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A recently developed long-wavelength continuum phenomenological model is employed to study phonon
tunneling for an arbitrary incidence angle, and to estimate the contribution of optical phonons to the perpen-
dicular thermal conductivity in simple and multisuperlattice nonpolar semiconductor heterostructures. Phonon
tunneling is a multicomponent problem with different tunneling channels. We rigorously define the transmis-
sion and reflection coefficients from the energy density balance equation. Simple general rules are presented
for the relationship betweea) the key features of the transmission and reflection rates(tariie vibrational
properties. The range of applicability of the model is increased by simultaneously considering both acoustic
and optical phonons. The defined coefficients are employed to test the interrelationship between the coupled
modes. Interesting oscillation effects in the relative contribution of different coefficients as a function of the
incidence angle are found. We report numerical results for isotopic Ge superlattices to illustrate the model
considered. Approximate analytical expressions for the dispersion relation are derived for this system. The
contribution of optical phonons to the thermal conductivity is elucidated with the help of these expressions.

DOI: 10.1103/PhysRevB.63.245304 PACS nunider63.22:+m, 68.65-k, 66.70:+f

[. INTRODUCTION chanical oscillations and the electric field vanishes, as ex-
pected for nonpolar crystat$.Details of this model, and a
The vibrational characteristics of multilayered structurescalculation of eigenvalues and eigenmodes in different non-
are of both fundamental and practical interest. Optical spegpolar heterostructures, considering real interfaces, were pre-
troscopies are suitable for the investigation of semiconductosented in this reference. The modeontains Christoffel
microstructures, and can also be used to characterize theguations for acoustic phondAsas a particular case, with
quality of the heterostructures, in particular the details of thehe right selection of the input parameters. In the present
interfaces(for a review, see Ref.)1In order to explain the paper we study both acoustic and optical vibrations in non-
main experimental results, different models have been devepolar materials, employing the long-wavelength apprdach.
oped to describe the phonon dispersion curves. These modejge show that the model for optical phonons is a counterpart
range from simplified linear chain mod&ts the most elabo-  of that corresponding to acoustic phonons: considering both
rate ones based ab initio local-density calculationSMost together, the best results compared with other methods and
optical spectroscopies are subject to rather stringent SeleCt"&perimental data are obtained. We focus on the propagation
rules which arise from wave-vector conservation. In fact, theyt hhonons through finite simple and multisuperlattice struc-
phonon created or annihilated must have a wave vector res

magnitude close to zero, i.e., near the center of the Brillouin Ac.oustic-phonon tunneling has been intensively studied,

zone. For this reason, phenomenologmgl Iong-V\_/aveIengtBO,[h theoretically with Christoffel equatichdand experi-
models are successful when compared with experimental re-

sults mentally with phonon imaging Employing a long-

It is interesting to note the preference of theoreticians fOvaaveIength m(.)dEI for phonon tunngllng, Ridley eluu.dated
long-wavelength models to study acou$fiand optica’ the _electrostatlc character of the V|brat|on_al modes in one
phonons. These approaches can accommodate the symm rier pc_>|ar heterost_ructuFePhonon tunnellng in nonpolar
of the materials, if desired. Compared with other phenomSYStems is analyzed in the present paper. It is a multicompo-
enological andab initio models, these help to visualize the nent problem with different tunneling channels. The trans-
physics of the problems, due to the comparative reduction ifnission and reflection coefficients are rigorously defined
the computational effort, and to the predominantly analyticafrom the energy density balance equation, which is derived
nature of the study. without approximations. To the best of our knowledge, these

Recently, a phenomenological continuum approach wagnalytical results have not been discussed even for the well-
developed for polar optical oscillations in semiconductorstudied acoustic phonorisee, for example, Ref. 4 for acous-
nanostructure$:® It simultaneously satisfies mechanical andtic phonons and Ref. 6 for optical phononElimination of
electrostatic matching conditions, and has been applied suthe electrostatic coupling simplifies the formulation of the
cessfully to double heterostructures, superlatti@ss) and  problem, which can then be carried out analytically. The
quantum dot§:1° A detailed presentation of this model can phonon normal incidencéa one-dimensional problemnal-
also be seen in Ref. 9. In the spirit of this approach, wdows for a complete analytical treatment, and is a generali-
proposed a continuum model for nonpolar optical phononszation of the results for acoustic phonons of Mizuno and
and obtained it formally as a coupling constant between mefamura’
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One of the purposes of the present work is to explain howeatures of the long-wavelength model relevant to this paper
phonon tunneling describes all the features of the vibrationah Sec. I, and present general analytical properties, i.e., the
modes in semiconductor heterostructures. We present sonderivation of the energy density balance equation, and some
simple rules to show the equivalence between this approackpproximations which are useful for isotopic SL’s. In Sec. IlI
and the usual numerical diagonalization. Also, the interrelathe main analytical properties of the phonon tunneling are
tion between the coupled modes is tested. described with the help of a transfer-matrix method, and the

The recently observed reduction of thermal conductivityresults of the preceeding Sec. II. In Sec. IV we present nu-
both in-plané* and perpendicular to the interfdtén semi- ~ merical results for different Ge SL's. We first study the
conductor superlattices, compared with the values in bullimple periodic superlattice to show how we can explain the
materials, implies a potentially attractive application for het-Phonon physics through the transmission rate. Then we ana-
erostructures in thermoelectronic deviésdyldgaard and  !yz€ multiple superlattices as an example of the usefulness of
Mahart” showed that the thermal conductivity of a SL is the model in more complex systems. The oblique incidence
reduced because the phonon group velocity is decreased ref@-Phonons is discussed later. We consider the contribution
tive to its value in the bulk constituentamong other reasons Of optical phonons to thermal conductivity in Sec. V. Finally
presented in Refs. 15 and J18To analyze these problems, SOMe conclusions are given.

Hyldgaard and Mahan and Tamuzgall® employed simple
lattice models that took account of the acoustic phonons.
Very recently, more realistic full three-dimensioraD) cal- Il. LONG-WAVELENGTH MODEL

. 21 .
culations began to apped?’ and showed that the simple g first analyze the optical phonons. For a description of

previous approaches explain the main qualitative features qf,o yscillations we use the displacement vector figlhich

this physical problem and offer good quantitative estimagnresents the relative displacement of the two atoms in the
tions, even at high temperatures.

. : . unit cell. Other physical parameters of the medium are
The most drastic reduction of the thermal conductivity — Py P A

occurs at high temperatures-(00 K), when the peak inthe — M/Vc. the reduced mass density, whéfeis the reduced

Planck phonon distribution is at frequencies characteristic o?“astsh Ofl.th.?. atolms "’tmgc th?_ umt;jciall volume%c_oTbaIrLdwa
optical phonons, e.g., @t=257 K, andw=502 cni®(The 2€ N€liMiting fongitu inall) and transvers¢T) bulk fre-

peak in the number of phonons per unit frequency is give uencies;3t and B, are two parameters describing the dis-

by Aw=2.8gT). We recall that, due to the rather flat nature persion of the oscillations, i.e., for bulk ma_1te2rials “‘a”S'T
of the optical-phonon branches, the corresponding group Véa_rar;cheés_ have the parabolic behavies r(k)=wi
locity is very small. Therefore, the weight of optical phonons ~ 8L, 7" in the neighborhood of thE point of the Brillouin
in heat transfer may be small even at high temperatures. AONe. In layered structures all these quantlt!es are piecewise
different behavior is expected for the materials studied beconstants, and are dependent on the coordinates. _
low, where an important contribution of the optical phonons All the following results are valid for acoustic phonons if
is found. the vector fieldu now represents the atomic center-of-mass
Regarding the propagation of thermal energy througtfisplacements. We should also make the replacerags
crystalline solids, we note that at low temperature the prin— — B¢ty [B(r) is the L(T) sound velocit}, where w (7
cipal source of thermal conduction are the acoustic phonons 0, and the reduced mass is substituted for by the total mass
in the GHz (168 Hz) to THz (10 Hz) range. At room of the cell. In this way the Christoffel equations of motion
temperature the propagation of thermal phonons is highlynd, in particular, the linear dispersion relation for the bulk
diffusive, with mean free paths resulting from phonon scat-w (1)= B (1)K, are obtained. For simplicity, in the rest of the
tering. This limits the optical-phonon imaging. paper we shall limit ourselves to writing formulas for optical
The most suitable systems to study phonon transmissiovibrations.
are isotopic Ge SL’s. An isotopic Ge SL refers to two layers In the spirit of the theory of continuous media, we postu-
of enriched Ge isotopes repeated periodically. These systentate the Hamiltonian density
were investigated intensively in the last ye&$® The
phonon-dispersion relations of two isotopically enriched Ge
bulk materials overlap over a large frequency range. This 1
allows phonon SL bands to be more dispersive, which im- H= 2P
plies larger absolute values of the group velocity perpendicu-
lar to the growth direction in layered structures, and conse-
quently a greater contribution of the optical phonons to the The first term is the kinetic-energy density, and the sec-
thermal transport and transmission peaks, broader and bettend term represents the coupling of the displacement field
resolvable with numerical methods than in Si/Ge structureswith itself. The last term incorporates the internal stresses of
Also, strain effects are not important. These features arthe medium, and leads to the dispersive character of the os-
stimulating for an experimental study. Another interestingcillations. o is the “stress” tensor, first defined in Ref. 7,
system is the Si/Ge SL. The physics of phonon tunneling isvhich takes into account the symmetry properties of the me-
about the same. A short report of numerical results for nordium. By standard procedures the following system of
mal incidence only was presented elsew!ére. coupled second-order differential equatiofequations of
For the sake of completeness, we summarize the maimotion are obtained:

2

au
+§Pw$|u|2+

* *
ou Uijuji+0'jiuij
ot

7 M

245304-2



PHONON PROPAGATION IN NONPOLR . .. PHYSICAL REVIEW B 63 245304

52U The order of the submatrices B, C, andD depends on
P = —pa)12—u+V - 0. (2)  the problem under considerationX2 in the quantum-well
ot case and % 4 in the SL casg The diagonal submatri&(D)

contains only transverdgongitudina) magnitudes fow=0.

To obtain the continuity equation for the energy density,on the other hand the nondiagonal submatricend B are
we first integrate, in the volume of the whole space, theresponsible for thé.-T mixing for 0.

scalar product of the temporal derivativewofimes the equa- o studying numerically isotopic superlattices, we find
tion of motion(2); then we take the Hermitian conjugates in yhat for k0 the coupling between longitudinal and trans-
the resulting equation, and add both together. Integrating byerse solutions is not strong. In a first approximation we can
parts and after a stralghtforward algebra, we find the energyeglect the off-diagonal terms in E(), and obtain a dis-
density balance equation persion relation for a superlattice,

IH
- +Vi=0, (3) cogqd) =cogky (rywl)cogky(m)ph)
1 1
where the energy density flux is given by 5 &+ E)sin(kL(T)WI)sin(kL(T)bh), 9
1/au’ au
j=——| —. — . gt where
j 2( pr 0+(9t 0'). (4)
2
As in Ref. 11, in order to study the materials considered = PWIBL(T)ka(T)W. (10)

here, it suffices to study the case of cubic symmetry. In lay-
ered structures, we Fourier transform in the layer planes,
which introduces a 2D wave vecta, and we are thus left qis the SL Bloch wave vector, arit=1+h is the SL period.
with a differential system iz, the normal coordinate. In this In the frequency range of forbidden propagationr), is
case, after assuming harmonic solutions and solving th&naginary. Note that the right-hand side of E§) is func-

> ;
PuBLTmBKLMDb

equation of motion2), we find the solution space tion of «, and that the two transverse solutions are degener-
_ . . ate.
Uy(y,2,t) =iky(Be“—Bre~ kel (5) The fractioné is close to unity for most SL’s. That is

especially true for isotopic SL’s due to the small changes in
kg2 aiey—o) the parameters of the constituent materials. Setfind as a
e Lz feltme zeroth-order approximation in E¢Q), we find the condition
for folded bulk dispersion curve®o gaps open

uy(y,z,t)

eikLz+Ar
uAy,z,t) -

i K
=<Af_

ik,

_IL

iky iky,

ik r —ik i — ot
e' TZ+AT P e’ TZ) el(Ky )’ kL(T)WI +kL(T)bh:qd+ 2mn, n=0,£1,%2,....
(6)
where From here it is straightforward to obtain an explicit rela-

tion for w as a function ofg and « for each banch. This
2 P relation is not valid for confined states. In the limiting case
wL(T)(F) —w
Kun =

+

AL
(11

— K2, ) the confined phonons are obtained from the condition

BEm ki(rywl =na/2. In the next-order approximation the width
of the gaps[at frequencyw, in Eq. (11), such thatqd

and the transverse wave vectoiis assumed without lost of = mz] s found to be
generfilllity in they direction due to the isotropy of the
media.~ For convenience the solutions are written as travel- — " — M)
ing waves. The subscript(T) labels the longitudinaltrans- Aw,= \/zySIrKkL(T)WI)Sm(k'-(T)bh) , (12)
verse independent solutions. The supersctipt) labels the I h
wave moving to the rightleft), which we shall call a trans-
mitted (reflected wave when studying the phonon tunneling.

The transverse horizontal solutidiEq. (5)] is decoupled wherey=(1— £)2/2¢. For acoustic phonons at=0 the re-
from the oscillations in the directionsandz [Eqg. (6)]. For sult of Tamuraet al? is recovered.

«=0 the solution space is decoupled into purely longitudinal |, isotopic SL's the gaps are small, and we can employ

and doubly degenerate transverse vibrations. _the dispersion relation and phonon group velocity normal to
The secular equation for the coupled modes can be writy,e oo direction of the heterostructure derived from Eq.
ten in the matrix forri (11) to calculate the thermal conductivity. In this way we are
considering both optical and acoustic modes in the whole
de( A KB) —0. ®) reciprocal space within the approximation that the modes

kC D practically do not interact between them.

n k(M) + k(n)
BumwKimw  BrmbKimb
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IIl. TUNNELING PROBLEM i
wi(2)=| |, (13
o-jZ

In our problem we have three different channels for the
phonon tunneling: two transverse channels and one longitwhereo,= o~ éj , andj=1 and 2 label the well and barrier
dinal channel[Egs. (5) and (6)]. Due to the fact that the materials, respectively. Employing the solution spfEgs.
transverse horizontal solution is decoupled from the othet5) and(6)], we can writeW;(z) as
solutions, this channel is independent of the other two. How- _
ever, this case remains interesting because the differences Wi(2)=h;(2)C;. (14)
with respect to the one-dimensional one. Also, a simple ana- In particular, for the coupled solutiod&q. (6)] we find
lytical formulation is possible. To construct the associatedthe TH modes and the limiting case of decoupled solutions

transfer matrix, we introduce the column vector for k=0 are discussed later
|
iKeiijz iKefiijz —iije“‘TiZ iijefiijz
iky ;e —iky ez i kelkTi? ixel-Tiz
h.(z)= - - - A , 15
J( ) ZBijLje"‘LiZ _ZBijLjeflijz EjelkTiZ Ejef'kTiZ (15)
Djeikl-jz Dje_iijZ ZBijTjeiijZ —ZBijTje_ikTJZ
|
Bj=piBTj, Dj=pilx*(BL; =267+ BLKL ], Tsi=tayla, 22
Ej=p;B%(K*— k%)), (16)
SR T The transfer matrix for finite SL's with N periods is obtained
and after multiplying the transfer matrix for each individual SL,
Al i.e., Ts(N)=Tg,.
Lj The transmission and reflection coefficients are defined
Aij from the energy density balance equation. For the cubic
Ci= ALl (17) “stress” tensot! and the associated solution sp4Ees. (5)
Tj and(6)], we have an explicit expression for the energy den-
AfTJ. sity flux [Eq. (4)] in the heterostructure growth directian
A[(T)j andA[ (py; are the longitudinaltransversg transmit-
ted () anq reflectedr) oscillation amplitudes. Jzzpjwﬁ%knﬂB%ﬂz—|Bﬂ|2)+ijﬁfjij(|Aﬁtj|2— |ALE|2)
Returning to the general case of both TH and couple )
solutions, let us consider the first lay&; between the sub- +- -+ pjoBTike(|ALP = |AT?), (23

strateX and the second layek,. The boundary conditions

demand that . . . .
where the primed constants are related with the adimensional

W, (0)=Wy(0), constants employed in the solution spfggs.(5) and(6)]in
! the following way:

Wy, (da,) =W, (da)- (18)
Employing Eqgs.(14) and(18), we find |B+tj|2: ) A |2: 2 AL |2: 22
IBL |2 T Al |2 (kij+«%), AL |2 (kj+ ).
Wa,(da,) =ta, (da,)Wx(0), (19 T Li T 0
where
ta (da)=ha (da)ha2(0). (20) The same holds for the reflected components. Note that
1 1 1 1 1

there is no interference between the individual fluxes in Eq.
In a similar way we can define the matrli;(2 for the layer (23), and that the flux for each component is equal to the

Ay product of the energy density;w?Al(}); (or p;»?B{}))
times the group velocitygw/ 9k| = B%k/ w. We can define the
ta,(da,)=ha (da + dAz)hgll(dAl)_ (21  transmission and reflection coefficieritates for the longi-
tudinal and transverse modég ) andR, (1), respectively,
The transfer matrix for the SL is given by in the forms
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?ijwﬁ%k-rﬂBﬁ |2/jZi , (25) Multiple-superlattice system
The above results can be easily generalized to structures
R¥r:pjw:8$'jij|B1/'E 121§, (26)  as complex as required. In fact, the corresponding transfer

matrix is obtained after multiplying the transfer matrix of
each finite superlattice witN; periods. The sequence could

_ 2 1t 127
To=pj@BLikylAL [z, @D also be either a regular or a quasiregular one, e.g., following
the Fibonacci sequence. As an example we apply analytical
Ru=pjoBL KU AL 4, (28)  expressions for the transfer matrix in the normal incidence to
a triple-superlattice structure, where it is still possible to ob-
TT=p,-wﬁ$jij|/-\%tj 12/, (290  tain analytical results. The system we consider consists of
finite superlatticesA, B, and A, grown on a substrate. For
, . honons propagating through theéB A system, the relevant
RT:ij,B%kTﬂATE 1214 (30 '?ransfer n?atrg( ,gs g g Y
Thg superscripx labels the transverse horiz_ontal modes, and Taga=Ta(N)Te(M)TA(N). (33)
j-i is the incident flux. The following relation between the
fluxes holds for the defined coefficients: The A(B) SL hasN(M) periods. In the following the
subscriptsA and B denote the corresponding SL. The calcu-
HRIAT R +T++Rr=1. (31 lations of the matrix product of Eq33) is straightforward.

The explicit expressions fol oz, Can be easily obtained
Discarding the TH solutions for the moment, and focusingffom Ref. 5 with the same replacement that for the simple
our attention on the coupled solutions, we relate the coeffiSL’s. The resonance condition in teBA multisuperlattice
cients in the substraté and detectolY with the help of Eq.  structures G..) discussed in Ref. 5 are also valid for optical

(14): phonons.
AT_Y A}_x IV. PHONON TUNNELING IN ISOTOPIC GERMANIUM
r r SUPERLATTICES
LY LX
Al =T AL |- (32 For the °Ge ("“Ge) atom we have used the same mass
Y i and the same value o(I') = w1o(I") =~309(301) cm? of
ALy ALy Ref. 23. As the isotopic composition is changed, the atomic

vibration frequencies are mainly rescaled by the niass.

T is the convenient product of matricesandh; * [Eqs.(20)  this case the optical branches for bulk materials are shifted
and(21)], according to the number of blocks in the finite SL. rigidly, and the parameterg?~2.83x 10" '? and 2~5.50
For the tunneling boundary condition we have different pos-x 101 for both isotopes coincide with the corresponding
sibilities. The simplest and most common situation is thevalues of natural Ge; these are obtained by fitting the data
incidence of a phonon, e.g., a longitudinal one, from the leffrom Ref. 25 to the curve of the bulk dispersion relations.
side with amplitudeA] x=1, in such a way thaftx=Aly  For acoustic phonons, we obtain the parametgfs=
=A7y=0. In the following we limit ourselves to this case. —5.61x10 2 and 82~ —1.77x10 *2in the same way for

To obtain expressio(23), we assumed in the calculations natural Ge, and rescale these by the isotope mass. We as-
that for «# 0 the conditionw = w+ is fulfilled. This condi-  sume the simplest situation when both the substrate and de-
tion is valid for optical and acoustic phonons in unstrainediector are of the same material as the well, i’8Ge.
materials. For a biaxial deformation the stress related to the |n Fig. 1 we compare the dispersion relation for an infinite
mismatch leads to the splitting of theand T phonon fre-  SL in the direction[001], with the transmission coefficient
quencies in the bulk materiale)( # wt). For strained mate- for a perpendicular longitudinal phonofi() calculated for a
rials are needed both a different “stress” tensor and the cor2o barrier (°Ge),-(“Ge), finite SL. Both acoustic and op-
responding solution space to substitute in the expression fafcal phonons are studied. A good agreement with other the-
the energy density flux. For the strained Si/Ge structuresretical and experimental results is obtaiféé For optical
studied in Ref. 24, expressioi23) constitutes a good ap- modes the agreement is excellent, while the acoustic
proximation(although the results are exact only #®=0).  branches have frequencies lower than expected. This is re-

The normal incidence can be obtained as the limiting casgated to the input parameters we choose. We take the topmost
(k—0) of the above expressions. For this 1D problem, alowesh branches for the opticalacousti¢ phonons. We
complete analytical development is possible. The theory othoose the input parameters in order to guarantegahgte
transmission of perpendicular acoustic phonons through aptical and acoustic branches do not overlap, @mdhat the
finite superlattice using a transfer matrix approach can b@&umber of modes for a value gfbe equal to the number of
seen in Ref. 5. Defining the optical impedance ¥s degrees of freedom of the atoms in the supercell. In this
=pi,8i2ki, and employing the expressidgndefined in Ref. 5, sense, studying the optical and acoustic vibrations at the
the formulas valid for optical phonons can be easily obtainedame time, we improve the results of the calculations. Note
from Ref. 5, making the substitutioi;— —Y; and{— —¢. also that we obtain good results at the relatively large wave-
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(“Ge),("Ge), SL @ A ® B () ABA (DABA (Details)
70 74 70 74 _
: : 1300 Ge,- Ge, Ge,- Ge, 2 0 )
0995 1.00 308} ] I ] 297.9
[ J2s0 — ]
240 - I ] A
- [230 ] —
£ 200 £ 304} ] s ]
O 3]
- % — 297.3
e [ 150 g 802p 1
S 140 g
o / g s00} J297.0
2 130 1100 .
- 208} ]
0.999  1.000;
296.7
150 296} ]
00 05 1.0 0.0 05 1.000 05 1.000 05 1.0
10 periods A

%.o 05 1000 05 1.00 20 periods 20 periods 20 periods B

q (r/d) [001] Transmission Rate Transmission Rate

'_:iG' 1 Cglc_ul_atecioLO—ph%non dispersion cury&equency in FIG. 2. Multiple-superlattice systefoptical modes, normal in-
cm™ ) for an infinite ("Ge),-("*Ge), SL along the[001] direction cidence. (a) Ais a 20 period PGe)-(7/Ge)s SL, and(b) Bis a 20

and trgnsmission re_lte of a norm_alphonon ) fqr a 20-barrier period (°Ge),-("Ge), SL. (c) The ABA system shows a resonance
SL. d is the SL period. Both optical and acoustic modes are prej, ihe A dip. (d) The resonance conditid®_ brought into coinci-

sented. The length in thg axis is normalized to the unity. dence with the transmission peaks. is represented by a dashed
line. See the text for details.

vector valueq=m/d (d is the SL period compared to the
length of the Brillouin zone of the massive crystal/l).  the letterA labels a ten period’fGe);— ("“Ge)s SL, andB a

A coincidence between the width of the transmission peal20-period (°Ge),-("“Ge), SL. In the frequency interval
(dip) and the phonon bandwidtfgapwidth is observed. (296,298) cm?! some transmission dips appear in the
Note that the gaps at the edge of the mini Brillouin zone arestructure; conversely, in thB structure this interval corre-
broader than aj=0, as expected from E¢L2). As expected sponds to allowed statdsee Figs. &) and 2b)]. In the
for an isotopic SL, the gaps between minibands are venABA system some resonances appear inXliip [Fig. 2(c)].
small—practically indistinguishable on the scale of Fig.These are well explained by the resonance conditn
1—and Eq.(11) is a good approximation. Some additional generalized from Ref. 5, as shown in FigdR The small
oscillations are present, originating from the interference efdeviation between frequency satisfyig =0 and the loca-
fects in the finite SL. In general, it is found that the trans-tion of the transmission peak arises from the finite number
mission dips in the continuum region are more pronounced gIN=10) of periods assumed for superlattiée As N be-
higher frequencies. For lower frequencies in the continuum
the modes are more extended through the whole structure ) A b) ©) Detalls d) Details

and the transmission rate is closer to unity. "Ge Ge G, G_
In the transmission rate we can also compare the differen 4 ogs2 0 22 0 2.,
natures of the confined and folded phonon modes. The mod: soor ]
confined in"°Ge shows a resonance peak. The more confinec 2% 274
the phonon the narrower the peak, corresponding to flatter 299} 2oz 73
phonon branchegfor larger SL periods the highest fre- _  285;
quency phonons are more confirféd) The modes confined "¢ 280} 2911 C:s ( 272
in "“Ge, which penetrate significantly into the adjacent lay- % 275) ] J ( """" >
ers, and the modes extended through the SL present chara'§ 7o} =] % 290} C 1A
teristic transmission dips at the gaps of the phonon spectrag g1 270
In this way the transmission rate describes the features of the¢t ¢ ] o8l
phonon modes. »ssl 269
The same features of simple superlattices remain valid for
multisuperlattices and for arbitrary incidence angles, as dis- 060 05 1.000 05 1.0 2°%00 05 1.000 05 1.0°00
cussed below. In this way we can elucidate the nature of the 20 periods

phonon modes in all kinds of structures. The even greater Transmission Rate

periodicity of the multisuperlattices introduces additional  F|G. 3. Multiple-superlattice systefoptical modes, normal in-
characteristics. As an example we study the case of a triplgidence. (a) A is a 20-period °Ge),-("“Ge), SL, and (b) is an
ABA multisuperlattice for perpendicular LO-phonon inci- ABA SL; B represents 80 periods of bulkGe. G, (c) andG_ (d)
dence. The results are presented in Figs. 2 and 3. In Fig. 3ye represented by dashed lines. See the text for details.
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FIG. 4. Transmission and reflection coefficients vs frequentm cm ') for the double-barrier structure(bulk
Ge-("Ge),-("°Ge),-("“Ge),-bulk  °Ge). (a) Transmission coefficient forL phonons T,) for the angles of incidenced
=0, #/15, w/10, #/9, w/8, w/7, andw/6. The coefficientsI , T+, R_, andR; for the anglesb) #=#/8 and(c) 6= =/6 are also
plotted. See the text for details.

comes larger, the deviation tends to z&tn.Fig. 3theB SL  orthorhombic symmetry of the SLOscillations in the high-
is replaced by 80 periods of bulGe. The resonance is also est peaks and dips are observsge the inset for optical
well explained by the above conditions. bound states, and the second dip for acoustic phgn8imai-

We shall now study in detail the coupling betweemand larly, the relative values of the different coefficients change
T modes through the phonon tunneling. We consider the inwith the incidence anglgcompare thé&?, andRy coefficients
cidence from the left of a longitudinal phonon with wave in Figs. 4b) and 4c)]. This means that the values of the
vector tilted by an angl® with respect to the longitudinal coefficients characterizing the transverse component of the
wavevector of the substrate in telirection . ). In order mode do not change monotonically, as could be expected
to obtain information of each mode, theandT transmission  from the shifting effect. By increasing the incidence angle
and reflection coefficient®6—-30 are evaluated. we extend the distance the phonon needs to travel through

In Fig. 4@ the transmission coefficient for optical the heterostructure, and the interference profile changes. This
and acoustic longitudinal phononsT() for a double- effect competes with the increase of the transverse compo-
barrier structure [bulk’°Ge— ("‘Ge),— ("%Ge),—("“Ge),  nent of the phonon mode for larger angles. An oscillatory
—bulk’Ge] is plotted for incidence angles equal ® behavior was predicted theoretically for the Ge eigenfre-
=0, w/15, /10, 79, /8, =/7, and=/6. Increasing the quencies in Si/Ge SL’s as the SL period is incre#Seahd
angled—which corresponds to a larger transverse wave vecan oscillatory behavior for the transmission rate as a function
tor k—the peaks and dips shift to lowéargep frequencies of the number of monolayers was found in Ref. 29 by ap-
for the optical(acousti¢ modes. This is the expected behav- proximating the 3D tunneling problem as a 1D one. In Ref.
ior when compared with the trends in the dispersion relatior28 it was explained that in real structures the presence of
for k#0. The phonon modes are greatly influenced by the5gSi, _, alloys in the interface destroys the interference ef-
bulk dispersion relations. We checked this statement numerfects, and it is not possible to observe the oscillations. We
cally, but do not show the explicit results because they arsuppose that isotopic SL’s are excellent candidates in which
equivalent to the ones here discussed. Examples are foundtia observe the aforementioned features, for the following
the calculations for Si/Ge heterostructiffeand the results reasons. First, the interfaces have great quality because the
for mixed polar-nonpolar system§.The reason for this be- compound materials are very similar. Second, the transmis-
havior is that the oscillations with longest wavelength do notsion peaks and dips are very broad, and easy to detect, due to
satisfy the change in the symmetry in the growth directionthe high dispersive character of the phonon modes.
(the cubic symmetry of the host material is replaced for the For acoustic phonong, is closer to unity than for optical
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phonons. This is a consequence of the fact that acoustic 10”7 . .
modes are more extended through the whole structure, and » GeBulk o
shows that. and T modes are less coupled than for optical _ 107
phonons. i ]
§ . . “Ge,"'Ge, SL
V. THERMAL CONDUCTIVITY §, a0y
-5
Hyldgaard and Mahdnh and Tamuraet al® found, em- = 1x107
ploying a Debye-like model, that the reduction in the SL - 10°[.
thermal conductivity at high temperature with respect to the .
bulk one is an order of magnitude for Si/Ge structures, and 10 1 10 100 1000
about three times that for a GaAs/AlAs SL. The same quan-
titative behavior was found with more realistic models in Temperature (K)

Refs. 20 and 21. The differences between these two cases . ) -
correspond to the relative phonon band gap width of the host F!G- 5. Ratio of the perpendicular thermal conductivity, to
materials. In the Si/Ge system the modes are in general mofgIo"on relaxation timers, as a function of temperature. For the
confined; also, the phonon branches are less dispersive, co%-Ge)“'( Ge)s SL, we represent the Cont”bu“.on of the acoustic
sequently with smaller average group velocities than in th odes by a_dotted line, and that of both acoustic and optical modes
GaAs/AlAs system. For an extensive discussion, see Ref. 1 y a solid line. The values for the bullGe are represented by

Due to the overlapping of bulk phonon bands, the reduction ashed lines.

corresponding to the isotopic SL is expected to be MOr§q ¢ the contribution of the optical phonons at higls about

m_odest than_ in thg two former cases. But the point that W&he 5/9 of the acoustic phonons, and in principle should be
will address is the influence of the optical phonons, not CONtonsidered in other studies

sidered by other authorgexcept, very recently, for the
smaller influence for Si/Ge structures discussed in Ref. 20
The contribution of optical phonons is expected to be impor-
tant at high temperaturggs commented upon in Seg.ih We have presented a recently developed phenomenologi-
the latter system. In Fig. 1 we observe that the dispersiveal long-wavelength model as a general approach which de-
character of the optical modes is comparable to that of thecribes(with an appropriate choice of the parametdseth
acoustic ones. The thermal conductivity of bulk germaniumacoustic and nonpolar optical phonons in semiconductor het-
with different isotopic compositions was studied intensivelyerostructures. We have shown the necessity of considering
in Ref. 30. together acoustic and optical phonons to obtain the best de-
As in Ref. 17 we consider the ratio of the superlatticescription of all modes. From a postulated Hamiltonian den-
perpendicular thermal conductiviiys, to phonon relaxation ~ sity, the equations of motion and a continuity equation for
time 75, (assuming it is independent of the frequengiven  the energy density are derived straightforwardly. The trans-
by mission and reflection coefficients are defined rigorously.
For cubic symmetry we have shown that there is no interfer-
ence between the energy density fluxed adind T modes.

VI. CONCLUSIONS

- 2 2
S fd_KJW/d ﬂﬁw)\ ﬂ) dN (34 Our calculations are valid while the conditions eithey
TSL O\ (2m)°? —mld2T aq ) dT’ =w7 or k=0 hold, i.e., it is an exact result for unstrained
material and an approximation for strained ones.
where\ is the set of labels of the states, axe N(T) is the We have calculated the transmission coefficients in struc-
Bose-Einstein distribution function at temperature T. tures made up by nonpolar materials. In particular, we have

In Fig. 5 we show the calculated ratio of the perpendiculampresented results for some isotopic Ge finite SL's. From the
thermal conductivity to the phonon relaxation time as a func-analysis of isotopic and Si/G&ef. 29 superlattices, we can
tion of temperature for the’{Ge),-("“Ge), SL. For the sake conclude the following rules(l) Resonance peaks in the
of comparison we also include this magnitude for the bulktransmission rate characterize the confined modes. The
%Ge (dashed ling We describe the phonons in any direction height of the peak depends on the penetrability of the mode
of reciprocal space by the simple relations obtained from Eqin the adjacent layer, e.g., in the (${Ge), SL only the Si
(11) (the parameters are fitted to the entire Brillouin zone ofmode confined at the interface have a transmission rate close
the host material We represent the contribution of acoustic to unity, and the other Si modes have a vanishing small
phonons by a dotted line, and that of both acoustic and opmaximum value ofT, .1%?4 (2) The extended modes have
tical phonons by a solid line. The same order of magnitudehick peaks which are limited by dip&3) The broader peaks
and trends as in Refs. 17 and 19-21 are found. The reductiaare related to more dispersive bands, and consequently to a
of the thermal conductivity in the SL with respect to the bulk greater phonon group velocitg4) In a multiple-superlattice
is lower (about 3/2) than in the Si/Ge and GaAs/AlAs sys- system specific resonance conditions following from the ad-
tems, as commented upon above. We expect a small overeditional superperiodicity are also foun(s) For oblique di-
timate due to the approximation employed, i.e., neglectingections @,«+ 0) the phonons are greatly influenced by the
the gaps in the SL dispersion relation. Finally we observebehavior of the bulk dispersion relations.
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In the study of the phonon tunneling, for the case of ob-spite of the long-wavelength nature of the model employed,
lique incidence, oscillations in the relative contribution of thewe have obtained good results for large values of the wave
different coefficients for a variation of the incidence angleVector.

are found. We expect that this behavior could be detected For isotopic SLs it is possible to obtain, for each phonon
. . . . : and, explicit relations between the phonon frequency and
experimentally in the isotopic SL’s.

. o _ honon wave vector for the entire Brillouin zone. Based on

In all the cases studied the infinite SL is recovered as thgyese results we conclude that in this system the contribution
number of periods increases. In practice, about 20 periodgf optical phonons to the thermal conductivity should be
are sufficient to obtain the features of the infinite case. Intaken into account.
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