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Quantum lattice effects in mixed-valence transition-metal chain complexes
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Inspired by the recent observation of intrinsically localized vibrational modes in halide-bridged transition-
metal chain complexes@Swansonet al. Phys. Rev. Lett.82, 3288 ~1999!#, we study strong-coupling effects
between electronic and lattice degrees of freedom on the basis of a two-band, 3/4-filled Peierls-Hubbard model.
Combining a very efficient Jacobi-Davidson algorithm with the maximum entropy method, the low-energy
physics of the Peierls-Hubbard model is analyzed in finite chains with high accuracy, preserving the full
dynamics of the Raman- and infrared-active phonon modes. Results for several experimental observables,
including the valence disproportionation, local magnetic moments, lattice distortions, spin and charge structure
factors, and optical response are discussed. The redshift of the overtone resonance Raman spectrum is calcu-
lated to be in quantitative agreement with the experimental data found for isotopically pure Pt37Cl. Most
significantly, the numerical results provide clear evidence of the existence of spatially localized multiphonon
bound states in quasi-one-dimensional charge-density-wave systems with strong electron-lattice coupling.

DOI: 10.1103/PhysRevB.63.245121 PACS number~s!: 71.10.2w, 71.38.2k, 71.28.1d, 63.22.1m
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I. INTRODUCTION

Quasi-one-dimensionalMX solids, consisting of chains o
transition-metal ions (M5Pt, Pd, Ni! bridged by halogens
(X5Cl, Br, I!, have been the subject of intense experimen
and theoretical study because the various compounds o
family exhibit a remarkable range of strengths of compet
electron-electrong and electron-lattice forces, and cons
quent physical properties.1–5 Most notably, these systems e
hibit a wide variety of broken-symmetry ground states, ra
ing from a charge-density wave~CDW! in platinum based
materials to a spin-density wave~SDW! in nickel-based
materials.6 A particularly interesting class are the PtX com-
pounds, which are typically Peierls distorted, where
charge disproportionation~alternating valence! of the Ms
sublattice is stabilized by a structural distortion of theX sub-
lattice ~see Fig. 1!. The degree of the Peierls distortion ca
be varied, e.g., by changing the halide, with PtCl, PtBr, a
PtI typical of MX chains ranging from strongly to weakl
distorted limits. Because of the tunability of the strength
the CDW, the size of the energy gap between the occup
and unoccupied states can also be varied over a striki
large range. This has important consequences for the sp
configuration of gap states created by inhomogeneities
local defects in the process of structural relaxation. Th
gap states can be charged, such as electron-hole polaron
bipolarons, or neutral, such as~photoexcited! excitons. In all
cases, they are accompanied by alocal lattice distortion
ranging in size from one or two unit cells in PtCl to mo
then 30 unit cells in PtI. If the lattice distortion is large an
highly localized, the energies of the gap states are relativ
far from the valence- and conducting-band edges. Then th
multiphonon gap states are tightly bound and can diff
0163-1829/2001/63~24!/245121~14!/$20.00 63 2451
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along the chain only by~incoherent! quantum mechanically
hopping processes. Consequently the vibrational energ
localized in a small segment of theMX chain near the im-
perfection.

In this context, a question of principle arises as
whether, in addition to this familiar disorder-induced loca
ization of vibrational energy, a dynamical,intrinsic localiza-
tion of phonons might take place inpure MX solids. Theo-
retically, such intrinsically localized vibrational mode
~ILM’s ! have been postulated to occur in an extended p
odic lattice when bothnonlinearity~anharmonicity! anddis-
cretenessare present with sufficient strengths.7 From this
point of view, the highly discrete crystalline, strong-CDW
MX materials seem to be good candidates and inde
very recently, an experimental observation of ILM
has been reported in@Pt(en)2#@Pt(en)2Cl2#(ClO4)4 ~en-
ethylenediamine!,8 subsequently denoted by PtCl. In isotop
cally pure PtCl the source of the nonlinearity is the stro
coupling between electronic and lattice degrees of freed

FIG. 1. Basic structure of the@Pt(en)2#@Pt(en)2X2#(ClO4)4

chain material@not shown, for clarity, are the H atoms of the~en!
ligands and the ClO4

2 counter ions~after Ref. 4!#.
©2001 The American Physical Society21-1
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and consequently resonance Raman spectroscopy has
used as an ideal experimental technique to measure the
ergy of the characteristic lattice vibrations associated w
the local distortions of the gap states. The ILM’s are iden
fied by the strong redshifts they impose upon the overt
resonance Raman spectra. A first theoretical modeling of
observed redshift was based on a nonadiabatic cou
electron-lattice Hamiltonian for a single Pt2Cl2 unit.8,9

In this paper we use an exact numerical approach ba
on the Jacobi-Davidson and maximum entropy methods
order to investigate the ground-state and spectral prope
of the two-band Hubbard model coupled to both Raman-
infrared-active phonon modes without any adiabatic appro
mation and for significant chain lengths. Calculating the r
shift of the resonance Raman spectra, we confirm the e
tence of ILM’s in the coupled electron-phonon syste
considered. Clear signatures of these localized multipho
bound states are also found in the optical response.

The paper is organized as follows: In Sec. II we introdu
the Peierls-Hubbard Hamiltonian and comment on the mo
parameters appropriate for PtCl. In Sec. III we analyze
ground-state properties of the Peierls-Hubbard model. S
tion IV presents exact diagonalization results for the exc
tions; in particular, we calculate the optical conductivity a
discuss the occurrence of ILM’s, using chains of eight si
in length.10 Our main conclusions are summarized in Sec.
The work is supplemented by two appendices illustrating
technical details of the computational procedures such as
implementation of the electron-phonon basis~Appendix A!
and the efficiency and accuracy of the Jacobi-Davidson
gorithm compared to the standard Lanczos diagonaliza
technique~Appendix B!.

II. MODEL

The MX materials constitute a 3/4-filled, two-band ele
tronic system if one takes into account a single orbital
ion ~theM dz

2 andX pz
2 orbitals with six electrons perM2X2

unit cell at stoichiometry!.11 Including only nearest-neighbo
~NN! hopping processes between adjacent metal and ha
sites, our starting point is the one-dimensional two-ba
tight-binding Hubbard model

Hel5(
las

«anlas2t (
^ la,l 8a8&s

clas
† cl 8a8s1(

la
Uanla↑nla↓ ,

~1!

whereclas
† (clas) creates~annihilates! an electron with spin

projections in a Wannier state at site$ l ,a%, andnlas is the
corresponding fermion number operator. Herel and l 8 label
the unit cells, and we use the convention that theM ~X!
atoms sit on even~odd! sites denoted by the intracell inde
a,a852,4 ~1,3!. Their on-site energies«a can be param-
etrized by the difference between metal and halogen elec
affinitiesD5«M2«X . The other parameters of model~1! are
the NN transfer amplitudet and the on-site~Hubbard!
electron-electron interactionsUa .12

Discussing the lattice degrees of freedom, we cons
only the one-dimensional ~Peierls distorted!
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@—X-M (III 1d)-X—M (III -d)—#n chain, and refer to the
simple NN mass-and-spring model illustrated in the up
part of Fig. 2. Lattice dynamics then predicts one acou
and three optical intrachain longitudinal phonon branches
this four-atom unit cell (b5A, R, IR1, and IR2!. At the zone
center (q50) one of the optic modes is Raman~R! active
and the other two are infrared~IR! active.3 The normal co-
ordinates (Qb) and momenta (Pb) for these zone-cente
modes can be written as

Qb5N21/2(
a

Ma
1/2$eb%a$x%a , Pb5Q̇b , ~2!

where$x%a andMa are the actual ion displacements and i
masses, respectively. For the case of a PtCl chain, the co
sponding frequencies and eigenvectors are listed in Tab

Introducing, as usual, phonon creation and destruction
erators

bb
(†)5S vb

2\ D 1/2

Qb1 i (* )S 1

2\vb
D 1/2

Pb , ~3!

the coupling of theMX electron system to the Raman- an
IR-phonon modes takes the form

Hel-ph5lR~bR1bR
† !(

l
~nl22nl4!

1l IR1~bIR11bIR1
† !(

l
~nl21nl42nl12nl3!

1l IR2~bIR21bIR2
† !(

l
~nl32nl11nl21nl4! ~4!

TABLE I. Frequencies and eigenvectors of the zone-centerq
50) acoustic and optical (R and IR active! phonon modes of a PtC
MX chain. Results are obtained by fitting the force constants to
Raman and IR spectra of a PtCl chain~Ref. 4!. The corresponding
lattice displacements of the optical modes are sketched in Fig.

b vb@s21# n̄b@cm21# $eb%a

A 0 0 (0.276, 0.651, 0.276, 0.651)
R 5.879•1013 312 (0.707, 0,20.707, 0)
IR1 6.728•1013 357 (0.627,20.455, 0.627,20.077)
IR2 2.882•1013 153 (0.174, 0.608, 0.174,20.755)

FIG. 2. Lattice displacements for the three zero-wave-vec
longitudinal Raman and infrared optical phonon modes in a Pt2X2

unit cell.
1-2
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QUANTUM LATTICE EFFECTS IN MIXED-VALENCE . . . PHYSICAL REVIEW B 63 245121
(lb denote the interaction constants!, and

Hph5\vRbR
†bR1\v IR1bIR1

† bIR11\v IR2bIR2
† bIR2 , ~5!

is the lattice contribution in harmonic approximation. The

H PHM5Hel1Hel-ph1Hph ~6!

constitutes the so-calledPeierls-Hubbard model~PHM!.
The sets of parameters capable of describing Pt and

basedMX materials in the framework of the Suet al.13

model and related one- and two-band models have b
estimated from comparison to band structu
calculations2,5,14,15@more recent local-density-approximatio
~LDA ! results including the ammonia ligands can be fou
in Ref. 16#. Within the PHM, for the PtCl CDW system,D
51.2, UPt50.8, UCl50, \vR50.05, \v IR150.06, and
\v IR250.024 seem to be appropriate,17 where the energy
scale is given by the NN transfer elementt51.54 eV ~cf.
also Refs. 2 and 4!.

Besides modeling realMX chain materials, the PHM is a
generic many-body model that is interesting in its own rig
mainly because it accounts for several competing effe
which are of general importance in low-dimensional soli
First of all the PHM interpolates between the small-D limit,
where theM -X hybridization cannot be neglected, and a p
nounced charge-transfer~CT! situation at largeD. In particu-
lar, for the latter case, where an effective one-band desc
tion might be possible, the itineracy of the electrons (}t)
strongly competes with the electron-electron~U! and
electron-phonon (lR) interactions, which tend to localize th
charge carriers by establishing SDW and CDW correlati
on the metal sites, respectively. As a result, at half-fillin
even a metal-insulator transition of the Mott or Peierls ty
can take place, depending on the relative strength of
Hubbard and electron-phonon interactions. The spontane
Peierls dimerization transition to a less symmetric, b
lower-energy, configuration definitely takes place at te
peratureT50 in theadiabatic limit ~at least forU50). It is
well known, however, that in a wide range of quasi-on
dimensional metals, the lattice zero-point motion is com
rable to the Peierls lattice distortion, which makes the ri
lattice approximation questionable.18–20 The PHM is clearly
a prototype model with which to study the problem conce
ing the stability of the Peierls-distorted ground state aga
quantum phonon fluctuations. Moreover, any theoret
analysis of the unconventional transport and optical phen
ena observed in low-dimensional CDW systems has to
based on such a type of dynamically coupled electr
phonon model.

Motivated by this situation, in the following sections, w
carry out a comprehensive exact diagonalization study of
PHM, treating the electron and phonon degrees of freed
on an equal footing. To this end, we consider the PHM on
eight-site lattice with periodic boundary conditions,21,22 and
focus on the physically most interesting 3/4-filled band ca
If not otherwise stated, we use the PtCl parameter set qu
above.
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III. GROUND STATES

To understand the consequences of a dynamical elect
phonon interaction for our two-band model, we first exam
the ground-state properties of the PHM. Besides the vari
contributions to the ground-state energy (E0), Eph5^Hph&,
Eel-ph5^Hel-ph&, andEel5^Hel&, with

Ekin52t (
^ la,l 8a8&s

^clas
† cl 8a8s&, ~7!

ED5(
las

«a^nlas&, ~8!

EU5(
la

Ua^nla↑nla↓&, ~9!

physical quantities of interest are the local particle occu
tion numbers

ni5^~ni↑1ni↓!&, ~10!

the local magnetic moments23

Li5
3

4
^~ni↑2ni↓!2&, ~11!

the NN bond order parameters

pi 2( i 11)
Pt�Cl 5

1

2 (
s

^cis
† ci 11 s1ci 11 s

† cis&, ~12!

with ( i 51
N pi 2( i 11)

Pt�Cl 52Ekin/2t, and the spin and charge stru
ture factors

Ss~q!5
1

N (
i , j

^Si
zSj

z&eiq( i 2 j ) ~13!

and

Sc~q!5
1

N (
i , j

@^ninj&2ni
2#eiq( i 2 j ), ~14!

respectively. Here,i , j 51, . . . ,N renumber the lattice site
and ^•••&5^c0u•••uc0&. Additional useful information can
be obtained from the so-called phonon distribution functio24

@for notation, see Appendix A, Eq.~A1!#

Cb
(M )~m!5 (

r ,s

$mb
s

5m%

ucr ,s
c u2, ~15!

which gives the relative weight of them-phonon state of the
b-phonon mode in stateuc&. The normalization ofuc& im-
plies (m50

M Cb
(M )(m)51.

Table II presents our exact diagonalization results
tained for theN58 site PHM at selected electron-phono
couplings~in what follows SMA and DMA denote single
@l IR15l IR250# and double-mode@l IR250# approxima-
tions, respectively!. In the noninteracting case (lb[0; first
column!, the partial densities and charge structure fac
Sc(p) reflect the CT (D51.2) from metal~M! to halide~X!
1-3
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sites. The Hubbard interaction (U50.8), acting on meta
sites only, gives rise to both large local magnetic mome
and a maximum in the magnetic structure factorSs(q) at q
5p/2. The resulting SDW ground-state configuration s
vives the inclusion of a weak electron-phonon interact
~second column of Table II!, a situation which is realized in
the Ni-based materials. If the coupling to theR-active mode
becomes stronger, a CDW is formed on the metal sites@cf.
the large increase ofSc(p/2)#, accompanied by a decrease
the mobility of the charge carriers~kinetic energy!. Now the
translational symmetry is spontaneously broken,^QR& is fi-
nite, and the ions vibrate about a new equilibrium positi
This is the scenario realized in the PtCl chain system. T
CDW is accompanied by a suppression of the local magn
moments as well as by the formation of a so-called bo
order wave betweenX2-M III 2d and X2-M III 1d bonds. Of
course, an extreme large electron-phonon coupling will te
to localize the charge carriers completely, and theref
weaken the bond order being maintained by electron hopp
processes.

Including a weak coupling to the IR1 mode strengthe
the Pt→Cl CT ~Ref. 25! and, as a side effect, also the CD

TABLE II. Energy contributions to the ground-state ener
(E0), lattice displacement (^QR&), particle densities (ni), local
magnetic moments (Li), and bond-order parameters (pi 2 j ), as well
as spin (Ss) and charge (Sc) structure factors atq5p/2, p in the
ground state of the 3/4-filled Peierls-Hubbard (MX) chain model
(N58).

lR 0.0 0.05 0.1 0.1
l IR1 0.0 0.0 0.0 0.026

E0 26.0889 26.0910 26.6928 26.7636

Eel 26.0889 26.0867 24.9454 24.8749
Eph 0.0000 0.0002 1.7386 1.8795
Eel-ph 0.0000 20.0045 23.4860 23.7682

Ekin 25.9152 25.9133 25.0294 -4.9083
ED 21.1738 21.1741 21.4750 21.5245
EU 1.0000 1.0007 1.5590 1.5578

^QR& 0.0000 0.0000 11.7916 12.0206

n1,3
X 1.7445 1.7446 1.8073 1.8176

n2
M 1.2555 1.2554 0.4557 0.4311

n4
M 1.2555 1.2554 1.9297 1.9337

L1,3
X 0.1627 0.1627 0.1323 0.1259

L2
M 0.4728 0.4725 0.2760 0.2645

L4
M 0.4728 0.4725 0.0515 0.0487

p(122,223)
M�X 0.3697 0.3696 0.5410 0.5307

p(324,425)
M�X 0.3697 0.3696 0.0877 0.0829

Ss(p/2) 0.1905 0.1903 0.0573 0.0547
Ss(p) 0.0950 0.0951 0.0797 0.0763
Sc(p/2) 0.3250 0.3258 1.3045 1.3375
Sc(p) 0.8533 0.8534 1.0562 1.0959
config.: d-↑-d-↓ d-↑-d-↓ d-s-d-↑↓ d-s-d-↑↓
24512
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~see fourth column!. The influence of both IR-active mode
@triple-mode approximation~TMA !# on the local particle
densities is illustrated in more detail in Figs. 3 and 4. Ob
ously, the IR2 mode leads to a disproportionation of t
charge density onX sites in the unit cell. The right panel
give the phonon distributions of the IR1~Fig. 3; DMA! and
IR2 ~Fig. 4; TMA! modes in the ground state. As th
electron-phonon coupling strength increases, a shift of
maximum in the phonon distribution to larger values ofm is
observed, indicating that the ground state becomes a m
tiphonon state.

IV. EXCITATIONS

A. Low-energy spectrum

In a next step we investigate the low-lying excitations
the PHM model. Figure 5 shows the energy-level diagr
within SMA, where the left column displays the spectrum

FIG. 3. Shift of the local particle densities with increasingl IR1

~DMA N58:lR50.1, l IR250). The right panels show the corre
sponding phonon distributions for the IR1 mode in the ground st

FIG. 4. Shift of the local particle densities asl IR2 increases
~TMA N54:lR50.19, l IR150.05). The right panels show th
phonon distributions of the IR2 mode in the ground state.
1-4
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QUANTUM LATTICE EFFECTS IN MIXED-VALENCE . . . PHYSICAL REVIEW B 63 245121
the decoupled system for comparison. Above each electr
level ~solid bars! there is a ladder of overtones~dashed bars!
with rungs separated by the bare phonon frequency\vR . Of
course, at any finite electron-phonon coupling, the elect
and lattice degrees are no longer independent, and as a r
the excitation spectrum is changed. At weak coupling, ho
ever, to a good approximation the ground state is still a ze
phonon state, and the states

uc̃R
(m)&5

1

AmR!
~bR

† !mRuc0&
wc

have a nearly complete overlap with the exact low-lying e
cited states of the interacting system, indicating that th
excitations can be obtained simply by adding phonons to
ground state. With increasing electron-phonon interact
strength, a strong mixing of electrons and phonons ta
place, such that both quantum objects completely lose t
individual identity. As a result the ground state is basicall
multiphonon state@cf. CR(m); middle panel#. Note that the
ground state and, aslR increases, a growing number of e
cited states show a twofold degeneracy~within numerical
accuracy!. The reason is the existence of two degener

FIG. 5. Low-energy part of the eigenvalue spectrum of
Peierls-Hubbard model~SMA!. Twofold degenerate states a
marked by bold bars; dashed bars denote the bare phonon over
of the electronic levels for thelR50 case. The lower panels giv
the phonon distribution function and local particle densities in
ground state.
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CDW ground states in the strong-coupling limit, with larg
spectral weights of theu↑↓,↑↓,↑↓,0&el or u↑↓,0,↑↓,↑↓&el
electronic basis states. The charge distribution shown in
lower panel of Fig. 5 corresponds to the latter case.

In the configuration space of the Raman-active norm
coordinate, this gives rise to the formation of an adiaba
double-well potential~see Fig. 6!. Within one minimum of
the double-well potential the low-lying excitations exhibit
large overlap with the displaced oscillator states

uc̃R
(mR)

&5
1

AmR!
~BR

† !mRuc0&
sc5uc0&el

sc
^ umR ,hR&ph,

wherehR5lR( l^nl22nl4& are the constant effective force
in the limit t→0 andBR

(†)5bR
(†)2hR /vR . We have proven

this by calculating

PmR
~v!5 (

n50

Dtot21

u^cnuc̃R
(mR)

&u2d~v2En!. ~16!

The displaced oscillator spectral functionPmR
(v) is de-

picted in Fig. 7. As a consequence of the electron-latt
interaction the multiphonon excitations are somewhat shif
from multiples of the bare phonon frequenciesmR3vR . The
lower intensity of the high-energy peaks reflects the inco
plete overlap of the higher-order overtone states of the in
acting system with the corresponding displaced oscilla
wave functions~see the left panel!. Going to extremely large
electron-phonon couplings, the overlap of these high-ene
excitations is clearly improved~cf. the tendency of the re
sults obtained forlR50.9 and 0.12!. The important point we
would like to emphasize is the weakanharmonicityof the
double-well potential even at low energies, provided we c
sider reasonable coupling strengths. Thisnonlinearity, in-
duced by the coupling to the itinerantinteracting electron
system, is the origin of the redshift of the overtones d
cussed in the next subsection.

Of course, exciting more and more phonons enhances
tunneling probability between the two minima of the pote
tial, and finally counterbalances the charge difference
Pt sites^n22n4& (^QR&50) by overcoming the potentia
barrier

nes

e

FIG. 6. Sketch of the effective adiabatic double-well potent
acting in the strong CDW regime of the Peierls-Hubbard model~for
further explanation, see the text!.
1-5
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FIG. 7. Phonon spectral func
tion PmR

(v) and intergrated
weight SP(v)5*E0

v dv8PmR
(v8)

in the CDW regime of the PHM.
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H.mR,cv
(1)~lR!. ~17!

Here

v (1)5E12E0 ~18!

denotes the fundamental phonon frequency of the stron
interacting system. Figure 8 impressively demonstrates
validity of estimate~17! by showing thatnc.mR,c indeed
holds ~cf. also Fig. 5;lR50.1).

The different nature of the excited states in the weak-
strong-coupling cases is reflected in the phonon distribu
function displayed in Fig. 9. At weak electron-phonon inte
actions~left panel!, we have a SDW ground state, and t
first excited state is an electronic~almost zero-phonon! state
above the SDW gap~opened byU). The next states are
simply obtained by adding phonons to this doublet, with
slightly reduced frequency compared tovR ~cf. Fig. 5!. In
the strongly interacting regime the phonon distribution
clearly evocative of that of a displaced harmonic oscillato

Although the situation becomes somewhat more comp
in the DMA, the basic mechanism are the same. Figure
shows the successive excitation of~R,IR1!-active phonons
@n51: ~1,0!, n52: ~0,1! n53: ~2,0!, n54:(1,1)#.

B. Intrinsic localized modes

As already pointed out in Sec. I recent resonant Ram
scattering measurements on isotopically pure PtCl mate
24512
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have shown a significant redshift of the overtones.8 In reso-
nance Raman spectroscopy the material is illuminated w
light that is in resonance with a specific electronic transitio
The signals from the~fundamental and overtone! vibrational
modes that are coupled to the electronic transition are gre
enhanced. Resonant Raman spectra on strong CDW PtC
hibiting such an amplification were obtained using Ar1 laser
illumination at 514 nm, which roughly corresponds to t
bandedge ('2.5 eV) of an intervalence charge transf
~IVCT! transition between PtII and PtIV ~see Fig. 11!. The
photoexcited transition into the IVCT band is connected w
the excitation of the fundamental Raman active symme
Cl-Pt-Cl stretch and a progression of many overtones.

In order to understand the evolution of the experimenta
observed overtone structure,8 let us first discuss the leve
shift of thenth excitedR-active doublet,

r n5
nvR

(1)2vR
(n)

vR
(1)

, ~19!

with vR
(n)5(En2E0), in the framework of the nonadiabati

PHM. Figure 12 displays the calculated redshiftsr n for dif-
ferent couplingslR at UPt50.8. Obviously a noticeablered-
shift is observed in a certain coupling regime only. The re
son for this is the following: On the one hand, a critic
interaction strengthlR is necessary to overcome the SD
configuration forced byU, and to establish a~degenerate!
f
-

n

-

FIG. 8. Expectation values o
the Raman-mode lattice displace
ments~left panel! and differences
of the mean electron densities o
the two Pt sites~in an unit cell!
are given for the lowest 25 eigen
statesucn& within the SMA.
1-6
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FIG. 9. Phonon distribution in
the ground state and in the lowe
four excited states of the Peierls
Hubbard model~from top to bot-
tom!. The solid lines, displayed
for clarity with an offset of the or-
dinate of 0.01 in the right panels
corresponds to thet50 displaced
oscillator limit. Results are ob-
tained within the SMA.
om
n

an

-
multiphononCDW ground state~cf. Fig. 5!. On the other
hand, at extremely large couplings, the particles are c
pletely trapped and with respectly to the lattice excitatio
the system behaves as an almost perfect displacedharmonic
oscillator. This is corroborated by the variation of the Ram
24512
-
s

fundamentalvR
(1) @cf. Eq. ~18!#, shown in the inset. In par

ticular, one realizes that limlR→`vR
(1)(lR)5vR . In the in-

termediate~but still strong-coupling! region, the Raman-
active mode dynamically self-generates anonharmonic
-
-

FIG. 10. Phonon distribution
in the ground state and in the low
est four excited states, as pre
sented in Fig. 9, but within the
DMA.
1-7
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lattice potential, providing an attractive interaction of Ram
phonon quanta located at the same Pt2Cl2 unit, with the re-
sult that quasilocalized multiphonon bound states occu
the system. Translational symmetry is restored by
quantum-mechanical tunneling of those quasiparticles
nearly perfect quantitative reproduction of the redshift o
served in PtCl was obtained by applying the DMA withlR
50.1 andl IR150.026~see Fig. 12!.

It is interesting to contrast these findings with the resu
obtained forU50 ~see Fig. 13!. Here a CDW with lattice
dimerization is already formed in the weak-coupling regim
i.e., states with wave numbers 0 andp are degenerate eve
for small values oflR ~at least in the thermodynamic lim
N→`). Therefore, the ground state as well as the excitati
contain only a few phonons, and may be viewed as ‘‘co
ventional’’ Peierls states. In fact, atlR50.06, all phonon
distributions corresponding to excited states withn<2 ex-
hibit pronounced maxima atm50. Remarkably we found a
blueshift(r n,0) of the overtones in this regime. Increasin
the electron-phonon interaction, the charge carriers bec
heavily dressed by phonons, and finally a self-trapping tr

FIG. 11. Mixed-valence ground state and IVCT to an exci
state without charge disproportionation~a!; lattice relaxation and
formation of a charge-transfer exciton~b!.

FIG. 12. Relative redshift of the lowest-energy peaks, norm
ized by the fundamental frequencyvR

(1) given in the inset, as a
function of the final quanta of the vibrational energy. Results
obtained for an eight-site chain with different coupling strengthslR

at l IR1,IR250 if not otherwise stated.
24512
n

in
a
A
-

s

,

s
-

e
-

sition takes place. As a result localized multiphonon bou
states occur andr n becomes positive. At this point it seem
reasonable to make contact with polaron physics and c
sider the CDW state at largelR as built up by ordered bipo
larons residing at the PtIII 2d sites.

C. Optical response

To substantiate the interpretation that the strong-coup
CDW ground state of the 3/4 filled PHM describes order
bipolarons rather than a Peierls band insulator, in this sec
we study the optical conductivity. In linear response theo
the regular part of the optical conductivity,

sp
reg~v!5

p

N (
mÞ0

u^c0u ĵ pucm&u2

Em2E0
d@v2~Em2E0!#,

~20!

gives the incoherent contribution of the optical transpo
Equation ~20! is equivalent to the small polaron hoppin
conductivity in the strong electron-phonon coupling lim
According to thef-sum rule,

2E
0

`

dv8sp
reg~v8!52s0Ekin2D, ~21!

it is related to the kinetic energyEkin @cf. Eq. ~7!# and the
Drude weightD (s05pe2; periodic boundary conditions!.
In Eq. ~20!, the ~paramagnetic! current density operator is

ĵ p52 iet(
is

~cis
† ci 11 s2ci 11 s

† cis!. ~22!

In analogy one can define a current operator for NN hopp
processes of on-site electron pairs~bipolarons! as

j bp52 i2et(
i

~Ci
†Ci 112Ci 11

† Ci !, ~23!

with Ci
(†)5c↑ i

(†)c↓ i
(†), which gives rise to a bipolaronic optica

conductivity sbp
reg(v). In addition, we consider higher

l-

e

FIG. 13. Shift of the lowest-energy peaks, as presented in
12, but for UPt50(l[lR). Note the blueshift at lower electron
phonon couplings.
1-8
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order next-nearest-neighbor~NNN! bipolaron transport pro-
cesses~see Fig. 14!, relating the two degenerate ground-sta
configurations of an unit cell~cf. Fig. 6!. The corresponding
transfer operator is

C3
†C4C2

†C3ªc3↑
† c3↓

† c4↓c4↑c2↑
† c2↓

† c3↓c3↑ , ~24!

leading tosbp,NNN
reg (v), with

j bp,NNN} (
i even

~Ci 11
† Ci 12Ci

†Ci 112Ci 11
† CiCi 12

† Ci 11!.

~25!

At first, however, let us consider the behavior of the mo
usual optical conductivitysp

reg(v). Figure 15 givessp
reg(v)

FIG. 14. Regular part of the optical conductivitys reg(v) ~solid
lines!, normalized bys0 /N, and integrated spectral weightSreg

~dot-dashed lines! are shown for weak to strong electron-phon
couplings~SMA, PBC!.
24512
e

at several characteristic coupling strengths. In the absenc
any scattering mechanisms the optical conductivity sim
consists of the Drude peak atv50; i.e., for noninteracting
band electrons, there is no optical absorption at finite f
quencies. In contrast, the interacting two-band Hubb
model @Eq. ~1!# contains finite-frequency optical transition
~see Fig. 15, left panel:lR50 case!. Specifically, the prin-
cipal optical excitations of model~1! are transitions acros
the SDW ~lower peak at aboutv50.28) and theM -X CT
gap ~upper peak aboutv53.5). The integrated spectra
weight Sreg(v)5*`

vdv8s reg(v8) indicates that the optically
inducedM -X interband transition has a negligible intensi
compared with the low-energy excitation between theM -M
SDW bands split up byU. Including a weak electron-phono
coupling has two main effects~see the results forlR50.7).
First, the low-energy peak is broadened because now pho
degrees of freedoms are involved in the excitations. S
ondly lR tends to open a CDW gap and therefore weak
the SDW gap~i.e., Peierls versus Mott-Hubbard scenario!.
At lR50.9 the CDW is energetically more favorable than
SDW ground state. Now the first excitation is due to
IVCT M -M transition. The optical CDW gap enlarges aslR
further increases. At the same time the optical response
velops clear signatures of polaronic excitations. Clearly
line shape of the first peak insp

reg(v) reflects the phonon
distribution of the ground state.

Experimentally, for the PtI-PtBr-PtCl sequence of PX
materials one observes a decrease in height and shi
higher energies of the IVCT absorption peak.2,26 Since the
FIG. 15. Hopping conductivity of bipolarons in the Peierls-Hubbard model.
1-9
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FIG. 16. Second-order bipolaron transfer between Pt sites.
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major difference between the members of this class seem
be the different strength of the electron-lattice couplin
which increases in going from the I halide to the Cl halid
our results provide a microscopic explanation of this obs
vation. UsinglR50.09 . . . 0.1 for thePtCl chain compound
the calculated position of the low-energy peak at about
eV (t51.54 eV was taken into account! is found even in
quantitative agreement with experiments. Moreover, ther
evidence for the CTM -X transition near 5.5 eV in the re
flectivity data for PtCl,26 where theM -X transition is ex-
pected to be quite strong in the strongly distorted PtCl s
tem, while in the weakly distorted PtI material it is ve
weak.2 Naturally these findings were qualitatively repr
duced by our model calculation as well.

The optical-absorption spectrum for bipolarons is sho
in Fig. 16. As expected, the spectral weight of bipolaro
excitations is extremely small at weak electron-phonon in
actions. According to the results of Secs. IV A and IV B,
bipolaronic CDW insulator is formed in the strong-couplin
limit. Since the bipolaron current operator connects o
states having a substantial overlap as far as the phon
contribution is concerned, in this limit multiphonon absor
tions become increasingly important in the optical respon
leading to the peak structure depicted in the lower pan
Compared with the single-polaron conductivitysp

reg(v) the
low-energy peak is shifted to larger frequencies. This can
easily understood within polaron transport theory. During
NN transfer process the polaronic charge carrier has to o
24512
to
,
,
r-

.6

is

-

n
c
r-

y
ic

-
e,
s.

e
a
r-

come the self-induced potential barrier at the initial site, a
after the hop a local lattice distortion has to be created on
neighboring site. In the nonadiabatic regime this leads to
absorption maximum insbp

reg(v) at 2Ebp.232Ep , where
Ebp (Ep) is the bipolaron~polaron! binding energy. In fact a
similar mechanism acts in the adiabatic case as well. H
the low-lying peak position’s roughly equals to four time
the barrier heightH of the effective adiabatic double-we
potential ~see Figs. 6 and 5, which gives the estimateH
.0.45 forlR50.1).

Of special interest are those transport processes w
directly connect the two degenerate ground states of
CDW ~cf. Figs. 6 and 14!. Results for the optical conductiv
ity sbp,NNN

reg (v), describing such types of excitations, are p
sented in Fig. 17. Applying the eight electron creation a
annihilation operators@Eq. ~24!# on the ground state strongl
filters the intermediate excited states contributing
sbp,NNN

reg (v). This means that only those activated sta
having a large overlap with the PtII-PtIV basis states
u↑↓,↑↓,↑↓,0&el and u↑↓,0,↑↓,↑↓&el acquire a large spectra
weight. This is perfectly demonstrated by the lower rig
panel of Fig. 17. A comparison of the intermediate (lR
50.09) and strong-coupling (lR50.12) results obtained fo
sp

reg(v) ~Fig. 15!, sbp
reg(v) ~Fig. 16!, and sbp,NNN

reg (v) ~Fig.
17! reaffirms the interpretation of the strong-coupling CD
state in PtCl in terms of a charge-ordered bipolaronic in
lator.
1-10
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FIG. 17. Higher-order contributions to the bipolaronic optical response. Results are presented for the same parameters as in F
note the different scale of the ordinate in the strong-coupling regime.
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V. CONCLUSIONS

To summarize, in this paper we have presented a com
hensive study of the 3/4-filled, two-band, one-dimensio
Peierls-Hubbard model, which we believe captures the es
tial physics of theMX family of halogen-bridged transition
metal compounds. We mainly analyzed phenomena resu
from the complex interplay of charge, spin, and lattice d
grees of freedom existing in these low-dimensional hig
correlated materials. The formation of Peierls distor
phases with predominantly charge- or spin-density-wave
der or the intrinsic localization of vibrational energy in mu
tiphonon bound states are such phenomena. In doing so
basic necessity for correctly taking into account both
electronic correlations as well as the dynamics and quan
nature of the phonons leads us to a purely numerical
proach. We applied a high-resolution Jacobi-Davidson al
rithm, and solved the fully nonadiabatic Peierls-Hubba
model exactly on finite lattices. Focusing on situations wh
the dominant effects of the electron-electron and electr
phonon interactions are short ranged, such a finite-clu
calculation seems to be justifiable.

From this perspective our approach is particularly suita
for the strong CDW material PtCl, because in this compou
the CDW coherence length is of the order of the lattice c
stant, i.e., local lattice effects predominate. In fact
showed that PtCl typifies a charge-ordered bipolaronic in
lator rather than a traditional Peierls band insulator. The
24512
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e
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e
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cessity of a substantial coupling to the Raman active pho
mode to overcome the notable on-site Coulomb repulsion
the Pt sites in the CDW state is a clear indication of this.
a consequence of the strong electron-phonon interaction
charge carriers are heavily dressed by phonons, and fin
trapped in pairs as bipolarons on the lattice. The resid
weak itinerancy of the bipolarons maintains the translatio
symmetry and produces an effective interunit couplin
which is the condition preceding the formation of a CDW
We emphasize that the adiabatic bipolarons discussed in
context differ in nature to a certain extent from the sm
electronic bipolarons normally formed in the antiadiaba
strong-coupling low-carrier-density limit. In view of the un
derlying physical mechanism, perhaps they should rathe
interpreted asvibrational (bi)polaronsbeing localized in a
single PtCl unit. At appropriate electron-phonon interacti
strengths, the effective lattice potential, dynamically se
generated in the process of carrier localization, exhibit
significant nonlinearity, leading to the experimentally o
served localization of vibrational energy in PtCl. As a cha
acteristic feature the overtones of theseintrinsic localized
modesshow a strong redshift, which we were able to rep
duce even quantitatively by our finite-lattice calculation. T
localized nature of these vibrational excitations, which a
coupled to the intervalence charge transfer transition
tween PtII and PtIV, was further supported by the results o
tained for the phonon spectral function and the optical~bi-
polaronic! response.
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In conclusion, we have shown that a dynamical coupl
to the Raman- and infrared-active phonon modes, even in
adiabatic strong-coupling regime, strongly influences
ground-state and spectral properties of the Peierls-Hub
model. From a theoretical point of view, the intermedia
coupling and frequency regime, where phononic and e
tronic energy scales are not well separated, is of course e
more interesting but less understood. In principle our ex
diagonalization approach allows us to tackle this much m
complex problem as well. Work in this direction will b
reported in the future.
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APPENDIX A: ELECTRON-PHONON BASIS

A general state of the Peierls-Hubbard model@Eq. ~6!#,

uc&5(
r 51

Del

(
s51

Dph

cr ,s
c $ur &el^ us&ph%, ~A1!

constitutes a tensor product of electron and phonon stat

ur &el5)
i 51

N

~ci↑
† !ni↑

r
~ci↓

† !ni↓
r

u0&el , ~A2!

us&ph5 )
b51

G
1

Amb
s !

~bb
† !mb

s
u0&ph, ~A3!

wherer 51, . . . ,Del ands51, . . . ,Dph label the unsymme-
trized basis states of the electronic and phononic subsp
with dimensions

Del5S N
N↑

D S N
N↓

D
and

Dph
(M )5S M1G

M D
(G51,2,3 for SMA, DMA, and TMA!, respectively. The
usual fermion and boson commutation rules imply the oc
pation numbersni↓

r ,ni↓
r P$0,1% and mb

s P$0, . . . ,M %. Here
we applied a truncation procedure of the infinite phono
Hilbert space,27,28 restricting ourselves to states with at mo
M phonons, i.e.,(b51

G mb
s <M . We carefully checked for the

convergence of both the ground-state energyE0
(M ) and the

phonon distributionCb
(M )(m) as functions ofM.
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In the numerical work the matrix representation ofH ~as
well as the vector representation ofuc&) requires a mapping
of each index pair (r ,s) on a single consecutive index, e.g.,i.
Particularly with regard to an implementation on parallel s
percomputers, the following bijective mapping, (r ,s)° i :
$1, . . . ,Del%3$1, . . . ,Dph

(M )%→m$1, . . . ,D tot%, turned out to
be advantageous:

m~r ,s!5~r 21!Dph
(M )1s ~A4!

m21~ i !5S b i 21

Dph
c11,i 2 b i 21

Dph
(M ) cDph

(M )D , ~A5!

wherebxc is the largest integerLPN with L<x.
Diagonalizing the PHM in a subspace with fixed electr

numbersN↑5N↓5 3
4 N, a typical total dimensionDtot with

which we dealt is 7 848 624 (N58, M5140, andG52).
Despite the extreme sparsity of the matrices, the computa
of the, e.g., 20 lowest eigenstates is still a numerical ch
lenge: a typical production run for the parameters quo
above took about 30 minutes running on 64 processors
CRAY T3E supercomputer.

APPENDIX B: JACOBI-DAVIDSON ALGORITHM WITH
PRECONDITIONING

Many problems in theoretical physics are related to eig
value problems involving large sparse Hermitian matric
To solve the eigenvalue problem numerically, iterative su
space methods like the Lanczos algorithm29 or the Davidson
algorithm30 are commonly used to calculate the ground st
and some excited eigenstates. However, these methods
a poor convergence and stability if the eigenvalues to
computed are not well separated or even degenerate. In
case, more sophisticated methods like the Jacobi-David
~JD! algorithm with preconditioning techniques31,32 have to
be used, providing both high resolution and rapid conv
gence.

The JD solvers use a succession of subspaces wher
update of the subspace exploits approximate inverses o
problem matrixA. For A, A5AH or A* 5AT holds, where
A* denotesA with complex conjugate elements andAH

5(AT)* ~transposed and complex conjugate!.
The basic idea is: LetVk be a subspace ofRn with an

orthonormal basisw1
k , . . . ,wm

k , W a matrix with columns

wj
k , SªWH A W, l̄ j

k eigenvalues ofS, andT a matrix with
the eigenvectors ofSas columns. The columnsxj

k of W T are

approximations of eigenvectors ofA with Ritz values l̄ j
k

5(xj
k)H A xj

k that approximate eigenvalues ofA. Let us as-

sume that l̄ j s

k , . . . ,l̄ j s1 l 21

k P@l lower,lupper#. For j

P j s , . . . ,j s1 l 21, define

qj
k5~A2l̄ j

kI !xj
k , r j

k5~Ā2l̄ j
kI !21qj

k , ~B1!
1-12
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andVk115span(Vkør j s

k ø•••ør j s1 l 21

k ) whereĀ is an easy

to invert approximation toA @Ā5diag(A) in Ref. 33#. Then
Vk11 is an (m1 l )-dimensional subspace ofRn, and the rep-
etition of the procedure above gives in general improv
approximations to eigenvalues and eigenvectors. Resta
may increase efficiency. Convergence is reached for the
genvaluek, if the residual normA( j 51

n (r j
k)2 falls below an

initial residual norm~calculated from the first eigenvecto
approximation! times a convergence factor«.

For good convergence,Vk has to contain crude approx
mations to all eigenvectors ofA with eigenvalues smalle
thanl lower .

33 The approximate inverse must not be too a
curate, otherwise the method stalls. The reason for this
investigated in Ref. 31, and leads to the JD method with
improved definition ofr j

k :

$@~ I 2xj
k!~xj

k!H#~Ā2l̄ j
kI !@ I 2xj

k~xj
k!H#%r j

k5qj
k . ~B2!

The projection@ I 2xj
k(xj

k)H# in Eq. ~B2! is not easy to
incorporate into the matrix, but there is no need to do so,
solving Eq.~B2! is only slightly more expensive than solvin
Eq. ~B1!. The method converges quadratically forĀ5A.

The character of the JD method is determined by the
proximation Ā to A. For obtaining an approximate solutio
of the preconditioning system@Eq. ~B2!#, we may try an
iterative approach.31,34,35In this work, a real symmetric ver
sion of the so calledquasi minimal residualalgorithm was
used that is directly applied to the projected system@Eq.
~B2!# with Ā5A. By controlling the quasi-minimal residu
norms we can adapt the accuracy of solving Eq.~B2! to the
accuracy of the JD steps.

To illustrate the advantage of the JD algorithm as co
pared with the standard Lanczos technique, we have ca
lated the lowest 30 eigenvalues of a Hamilton matrix w
total dimensionD tot5263 536, comparing both methods. F
this comparison, we used a double-mode approach appl
the following model parameters:N54, M5180, D51.2,
UCl50, UPt50.8, lR50.2, \vR50.05, l IR150, and
\v IR150.06. The convergence factor« was set to 1027.

Calculating the lowest 30 eigenvalues, the maximum s
of the Jacobi-Davidson subspace was set to 100, triggeri
restart of the whole process with the last approximatio
whenever the subspace size reached that value. The Lan
process was stopped under the condition that the 30th ei
value converged within an accuracy«. Due to implementa-
an

k-
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tion reasons, the Lanczos version of our diagonalization r
tine compared the difference between two succeed
eigenvalue approximations to check convergence. The
sults are shown in Fig. 18.

The efficiency of the JD method is determined by t
performance of the matrix-vector multiplication, which d
pends heavily on the storage scheme used. The extreme
sity of the matrices used in this work (;10 nonzero elements
per row, and matrix dimension up to 108) calls for a solution
where only the nonzero elements are stored. To achieve
performance on all modern supercomputer architecture
so-called jagged diagonal storage scheme36 was imple-
mented, which makes no assumptions about the spa
structure of the matrix. A detailed description of the impl
mentation on various massively parallel and vector sup
computers was presented in Ref. 36, together with a per
mance analysis.

As a conclusion, from a comparison between Lanczos
Jacobi-Davidson methods we can state that Lanczos is
appropriate choice for calculating few nondegenerate
treme eigenvalues. The growth of the Lanczos subspace
its the number of eigenvalue approximations that can
computed within a reasonable amount of time. For
Jacobi-Davidson method, the maximum subspace size ca
limited by the user as a restarting technique is applied.
this algorithm is used for computing many eigenvalues w
high resolution.

For performance reasons, our Jacobi-Davidson implem
tation stores the nonzero matrix values only. The price
this achievement are the relatively high memory costs wh
limit the size of computable problems. Our Lanczos imp
mentation creates matrix elements during the runtime, wh
enables us to handle much larger problems with this rout

FIG. 18. Low-energy part of the eigenvalue spectrum of a hi
dimensional Hamiltonian matrix as determined by the JD and La
zos algorithms~for further explanation, see the text!. The numbers
to the right of the bars give the degeneracy of the correspond
eigenvalue.
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