a gene
potential reads

T~1,18;2,28!5V~1,18!1E d3̄d3̄8V~1,18!iG~1,3̄!

3G~18,3̄8!T~ 3̄,3̄8;2,28!. ~8!

For a d-like potential, V(1,18)52d(1,18) and T depends
only on 221. The reduced equation reads:

T~1;2!5212 i E d3̄G~1,3̄!G~1,3̄!T~ 3̄;2!. ~9!

Equations~5!, ~6!, and ~8! are schematically represented
Fig. 1 for both the SCBA and the SCLA.

In the self-consistent approximation we solve Eqs.~5! and
~6! self-consistently with the scattering kernels given by E
~7! or ~8! in the Born or SCLA case, respectively. We e
plain in detail how numerical self-consistency for a fixe
temperature and chemical potentialm has been implemented
8-3
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C. PIERMAROCCHI AND F. TASSONE PHYSICAL REVIEW B63 245308
~i! We start withG1(k,v) of the form G1
05(v2k2/4

1 ig)21, andG,
0(k,v)522 Im@G1

0(k,v)# f (v2m).
~ii ! In order to take advantage of the local character of

electron-hole interaction, we use the Fourier transform of
Green’s functions of Eq.~1!, G(1,2), which actually have
only a spatial dependence onr 5x12x2 as the system is
homogeneous. We calculate the free pair propagator defi
as

H~1;2!5 iG~1,2!G~1,2!. ~10!

The retarded and correlation parts are calculated pas
from the Keldysh contours to the usual time axis:

H,~r ,t !5 iG,~r ,t !G,~r ,t !, ~11!

H1~r ,t !5 iG1~r ,t !G1~r ,t !12iG1~r ,t !G,~r ,t !.
~12!

The dependence on the relative distance has been expl
shown. The dependence on the relative propagation timt
5t22t1 stems from the stationary condition. The pair prop
gator is then Fourier transformed to (k,v) space.

~iii a! For the Born approximations, we use Eq.~7!:

T1~q,v!5211H1~q,v!, ~13a!

T,~q,v!5H,~q,v!. ~13b!

~iii b ! For the SCLA case, Eq.~9! is readily solved as

T1~q,v!52@11H1~q,v!#21, ~14a!

T,~q,v!5uT1~q,v!u2H,~q,v!. ~14b!

FIG. 1. ~a! The Dyson equation: thick lines are the dress
one-particle Green function and thin lines the bare ones.~b! The
self-energy with the scattering kernelT(1;2), for theon-site Cou-
lomb potential.~c! The scattering kernelT(1;2) for theBorn ap-
proximations.~d! The scattering kernelT(1;2) in the ladder ap-
proximation, given by the Bethe-Salpeter equation.
24530
e
e

ed

ng

itly

-

~iv! The electron self-energy is then calculated in re
space as in Eq.~6!. The retarded and correlation function
defined on the usual time axis, read

S,~r ,t !5 iT,~r ,t !G.~2r ,2t !52 iT,~r ,t !@G.~r ,t !#* ,

S1~r ,t !51 iT,~r ,t !G2~2r ,2t !1 iT1~r ,t !G,~2r ,2t !

51 iT,~r ,t !@G1~r ,t !#* 2 iT1~r ,t !@G,~r ,t !#* .

~v! The new electron Green’s functions are then cal
lated as

G1~k,v!5@v2k2/42S1~k,v!1 ig#21,
~15!

G,~k,v!522 Im@G1~k,v!# f ~v2m!.

The procedure is repeated through step~ii ! until self-
consistency is reached. Fast Fourier transforms are
formed on a finite grid of 163843128 points for the fre-
quency and wave-vector domains, respectively. T
frequency and wave-vector domain (k,v) is (220,20)3
(23,3). Due to the finitek range, we obtainEb50.4. The
externalg.0 in step~v! is adiabatically switched off during
self-consistency. In this way the imaginary part of the finaG
is provided by the interaction only. For the non-se
consistent Born approximation~or Markov-Born!, we use the
frequency-independent, on-poleSk

1(v5k2/4) in the Green
function, and stop the procedure at step~v!.

All of the considered approximations are conserving
the sense of Baym and Kadanoff:18 the total density, total
momentum, total energy, and total angular momentum of
system are conserved. This is a fundamental property of
approximation for the self-energy; otherwise unphysical
sults may result. We will come back to this point again in t
calculation of the optical response of the system in the v
ous approximations.

The polarized electron-hole gas with a contact poten
interaction that we consider here can be mapped ont
single-band Hubbard model with spin 1/2 and attractive
teraction, in the limit of infinite width of the band, and infi
nite on-site interaction so as to produce finiteEb ~continuum
limit !. For the Hubbard model with a repulsive interactio
the self-consistent ladder approximation is known as
fluctuation exchange approximation~FLEX!.19 Even though
in this repulsive case the opening of a Hubbard gap is
reproduced, in the attractive case the gap is of a differ
nature and is notoriously well described within th
approximation.20

III. SINGLE-PARTICLE PROPERTIES

We plot in Fig. 2 the electron spectral function atk50 for
different densities obtained in the SCLA. The temperat
T50.1!Eb50.5. For this particular figure we used thek
range (26,6) in the numerical solution. Forn;0.001 the
electron spectral function has a very narrow Lorentz
shape. For larger densities, a satellite structure appears i
low-energy side of the spectral function. This structure
located at the exciton binding energy, below the main pe
8-4
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and accounts for the correlation of the electron atke50
bound with holes in otherkh states. Excitons with all value
of the center of mass wave vectors are involved in this pe8

as we will also show in the next section. This correlati
structure is of course not present in the Born approximatio
which maintain their single quasiparticle peak structure
any density. As the density rises, the relative weight of
satellite structure in the SCLA spectral function with resp
to the main quasiparticle peak increases. Moreover, b
structures become broader. For densitiesn.0.1, it becomes
difficult to distinguish between the excitonic and the ma
peak, and a single, broad, redshifted quasiparticle struc
appears.

In Fig. 3 we show the imaginary part of the electron se
energy for different densities. We will also refer in the fo
lowing to this quantity as~energy-dependent! broadening. In
the SCLA Im(S) shows two peaks corresponding to deph
ing experienced by an unbound or a bound state propag
in the system. Both peaks increase with density. At low d
sity, n50.01, dephasing at the exciton energy domina
while at n50.05 both peaks become comparable. In
SCBA, the peak of Im(S) at 2Eb is obviously absent, as
propagation of bound pairs is not allowed in the theory.
stead at low densityn50.01, the broadening at the ma
quasiparticle energy (v50) is similar in the SCLA and
SCBA. Indeed, few excitons are expected in the plasma,
scattering mainly originates from free carriers. A heuris
understanding may be obtained with the action mass
relating the concentration of different chemical species i
reaction. In our case, electron1hole↔ exciton, and the law
statesnc

2/nX5n* (T), wherenc andnX represent the densit
of unbound carriers and excitons, respectively.n* (T) is a
crossover density that depends only on the temperature,
at T50.1, n* ;0.005. Forn,n* , nX!n. Therefore, a smal
density of excitons is expected atn50.01;n* . At this den-
sity the exciton–free-carrier contribution to free-carr
broadening is weaker than the free-carrier–free-carrier c
tribution. At larger density, bound excitons in the plasm

FIG. 2. Electron spectral function atk50 as a function of the
total carrier density.T50.1.
24530
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become dominant, and broadening at the quasiparticle p
becomes much larger in the SCLA than in SCBA. This tre
is observed up ton50.15, indicating the relevance of corre
lated states in the plasma even at this large density. H
ever, the heuristic interpretation of the broadening based
the action mass law given above becomes meaningless,
is not possible to distinguish between two chemical spec
anymore. At the highest considered densityn50.4, we
clearly observe a dip to very small broadening in the se
energy for the SCBA case. This dip is around the Fer
energy and accounts for the blocking of the scattering ins
the Fermi sea. In fact, only at this large density does
Fermi gas become degenerate~Fermi energy much large
thanT). In the SCLA, the broadening never vanishes bu
only partially reduced at the Fermi level. This is indicative
a more complicated structure of the electron-hole plasma
of the broadening process, where Pauli blocking looses m
of its effectiveness, and is suggestive of a non-Fermi liq
behavior. We finally noticed that Re(S) is comparable to
Im(S) at any density in the SCLA, and thus felt that th
excitonic satellite peak in the spectral function does not c
respond to a zero ofv2 Re@S(v)#. Indeed, we do not ex-
pect the appearance of another simple quasiparticle in
plasma. Forv;2Eb , and for Eb@u Im(S)u, we have
Ak50;uIm(S)u/uEbu2. Thus, the correlation satellite in th
spectral function follows the peak of Im(S) at v52Eb .

In Fig. 4 we show the density dependence of the elect
~or hole! chemical potential as a function of the density f
T50.1, in the three considered approximations. At very lo
density,n!0.01, the chemical potential ism!20.4, and its
value is similar in all approximations. In this case, we a
describing free electron-hole pairs, as also suggested b
law of mass action, which gives a crossover density of ab

FIG. 3. Self-energyS(k50,v) for T50.1 and different densi-
ties given in the figure, in the self-consistent Born approximat
~SCBA! and self-consistent ladder approximation~SCLA!.
8-5
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C. PIERMAROCCHI AND F. TASSONE PHYSICAL REVIEW B63 245308
n* 50.005 atT50.1. In this case the description ofm is
rather good even in approximations that neglect the existe
of bound states.

However, forn.0.01, the chemical potential in the Bor
approximations is much larger than for the SCLA. In fact,
the SCLA we are also describing the fraction of cold int
acting excitons in the plasma. As the ground state energ
this part of the plasma is at about2Eb , the total energy of
the system is thus reduced with respect to that of a ga
unbound particles. In order to clarify this point further, w
plot on the same graph half of the chemical potential
bosons at a ground state energy of2Eb and mass equal to
the exciton mass. This is the chemical potential of a gas
electron~and holes! completely bound into bosonic exciton
The halving comes from the equilibrium conditionmX5me
1mh52m. The chemical potential of bosons compares r
sonably well with the chemical potential calculated in t
SCLA, up to m,20.25, n,0.1. Above this limit, the
chemical potential from the SCLA grows faster. There a
two reasons for this faster growth: first, the exciton gas
repulsively interacting, second, the exciton gas eventu
ionizes into free carriers. At densitiesn.0.2, the SCLA and
SCBA are indeed comparable, and at even larger density
MBA is also reasonable. This shows that the SCLA is
powerful tool for the investigation of the intermediate regim
of densities, where deviations from both the~noninteracting!
bosonic and pure fermionic models are important.

IV. MAPPING THE SCLA TO A BOSONIC MODEL
AT LOW DENSITY AND TEMPERATURE

In Fig. 5 we plotA(k,v) for T50.043 andn50.02. We
can observe the parabolic dispersion of the main quasip
cle peak, broadened by the scattering~white region in the
plot!. Broadening is larger at smallk due to the larger phas
space in one dimension. Forv,0, we have the correlation
structure shown fork50 in Fig. 2, which is also present a
larger k. We remark that this region of correlated electro

FIG. 4. Chemical potentialm in the three approximations, atT
50.1. The short-dashed line shows half the chemical potentia
noninteracting bosons, with ground state energy of2Eb .
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extends into a region ofk of the order of 1~i.e., of aB
21). Its

shape~dispersion! is related to the exciton wave function, a
we show in the following.

In a low-density, low-temperature limit, we can start
considerG5G0, and analytically calculate the retarded pa
propagatorH1(k,v) from Eq. ~12!, neglectingG0

, , which
is of the order of the density. We obtain

H (0)1~k,v!;
21

A2Av2k2/812ig
,

whereg.0 is the usual regularization number. Solving f
the T matrix with the Bethe-Salpeter equation~14a! and ex-
panding around its pole, we obtain

T(0)1~k,v!5
1

v1 1
2 2k2/812ig

.

Thus, theT matrix at the lowest order for the contact pote
tial has the form of a free propagator, for particles at
energy21/21k2/8, having a mass that is twice the electro
mass, i.e., the electron plus hole mass. Expanding the Be
Salpeter equation to higher order, we obtain

T(1)1~k,v!5T(0)1~k,v!H (1)1~k,v!T(0)1~k,v!.

Therefore, we may interpretT(0)1(k,v) as the free-exciton
~boson! Green function, andH (1)1(k,v) as the lowest-order
self-energy.21 In particular,

H (1)~1,2!52iG (1)~1,2!G0~1,2!, ~16!

G(1)~k,v!5G0~k,v!S (0)~k,v!G0~k,v!,
~17!

S (0)~1,2!5 iT (0)~1,2!G0~2,1!.

As T(0)(k,v) is peaked close tov521/2, we may neglect
G0

,(k,v) in this region, and use

of

FIG. 5. Contour plot ofAe(k,v) at T50.04 andn50.02.
8-6
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S (0)1~k,v!; i E dq dv8

~2p!2
T(0),~q,v8!G0

2~k1q,v1v8!.

Integrating aroundv8521/2, we obtain

Sk
(0)1~v!;

n

v1 1
2 1k2/81 ig

,

wheren is the total density. This is the structure shown
Fig. 3 atv521/2, which produces the satellite correlatio
peak in the electron spectral function, shown in Fig. 5. W
also notice that this structure hasnegativedispersion, as is
also apparent in Fig. 5.

We can now define an exciton-exciton interaction at l
density, from Eqs.~16! and~17! above, which are pictorially
shown in Fig. 6. We thus define a four-point interaction k
nel F (0), and the boson self-energyH (1)(1,2) is written as

H (1)~1,2!5E d1̄d2̄F (0)~1,2;1̄,2̄!T(0)~ 2̄,1̄!. ~18!

We can see from Fig. 6 thatF (0) represents the electron~or
hole! exchange in the scattering of the two excitons. Thu

F (0)~1,2;1828!52iG0~1,2!G0~18,28!G0~1,28!G0~18,2!.
~19!

If we neglect retardation~or memory! effects, we may define
an instantaneous potential at the exciton energy usingt1
5t2 , t185t28 and calculating the resultingF at the exciton
frequency v0521/25EB . For simplicity, we also use
k,k8;0 for the incoming excitons, and find

F (0)~q,v0!;2i (
q8,v8

G0
1S q8,

v0

2
1v8D

3G0
1S 2q8,

v0

2
2v8D

3G0
1S q2q8,

v0

2
1v8DG0

1S q82q,
v0

2
2v8D

5
64

q2

2A41q22~42q2!

~41q2!2
. ~20!

FIG. 6. The perturbation expansion to lowest order for the bo
~exciton! self-energy, and the four-particle vertexF (0). Thin lines
are the bare electron~or hole! propagator. The shaded two-partic
Green function is the bare exciton propagator.
24530
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This function rapidly drops to zero atq.1 as expected, and
F (0)(0,v0)56. This value is also obtained from standa
boson-boson exchange-interaction expressions~see, e.g.,
Ref. 22! when only the electron-hole interaction is used. W
show the full structure ofF (0)(q,v0) in Fig. 7.

We are now in a position to discuss some of the qual
tive changes introduced by simplifying the Coulomb intera
tion to an on-site one. In the limit of low density, we may
fact compare the exciton-exciton interaction calcula
above with that calculated using a realistic Coulomb inter
tion, as a standard boson-boson exchange expression at
momenta exists.23 In a realistic wire, a short-range cutoff i
introduced by the finite size of the electron and hole wa
functions in the confinement directions. A typical cutoff is
the order of the Bohr radius or smaller. Typically, we have
consider tight confinements in order to avoid participation
higher confined levels into the exciton wave function. T
Coulomb interaction is then reasonably represented b
functionVr5A/(r 1r 0), wherer 0 is a cutoff distance, andA
is then chosen such thatEb521/2. We usedr 050.1, and
A50.18. In this case the resulting Bohr radius is 1, indic
ing tight confinement of the carriers in the confineme
plane. The exciton-exciton exchange interaction at smallq is
calculated in the smallq!aB

21 limit,

Wxx52(
k,k8

Vr~k2k8!f1s~k!f1s~k8!

3@ uf1s~k!u22f1s~k!f1s~k8!#;1.4, ~21!

wheref1s(k8) is the 1s wave function of the exciton. The
positive term in Eq.~21! is the exchange term due to th
attractive electron-hole interaction, while the negative te
is due to the electron-electron and hole-hole repulsive in
actions. In thed-function-like potential the negative term i
absent because of locality. In the long-range case instead
electron-electron and hole-hole interactions largely can

n

FIG. 7. The exciton-exciton interaction potentialWq

5F (0)(q,v0).
8-7
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C. PIERMAROCCHI AND F. TASSONE PHYSICAL REVIEW B63 245308
the electron-hole interaction in the exchange integral, res
ing in an exciton-exciton interaction that is four time
smaller when compared with the value of 6 obtained
F (0)(q50,v0). We conclude that local interaction leads
an overestimation of the boson-boson interaction at a gi
density and therefore of broadening. However, this does
imply that broadening effects arequalitatively different.
Moreover, we also stress that this overestimation does
concern at all the comparison of the SCLA with the oth
simpler approximations considered in this work, as all
carried out using the same interaction potential.

V. OPTICAL PROPERTIES

We now consider interaction of the electron-hole syst
with a transverse electromagnetic field in the dipole appro
mation:

HP5(
q,q

Cq,q~aq,qPq
†1aq,q

† Pq!, ~22!

where

Cq,q5
epcv

m0c
A4p\c

qtV
I i~q!,

is the dipole matrix element, which includes also the over
integral of the electromagnetic field with the confined ca
ersI i . Hereq represents two-dimensional~2D! wavevectors
in the plane orthogonal to the wire axis,q are wave vectors
along the wire, whileqt

25q21q2, m0 is the free-electron
mass,c the velocity of light, andpcv the momentum matrix
element between the conduction and hole bands.aq,q is the
photon destruction operator, andPq is the polarization op-
erator, defined asPq5(kdq2kck , i.e., local in real space in
the dipole approximation. As the section of the wires is
ways much smaller than the wavelength of light, we ha
I i;1. Moreoverqt;Egap/(\c) is almost constant; thus w
use arbitrary units from now on, withC51. Actual values of
absorption and gain are easily calculated by using the ap
priate value ofC for the given material.

In the process of scattering of light from the system,
absorbed photon creates a coherent electron-hole pair
propagates in the crystal, interacts with the backgrou
plasma, then recombines, and a photon is emitted. When
introduce photon propagators, the interaction process is
resented by a photon self-energy. We will not solve the p
ton Dyson equation, nor we will dress the electron and h
propagation with the photon interaction. In other words,
neglect both polaritonic effects and higher-order nonlin
interactions. In fact, we are restricting our attention to we
external fields, i.e., assuming interaction of the plasma w
the photon field to be weak. Otherwise, it could be poss
for the system to be driven out of equilibrium, because
photon chemical potential is zero and far below that of
electron-hole plasma. This equilibrium condition is well fu
filled in real systems, and an exception made for the str
gest laser fields. Within this weak-interaction approximati
the photon self-energy is exactly given by the pair corre
tion function
24530
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Pq~t,t8!5^TPq
†~t!Pq~t8!&. ~23!

However, this correlation function has to be calculat
within some approximation, and also using approxim
propagators. The resulting self-energy may not be cons
ing. In particular, particle flux conservation at the vert
translates in the longitudinalf-sum rule,18 which has to be
respected in any reasonable approximation.

In order to shed light on this important issue, we consid
the problem of interaction of photons with the plasma from
different viewpoint. As we are only interested in the line
response to the external electromagnetic field, the cor
photon self-energy is also given by the linear response of
plasma to aclassicalelectromagnetic field, i.e., considerin
the photon creation and destruction operators in Eq.~22! asc
numbers. Baym and Kadanoff give a method for construct
a conserving expression for this response function in Ref.
When an external coherent electromagnetic field is applie
the plasma, coherence develops in the plasma, and
propagators additionally have to be defined along with
single-particle propagators. They are analogous to ano
lous propagators in the theory of superconductivity. T
electron-hole anomalous propagator reads

Geh~1,2!5 i ^Td~2!c~1!&. ~24!

Times are defined on the Keldysh contour as usual. Ano
anomalous propagatorGhe can be similarly defined for con
venience, and notation regrouped into a matrix notation
for Nambu propagators in the problem o
superconductivity.24 The Dyson equation~5! is extended to
include both anomalous propagators and the external in
actionHp :

E d2̄G0
21~1,2̄!G~ 2̄,3!

5d~1,3!1E d4̄S~1,4̄!G~ 4̄,3!1E d4̄Seh~1,4̄!

3Ghe~ 4̄,3!2A~1!Ghe~1,3! ~25!

,

E d2̄G0
21~1,2̄!Geh~ 2̄,3!

5E d4̄S~1,4̄!Geh~ 4̄,3!1E d4̄Seh~1,4̄!G~ 4̄,3!

2A~1!G~3,1!. ~26!

As a general rule for generating a conserving approxim
tion, the self-energies have to be obtained from the fu
tional derivation of a grand potential with respect to t
propagators. The normal self-energies have been alread
troduced. For the anomalous self-energySeh(1,2), we need
to generalize the expression of the grand potential includ
terms where the normal propagators are replaced by
anomalous ones. The anomalous propagatorsGeh are at least
first order in the external potentialA, as spontaneous sym
metry breaking is ruled out by the Mermin-Wagner theore
8-8
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For the linear response, we need the anomalous self-en
Seh up to linear terms in the external potential only, thus
most linear terms in the anomalous propagators. Con
quently, we need at most quadratic terms in these prop
tors in the grand potential to obtain theSeh from the func-
tional derivative. We conclude that the only term to
considered is the anomalous Fock term, which is the us
Fock term with anomalous propagators replacing norm
ones. As the approximation is conserving, we are also g
anteed that absorption fulfills thef-sum rule18 for any value
of density and temperature. The anomalous self-energy
tained from the anomalous Fock term reads

Seh~1,2!52 iGeh~1,2!1O~A2!. ~27!

Normal G are at least second order in the external poten
A, while both Geh and Seh are at least first order. Th
anomalous Dyson equation~26! to lowest order becomes

E d2̄G21~1,2̄!Geh~ 2̄,3!

52 i E d4̄Geh~1,4̄!G~ 4̄,3!2A~1!G~1,3!.

~28!

Introducing the response function

P̃~1,2!52 i
dGeh~1,1!

A~2!
U

A50

, ~29!

and taking the first-order variation of Eq.~28!, we obtain the
equation forP̃(1,2):

P̃~1,2!5 iG~1,2!G~1,2!2 i E d3̄G~1,3̄!

3G~1,3̄!P̃~ 3̄,2!H~1;2!2E d3̄H~1;3̄!P̃~ 3̄,2!,

~30!

which is easily solved and gives

P̃~1,2!5H~1;2!1E d3̄d4̄H~1;3̄!T~ 3̄;4̄!H~ 4̄;2!.

~31!

It is straightforward to show thatP̃(1,2) obeys bosonic
Kubo-Martin-Schwinger relations, as bothH and T do. In
particular, we have

P̃1~q,v!5H1~q,v!uT1~q,v!u2, ~32!

P̃,~q,v!5H,~q,v!uT1~q,v!u2. ~33!

Absorptiona(v) and photoluminescence PL(v) at q50 are
derived as a(v)52 Im@P1(0,v)# and PL(v)
52 Im@P,(0,v)#, respectively.

We remark that terms of order higher than the anomal
Fock term have to be considered in the anomalous s
energy expansion when afinite external field is present, suc
24530
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as in the case of a strong laser field. Anomalous Born te
calculated in the Markov approximation have been cons
ered in the semiconductor Bloch equations by Lindberg a
Koch in Ref. 25, and called polarization-polarization scatt
ing terms. Here we do not further pursue such extensio
which are clearly beyond the scope of the present paper.
only note that our approach is easily extended to such c
ditions, while keeping full control of the conservation law

A. Optical spectra and stability of the excitonic emission

We show in Fig. 8, the absorption spectra in the norm
direction (q50) at T50.2, for different densities, in the
MBA, SCBA, and SCLA. In the absorption spectrum, w
note the characteristic excitonic peak and the continuum
sorption at low density. The exciton linewidth is extreme
narrow in the SCBA, and much broader in the MBA. Th
SCLA linewidth is intermediate. In the SCBA there is a ve
small broadening at the exciton energy, as no excitons
represented in the theory, while in the MBA, the free-carr
broadening atv50 is assumed. This is somewhat larg
than the broadening in the SCLA atT50.2. For large den-

FIG. 8. Absorption spectra in the Markof-Born approximatio
~MBA !, self-consistent Born approximation~SCBA!, and self-
consistent ladder approximation~SCLA! for different densities in-
dicated in the figure.
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C. PIERMAROCCHI AND F. TASSONE PHYSICAL REVIEW B63 245308
sities n.0.2, the excitonic peak is bleached in all appro
mations, and a region of negative absorption, i.e., opt
gain, appears. The absorption changes sign atv5me1mh
52m, coinciding with the change of sign of the Bose fact
and resulting in a well defined—i.e., positive—
photoluminescence through the Kubo-Martin-Schwinger
lation.

We plot the emission or PL spectra in Fig. 9. First w
notice the different scale for the MBA, where a smaller pe
emission is calculated even for the largest considered de
ties. For large densityn.0.2, we observe a saturation of th
intensity. This can be understood in terms of the fermio
nature of the carriers, when the electron-hole plasma
comes degenerate. Second, we notice excitonlike emis
even when excitonic absorption is bleached in all models
fact, vertex corrections place the free-carrier emission at
exciton energy, even when no bound excitons are descr
in the gas.

Eventually, only at very small density do the free-carr
and excitonic emission become distinguishable, as we no
an exponential emission shoulder at high energyv.0 in the
SCLA and SCBA, reminding us of a fermionic emission t
at small degeneracy~Boltzmann distribution!. At larger den-

FIG. 9. Photoluminescence spectra in the MBA, SCBA, a
SCLA for different densities indicated in the figure.
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sity, the two features at different energy merge into a uniq
one, due to increased broadening. A single peak is also
served in experiments, where finite noise in the data
large inhomogeneous broadening mask any minor featu17

For this reason, it is in practice very delicate to establish
position of the band gap~bottom of the free-carrier bands!
directly from emission data.26 Third, we note that the low-
energy shoulder of the PL emission in the MBA is Loren
ian because of the Markov approximation, and the broad
ing is largely overestimated also at low energies. T
linewidth in the SCBA is instead underestimated at low de
sity, as for absorption.

An interesting—and directly observed—physical quant
is the energy of the PL peak. As noted above, emissio
excitonic due to the correlation of the coherent electron-h
pair emitted. In Fig. 10 we plot the position of this peak
the PL as a function of the carrier density, together with
band-gap renormalization~BGR! defined as twice the energ
of the main peak of the spectral function. Interestingly, e
citon bleaching in absorption appears at a density tha
comparable to the density where the band-gap renorma
tion crosses the emission energy, i.e.,n;0.15. There are two
interesting features to be observed in Fig. 10: first, the ba
gap renormalization is negligible in the SCLA forn,0.1;
second, emission energy is constant in this range of dens
and blueshifting less than that in the SCBA for larger de
sity. Comparison with the MBA is vitiated by excessiv
broadening in this approximation. The simple Hartree-Fo
approximation instead gives results that are similar to th
obtained in the SCBA for the band-gap renormalization a
the PL emission peak, apart from more pronounc
blueshifts.10 Stability of the emission peak is usually inte
preted as a partial compensation of the self-energy and
tex corrections. Since in the Hartree-Fock approximation
broadening effects are missing, we deduce that these ef
are indeed relevant for the cancellation found in the SC
and in the SCLA at high density and explain the reduct
of the blueshift with respect to simple Hartree-Fo
calculations.

d

FIG. 10. The band-gap renormalization~BGR! and emission
peak energy in the SCBA and SCLA as indicated in the figure.
8-10
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B. Excitonic gain

Optical gain is usually considered in the regime of deg
erate electron-hole plasma. In this regime, spectral funct
can be assumed to be simple Lorentzians, and the absor
can be written as

a~v!}E dk

2p

122 f ~k2/42m!

~v2k2/2!21g2
, ~34!

whereg is the spectral broadening. Then, negative abso
tion or gain occurs only when the Pauli blocking factor@1
22 f (k2/42m)# becomes negative, which necessarily
quires a chemical potential above the band gap, or in o
words, inversion. However, both vertex corrections and
viations of the spectral function from simple Lorentzia
should be taken into account at lower density and temp
ture. In this case, the absorption can be written as

a~v!}uT1~q50,v!u2E dk

2p

dv8

2p
@12 f ~v2v82m!

2 f ~v82m!#Ak~v2v8!Ak~v8!, ~35!

The term in square brackets 12 f (v2v82m)2 f (v82m) is
the generalization of the Pauli blocking factor for a syst
where the quasiparticles are described by arbitrary spe
functions, and clearly one of the Fermi functions refers
electron occupation, the other to hole occupation. This
pression of the absorption is valid only in the case of
short-range potential, and for the long-range caseT1 de-
pends also on the relative momentum of the pairk and be-
comes part of the integral kernel. Using the definition
Fermi and Bose functions, the absorption can be recast in
form

a~v!5
uT1~q50,v!u2

g~v22m!
E dk

2p

dv8

2p
f ~v2v82m!

3 f ~v82m!Ak~v2v8!Ak~v8!, ~36!

where g(v22m) is the Bose function. Therefore, ga
clearly occurs below twice the chemical potentialm ~i.e.,
me1mh), even when the chemical potential isbelow the
band gap. However, for it to be sizable, the spectral functi
must have non-negligible weight in this region of the sp
trum. In the MBA and SCBA cases, this weight is clea
given by broadening effects alone, while in the SCLA it
also due to the presence of the excitonic correlation pea
the spectral function as shown in Fig. 2. A sizable enhan
ment of the gain is found in correspondence to the excito
resonance because of the vertex correction, given by
uT1u2 factor in Eq. ~36!. When 2m,2EB , both gain and
excitonic absorption coexist. In this case, we talk ofexcitonic
gain. The system is inversionless in the sense of Eq.~34!
above. However, only in the SCLA do we describe gain d
to the presence and scattering of excitons in the lo
temperature, low-density plasma, while in the other appro
mations, gain is purely related to dynamical effects in
interaction vertex with the photon.

In Fig. 11 we plot the absorption spectra close to
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exciton resonance atT50.1!EB . For the considered dens
ties n,0.1, gain coexists with the excitonic resonance
absorption. Only for the MBA atn50.1 is the absorption
peak completely shifted to higher energies, and we can
longer speak of excitonic absorption. As usual, the broad
ing in the exciton spectral region is too small and unphysi
in the SCBA, resulting in very sharp and unphysical featur
Gain in the SCLA is instead over a larger spectral regi
and its value is larger than that predicted in the MBA at lar
densityn.0.3 shown in Fig. 8. Excitonic gain clearly origi
nates from inclusion of excitons in the plasma for the SCL
In fact, reasonable broadening is calculated in the exc
spectral region, mainly originating from exciton-excito
scattering as shown in Sec. IV. We conclude that the SC
indicates that sizable excitonic gain can be obtained at m
erate density and temperature, in a reasonably large spe
region of the order of a fraction ofEB .

Excitonic gain has been widely studied in II-VI quantu
wells.27 However, these are two-dimensional systems, a
excitonic correlations are expected to be less pronounce
this systems, so at this stage it is not reasonable to make
a qualitative comparison. For quantum wires, sizable gain
10 K (T;0.05) for an estimated carrier density well belo

FIG. 11. Absorption spectra atT50.1 for the MBA, SCBA, and
SCLA, and low densities indicated in the figure.
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the Mott transition has been recently claimed by Siri
et al.28 This is a first indication that excitonic gain might b
relevant in these systems. However, a qualitative and qu
titative understanding of this experiment is clearly prem
ture. From the experimental side, inhomogeneous broa
ing due to interface disorder has to be decreased well be
the binding energy, while a more realistic Coulomb intera
tion has to be addressed by the theory.

VI. CONCLUSIONS

We have presented a model that includes excitonic co
lation in the description of a highly excited semiconduc
quantum wire. The model has been simplified using a sh
range potential and consideration of a polarized gas. Co
lation has been calculated self-consistently at the ladder l
~SCLA!. We have shown that bound states appear as a
energy correlation peak in the spectral function of electr
and holes. We compared the results obtained with the SC
to the ones obtained within lower-order approximations t
do not include excitonic correlation~Born approximations!.
Even though the model is purely fermionic, we have sho
how it can be effectively mapped at low temperatures a
density to a gas of interacting excitons. We have thus deri
an analytical expression for the effective exciton-exciton
teraction. The linear optical properties of the system h
been calculated including vertex corrections at the F
level. This ensures the conservation of sum rules in the
tical response. The excitonic absorption at low density
sues both in ladder and Born approaches, but the broa
ings at the exciton energy are either too small or too larg
the Born approximations, depending on whether freque
dependence of the broadening is included or not. Excito
emission well beyond exciton bleaching is also predicted
all models, but the peak shifts are more pronounced in
Born approximations, showing that a better cancellation
tween the self-energy and vertex correction results from
introduction of excitons. We have also shown that siza
excitonic gain can be predicted at low temperature and d
sity, when the electron plus hole chemical potential is j
below the exciton energy. However, its correct descript
must include exciton broadening from exciton-exciton sc
tering, and unphysical values are thus obtained in the B
approximations. These qualitative conclusions clearly h
even for more refined descriptions of the electron-h
plasma than the Born approximations considered here w
these descriptions fail to account for excitons in the plas
This is also the case for the model recently presented by
Sarma and Wang in Ref. 29, which includes screening at
plasmon-pole approximation level, but no excitons in t
electron-hole gas. The excitonic gain calculated using
approximation shows a divergent behavior close to2Eb at
rin
,
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appropriate density, which is similar to what we have fou
for the SCBA. This unphysical result provides a strong e
perimental test to unvalidate the approach in this particu
regime. Also the recent theory by Hannewaldet al.,30 while
interestingly addressing the nonequilibrium theory of man
body effects in the optical response of the electron-hole s
tem, remains within a nondynamical scheme insufficient
include the existence and formation of bound pairs in
gas.

A last issue concerns the intrinsic limitations of th
SCLA. A clear determination of the limits of validity of the
SCLA as a function of the strength of the coupling and
luteness of the system is a nontrivial task. To our knowled
the most complete discussion has been provided by Buza31

In 1D, a direct test of the SCLA~in the case of a contac
potential! is possible due to the availability of the exact s
lution by the Bethe ansatz. Buzatu shows that, in the ca
lation of the ground state energy, the results obtained us
the fermionic ladder approximation can be improved usin
simplified self-consistent treatment, and become close to
exact results in a large range of parameters. In the dilute l
he also shows that self-consistent and non-self-consisten
sults merge and coincide with the exact results. On the o
hand, it has been recently demonstrated by Pieri
Strinati32 using a diagrammatic analysis for 3D systems th
in order to correctly describe the weak residual interact
between excitons in the very dilute limit, ladder diagrams
the composite bosons should be included. Quantitatively,
amounts to an overestimation of the vanishingly small sc
tering length between excitons in the SCLA. However,
remark that in the present work we have been considerin
range of densities and temperatures that places us well a
this very dilute limit. This is exemplified in the relevance
free carriers that is expected in this intermediate regim
Clearly, a small parameter for selecting the most relev
diagrams in the self-energy expansion is lacking here,
only comparisons to exact results can establish the real q
ity of the different approximations.

In conclusion, we have clearly shown that in the defin
and important physical region ofT,Eb inclusion of exci-
tonic correlation in the electron-hole plasma is relevant a
necessary, and that the simplified model presented in
paper is a well-understood starting point for this purpo
Thus, its further developments to address realistic system
higher dimensions are well motivated.

ACKNOWLEDGMENTS

We thank A. Quattropani, P. Schwendimann, V. Savo
C. Ciuti, and L. J. Sham for stimulating discussions. One
the authors~C.P.! acknowledges support by the Swiss N
tional Foundation for the Scientific Research.
1Excellent reviews of the subject may be found in B. I. Halpe
and T. M. Rice, inSolid State Physics, edited by H. Ehrenreich
F. Seitz, and D. Turnbull~Academic, New York, 1977!, Vol. 21;
T. M. Rice, ibid., Vol. 32.
2H. Haug, Z. Phys. B24, 351 ~1976!.
3X. Zhu, M. S. Hybertsen, and P. B. Littlewood, Phys. Rev. B54,

13 575~1996!.
4R. J. Elliott, Phys. Rev.108, 1384~1957!.
8-12



d

i-

D

r,

in

,

ett.

tt.
.

B.

.

,

ROLE OF BOUND PAIRS IN THE OPTICAL . . . PHYSICAL REVIEW B 63 245308
5H. Haug and S. W. Koch,Quantum Theory of the Optical an
Electronic Properties of Semiconductors~Singapore, World Sci-
entific, 1990!.

6H. Haug and S. Schmitt-Rink, Prog. Quantum Electron.9, 3
~1984!.

7W. D. Kraeft, D. Kremp, W. Ebeling, and G. Ro¨pke, Quantum
Statistics of Charged Particle Systems~Akademie-Verlag, Ber-
lin, 1986!.

8R. Zimmermann,Many Particle Theory of Highly Excited Sem
conductors~Teubner, Liepzig, 1988!.

9M. Pereira and K. Henneberger, Phys. Rev. B58, 2064~1998!.
10F. Tassone and C. Piermarocchi, Phys. Rev. Lett.82, 843~1999!.
11S. Benner and H. Haug, Europhys. Lett.16, 570 ~1991!.
12F. Tassone and F. Bassani, Phys. Rev. B51, 16 973~1995!.
13D. G. Mahan,Many Particle Physics~Plenum, New York, 1981!.
14P. Danielewicz, Ann. Phys.~N.Y.! 152, 239 ~1984!.
15H. Haug and A. P. Jauho,Quantum Kinetics in Transport and

Optical Properties of Semiconductors~Springer-Verlag, Berlin,
1996!.

16L. P. Kadanoff and G. Baym,Quantum Statistical Mechanics~W.
A. Benjamin, Reading, PA, 1962!.

17R. Cingolani, R. Rinaldi, M. Ferrara, G. C. La Rocca, H. Lage,
Heitmann, K. Ploog, and H. Kalt, Phys. Rev. B48, 14 331
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