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Hopping perturbation treatment of the periodic Anderson model around the atomic limit
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The periodic Anderson model with two strongly correlated subsysterdsanfif electrons and local on-site
hybridization is investigated by considering the hoppingl @lectrons between lattice sites as perturbation. In
zero order without the intersite transfer term, the system of correthéettif electrons can be treated exactly.
The delocalization of electrons and the corresponding renormalization of the one-particle Green’s functions are
analyzed by using a special diagram technique from which the Dyson equations for the Green’s functions are
established. We discuss the physics of the delocalized electrons in the simplest approximation corresponding to
a Hubbard I-like decoupling giving rise to eight different energy bands, which depend in a non-trivial way on
the exact eigenvalues of the local model. These bands are discussed for the symmetrical case in which the
energies of doubly occupiedlandf states are equal to each other.
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I INTRODUCTION chemical potential, i.ega=?a—,u; U, are the on-site Cou-

o ) lomb repulsions; ana? = iT(,ai(, are the number operators
The periodic Anderson modéPAM) (Ref. 1) is one of ot the electrons. For simplicity, the hybridization between
the main models for studying strongly correlated €lectrons ifyinerant and localized states is taken to be a local quantity.

heavy-fermion systems, mixed-valence compounds, narro he last term in Eq(1a) is the so-called Falicov-Kimball

energy-band materials, and_ high-temperature _supgrconduci-rm In this paper, we take E(la) as the zero-order prob-
ors. Recent results of experimental and theoretical investig am .WhiCh can be ,dia onalized exactly. and we use the hop-
tions of mixed-valent and heavy-fermion systems can b ' 9 Y, b

found in Refs. 2—6. Usually the simplest variant of the PAM ping or transfgr term i.n Eq1b) as pertyrbation. The m.ain
is used, which consists of correlated localizeelectrons purpose of this paper is to see in detail how the hopping of

with only one spin degree of freedom and uncorrelated Cont_he conduction electrons will change the ionic quantum tran-

duction electrons. In this work, we consider an extended verSitions. o _ _
sion with the corresponding Hamiltonian given by This type of Hamiltonian has been investigated by many
authors, mostly for the simpler case in whidh=G=0 2712

Alascioet al’ (in the limit of U;—) and mainly Mancini,
H0=ed% diTUdi,,+Ud§i: n%”?ﬁrff% flofis Marinaro et al,®° Noce and Roman®'!* and Long? re-
duced the problenffor Uy=G=0) to a system of indepen-
dent sites, in which case the correlafeelectrons and their
hybridization can be treated exactly. The Hamiltoni{da)
has 16 quantum states and the corresponding matrix can be
d , ~dyaf f easily diagonalized. FoU 4=G=0, the resulting eigenval-
+GEi SRS (13 uesE, (A=1,...,16) can bdound in Refs. 7-12. In the
limit of strong Coulomb repulsiony;— ), as discussed in
iz E t(-i)d" d (1b) Ref. 7, only 12 quantum states are availa_lble for the electrons
i ] joHios because double occupancy of a single site by fetectrons
is forbidden. Knowledge of the energy spectrum allowed the
wherea, (a;,) with a=d,f is the creation(annihilation  authoré''to obtain the partition functio@, of the system
operator of itinerant and localized electrons, respectively; and its relevant thermodynamical quantities, and to prove
is the corresponding local energies taken relative to théhat many of the most characteristic features of the interme-

+ UfEI nianifL+Vi§: (fiTO'diO'—i_diTUfia
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diate valence stat@experimental trendsare already present 1—_—
in the limit of zero-band width. T
> o 2 2 e 7
1[0 «9]2 1] ot— we-|---— [oa— =2 | 1
Il. PERTURBATIVE TREATMENT G(g) ir G(zo) ir G(go) ir
: . . . ow— w-o ow— - ®f---- - o w— o
From a theoretical point of view, the zero-band width ” w y 3 3 ”

model is of further interest. It was proved in Refs. 8 and 9
that, because of the nonapplicability of Wick’'s theorem for  FIG. 1. A typical Feynman diagram of secofiéft) and third
the single-site HamiltoniafiLa), then-point Green'’s function (right) order of the perturbation theory for tideelectron correlation
cannot be factorized in terms of two-point Green’s functions function z9%. The solid line is thed-electron propagator; squares
The authors formulated the rules to build up a diagrammaticepresent the irreducible two-particle Green's functions
representation for any Green’s function of the Hamiltoniang{® "(x1|2x’), G{® "(x1|23), and G "(32/1x’). Dotted lines
(1a) (for U4=G=0) and obtained by means of the path- stand for the hopping matrix elements.
integral formalism the corresponding exact analytic expres-
sions. The role of the kinetic energy of the conduction elecries contains new elements, as indicated in Fig. 1. These new
trons in the process of delocalization and in theelements can be gathered together in a function, the correla-
renormalization of the dynamical quantities was not dis-tion functionZ,, (x—x'). Z is the sum of allstrongly con-
cussed. We have addressed this question in Refs. 13 and Ifkcted irreducible diagramsach of which has two external
where the Hamiltoniar(1a) and (1b) was investigated for verticesx andx’, wherex stands for {,7,c). In the general
Uy=G=0 by assuming that decouplddand conduction case, the correlation functianis not diagonal with respect
electrons(limit of zero hybridization are a good starting to the site indicesin the simplest case of second-order per-
point for a perturbation expansion in powers of the hybrid-turbation with respect to hopping, the two-particle correla-
ization. In this context, we formulated the Dyson equationsijon function appears, which, however, is diagon@he nice
for the renormalized one-particle Green’s functions for thefeature of this perturbation expansion is that the renormal-
normal and superconducting state, respectively. ized one-particle Green’s function can be formulated in
Because of the above-mentioned nonapplicability ofterms ofZ only. The correlation functioZ and correspond-
Wick's theorem of conventional quantum-field theory toing Dyson equation had not been established in previous
strongly correlated systems, we proposed in Refs. 15-22 agkpansiong®~2°
alternative perturbative treatment in terms of the hopping The novelty of the diagram technique is that the GWT
integral of conduction electrons. To this we formulated aallows us to generate all contributions of the perturbation
generalized Wick's theorefGWT) and corresponding dia- expansion for correlated electron systems by using the
gram technique, which allowed us to reduce averages tgimple algebra of usual fermion operators instead of the al-
n-particle Matsubara Green'’s functions of the atomic systemgebra of Hubbard transféprojection operators used previ-
which can be further factorized by using the GU&Be Refs.  ously by Stasyuk, Zaitsev, and Izyum®¥2° The technique
15-22 for details of projection operators is only used at the final stage of the
The perturbation theory is formulated in the interactioncalculations in order to find the simplest irreducible func-
representation by using grand-canonical ensemble averaggsns. In contrast with Refs. 23—25, we have only one kind of
for the chronological products of interactions. These averyertex, one localized zero-order Green’s function, and only
ages are reduced teparticle local Matsubara Green'’s func- one kind of irreduciblen-particle Green’s function. Previous
tionsG{?(1, ... n|1’, ... ,n") depending on & groups of  diagrammatical formulations contain a variety of such quan-
arguments (¥sitei, time 7, spin o). In the absence of tities. A Dyson-type equation for the delocalized one-particle
correlations, the functions factorize and can be represente@reen’s function using this technique was first formulated in
by a sum of products af independent one-particle Green’s Refs. 15 and 16. A numerical investigati¢yet to be under-
functions(standard Wick theorejnin the presence of corre- taken of the simplest contributiofthe two-particle irreduc-
lations, new terms appear in addition to the previous onesble diagramz(® shown in Fig. 1 will allow us to discuss
All new terms contain one or more on-site many-particlemetal-insulator and superconducting transiti6hs®2® The
irreducible Green’s functionsGET?)(l, coomil, oo m) function Z(? is of primary interest when going beyond the
with m=n, the structure of which is of Kubo’s cumulant Hubbard | approximation.
type. All site indices of the individual irreducible functions  We will now briefly investigate the properties of the PAM
are the same; they are strictly local functions. The decompain the atomic limit when the contribution of the hopping of
sition of the localn-particle Green’s function@ﬁf’) is the thed electrons is absent, and we will subsequently investi-
sum of different contributions that can contaip one- gate the impact of hopping on the ionic quantum transitions
particle, n, two-particle irreduciblen, three-particle irre- by employing the new perturbation theory.
ducible, etc., Green’s functions, whereby the structures are
conditioned by the conservation law for particle numbers
=n;+2n,+3n;+ - - - with details determined by the GWT.
These irreducible functions being diagonal with respect to In the case of zero conduction-band width, we have to
their site indices, have, however, different time and spin la-diagonalize Eq(1a). Since there are four states for thend
bels. The diagrammatic representation of the perturbation sé-electrons, respectively, we have altogether 16 quantum

Ill. THE LOCAL MODEL (ATOMIC LIMIT )
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states at each lattice site, which, for completeness, are listed .
as follows(the site index has been omitied |\I,n>:; ®,(E\)|E)), <\I’n|:; (E\|®7(EY),

[W1)=10), |Wg)=dlf]|0), (63

R IR [E)=20 PR(EN W), (Bil=2 (W] @o(Ey).
|\P10> \/E(del+dlfT)|o>’ (Gb)

Using Eq.(6b) and the properties ob,(E,) listed in the
Appendix allows us to obtain the eigenfunctions of the local
Hamiltonian,

|W,)=d]|0),

|‘I’3>:f%r|0>: |‘I’11>:d1f1|0>,

[W,)=d[|0), |V¥;)=d]d]f][0), )
|E1>:|0>: |E9>:|‘I’9>1

|Ep)=®,(Ep)|Wy)+ D3(Er) | W), |Erg=[V10),

[Ws)=f110), |Wi9=d]f]f]|0),

[Wey=dldl[0), |¥)=dld]f][0),
|E3)=Do(E3)| Vo) + P3(Ez)|¥s), [Ey=[¥1p),
1
_ tet  ytet _ tetet
|q’7>—ﬁ(dﬁ1_d1fr)|0>’ W19 =d[f;f][0), |E4)=P4(Eq)|Va)+ P5(Es)|Ws),

(we)=f1t1]0), |W,9—dldlt!f1|0), |E12)=P1AE 1)) [W1p) + P13(E1p)| V1),

where|0) is the vacuum state of the ion corresponding to an |Es) =@ 4(Es)|V4) + Ps(Es)|Vs),
empty lattice site. The stat¢¥',) - - - |'¥'5) are single-particle
states withN=1 electron, spinS=1, andS,= +; |¥), |E13) =@ 1(E1a) [ W1o) + P13(E1a)| V1), (7)

| W), and | W) are the singlet states witN=2 electrons

and spinS=0: the next three states are the triplet states with  |E6) = P6(Eg)|[We) +P7(Eg)|W7) + Pg(Ee) [ W),

N=2, S=1, andS,=—1,0,+1; then there are four states—

W1, W19, | W1, and|¥ ) —with N=3, S=1, andS, |E14)=P14(E10) [V 14) + P15(E19)| V1s),

=+ 3. The last stat¢¥,¢) corresponds tt\=4 andS=0.
The action of the Hamiltoniafila) on the ionic state§?)

gives rise to a 18 16 matrix,H®, for each lattice site, which

has nearly diagonal structure. In order to diagonalize this |E19)=P14(E19)[W14) + P15(Ess)[W15),

matrix, we make use of the complete orthonormalized sys-

tem of eigenfunctions®,(E,), determined by the matrix |Eg)=Pg(Eg)| W)+ D7(Eg)[W7) + Pg(Eg)|[ W),

|E7)=D6(E7)| W)+ P7(E7)|¥7)+ Dg(E7)|¥7),

equation,
q . |E16) =16
H'®(E)) =E\®(E,), ®) These kinds of functions have been listed in Refs. 7 and
where®(E,) is a column vector with the usual orthonormal- 10—12 for the cas&l4=0 and in Ref. 12 fold4=G=0. One
ization conditions, of these functions should have the lowest energy correspond-
ing to the ground state of the system. A candidate for the
16 ground state is one of the three singlet functions with
> PHENDP(EN) =, (4@ =2, S=0, and energ¥,, a=6,...,8.
Ml Knowledge of the energy spectrum in the atomic limit
16 (listed in the Appendix gives us the possibility to find the

(ab) corresponding partition functiod,’ %1t

> PHENPA(Ex) =Sy
n=1 16
The set of column vector®(E,) (A\=1,...,16) can be Zo=2, e FEr=1+2e P24 2e PR+ D e FFa
used as elements for tH® matrix, which diagonalizes the A=t a=6.7.8

local Hamiltonian(this method is different from the method +3e PEs4 2o BE124 D@ BEisy o~ BE1s (8)
used so fdt® and does not require additional computational
work) by with 8= (kgT) L. By using the equation
0_ 1140 JE
H”=S "H"S, (5) &_x:_N’ ©)
o

the eigenfunctions of whicHE, ), allow us to formulate the
transformation of the wave functions between the differentwvhere N is the number of particles in the correlated state
representations, |E\), we can obtain from Eq8) the following property:

245119-3
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nd+n'=(nf+nf+nf+nf)= % &I;MZO, (10)
which can be rewritten as
nd+ nfzzi[(e*ﬂEm— 1)+ (e FPr—e FE)
0
+ (e FEu g FEa) ], ay

For the symmetrical casd4) defined below, for which

E1p17Ez3t 3E16 (12
holds, Eq.(11) simplifies to

2
nd+nf—2= Z—(e"BElE/Z— 1)(1+e PB4 e FEs
0

+e FRid?), (13

PHYSICAL REVIEW B 63 245119

|‘P1>:|0>’ |‘I’2>=d$|0), |‘P3>:df|0)'

|¥,)=dd[0), (18)

the definition ofd annihilation operators by means of Hub-
bard operators is simply

do=|Y 1 )(Vori1-oy T ol ¥Woi 140y (Val. (19

The complicated form of Eq$16) and(17) compared to Eq.
(18) is due to the complicated form of our zero-order Hamil-
tonian(1a) (similar operator expressions for the two-site but
single-band Hubbard modélcan be found in Ref. 28

The Hubbard transfer operators* ' =|E, }(E, | between
states of the diagonalized Hamiltonian are more convenient
to use than the primary Hubbard operat#f&’. On the basis
of Egs.(6a) and(6b) we find for the transformation of Hub-

It is interesting to note that the average number of electronpard operators,
is ng+n¢=2 if, in addition to the condition of symmetry
(equal energies of doubly occupiedand f states, see the

Appendix),

XM= P (E\)DE(Ey )Y, (209

2eg+Uyg=2¢+ U, (14) M
E,¢ is identically zero. In this case, the chemical potential

takes the value (20b)

YW= OR(E,)Dn(Ey ) X™.
mn
2u=eqt e+ U+2G, (15)
Taking into account Eqgs(16), (17), (208, and (20b), we

which is the condition for half-filling. Ifu— —oc, the quan- obtain

tity nyg+n; goes to zero, and iik— +, this number ap-
proaches 4.

We now introduce Hubbard transfer operators for the
ionic quantum transitionX™"=|¥ ¥ | and express the

di= 2 (B Y™+ 3 Dy(E )Y
annihilation operators ofl andf electrons in terms of them, o

=2,

1
+ = 2 Ps(E\YMO
5

225

1
d(rle,370+o_x3+0',6+ E(0_)(4+¢T,7_i_ X4+o’,10)

1 £33 | esE) S oiE
+ _(leO,l?r o__ X7,l?r(r) + o_xl0+ o,13+ 0o a=6,7,8 \=45 \/E

V2
+X470’,1W0'+ X8,l4fo'+ 0,xl4+0',16 (16) +Q)4( E)\)(I)G(Ea) Y)\’a

and

1
+ —_——
a:%zs )\:;2,13 { V2

®7(Eq)P1(Ey)
f :X1,4—U+Ux4+a,8+ i(O’X3+U’7_X3+U’1O) ! 2 ! :
’ V2

+®g(Ea)P15(E))

1
1 Yt = X DyEyYIO
— X3 010-0 | X813-0_ (X740 4 ;x10.14-0) \/E A=12,13

+ O (ENYIM D, (E) )Y 21
+0_(_X10+o,14+a+X13+u,16)_ (17) >\=§1;1,15[ 14( }\) 15( )\) 6] ( )

In the case in which we have only correlatkdlectrons with
four states at each site, and

245119-4
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1
_ 1IN _ \.9 t - 2 ~BE
fy )\:22'3 [P3(ENY DH(E\)Y™H] (F1f1)o Zo{xzz,sq)S(EA)e A
L S By (E,)YMO + > Fcpz(E )+ ®2(E,) | PPt ge*%
J225as «(Ey) a7sl2 T ° gi-a 2
1 + 1+ ®2(Ey)]e PEr+e PRl (24
SRR RLFCRE NS 2 [ PL(EY)] (24)
a=o,/, =4,
The sum of these two equations gives us the average number
of d and f-electrons for one spin direction. Because of the
+®5(E,)Pg(E,) | YN mixing of the d- and f-electron states, the valud]d,) is
different from zero,
1 1
+ ——®,(E,)P5(E T . —-BE
a;,7,8>\;2,13{ \/5 7( a) 13( )\) <deT>O_ZO )\:EZ’SCDZ(E)\)(D3(E)\)8 A
1
+DG(E)DiAE)) Y= —= > DiE,)Y — 2 Oy(E)Py(Eye
V2 =T2us \=14,15
1
+ 2 [~ OENYI DY (22 + = X D(Ea)[De(Ea) + Dg(E)Je e
N=14,15 J2 a<678
(25
With the help of these equations, it is easy to determine the We will now determine the Matsubara one-particle
average number af andf electrons in the local model, Green’s functions of localized andf electrons:
GO (7— 1) = —(Td (P d(7"))o, (269
1 GO (r—7)=— Tf, 7'f_(r Mo, 26b
<d}rdT>0:Z_[ >, D5(E,e B o 7T (260
e GUO (7= 7) = ~(Tdy(NTo(r))o, (260
+ > {(DS(EaHECIJ?(Ea) e PBayt Ee—ﬁEs where d(7)=e™ede Mo, d(7)=e™d’e "o, etc., and
a=6.7.8 2 2 their Fourier components,
1 ) T
+A_§213[1+<1>§2<EA>]eBEA+eﬁEm} (23) Go(1)=5 2 & Gy (iwy), wn=g(20+1).

By using Eqs(21), (263, and the properties of the Hubbard
operators, we obtain the following equation for the
and d-electron Green'’s function:

_BE, . - pE ~BEy 4 a—BE
1 2@~ PE\ 4 g~ BEa
+a:%7,8 A:EZ,B ( Q)g(E)\)E@?(Ea) ' (DZ(E)\)(DG(Ea)) fwn+E\—Eq
3 e PEe+e FEA e PEr+e PR
"2 x:;z,lsq)iZ(E)\)m +)\:;2'13<D53(E>\) lwn+Eyx—Ese
1 2@~ PE\ 4 o~ BEa
+a§7‘8 )\:%’13 ( - E‘I’7(Ea)q)12(E)\) +®g(Ey)P14(E)) m] ; (27)

for f electrons we have
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££(0) 1 2
G Miwn)= 71 2 P(E)

+ >

a=6,78A=23

3
+5 > DI(E,)

213

+ >
a=6,7,8 \=12,13

1
(I’z(Ex)—zq)?(Ea) +®3(E))Pg(Ey)

PHYSICAL REVIEW B 63 245119

e PE1r e BEL 3 E O2E e PEx+ e BEg
HEI—E, 2,53 2( }‘)Iwn+E>\—E9

\S2.3 iw

2e*BE)\+ efﬁEa
i(})n"f' E)\_ Ea

5

e BBy @7 BE\ e BEx 4 o BEis

2 —
E q)lz(E)\)iwn"F E)\_Elﬁ

—_——+
lwn,+Eg—E), \<T213

and finally for the mixed local Green’s function it follows that

G?f(o)(iwn)=i| > ¢’2(Ex)¢’3(E>\)(
Zy |2\ S23

+ <I>12<Ex><1>13<EA>(
A=12,13

1
+ > > (¢3<EA>E¢7<Ea>+%(Ex)%(Ea))

a=6,78 =23

e PErt e FEa

— 4
lon+E\—E;  aZ678\=

X

V2

1
— —=DHE)D1E))+DPg(Ey) P15(E))

1 2@ FEry o FEa
E‘D7(Ea)q)13(E)\)+(DG(Ea)q)lZ(E)\) Ton FE._E, ; (29)
e PEire PEL 3 e FRote RN
wa+E;—E, 2 iwy+ EK—EQ)
3e Fope BB g BE\te M
T2 TontEy—E, i@y tE,—Egq
1
(DZ(E)\)E@?(Ea)+(I)3(E)\)(D8(Ea)
1
2 |~ OB P1E)) + Pe(En) D1l Ey)
13| 2
e_ﬁE}\_}_e_ﬁEa
iwn+ Ea_E)\ ) (29)

When the symmetry conditio(i4) holds, we have the fol- The full Matsubara Green’s functions in the interaction rep-

lowing simplifications:

resentation are defined by

P1AE1219=Pa(Ezn), P13(E1p19=P3(E3y). Gdd,(x—x’)=—(Td;o(T)E;rgr(T')U(ﬁ))g, (329
If in addition E1=0 is fulfilled and we make use of E¢L5)
for the chemical potential at half-filling, the following sym- G (x=x")=—(Ttz,(7)fe (7HU(B))S, (32D

metry properties are easily verified:

GHO(—jw,)=-G¥iw,), a=(d,f), (309 G (x=x")=—(Tdi( N5 (FHU(B)S (320

G O(—jw,) =G4 (iw,).

(30b  with x=(x, 7). The evolution operator

The diagonal local function®7) and (28) are even and the = 1) g p
mixed functions(29) are odd with respect to the change of U(g)= Z (-1 f dry- - J' dr, TH' () - -H'(r,)
sign of the hybridization. Therefore, we have the following =0 n! Jo 0

antisymmetry relation valid for all local Green’s functions

for the case when Edq14) holds andE =0,

GO —jw,,~V)= -G (iw,,V).

IV. THE DELOCALIZATION PROCESS

has the same form as in the case of the one-band Hubbard
model ford electrons with hopping; in Eq. (1b) as pertur-

(31 bation. The statistical averages in E§2) will be evaluated
with the partition function of the local model. The indexn

Eqg. (32) means that only connected diagrams have to be
taken into account. The GWT and corresponding diagram

The renormalization of the local Green’s function due totechniqué® ??will be used to obtain the Green’s functions.
d-electron hopping is now discussed in a rather compacBecause the first Green’s function in E432) formally co-
fashion, since many elements of the perturbation theory dencides with the corresponding one of the one-band Hubbard
veloped earlier for the Hubbard modfet®can be used here. model**'®we may write the Dyson equation as

245119-6
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B B In order to simplify the problem of finding the energy
dd ) dd , L :
Gl (x=x)=A% (x—x")+ 2 2 . dleo dr, subbands, we will discuss only the case of the symmetrical
7112 PAM given by the condition(14). Additionally, we assume
XA (x—1)t(1-2)G% (2—x") that the Falicov-Kimball term is zer@&=0. In this case, we
010 o0 !

find from the denominators of the Green’s functid@3) and
(33) (28 that some of the 20 energy differences coincide and
. only eight of them remain different,
wheret(1—-2)=t(1—2) (71— 7,) and
E1—Ep=Es—Eg=E;—E1,=—F;,
A (x=x")=G4x—x")+22%,(x—x"). (34
E;—E3;=E,—Eg=E;—E;3=—Ey,
Herez, is the correlation function first obtained in Refs. Lo omeemr ml d

oo

14 and 15 as the sum of atrongly connected diagrantlsat E,— Eg=Eg—Ej3= — E4+ a?U,
contain irreducible Green’s functions. Figure 1 shows some
of the lower order Feynman diagrams for the correlation Es— Eg=Eg— Eqo= — E;+ a?U, (40)
function Zii, of thed electrons. Retaining all terms in low-
est order leads {5° E,—E,=Eg—E;3=E;,— E;g= —E4—U,
22D (x—x")==68;0 2 O'B f:d 7, dr, GO Es—Er=Eo—E=Ei3~Eie= —E;—U,
0102 12

o E,—Eg=Eg— E;3= —E4—U—a?U,
X(oT,0171|0275,0" 7/ )t(Xx—2)t
S E3—E8=E6—E12=—Ef—U—a2U,
X (1-x)G402—1). (35
172 where
If we take into account only the chain diagrams and neglect

all contributions that contain irreducible Green’s functions, 2

we obtain the Hubbard I-like approximation of our model. Bq=eqt 1_2(D2(6d_6f)'
The Fourier transform of thd-electron Green’s function is
then of the form P2
R R =€ €4— €5),
GI(K,i ) =GO (i w)[ 1— e(K)GY O (i w)] L. (36) (T e €
In the same approximation, the propagator of fleéectrons 1 1
and of thed-f transfer can be expressed as P2=_|1— ,
2 V1+[2V/(eg— €)1
" Gl i w)e(k)GS'®
GM(K,iw)=G"O(w)+ —T— ’— (3 2
VKo =G 0+ = iy 7 P
1-2w?2
and
_ N 1 1
GA"(K,iw)=G¥O(iw)[1-e(k)GI(iw)] 2, w9 -
(383 2 V1+(4VIU)?
G (Kiw) =GO i w)[1- (k)G iw)] L. 02t gos po_ pprpe. A(A-200(A-217)
(38b) 2 U(Ed_ Gf) '

It is clear that in this approximation the energy spectrum ofin this case, the Green’s functi@f?) takes the form
delocalized states of the PAM is determined by the equation
(1-d2A; 1 (1-2D%A, (1-DP?)A,
P\ dd(0) _ Gl gy = _

where GY4O)(E) is the analytical continuation of the Mat-
subara function from the discrete number of poinds, , into

the complexE plane. For the one-band Hubbard model, the
Hubbard | approximation gives two branches, the lower and

(1-2D?)A, DA D2Aq
E-E;—U-ae?U E-Ef E-E4—U

1
2

upper Hubbard subbands. But in our case, due to the com- D2?A, D2Ag

plicated structure of Eq27), Eq. (39) will be nontrivial and + E—E.—U-a2U + E—E.+a2U’ (42)
will have as many roots as there are distinct energy differ- d f

ences for all possible quantum transitions on the ion. The values of the coefficients,, are equal to

245119-7
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ZoA =e PEi+e PEsy §(e  FR2 g FBy)
+1(e PEr+e PR3,
ZoA,=e PEat+ e PRet e FBst e FE1g

ZoAs=3(e PEs+ e PET)+ 3(e PRo+ e PR

+ e~ PE134 g FE1e
ZoA,=e PEs+e PEet e FRet e FEL (42

ZoAs=e PEi+e PEay $(e  FRot o AEs)
+ %(e_'BEH- e_BEIZ),
ZoAg=e PE124+ e AF164 3 (7 AFot o FE1g)
+3(e FR2+e FE),

A7=A2, A8=A4.

In the following, we show that the energy spectrum for the
symmetrical case can be discussed analytically for energies

close to the local energidgs; andE4+U and for weak hy-
bridization(exact numerical results are discussed at thg.end
Close toE;, the main contributions to the Green'’s function
(41) are terms that contain the coefficiertg and Ag. Be-

cause the numerators of these terms contain small param-

PHYSICAL REVIEW B 63 245119

After solving this equation, we determine the corrections

conditioned by the small parameters. From K4j7), one

obtains
ANO=1(eq+ e;+U+e(K)(AL+ 2A+As+3A,)

+{[eq— et~ U+ e(K) (A + 3A,— Ag— 3A,) 12

+4€7(K) (At 3A2) (Ag+ A1), (48)
The improved solutions have the form
E.=AO+ 02O+ 009, (49)
wherex® is determined from
N Art3A, LAt 3A. | ATADY®?
- ()\()_f))—ed)z ()\E_f))—ef—U)z Ag_f))—ed
3AUa?/d? A3+A402/c1>2+ I AU ®2
AP=e® AP—e-U  \D—e-U)?

(ea— € (ALt 3A;)
(D~ eq)?

As+AgD?/ P2

)\(P)_ €f

Aet+A;D2 D2 (eg—€r)(Agt3Ay)

AO--U (O--U)2 %0

eters, it is necessary to keep only the terms of the same order

of smallness in the denominators, i.¥/U,V/(eq— €;)<1.
This leads close t&; to two energy subbands,

E=E;{+®2\;+0(d%), d2<1, (43
where\; is determined from
A5+D2 Ag +A1+§A2 A3+§A4_ 1
N1 P2 N +a?UIP2 €€ U e(k)’
(44)

Near the local energi4+ U we obtain also two subbands,
E=E4+U+®%\,+0(d%), d2<1, (45)
where\, is determined by
Ag D? A
Ly ! +
N2 @2 \,—a?U/D?

Al+3A, Az+iA, 1
+ =—.
U (k)
(46)
We will now try to find the four missing solutions of Eq.

(39). There are contributions from those terms in E4fl)
that contain in the denominatoEs—E4 andE—E;—U. All

€q— €5

Two further solutions remain to be found. We suppose that
one of them is close t&y and can be written in the form

E=Eg+®\;+0(d%). (51)
The second one is close &+ U,
E=E;+U+®2\,+0(d%). (52)

When evaluating\; and \,, special care must be taken

when e(lZ)zO. If we usee(IZ)=<D25(IZ), essential energetic
contributions are transferred to the main part of the expan-

sion ensuring its existence also for=0. The result is
N=3e(K)(Ar+3A2)— a®U/(297)
— 3sgre(K)[{e(K)(Ar+ 7A2)}
+2Ue(K)(A;—2A,) a2/ D2+ (a?Ul D222
(53

From the two possible solutions far;, we take that one for

which e=e/®2—x» gives us the correct solution. In the
same way, we obtain the following for,:

of them have no small parameters in the numerators. There-

fore, it is necessary to find first the solutions of E8p) for

N2= 3 e(K)(Ag+3A,) — a?Ul(2d2)

the case in which all small parameters are equal to zero. This

equation is of the form,

A+ 3A,

)\(O)_ €qg

As+3A,

)\O—ef—U (47)

e(k)’

— 3sgre(K)[{e(K) (At 3A)}2
+2Ue(K)(3A,—Ag) o D2+ (aPU[D?)2]112
(54

245119-8
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Both quantitiesh; and A, now have correct values for all 1
band energies(k). E¢7(Ee)(d¥ff—dfd$)|0>

|Eg)=P6(Eg)dld]|0)+

+®g(Eq)f]f|0), (57)

The Hamiltonian of our model contains two different where the functionsb,(Eg) are the probability amplitudes
types of matrix elements, namely the on-site hybridization ofthat the ionic states are involved in the renormalization. Only
d andf electrons and the-electron transfer term between for very special cases can the singlet state of lowest energy
nearest neighbor sites. The first one is, among other thingbe presented by two bonding statb%bﬂO).
responsible for pairing fluctuations of electrdig®2?° This Three triplet stategEq 19, are situated above this sin-
term is taken into account exactly in zero order, where it isglet state all having the same energy=eq+ €;+G. The
already responsible for the appearance of singlet pairs, semrresponding energy difference determines some critical
| W) in Eq.(2). The second type of interaction is responsibletemperature,
for the delocalization of the electrons and contributes to con-
ductivity processes.

The local model has been treated exactly by using a ne
form of canonical transformation on the basis of the com
plete set of orthonormalized functior,(E,) determined
by Egs.(4) and(5). These functions allow us to classify the
eigenvalues and eigenfunctions of the local Hamiltonia
(1a). We have obtained 10 different renormalized values o
the bare on-site energies, which can be classified by usin
the number of particles that participates in the correspondin
guantum state as well as the spin and its projections. Th
renormalized vacuum stat&,)=|0) is not altered by the
hybridization. But all one-, two-, and three-particle states
with spin S=3, 0 and 1 are essentially changed. For ex-
ample, instead of the two one-particle states with energjes
ande;, |E,) and|E3) appearfand alsdE,) andEz)) havin . o .
bond{ng| a2er anltib?jndii)rf)g character(,i r;gpectivg?y)/. The gorres-Ite transitiond40) by using Eqs(36) and (39) for the case
sponding operators that create the bonding and antibonding
states are determined by the canonical transformatios,

V. COMPUTATION OF QUASIPARTICLE BANDS

kBT* = Eg_ E6, (58)

V%eing equal to the energy gain associated with the formation
‘of the singlet statéEg). This temperature is crucial for un-
derstanding the magnetic properties of the model. For tem-
rPeraturesT<T* and low enough electron concentration, it is
Tmainly the singlet state that is populated, giving rise to zero
magnetic moment. With increasing temperature, the triplet
Yates can be populated, giving rise to a nonvanishing mag-
Betic moment For strong correlations, the energy spectrum
€an be separated into a low-energy part containing the states
|[Ey) (A=1,...,6,9...,11) and a high-energy part(
7,8,12...,16) with a separation in energy that is propor-
tional to the Coulomb interaction.

We now discuss the resulting renormalization of the on-

€f<€d:0, G:O, Uf,Ud,Gd_Ef>|V| (59)

leading to 0>Eq>E,>Eg. This allows us to estimate the

bl =®,(E,)d! + D 4(Ep)f!, (559  Vvalues ofA, in the low-temperature limitT —0,

A=2g, A,=1-g, A;=2g;,
al=®,(E5)d] + Dy(Ea)f . (55b) 1729 Rem i A
—1_ - ~1
For the energies of the three two-electron singlet states with As=1720, As=0, Ae=z0, (60

N=2 andS=0, we find in the limit of weak hybridization g=e AE2Eo g —e AEsEo)
- ) 1— ]

4V3(U-G) whereg andg, are very small quantities. For small hybrid-
E¢=€q+ €+ G— 5 - 5 ization, also the quantitie®?, W2, and D? become small
(U-6) _[fd_ff“LE(Ud_lJf)](l:_)G69 and can be approximated by
2 2
2V2 R— > a2:\P2~%,
E;~=2eg+Ugt —————, (56b) (g~ €) U
€q— 6f+ Ud_G
, (62)
o S
E8226f+ Uf+ (560) 2 €d™ €f U

€f_6d+Uf_G7

WhereU:%(Ud‘l‘ Uf), E2d226d+ Ud, and EZf:2€d+Uf

For such typical values of the parameters egs-0, e;=
—1eV,U=1-4¢eV,Uy=0-1 eV, and|V|=(10) 2 eV,

(the latter two quantities are the energies of the doublethe coefficients in Eq(61) are of the order of 10". Using

state$. From Egs.(56) it follows that Eg is much lower in
energy tharE; andEg. If the hybridization is not weak, the
same observation follows from Eq6A4) and (A5) in the
Appendix. The lowest renormalized stat;) is the super-
position of the original ionic singlet states,

the smallness ofd,g;) and @2,«? D?), we can obtain
from Egs.(43) and(44) a simplified expression for two sub-
bands,

EN=e— 02(e4— 1)+ D2, (62)

245119-9
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where )\(ﬂ[ 1+29 1—2g+3glJ
)\H:_az_u 1_22#@] Pl -e? W -g—-U)2
1 P2 a® U+e(k)(y+1) op2( 1 L
: : 07 e AU
_ge(k)U{U+%E(E)(7+l_2D2/a2) R 1 +]
1-D%®?>  o? D? e(K(y+ai/g-1) M- AU
_m+gg[u+%e(ﬁ)(y+1)]2}' +(€eg— €~ a?UID?)
(633 X{ T }
" (A —en? (WS —€—U)2
N — _ge(ky , (63b) 3-2D%D? ey e)) + a?UID?
U+3e(k)(y+1—-2D?%a?) +g[_ 2 ae
)\8—)— €4 ()\(()—)_ €q)2
7 edlief’ (%2:%( _% 2’ Z—;%(v—Z)Z. _(ed—ef)(3?1/g—2)+a2um>2
(A§)—e—U)?

For T=0, the subban&™) remains broadened whi{™ is e S
reduced to the initial local energy. The two simplified solu- _ 301/9—4D%/®°  2(1-2D%®7)
tions behave in much the same way. They can be obtained A —e—U A — g

from Eqgs.(45) and (48),

1-2D%®?
E@=eg+ U+ D2 (eg— )+ DAL, (64) N R (67b)
0
where In this case, both subbands survive in the limi0 K.
- From Eqgs.(51),(53) and(52),(54), respectively, we obtain
)\(—):(2_ y)zﬁ a#k) two further subbands, both of which do not survive for
2 4 €(K)(1+7y)—2U -0,
e(k E@=ey+D?(eq— 1) + DNy, 68
X[l_zu lz()l : } 654 d (€4~ €¢) 1 (683
[U=elotl=57)] EG) = ¢+ U—02(e4— €)+ D\, (68b)
] e(k e(k with
y e(K)(1+7)—2U 2 e
y u L 4 01 N(r-2 M=T30 e 2020 (6%a
U-e®y(1-5y) 7 [e(k)(1+y)—2U]?
a’U e(k
(65b) N==301— —= L o (69b)
) ; P 2) ®° e(k)+2a°U
For T—0, E'? is reduced to the ionic level, where&$’
keeps some dispersion. The renormalization of the eight one-particle quantum
Using the same simplifications as before, two further subyangitions due to correlation and hybridization effects is
bands can be obtained from Ed87)—(50), shown in Figs. 2—4 for different temperatures. Figure 2
E®Zng(=)+ D) 66) shows those bands that survive in the liffii-0, while the
T hot—= 1 remaining figures show the complete set of eight bands and

their variation if T is increased. With respect to the zero-
temperature solutions, the individual bar{@l®m bottom to
top) correspond to the following transitions:

with

N =Heg+ e+ U+ e(K)(1+ 391) +[(eq— er—U)?
N . B)E _E —F _ - _ 2
+ €2(k)(1+3g;) +4ge(k) (eg— €;—U) B Bs~Be=Eg~Epp= it U,

X(1-391/9)1"3, (673 E®:E,~Eg=Eg—E13= —Eq+a?U,
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8 8

r X M r r X M r

FIG. 2. Results for quasiparticle bands as they result from the FIG. 3. Results for quasiparticle bands as they result from the
solution of Eq.(39), 1— e(k)GY%®(E)=0, at zero temperature for solution of Eq.(39), 1— e(k)GI%®)(E)=0, for nonzero tempera-
the simple case of an underlying two-dimensional square lattice foture (T=5 K). Parameter values are the same as in Fig. 2.
the d electrons with tight-binding dispersio;(l?). The labeling of
the bands follows the notation in the approximate expressions given
by Egs.(62), (64), and(66). Although the effect of hopping is taken
into account only in a Hubbard I-like fashion, there are strong
renormalization effects observable betweeandIl". Parameter val- 8
ues aree4=0, g;=—1.25,t=1, V=0.5, andU=5 (in units of

ev).
®3). 2 6 /\ ]
E+ .E3—E8:E5—E12:—Ef—U—a U,
E®:E,~Eg=Eg—E;3= —E4—U—a?U. A /—_\

For finite temperatures, the situation is more complicated
because additional hybridization and repulsion effects appear L
due to four additional bands, which correspond to the follow- ‘e(k)
ing quantum transitiongwvith energies from bottom to tgp 2

E1—Ex=E3—Egq=E;—Ep= —E¢~—e¢y,

Ei—Ez=Ey,—Eg=E;—E13= —Eg~—e&y,

Es—E;=Eg—Ep;=Ej3—Eg= —Ef—U~—¢g;—U,

Ex—E;=Eg—E13=Ejp—Eje= —Eg—U~gq—U.

In view of the nature of the states in Eq8) and(7) and
because the one-particle Green’s functions in E2j§—(29) 4 L .
can only describe quantum transitions with change of par-
ticle number byN=1, the latter describe the transitions T X M T
[Ep=|E;) or [Es), |Es9=|Ee), |Ew19=IEssg,
|E10=|E1219, |E1419=|E1e), and|Eg 79 =|E119, Cor- FIG. 4. Quasiparticle bands fdr=1000 K, otherwise the same
responding to 20 transitions altogether. For the symmetricabarameter values as in Fig. 3.
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case, only the eight different transitions in EG#0) survive,  with @, E,)=0 for A#(2,3). In Eqs(Ala—(Alc) and in

from which four vanish folT—0. all following equations, the first number index refers to the
upper sign, the second index to the lower sign. Rox
VI. DISCUSSION =4,5 we find

In this paper, we have exgctly splved the ioniq problem of Ess=Es3 Pu(Eg9=Dp(Ezg), Ps(Ess)=P3(Epa).
correlatedd andf electrons, including for simplicity only a (A2)
local hybridization. The problem of delocalization due to
electron hopping cannot be solved exactly. In order to see theor the triple group of functions, the corresponding eigenval-
influence of hopping on the ionic quantum states, we havéles, E, (A=6,7,8), have to be determined by the cubic
used for simplicity the Hubbard I-like approximatiomhich ~ equation
means that important features such as Kondo- and heavy-
fermion behavior, etc., cannot be described, although, de-  X*—X[(&q+ €r+U)*—(2€4+Uq)(2€+ Uy)
pending on the parameters localized, and less localized ionic

states are observedrhe final result for the Hubbard I-like +3(G—U)?+4V?]+ 5(G—U)[(eg+ €+ U)?
approximation is that from the eight subbands of the sym- ) ) )
metrical model, only four subbands survive at low tempera- — (264t Ug)(2€1+U) — 5(G—U)"—2V7]=0,
tures. The physical picture of these one-particle transitions (A3)
will change in a complicated way when going beyond the

Hubbard | approximation. whereE= €4+ e+ 3(2U+ G) +x has been usedj=3(Uq

+Uy). For the special cage= U, there are simple solutions,

Egs= gt €1+ UTF V(A/2)°+(2V)?, (Ada)
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APPENDIX: ATOMIC LIMIT RESULTS sgnV A2
P7(E7)=— (A4d)

Because of the quasidiagonal character of the eigenvalue
problem(3) in matrix form, the system of equations for the
16 atomic eigenfunctionsn=1, ...,16) andeigenvalues

V2 J(A12)Z+(2v)%

(A=1,...,16) breaks up into 10 subsystems of equations (De(Ees):q)s(Ese):E 1% Al2

which can be easily solved. There are five linear equations of ‘ v2 (A12)%2+(2V)?|

the formH? @, (E,) =E,®,(E,) for n=1, 9, 10, 11, and (Ade)
16. Forn=1, we have the solutiorE;=0, ®,(E;)=1,

®,(Ey\.1)=0. Then there are four equations of second order J2v

for the group of functionm=2,... 5,12 ...,15. Finally, O/(Epp)=F ——— (A4f)
there is one equation of third order fo=6, ...,8. It is V(A12)7+(2V)

clear that the functions of one group are equal to zero when . :
: Wwith A=2¢e4+Uy—(2€;+ Uy). For the symmetrical casé
the values O.f en_erg|d§x pglong to othe.r groups and that the =0 (for which we have computed the quasiparticle bands
orthonormalization condition@}) are fulfilled for each group .
. K : we find
separately. We now give a brief account of the atomic solu-

tions as the finite-temperature quasiparticle bands rely on

them. Egg= €at €+ 3(U+G)F3(U—G)?+(4V)?,
Forn,\=2,3, we have (A5a)
1 E;=e4+ e+ U, Ab5b
E2,3:§[6d+ € \(€g—€1)*+4V7], (Ala) [ (ASH)
1
1 €4— € 12 (DG(E?):_(DS(E?):T, ®,(E7)=0, (A5
Dy(Era=—=|1% . (Alb) 2
T2 J(eg—en)?rav?
L U—G 12
112 _ _ _
\Y - Dg(Egg=Pg(Egg=5| 1+
Dy(Epg =T g0 SO Cf (AL0) 2|7 JU=-G)%+(4v)?
' V2 J(eq— €)%+ 4V?2 (A5d)
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1/2

®(Egy _sgnV 1+ Uu-aG
=+ -
T 2 [T u-e)Pr@avy?
(A5e)
The three linear equations for=9, ... ,11 yield

E)\:Ed+6f+G, )\:9, ...,11, CDH(E)\):gn,)\'

(AB)
Forn=12,...,15follows that

1
E12’13=§[3(6d+ €)+2U+4GF\(A,/2)%+(2V)?],

(A7a)
®,(Eyp 3)=i 1:L " (A7h)
ETRET 2T JapEr@ve]

PHYSICAL REVIEW B 63 245119

1/2

O (E 3)_+sgnV N Ay
BEREET 2 T a7 4v)?
(A7c)
d)lzylgEx):O for N#12,13, (A7d)
E14,1':.—_E12,13: ¢14(E14,15):‘I’12(E12,19, (A7e)

D15(Eq419 =P13(E1219, P1a14E\)=0, A#(14,19
(A7f)

with A;=A+Uy—U;. Finally, for &4 E,) we obtain

E16:2(6d+ Ef)+2U+4G, (DlG(E)\):é)\,lﬁ‘ (A8)

The forestanding solutions correspond to a generalization of
previous works™2 to the case of two correlated electron
systems including a Falicov-Kimball term. They coincide
with previous works for the caddy=G=0.
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