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Phonon propagation in nonpolar semiconductor heterostructures
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A recently developed long-wavelength continuum phenomenological model is employed to study phonon
tunneling for an arbitrary incidence angle, and to estimate the contribution of optical phonons to the perpen-
dicular thermal conductivity in simple and multisuperlattice nonpolar semiconductor heterostructures. Phonon
tunneling is a multicomponent problem with different tunneling channels. We rigorously define the transmis-
sion and reflection coefficients from the energy density balance equation. Simple general rules are presented
for the relationship between~a! the key features of the transmission and reflection rates, and~b! the vibrational
properties. The range of applicability of the model is increased by simultaneously considering both acoustic
and optical phonons. The defined coefficients are employed to test the interrelationship between the coupled
modes. Interesting oscillation effects in the relative contribution of different coefficients as a function of the
incidence angle are found. We report numerical results for isotopic Ge superlattices to illustrate the model
considered. Approximate analytical expressions for the dispersion relation are derived for this system. The
contribution of optical phonons to the thermal conductivity is elucidated with the help of these expressions.
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I. INTRODUCTION

The vibrational characteristics of multilayered structu
are of both fundamental and practical interest. Optical sp
troscopies are suitable for the investigation of semicondu
microstructures, and can also be used to characterize
quality of the heterostructures, in particular the details of
interfaces~for a review, see Ref. 1!. In order to explain the
main experimental results, different models have been de
oped to describe the phonon dispersion curves. These mo
range from simplified linear chain models2 to the most elabo-
rate ones based onab initio local-density calculations.3 Most
optical spectroscopies are subject to rather stringent sele
rules which arise from wave-vector conservation. In fact,
phonon created or annihilated must have a wave vecto
magnitude close to zero, i.e., near the center of the Brillo
zone. For this reason, phenomenological long-wavelen
models are successful when compared with experimenta
sults.

It is interesting to note the preference of theoreticians
long-wavelength models to study acoustic4,5 and optical6,7

phonons. These approaches can accommodate the sym
of the materials, if desired. Compared with other pheno
enological andab initio models, these help to visualize th
physics of the problems, due to the comparative reductio
the computational effort, and to the predominantly analyti
nature of the study.

Recently, a phenomenological continuum approach w
developed for polar optical oscillations in semiconduc
nanostructures.7–9 It simultaneously satisfies mechanical a
electrostatic matching conditions, and has been applied
cessfully to double heterostructures, superlattices~SL’s! and
quantum dots.8,10 A detailed presentation of this model ca
also be seen in Ref. 9. In the spirit of this approach,
proposed a continuum model for nonpolar optical phono
and obtained it formally as a coupling constant between
0163-1829/2001/63~24!/245304~9!/$20.00 63 2453
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chanical oscillations and the electric field vanishes, as
pected for nonpolar crystals.11 Details of this model, and a
calculation of eigenvalues and eigenmodes in different n
polar heterostructures, considering real interfaces, were
sented in this reference. The model7 contains Christoffel
equations for acoustic phonons12 as a particular case, with
the right selection of the input parameters. In the pres
paper we study both acoustic and optical vibrations in n
polar materials, employing the long-wavelength approac11

We show that the model for optical phonons is a counterp
of that corresponding to acoustic phonons; considering b
together, the best results compared with other methods
experimental data are obtained. We focus on the propaga
of phonons through finite simple and multisuperlattice str
tures.

Acoustic-phonon tunneling has been intensively studi
both theoretically with Christoffel equations4,5 and experi-
mentally with phonon imaging.13 Employing a long-
wavelength model for phonon tunneling, Ridley elucidat
the electrostatic character of the vibrational modes in o
barrier polar heterostructure.6 Phonon tunneling in nonpola
systems is analyzed in the present paper. It is a multicom
nent problem with different tunneling channels. The tran
mission and reflection coefficients are rigorously defin
from the energy density balance equation, which is deriv
without approximations. To the best of our knowledge, the
analytical results have not been discussed even for the w
studied acoustic phonons~see, for example, Ref. 4 for acous
tic phonons and Ref. 6 for optical phonons!. Elimination of
the electrostatic coupling simplifies the formulation of t
problem, which can then be carried out analytically. T
phonon normal incidence~a one-dimensional problem! al-
lows for a complete analytical treatment, and is a gener
zation of the results for acoustic phonons of Mizuno a
Tamura.5
©2001 The American Physical Society04-1
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One of the purposes of the present work is to explain h
phonon tunneling describes all the features of the vibratio
modes in semiconductor heterostructures. We present s
simple rules to show the equivalence between this appro
and the usual numerical diagonalization. Also, the interre
tion between the coupled modes is tested.

The recently observed reduction of thermal conductiv
both in-plane14 and perpendicular to the interface15 in semi-
conductor superlattices, compared with the values in b
materials, implies a potentially attractive application for h
erostructures in thermoelectronic devices.16 Hyldgaard and
Mahan17 showed that the thermal conductivity of a SL
reduced because the phonon group velocity is decreased
tive to its value in the bulk constituents~among other reason
presented in Refs. 15 and 18!. To analyze these problem
Hyldgaard and Mahan and Tamuraet al.19 employed simple
lattice models that took account of the acoustic phono
Very recently, more realistic full three-dimensional~3D! cal-
culations began to appear,20,21 and showed that the simpl
previous approaches explain the main qualitative feature
this physical problem and offer good quantitative estim
tions, even at high temperatures.

The most drastic reduction of the thermal conductiv
occurs at high temperatures (.100 K), when the peak in the
Planck phonon distribution is at frequencies characteristic
optical phonons, e.g., atT5257 K, andv5502 cm21 ~The
peak in the number of phonons per unit frequency is giv
by \v52.8kBT). We recall that, due to the rather flat natu
of the optical-phonon branches, the corresponding group
locity is very small. Therefore, the weight of optical phono
in heat transfer may be small even at high temperature
different behavior is expected for the materials studied
low, where an important contribution of the optical phono
is found.

Regarding the propagation of thermal energy throu
crystalline solids, we note that at low temperature the p
cipal source of thermal conduction are the acoustic phon
in the GHz (109 Hz) to THz (1012 Hz) range. At room
temperature the propagation of thermal phonons is hig
diffusive, with mean free paths resulting from phonon sc
tering. This limits the optical-phonon imaging.

The most suitable systems to study phonon transmis
are isotopic Ge SL’s. An isotopic Ge SL refers to two laye
of enriched Ge isotopes repeated periodically. These sys
were investigated intensively in the last years.22,23 The
phonon-dispersion relations of two isotopically enriched
bulk materials overlap over a large frequency range. T
allows phonon SL bands to be more dispersive, which
plies larger absolute values of the group velocity perpend
lar to the growth direction in layered structures, and con
quently a greater contribution of the optical phonons to
thermal transport and transmission peaks, broader and b
resolvable with numerical methods than in Si/Ge structu
Also, strain effects are not important. These features
stimulating for an experimental study. Another interesti
system is the Si/Ge SL. The physics of phonon tunneling
about the same. A short report of numerical results for n
mal incidence only was presented elsewhere.24

For the sake of completeness, we summarize the m
24530
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features of the long-wavelength model relevant to this pa
in Sec. II, and present general analytical properties, i.e.,
derivation of the energy density balance equation, and so
approximations which are useful for isotopic SL’s. In Sec.
the main analytical properties of the phonon tunneling
described with the help of a transfer-matrix method, and
results of the preceeding Sec. II. In Sec. IV we present
merical results for different Ge SL’s. We first study th
simple periodic superlattice to show how we can explain
phonon physics through the transmission rate. Then we a
lyze multiple superlattices as an example of the usefulnes
the model in more complex systems. The oblique incide
of phonons is discussed later. We consider the contribu
of optical phonons to thermal conductivity in Sec. V. Fina
some conclusions are given.

II. LONG-WAVELENGTH MODEL

We first analyze the optical phonons. For a description
the oscillations we use the displacement vector fieldu, which
represents the relative displacement of the two atoms in
unit cell. Other physical parameters of the medium arer

5M̄ /vc , the reduced mass density, whereM̄ is the reduced
mass of the atoms andvc the unit-cell volume;vT and vL
are the limiting longitudinal~L! and transverse~T! bulk fre-
quencies;bT andbL are two parameters describing the d
persion of the oscillations, i.e., for bulk materials theL andT
branches have the parabolic behaviorvL,T

2 (k)5vL,T
2

2bL,T
2 k2 in the neighborhood of theG point of the Brillouin

zone. In layered structures all these quantities are piece
constants, and are dependent on the coordinates.

All the following results are valid for acoustic phonons
the vector fieldu now represents the atomic center-of-ma
displacements. We should also make the replacementbL(T)

2

→2bL(T)
2 @bL(T) is the L(T) sound velocity#, wherevL(T)

50, and the reduced mass is substituted for by the total m
of the cell. In this way the Christoffel equations of motio
and, in particular, the linear dispersion relation for the bu
vL(T)5bL(T)k, are obtained. For simplicity, in the rest of th
paper we shall limit ourselves to writing formulas for optic
vibrations.

In the spirit of the theory of continuous media, we pos
late the Hamiltonian density

H5
1

2
rU]u

]t U
2

1
1

2
rvT

2uuu21
s i j uj i* 1s j i* ui j

4
. ~1!

The first term is the kinetic-energy density, and the s
ond term represents the coupling of the displacement fieu
with itself. The last term incorporates the internal stresse
the medium, and leads to the dispersive character of the
cillations. s is the ‘‘stress’’ tensor, first defined in Ref. 7
which takes into account the symmetry properties of the m
dium. By standard procedures the following system
coupled second-order differential equations~equations of
motion! are obtained:
4-2
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r
]2u

]t2
52rvT

2u1“•s. ~2!

To obtain the continuity equation for the energy dens
we first integrate, in the volume of the whole space,
scalar product of the temporal derivative ofu times the equa-
tion of motion~2!; then we take the Hermitian conjugates
the resulting equation, and add both together. Integrating
parts and after a straightforward algebra, we find the ene
density balance equation

]H
]t

1“• j50, ~3!

where the energy density flux is given by

j52
1

2 S ]u†

]t
•s1

]u

]t
•s†D . ~4!

As in Ref. 11, in order to study the materials conside
here, it suffices to study the case of cubic symmetry. In l
ered structures, we Fourier transform in the layer plan
which introduces a 2D wave vectork, and we are thus lef
with a differential system inz, the normal coordinate. In thi
case, after assuming harmonic solutions and solving
equation of motion~2!, we find the solution space

ux~y,z,t !5 ikT~BT
t eikTz2BT

r e2 ikTz!ei (ky2vt), ~5!

Uuy~y,z,t !

uz~y,z,t !
U5S AL

t U ik

ikL
UeikLz1AL

r U ik

2 ikL
Ue2 ikLzD ei (ky2vt)

1S AT
t U2 ikT

ik
UeikTz1AT

r U ikT j

ik
Ue2 ikTzD ei (ky2vt),

~6!

where

kL(T)5AvL(T)
2 ~G!2v2

bL(T)
2

2k2, ~7!

and the transverse wave vectork is assumed without lost o
generality in they direction due to the isotropy of th
media.11 For convenience the solutions are written as trav
ing waves. The subscriptL(T) labels the longitudinal~trans-
verse! independent solutions. The superscriptt(r ) labels the
wave moving to the right~left!, which we shall call a trans
mitted ~reflected! wave when studying the phonon tunnelin
The transverse horizontal solution@Eq. ~5!# is decoupled
from the oscillations in the directionsy andz @Eq. ~6!#. For
k50 the solution space is decoupled into purely longitudi
and doubly degenerate transverse vibrations.

The secular equation for the coupled modes can be w
ten in the matrix form11

detS A kB

kC D D 50. ~8!
24530
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The order of the submatricesA, B, C, andD depends on
the problem under consideration (232 in the quantum-well
case and 434 in the SL case!. The diagonal submatrixA(D)
contains only transverse~longitudinal! magnitudes fork50.
On the other hand the nondiagonal submatricesC andB are
responsible for theL-T mixing for kÞ0.

On studying numerically isotopic superlattices, we fi
that for kÞ0 the coupling between longitudinal and tran
verse solutions is not strong. In a first approximation we c
neglect the off-diagonal terms in Eq.~8!, and obtain a dis-
persion relation for a superlattice,

cos~qd!5cos~kL(T)wl !cos~kL(T)bh!

2
1

2 S j1
1

j D sin~kL(T)wl !sin~kL(T)bh!, ~9!

where

j5
rwbL(T)w

2 kL(T)w

rbbL(T)b
2 kL(T)b

; ~10!

q is the SL Bloch wave vector, andd5 l 1h is the SL period.
In the frequency range of forbidden propagationkL(T)b is
imaginary. Note that the right-hand side of Eq.~9! is func-
tion of k, and that the two transverse solutions are degen
ate.

The fractionj is close to unity for most SL’s. That is
especially true for isotopic SL’s due to the small changes
the parameters of the constituent materials. Settingj51 as a
zeroth-order approximation in Eq.~9!, we find the condition
for folded bulk dispersion curves~no gaps open!:

kL(T)wl 1kL(T)bh5qd12pn, n50,61,62, . . . .
~11!

From here it is straightforward to obtain an explicit rel
tion for v as a function ofq and k for each bandn. This
relation is not valid for confined states. In the limiting ca
the confined phonons are obtained from the condit
kL(T)wl 5np/2.11 In the next-order approximation the widt
of the gaps@at frequencyvn in Eq. ~11!, such thatqd
5mp# is found to be

Dvn5
A2gsin~kL(T)w

(n) l !sin~kL(T)b
(n) h!

vnS l

bL(T)wkL(T)w
(n)

1
h

bL(T)bkL(T)b
(n) D , ~12!

whereg5(12j)2/2j. For acoustic phonons atk50 the re-
sult of Tamuraet al.4 is recovered.

In isotopic SL’s the gaps are small, and we can emp
the dispersion relation and phonon group velocity norma
the grow direction of the heterostructure derived from E
~11! to calculate the thermal conductivity. In this way we a
considering both optical and acoustic modes in the wh
reciprocal space within the approximation that the mod
practically do not interact between them.
4-3
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III. TUNNELING PROBLEM

In our problem we have three different channels for
phonon tunneling: two transverse channels and one long
dinal channel@Eqs. ~5! and ~6!#. Due to the fact that the
transverse horizontal solution is decoupled from the ot
solutions, this channel is independent of the other two. Ho
ever, this case remains interesting because the differe
with respect to the one-dimensional one. Also, a simple a
lytical formulation is possible. To construct the associa
transfer matrix, we introduce the column vector
le
-

24530
e
u-

r
-
es

a-
d

Wj~z!5U uj

s jz
U, ~13!

wheres jz5s•êj , and j 51 and 2 label the well and barrie
materials, respectively. Employing the solution space@Eqs.
~5! and ~6!#, we can writeWj (z) as

Wj~z!5hj~z!Cj . ~14!

In particular, for the coupled solutions@Eq. ~6!# we find
~the TH modes and the limiting case of decoupled solutio
for k50 are discussed later!
hj~z!5S ikeikL jz ike2 ikL j z 2 ikT je
ikT jz ikT je

2 ikT jz

ikL je
ikL j z 2 ikL je

2 ikL j z ikeikT jz ikeik2T jz

2BjkkL je
ikL j z 22BjkkL je

2 ikL j z Eje
ikT jz Eje

2 ikT jz

D je
ikL j z D je

2 ikL j z 2BjkkT je
ikT jz 22BjkkT je

2 ikT jz

D , ~15!
d
,

ed
bic

n-

onal

that
q.

the
Bj5r jbT j
2 , D j5r j@k2~bL j

2 22bT j
2 !1bL j

2 kL j
2 #,

Ej5r jbT j
2 ~k22kT j

2 !, ~16!

and

Cj5UAL j
t

AL j
r

AT j
t

AT j
r

U . ~17!

AL(T) j
t and AL(T) j

r are the longitudinal~transverse! transmit-
ted ~t! and reflected~r! oscillation amplitudes.

Returning to the general case of both TH and coup
solutions, let us consider the first layerA1 between the sub
strateX and the second layerA2. The boundary conditions
demand that

WA1
~0!5WX~0!,

WA1
~dA1

!5WA2
~dA1

!. ~18!

Employing Eqs.~14! and ~18!, we find

WA2
~dA1

!5tA1
~dA1

!WX~0!, ~19!

where

tA1
~dA1

!5hA1
~dA1

!hA1

21~0!. ~20!

In a similar way we can define the matrixtA2
for the layer

A2:

tA2
~dA2

!5hA1
~dA1

1dA2
!hA1

21~dA1
!. ~21!

The transfer matrix for the SL is given by
d

TSL5tA2
tA1

. ~22!

The transfer matrix for finite SL’s with N periods is obtaine
after multiplying the transfer matrix for each individual SL
i.e., TSL(N)[TSL

N .
The transmission and reflection coefficients are defin

from the energy density balance equation. For the cu
‘‘stress’’ tensor11 and the associated solution space@Eqs.~5!
and ~6!#, we have an explicit expression for the energy de
sity flux @Eq. ~4!# in the heterostructure growth directionz,

j z5r jvbT j
2 kT j~ uBT j8t u22uBT j8r u2!1r jvbL j

2 kL j~ uAL j8t u22uAL j8r u2!

1•••1r jvbT j
2 kT j~ uAT j8t u22uAT j8r u2!, ~23!

where the primed constants are related with the adimensi
constants employed in the solution space@Eqs.~5! and~6!# in
the following way:

uBT j8t u2

uBT j
t u2

5kT j
2 ,

uAL j8t u2

uAL j
t u2

5~kL j
2 1k2!,

uAT j8t u2

uAT j
t u2

5~kT j
2 1k2!.

~24!

The same holds for the reflected components. Note
there is no interference between the individual fluxes in E
~23!, and that the flux for each component is equal to
product of the energy densityr jv

2AL(T) j
t(r ) ~or r jv

2BL(T) j
t(r ) )

times the group velocityu]v/]ku5b2k/v. We can define the
transmission and reflection coefficients~rates! for the longi-
tudinal and transverse modesTL(T) andRL(T) , respectively,
in the forms
4-4
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TT
x5r jvbT j

2 kT juBT j8t u2/ j zi , ~25!

RT
x5r jvbT j

2 kT juBT j8r u2/ j zi , ~26!

TL5r jvbL j
2 kL j uAL j8t u2/ j zi , ~27!

RL5r jvbL j
2 kL j uAL j8r u2/ j zi , ~28!

TT5r jvbT j
2 kT juAT j8t u2/ j zi , ~29!

RT5r jvbT j
2 kT juAT j8r u2/ j zi . ~30!

The superscriptx labels the transverse horizontal modes, a
j zi is the incident flux. The following relation between th
fluxes holds for the defined coefficients:

TT
x1RT

x1TL1RL1TT1RT51. ~31!

Discarding the TH solutions for the moment, and focus
our attention on the coupled solutions, we relate the coe
cients in the substrateX and detectorY with the help of Eq.
~14!:

UALY
t

ALY
r

ATY
t

ATY
r

U5TUALX
t

ALX
r

ATX
t

ATX
r

U . ~32!

T is the convenient product of matriceshi andhi
21 @Eqs.~20!

and~21!#, according to the number of blocks in the finite S
For the tunneling boundary condition we have different p
sibilities. The simplest and most common situation is
incidence of a phonon, e.g., a longitudinal one, from the
side with amplitudeALX

t 51, in such a way thatATX
t 5ALY

r

5ATY
r 50. In the following we limit ourselves to this case

To obtain expression~23!, we assumed in the calculation
that for kÞ0 the conditionvL5vT is fulfilled. This condi-
tion is valid for optical and acoustic phonons in unstrain
materials. For a biaxial deformation the stress related to
mismatch leads to the splitting of theL and T phonon fre-
quencies in the bulk materials (vLÞvT). For strained mate-
rials are needed both a different ‘‘stress’’ tensor and the c
responding solution space to substitute in the expression
the energy density flux. For the strained Si/Ge structu
studied in Ref. 24, expression~23! constitutes a good ap
proximation~although the results are exact only fork50).

The normal incidence can be obtained as the limiting c
(k→0) of the above expressions. For this 1D problem
complete analytical development is possible. The theory
transmission of perpendicular acoustic phonons throug
finite superlattice using a transfer matrix approach can
seen in Ref. 5. Defining the optical impedance asY i

5r ib i
2ki , and employing the expressionz defined in Ref. 5,

the formulas valid for optical phonons can be easily obtain
from Ref. 5, making the substitutionY i→2Y i andz→2z.
24530
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Multiple-superlattice system

The above results can be easily generalized to struct
as complex as required. In fact, the corresponding tran
matrix is obtained after multiplying the transfer matrix
each finite superlattice withNi periods. The sequence cou
also be either a regular or a quasiregular one, e.g., follow
the Fibonacci sequence. As an example we apply analy
expressions for the transfer matrix in the normal incidence
a triple-superlattice structure, where it is still possible to o
tain analytical results. The system we consider consists
finite superlatticesA, B, and A, grown on a substrate. Fo
phonons propagating through theABA system, the relevan
transfer matrix is

TABA5TA~N!TB~M !TA~N!. ~33!

The A(B) SL hasN(M ) periods. In the following the
subscriptsA andB denote the corresponding SL. The calc
lations of the matrix product of Eq.~33! is straightforward.
The explicit expressions forTABA can be easily obtained
from Ref. 5 with the same replacement that for the sim
SL’s. The resonance condition in theABA multisuperlattice
structures (G6) discussed in Ref. 5 are also valid for optic
phonons.

IV. PHONON TUNNELING IN ISOTOPIC GERMANIUM
SUPERLATTICES

For the 70Ge (74Ge) atom we have used the same ma
and the same valuevLO(G)5vTO(G)'309(301) cm21 of
Ref. 23. As the isotopic composition is changed, the atom
vibration frequencies are mainly rescaled by the mass.22 In
this case the optical branches for bulk materials are shi
rigidly, and the parametersbL

2'2.83310212 and bT
2'5.50

310212 for both isotopes coincide with the correspondi
values of natural Ge; these are obtained by fitting the d
from Ref. 25 to the curve of the bulk dispersion relation
For acoustic phonons, we obtain the parametersbL

2'
25.61310212 andbT

2'21.77310212 in the same way for
natural Ge, and rescale these by the isotope mass. We
sume the simplest situation when both the substrate and
tector are of the same material as the well, i.e.,70Ge.

In Fig. 1 we compare the dispersion relation for an infin
SL in the direction@001#, with the transmission coefficien
for a perpendicular longitudinal phonon (TL) calculated for a
20 barrier (70Ge)4-(74Ge)4 finite SL. Both acoustic and op
tical phonons are studied. A good agreement with other t
oretical and experimental results is obtained.22,23 For optical
modes the agreement is excellent, while the acou
branches have frequencies lower than expected. This is
lated to the input parameters we choose. We take the topm
~lowest! branches for the optical~acoustic! phonons. We
choose the input parameters in order to guarantee that~a! the
optical and acoustic branches do not overlap, and~b! that the
number of modes for a value ofq be equal to the number o
degrees of freedom of the atoms in the supercell. In t
sense, studying the optical and acoustic vibrations at
same time, we improve the results of the calculations. N
also that we obtain good results at the relatively large wa
4-5
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vector valueq5p/d (d is the SL period! compared to the
length of the Brillouin zone of the massive crystal (4p/d).

A coincidence between the width of the transmission p
~dip! and the phonon bandwidth~gapwidth! is observed.
Note that the gaps at the edge of the mini Brillouin zone
broader than atq50, as expected from Eq.~12!. As expected
for an isotopic SL, the gaps between minibands are v
small—practically indistinguishable on the scale of F
1—and Eq.~11! is a good approximation. Some addition
oscillations are present, originating from the interference
fects in the finite SL. In general, it is found that the tran
mission dips in the continuum region are more pronounce
higher frequencies. For lower frequencies in the continu
the modes are more extended through the whole struc
and the transmission rate is closer to unity.

In the transmission rate we can also compare the diffe
natures of the confined and folded phonon modes. The m
confined in70Ge shows a resonance peak. The more confi
the phonon the narrower the peak, corresponding to fla
phonon branches~for larger SL periods the highest fre
quency phonons are more confined.22,23! The modes confined
in 74Ge, which penetrate significantly into the adjacent la
ers, and the modes extended through the SL present ch
teristic transmission dips at the gaps of the phonon spe
In this way the transmission rate describes the features o
phonon modes.

The same features of simple superlattices remain valid
multisuperlattices and for arbitrary incidence angles, as
cussed below. In this way we can elucidate the nature of
phonon modes in all kinds of structures. The even gre
periodicity of the multisuperlattices introduces addition
characteristics. As an example we study the case of a tr
ABA multisuperlattice for perpendicular LO-phonon inc
dence. The results are presented in Figs. 2 and 3. In Fig

FIG. 1. Calculated LO-phonon dispersion curves~frequency in
cm21) for an infinite (70Ge)4-(74Ge)4 SL along the@001# direction
and transmission rate of a normalL phonon (TL) for a 20-barrier
SL. d is the SL period. Both optical and acoustic modes are p
sented. The length in theq axis is normalized to the unity.
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the letterA labels a ten period (70Ge)82(74Ge)8 SL, andB a
20-period (70Ge)4-(74Ge)4 SL. In the frequency interva
(296,298) cm21 some transmission dips appear in theA
structure; conversely, in theB structure this interval corre
sponds to allowed states@see Figs. 2~a! and 2~b!#. In the
ABA system some resonances appear in theA dip @Fig. 2~c!#.
These are well explained by the resonance conditionG2

generalized from Ref. 5, as shown in Fig. 2~d!. The small
deviation between frequency satisfyingG250 and the loca-
tion of the transmission peak arises from the finite num
(N510) of periods assumed for superlatticeA. As N be-

-

FIG. 2. Multiple-superlattice system~optical modes, normal in-
cidence!. ~a! A is a 20 period (70Ge)8-(74Ge)8 SL, and~b! B is a 20
period (70Ge)4-(74Ge)4 SL. ~c! TheABA system shows a resonanc
in the A dip. ~d! The resonance conditionG2 brought into coinci-
dence with the transmission peaks.G2 is represented by a dashe
line. See the text for details.

FIG. 3. Multiple-superlattice system~optical modes, normal in-
cidence!. ~a! A is a 20-period (70Ge)4-(74Ge)4 SL, and ~b! is an
ABA SL; B represents 80 periods of bulk70Ge. G1 ~c! andG2 ~d!
are represented by dashed lines. See the text for details.
4-6
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FIG. 4. Transmission and reflection coefficients vs frequency~in cm21) for the double-barrier structure~bulk
70Ge-(74Ge)4-(70Ge)4-(74Ge)4-bulk 70Ge). ~a! Transmission coefficient forL phonons (TL) for the angles of incidenceu
50, p/15, p/10, p/9, p/8, p/7, andp/6. The coefficientsTL , TT , RL , and RT for the angles~b! u5p/8 and ~c! u5p/6 are also
plotted. See the text for details.
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comes larger, the deviation tends to zero.5 In Fig. 3 theB SL
is replaced by 80 periods of bulk70Ge. The resonance is als
well explained by the above conditions.

We shall now study in detail the coupling betweenL and
T modes through the phonon tunneling. We consider the
cidence from the left of a longitudinal phonon with wav
vector tilted by an angleu with respect to the longitudina
wavevector of the substrate in thez direction (kL). In order
to obtain information of each mode, theL andT transmission
and reflection coefficients~26–30! are evaluated.

In Fig. 4~a! the transmission coefficient for optica
and acoustic longitudinal phonons (TL) for a double-
barrier structure @bulk70Ge2(74Ge)42(70Ge)42(74Ge)4
2bulk70Ge# is plotted for incidence angles equal tou
50, p/15, p/10, p/9, p/8, p/7, andp/6. Increasing the
angleu—which corresponds to a larger transverse wave v
tor k—the peaks and dips shift to lower~larger! frequencies
for the optical~acoustic! modes. This is the expected beha
ior when compared with the trends in the dispersion relat
for kÞ0. The phonon modes are greatly influenced by
bulk dispersion relations. We checked this statement num
cally, but do not show the explicit results because they
equivalent to the ones here discussed. Examples are fou
the calculations for Si/Ge heterostructures26 and the results
for mixed polar-nonpolar systems.27 The reason for this be
havior is that the oscillations with longest wavelength do
satisfy the change in the symmetry in the growth direct
~the cubic symmetry of the host material is replaced for
24530
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orthorhombic symmetry of the SL!. Oscillations in the high-
est peaks and dips are observed~see the inset for optica
bound states, and the second dip for acoustic phonons!. Simi-
larly, the relative values of the different coefficients chan
with the incidence angle@compare theRL andRT coefficients
in Figs. 4~b! and 4~c!#. This means that the values of th
coefficients characterizing the transverse component of
mode do not change monotonically, as could be expec
from the shifting effect. By increasing the incidence ang
we extend the distance the phonon needs to travel thro
the heterostructure, and the interference profile changes.
effect competes with the increase of the transverse com
nent of the phonon mode for larger angles. An oscillato
behavior was predicted theoretically for the Ge eigenf
quencies in Si/Ge SL’s as the SL period is increased,28 and
an oscillatory behavior for the transmission rate as a func
of the number of monolayers was found in Ref. 29 by a
proximating the 3D tunneling problem as a 1D one. In R
28 it was explained that in real structures the presence
GexSi12x alloys in the interface destroys the interference
fects, and it is not possible to observe the oscillations.
suppose that isotopic SL’s are excellent candidates in wh
to observe the aforementioned features, for the follow
reasons. First, the interfaces have great quality because
compound materials are very similar. Second, the transm
sion peaks and dips are very broad, and easy to detect, d
the high dispersive character of the phonon modes.

For acoustic phononsTL is closer to unity than for optica
4-7
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phonons. This is a consequence of the fact that acou
modes are more extended through the whole structure,
shows thatL andT modes are less coupled than for optic
phonons.

V. THERMAL CONDUCTIVITY

Hyldgaard and Mahan17 and Tamuraet al.19 found, em-
ploying a Debye-like model, that the reduction in the S
thermal conductivity at high temperature with respect to
bulk one is an order of magnitude for Si/Ge structures, a
about three times that for a GaAs/AlAs SL. The same qu
titative behavior was found with more realistic models
Refs. 20 and 21. The differences between these two c
correspond to the relative phonon band gap width of the h
materials. In the Si/Ge system the modes are in general m
confined; also, the phonon branches are less dispersive,
sequently with smaller average group velocities than in
GaAs/AlAs system. For an extensive discussion, see Ref
Due to the overlapping of bulk phonon bands, the reduct
corresponding to the isotopic SL is expected to be m
modest than in the two former cases. But the point that
will address is the influence of the optical phonons, not c
sidered by other authors~except, very recently, for the
smaller influence for Si/Ge structures discussed in Ref.!.
The contribution of optical phonons is expected to be imp
tant at high temperatures~as commented upon in Sec. I! in
the latter system. In Fig. 1 we observe that the dispers
character of the optical modes is comparable to that of
acoustic ones. The thermal conductivity of bulk germani
with different isotopic compositions was studied intensive
in Ref. 30.

As in Ref. 17 we consider the ratio of the superlatti
perpendicular thermal conductivityk̃SL to phonon relaxation
time tSL ~assuming it is independent of the frequency! given
by

k̃SL

tSL
5(

l
E d2k

~2p!2E2p/d

p/d dq

2p
\vlS ]vl

]q D 2 dN

dT
, ~34!

wherel is the set of labels of the states, andN5N(T) is the
Bose-Einstein distribution function at temperature T.

In Fig. 5 we show the calculated ratio of the perpendicu
thermal conductivity to the phonon relaxation time as a fu
tion of temperature for the (70Ge)4-(74Ge)4 SL. For the sake
of comparison we also include this magnitude for the b
70Ge~dashed line!. We describe the phonons in any directio
of reciprocal space by the simple relations obtained from
~11! ~the parameters are fitted to the entire Brillouin zone
the host material!. We represent the contribution of acous
phonons by a dotted line, and that of both acoustic and
tical phonons by a solid line. The same order of magnitu
and trends as in Refs. 17 and 19–21 are found. The reduc
of the thermal conductivity in the SL with respect to the bu
is lower ~about 3/2) than in the Si/Ge and GaAs/AlAs sy
tems, as commented upon above. We expect a small ov
timate due to the approximation employed, i.e., neglect
the gaps in the SL dispersion relation. Finally we obse
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that the contribution of the optical phonons at highT is about
the 5/9 of the acoustic phonons, and in principle should
considered in other studies.

VI. CONCLUSIONS

We have presented a recently developed phenomeno
cal long-wavelength model as a general approach which
scribes~with an appropriate choice of the parameters! both
acoustic and nonpolar optical phonons in semiconductor
erostructures. We have shown the necessity of conside
together acoustic and optical phonons to obtain the best
scription of all modes. From a postulated Hamiltonian de
sity, the equations of motion and a continuity equation
the energy density are derived straightforwardly. The tra
mission and reflection coefficients are defined rigorous
For cubic symmetry we have shown that there is no inter
ence between the energy density fluxes ofL and T modes.
Our calculations are valid while the conditions eithervL
5vT or k50 hold, i.e., it is an exact result for unstraine
material and an approximation for strained ones.

We have calculated the transmission coefficients in str
tures made up by nonpolar materials. In particular, we h
presented results for some isotopic Ge finite SL’s. From
analysis of isotopic and Si/Ge~Ref. 24! superlattices, we can
conclude the following rules:~1! Resonance peaks in th
transmission rate characterize the confined modes.
height of the peak depends on the penetrability of the m
in the adjacent layer, e.g., in the (Si)4-(Ge)4 SL only the Si
mode confined at the interface have a transmission rate c
to unity, and the other Si modes have a vanishing sm
maximum value ofTL .11,24 ~2! The extended modes hav
thick peaks which are limited by dips.~3! The broader peaks
are related to more dispersive bands, and consequently
greater phonon group velocity.~4! In a multiple-superlattice
system specific resonance conditions following from the
ditional superperiodicity are also found.~5! For oblique di-
rections (u,kÞ0) the phonons are greatly influenced by t
behavior of the bulk dispersion relations.

FIG. 5. Ratio of the perpendicular thermal conductivityk̃SL to
phonon relaxation timetSL as a function of temperature. For th
(70Ge)4-(74Ge)4 SL, we represent the contribution of the acous
modes by a dotted line, and that of both acoustic and optical mo
by a solid line. The values for the bulk70Ge are represented b
dashed lines.
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In the study of the phonon tunneling, for the case of o
lique incidence, oscillations in the relative contribution of t
different coefficients for a variation of the incidence ang
are found. We expect that this behavior could be detec
experimentally in the isotopic SL’s.

In all the cases studied the infinite SL is recovered as
number of periods increases. In practice, about 20 per
are sufficient to obtain the features of the infinite case.
ct.
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spite of the long-wavelength nature of the model employ
we have obtained good results for large values of the w
vector.

For isotopic SL’s it is possible to obtain, for each phon
band, explicit relations between the phonon frequency
phonon wave vector for the entire Brillouin zone. Based
these results we conclude that in this system the contribu
of optical phonons to the thermal conductivity should
taken into account.
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Schultz, F. Cerdeira, and J.C. Bean,ibid. 53, 15 871~1996!.

29H. Kato and S. Tamura, J. Phys.: Condens. Matter9, 6791~1997!.
30M. Asen-Palmer, K. Bartkowski, E. Gmelin, M. Cardona, A.

Zhernov, A.V. Inyushkin, A. Taldenkov, V.I. Ozhogin, K.M
Itoh, and E.E. Haller, Phys. Rev. B56, 9431~1997!.
4-9


