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Hopping perturbation treatment of the periodic Anderson model around the atomic limit
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The periodic Anderson model with two strongly correlated subsystems ofd andf electrons and local on-site
hybridization is investigated by considering the hopping ofd electrons between lattice sites as perturbation. In
zero order without the intersite transfer term, the system of correlatedd andf electrons can be treated exactly.
The delocalization of electrons and the corresponding renormalization of the one-particle Green’s functions are
analyzed by using a special diagram technique from which the Dyson equations for the Green’s functions are
established. We discuss the physics of the delocalized electrons in the simplest approximation corresponding to
a Hubbard I–like decoupling giving rise to eight different energy bands, which depend in a non-trivial way on
the exact eigenvalues of the local model. These bands are discussed for the symmetrical case in which the
energies of doubly occupiedd and f states are equal to each other.
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I. INTRODUCTION

The periodic Anderson model~PAM! ~Ref. 1! is one of
the main models for studying strongly correlated electron
heavy-fermion systems, mixed-valence compounds, nar
energy-band materials, and high-temperature supercond
ors. Recent results of experimental and theoretical invest
tions of mixed-valent and heavy-fermion systems can
found in Refs. 2–6. Usually the simplest variant of the PA
is used, which consists of correlated localizedf electrons
with only one spin degree of freedom and uncorrelated c
duction electrons. In this work, we consider an extended v
sion with the corresponding Hamiltonian given by
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ni↑
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is
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f !, ~1a!

H15(
i j s

t~ j 2 i !dj s
† dis , ~1b!

where ais
† (ais) with a5d, f is the creation~annihilation!

operator of itinerant and localized electrons, respectivelyea
is the corresponding local energies taken relative to
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chemical potential, i.e.,ea5 ēa2m; Ua are the on-site Cou-
lomb repulsions; andnis

a 5ais
† ais are the number operator

of the electrons. For simplicity, the hybridization betwe
itinerant and localized states is taken to be a local quan
The last term in Eq.~1a! is the so-called Falicov-Kimbal
term. In this paper, we take Eq.~1a! as the zero-order prob
lem, which can be diagonalized exactly, and we use the h
ping or transfer term in Eq.~1b! as perturbation. The main
purpose of this paper is to see in detail how the hopping
the conduction electrons will change the ionic quantum tr
sitions.

This type of Hamiltonian has been investigated by ma
authors, mostly for the simpler case in whichUd5G50.2–12

Alascio et al.7 ~in the limit of U f→`) and mainly Mancini,
Marinaro et al.,8,9 Noce and Romano,10,11 and Long12 re-
duced the problem~for Ud5G50) to a system of indepen
dent sites, in which case the correlatedf electrons and their
hybridization can be treated exactly. The Hamiltonian~1a!
has 16 quantum states and the corresponding matrix ca
easily diagonalized. ForUd5G50, the resulting eigenval-
uesEl (l51, . . . ,16) can befound in Refs. 7–12. In the
limit of strong Coulomb repulsion (U f→`), as discussed in
Ref. 7, only 12 quantum states are available for the electr
because double occupancy of a single site by twof electrons
is forbidden. Knowledge of the energy spectrum allowed
authors7–11 to obtain the partition functionZ0 of the system
and its relevant thermodynamical quantities, and to pro
that many of the most characteristic features of the interm
©2001 The American Physical Society19-1
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diate valence state~experimental trends! are already presen
in the limit of zero-band width.

II. PERTURBATIVE TREATMENT

From a theoretical point of view, the zero-band wid
model is of further interest. It was proved in Refs. 8 and
that, because of the nonapplicability of Wick’s theorem
the single-site Hamiltonian~1a!, then-point Green’s function
cannot be factorized in terms of two-point Green’s functio
The authors formulated the rules to build up a diagramm
representation for any Green’s function of the Hamilton
~1a! ~for Ud5G50) and obtained by means of the pat
integral formalism the corresponding exact analytic expr
sions. The role of the kinetic energy of the conduction el
trons in the process of delocalization and in t
renormalization of the dynamical quantities was not d
cussed. We have addressed this question in Refs. 13 an
where the Hamiltonian~1a! and ~1b! was investigated for
Ud5G50 by assuming that decoupledf and conduction
electrons~limit of zero hybridization! are a good starting
point for a perturbation expansion in powers of the hybr
ization. In this context, we formulated the Dyson equatio
for the renormalized one-particle Green’s functions for
normal and superconducting state, respectively.

Because of the above-mentioned nonapplicability
Wick’s theorem of conventional quantum-field theory
strongly correlated systems, we proposed in Refs. 15–2
alternative perturbative treatment in terms of the hopp
integral of conduction electrons. To this we formulated
generalized Wick’s theorem~GWT! and corresponding dia
gram technique, which allowed us to reduce averages
n-particle Matsubara Green’s functions of the atomic syste
which can be further factorized by using the GWT~see Refs.
15–22 for details!.

The perturbation theory is formulated in the interacti
representation by using grand-canonical ensemble aver
for the chronological products of interactions. These av
ages are reduced ton-particle local Matsubara Green’s func
tions Gn

(0)(1, . . . ,nu18, . . . ,n8) depending on 2n groups of
arguments (15site i , time t, spin s). In the absence o
correlations, the functions factorize and can be represe
by a sum of products ofn independent one-particle Green
functions~standard Wick theorem!. In the presence of corre
lations, new terms appear in addition to the previous on
All new terms contain one or more on-site many-parti
irreducible Green’s functionsGm

(0)(1, . . . ,mu18, . . . ,m8)
with m<n, the structure of which is of Kubo’s cumulan
type. All site indices of the individual irreducible function
are the same; they are strictly local functions. The decom
sition of the localn-particle Green’s functionsGn

(0) is the
sum of different contributions that can containn1 one-
particle, n2 two-particle irreducible,n3 three-particle irre-
ducible, etc., Green’s functions, whereby the structures
conditioned by the conservation law for particle numbersn
5n112n213n31••• with details determined by the GWT
These irreducible functions being diagonal with respect
their site indices, have, however, different time and spin
bels. The diagrammatic representation of the perturbation
24511
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ries contains new elements, as indicated in Fig. 1. These
elements can be gathered together in a function, the corr
tion functionZss8(x2x8). Z is the sum of allstrongly con-
nected irreducible diagrams, each of which has two externa
verticesx andx8, wherex stands for (i ,t,s). In the general
case, the correlation functionZ is not diagonal with respec
to the site indices~in the simplest case of second-order pe
turbation with respect to hopping, the two-particle corre
tion function appears, which, however, is diagonal!. The nice
feature of this perturbation expansion is that the renorm
ized one-particle Green’s function can be formulated
terms ofZ only. The correlation functionZ and correspond-
ing Dyson equation had not been established in previ
expansions.23–25

The novelty of the diagram technique is that the GW
allows us to generate all contributions of the perturbat
expansion for correlated electron systems by using
simple algebra of usual fermion operators instead of the
gebra of Hubbard transfer~projection! operators used previ
ously by Stasyuk, Zaitsev, and Izyumov.23–25 The technique
of projection operators is only used at the final stage of
calculations in order to find the simplest irreducible fun
tions. In contrast with Refs. 23–25, we have only one kind
vertex, one localized zero-order Green’s function, and o
one kind of irreduciblen-particle Green’s function. Previou
diagrammatical formulations contain a variety of such qu
tities. A Dyson-type equation for the delocalized one-parti
Green’s function using this technique was first formulated
Refs. 15 and 16. A numerical investigation~yet to be under-
taken! of the simplest contribution~the two-particle irreduc-
ible diagramZ(2) shown in Fig. 1! will allow us to discuss
metal-insulator and superconducting transitions.16–18,26 The
function Z(2) is of primary interest when going beyond th
Hubbard I approximation.

We will now briefly investigate the properties of the PAM
in the atomic limit when the contribution of the hopping
the d electrons is absent, and we will subsequently inve
gate the impact of hopping on the ionic quantum transitio
by employing the new perturbation theory.

III. THE LOCAL MODEL „ATOMIC LIMIT …

In the case of zero conduction-band width, we have
diagonalize Eq.~1a!. Since there are four states for thed and
f electrons, respectively, we have altogether 16 quan

FIG. 1. A typical Feynman diagram of second~left! and third
~right! order of the perturbation theory for thed-electron correlation
function Zdd. The solid line is thed-electron propagator; square
represent the irreducible two-particle Green’s functio

G2
(0) ir(x1u2̄x8), G2

(0) ir(x1u2̄3̄), and G2
(0) ir (32u1̄x8). Dotted lines

stand for the hopping matrix elements.
9-2
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states at each lattice site, which, for completeness, are li
as follows~the site index has been omitted!:

uC1&5u0&, uC9&5d↑
†f ↑

†u0&,

uC2&5d↑
†u0&, uC10&5

1

A2
~d↑

†f ↓
†1d↓

†f ↑
†!u0&,

uC3&5 f ↑
†u0&, uC11&5d↓

†f ↓
†u0&,

uC4&5d↓
†u0&, uC12&5d↑

†d↓
†f ↑

†u0&, ~2!

uC5&5 f ↓
†u0&, uC13&5d↑

†f ↑
†f ↓

†u0&,

uC6&5d↑
†d↓

†u0&, uC14&5d↑
†d↓

†f ↓
†u0&,

uC7&5
1

A2
~d↑

†f ↓
†2d↓

†f ↑
†!u0&, uC15&5d↓

†f ↑
†f ↓

†u0&,

uC8&5 f ↑
†f ↓

†u0&, uC16&5d↑
†d↓

†f ↑
†f ↓

†u0&,

whereu0& is the vacuum state of the ion corresponding to
empty lattice site. The statesuC2&•••uC5& are single-particle
states withN51 electron, spinS5 1

2 , and Sz56 1
2 ; uC6&,

uC7&, and uC8& are the singlet states withN52 electrons
and spinS50; the next three states are the triplet states w
N52, S51, andSz521,0,11; then there are four states—
uC12&, uC13&, uC14&, and uC15&—with N53, S5 1

2 , andSz
56 1

2 . The last stateuC16& corresponds toN54 andS50.
The action of the Hamiltonian~1a! on the ionic states~2!

gives rise to a 16316 matrix,H0, for each lattice site, which
has nearly diagonal structure. In order to diagonalize
matrix, we make use of the complete orthonormalized s
tem of eigenfunctions,Fn(El), determined by the matrix
equation,

H0F~El!5ElF~El!, ~3!

whereF(El) is a column vector with the usual orthonorma
ization conditions,

(
l51

16

Fn* ~El!Fm~El!5dm,n , ~4a!

(
n51

16

Fn* ~El!Fn~El8!5dl,l8 . ~4b!

The set of column vectorsF(El) (l51, . . . ,16) can be
used as elements for theS matrix, which diagonalizes the
local Hamiltonian~this method is different from the metho
used so far8,9 and does not require additional computation
work! by

H̃05S21H0S, ~5!

the eigenfunctions of which,uEl&, allow us to formulate the
transformation of the wave functions between the differ
representations,
24511
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uCn&5(
l

Fn~El!uEl&, ^Cnu5(
l

^EluFn* ~El!,

~6a!

uEl&5(
n

Fn* ~El!uCn&, ^Elu5(
n

^CnuFn~El!.

~6b!

Using Eq. ~6b! and the properties ofFn(El) listed in the
Appendix allows us to obtain the eigenfunctions of the lo
Hamiltonian,

uE1&5u0&, uE9&5uC9&,

uE2&5F2~E2!uC2&1F3~E2!uC3&, uE10&5uC10&,

uE3&5F2~E3!uC2&1F3~E3!uC3&, uE11&5uC11&,

uE4&5F4~E4!uC4&1F5~E4!uC5&,

uE12&5F12~E12!uC12&1F13~E12!uC13&,

uE5&5F4~E5!uC4&1F5~E5!uC5&,

uE13&5F12~E13!uC12&1F13~E13!uC13&, ~7!

uE6&5F6~E6!uC6&1F7~E6!uC7&1F8~E6!uC8&,

uE14&5F14~E14!uC14&1F15~E14!uC15&,

uE7&5F6~E7!uC6&1F7~E7!uC7&1F8~E7!uC7&,

uE15&5F14~E15!uC14&1F15~E15!uC15&,

uE8&5F6~E8!uC6&1F7~E8!uC7&1F8~E8!uC8&,

uE16&5uC16&.

These kinds of functions have been listed in Refs. 7 a
10–12 for the caseUd50 and in Ref. 12 forUd5G50. One
of these functions should have the lowest energy correspo
ing to the ground state of the system. A candidate for
ground state is one of the three singlet functions withN
52, S50, and energyEa , a56, . . . ,8.

Knowledge of the energy spectrum in the atomic lim
~listed in the Appendix! gives us the possibility to find the
corresponding partition functionZ0,7,10,11

Z05 (
l51

16

e2bEl5112e2bE212e2bE31 (
a56,7,8

e2bEa

13e2bE912e2bE1212e2bE131e2bE16 ~8!

with b5(kBT)21. By using the equation

]El

]m
52N, ~9!

where N is the number of particles in the correlated sta
uEl&, we can obtain from Eq.~8! the following property:
9-3
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nd1nf5^n↑
d1n↓

d1n↑
f 1n↓

f &5
1

b

] ln Z0

]m
, ~10!

which can be rewritten as

nd1nf5
2

Z0
@~e2bE1621!1~e2bE122e2bE2!

1~e2bE132e2bE3!#. ~11!

For the symmetrical case~14! defined below, for which

E12,135E2,31
1
2 E16 ~12!

holds, Eq.~11! simplifies to

nd1nf225
2

Z0
~e2bE16/221!~11e2bE21e2bE3

1e2bE16/2!. ~13!

It is interesting to note that the average number of electr
is nd1nf52 if, in addition to the condition of symmetry
~equal energies of doubly occupiedd and f states, see the
Appendix!,

2ed1Ud52e f1U f , ~14!

E16 is identically zero. In this case, the chemical poten
takes the value

2m5 ēd1 ē f1U12G, ~15!

which is the condition for half-filling. Ifm→2`, the quan-
tity nd1nf goes to zero, and ifm→1`, this number ap-
proaches 4.

We now introduce Hubbard transfer operators for
ionic quantum transitionsXmn5uCm&^Cnu and express the
annihilation operators ofd and f electrons in terms of them

ds5X1,32s1sX31s,61
1

A2
~sX41s,71X41s,10!

1
1

A2
~sX10,132s2X7,132s!1sX101s,131s

1X42s,102s1X8,142s1sX141s,16 ~16!

and

f s5X1,42s1sX41s,81
1

A2
~sX31s,72X31s,10!

2X32s,102s1X6,132s2
1

A2
~X7,142s1sX10,142s!

1s~2X101s,141s1X131s,16!. ~17!

In the case in which we have only correlatedd electrons with
four states at each site,
24511
s

l

e

uC1&5u0&, uC2&5d↑
1u0&, uC3&5d↓

1u0&,

uC4&5d↑
1d↓

1u0&, ~18!

the definition ofd annihilation operators by means of Hub
bard operators is simply

ds5uC1&^C21(12s)/2u1suC21(11s)/2&^C4u. ~19!

The complicated form of Eqs.~16! and~17! compared to Eq.
~18! is due to the complicated form of our zero-order Ham
tonian~1a! ~similar operator expressions for the two-site b
single-band Hubbard model27 can be found in Ref. 28!.

The Hubbard transfer operatorsYll85uEl&^El8u between
states of the diagonalized Hamiltonian are more conven
to use than the primary Hubbard operatorsXmn. On the basis
of Eqs.~6a! and~6b! we find for the transformation of Hub
bard operators,

Xmn5(
ll8

Fm~El!Fn* ~El8!Y
ll8, ~20a!

Yll85(
mn

Fm* ~El!Fn~El8!X
mn. ~20b!

Taking into account Eqs.~16!, ~17!, ~20a!, and ~20b!, we
obtain

d↑5 (
l52,3

F2~El!Y1,l1 (
l52,3

F3~El!Yl,9

1
1

A2
(

l54,5
F5~El!Yl,10

1 (
a56,7,8

(
l54,5

FF5~El!
1

A2
F7~Ea!

1F4~El!F6~Ea!GYl,a

1 (
a56,7,8

(
l512,13

F2
1

A2
F7~Ea!F12~El!

1F8~Ea!F13~El!GYa,l1
1

A2
(

l512,13
F12~El!Y10,l

1 (
l514,15

@F14~El!Y11,l1F15~El!Yl,16# ~21!

and
9-4
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f ↑5 (
l52,3

@F3~El!Y1,l2F2~El!Yl,9#

2
1

A2
(

l54,5
F4~El!Yl,10

1 (
a56,7,8

(
l54,5

FF4~El!
1

A2
F7~Ea!

1F5~El!F8~Ea!GYl,a

1 (
a56,7,8

(
l512,13

F2
1

A2
F7~Ea!F13~El!

1F6~Ea!F12~El!GYa,l2
1

A2
(

l512,13
F13~El!Y10,l

1 (
l514,15

@2F15~El!Y11,l1F14~El!Yl,16#. ~22!

With the help of these equations, it is easy to determine
average number ofd and f electrons in the local model,

^d↑
†d↑&05

1

Z0
H (

l52,3
F2

2~El!e2bEl

1 (
a56,7,8

FF6
2~Ea!1

1

2
F7

2~Ea!Ge2bEa1
3

2
e2bE9

1 (
l512,13

@11F12
2 ~El!#e2bEl1e2bE16J ~23!

and
24511
e

^ f ↑
†f ↑&05

1

Z0
H (

l52,3
F3

2~El!e2bEl

1 (
a56,7,8

F1

2
F7

2~Ea!1F8
2~Ea!Ge2bEa1

3

2
e2bE9

1 (
l512,13

@11F13
2 ~El!#e2bEl1e2bE16J . ~24!

The sum of these two equations gives us the average num
of d and f-electrons for one spin direction. Because of t
mixing of the d- and f-electron states, the valuêf ↑

†d↑& is
different from zero,

^ f ↑
†d↑&05

1

Z0
H (

l52,3
F2~El!F3~El!e2bEl

2 (
l514,15

F14~El!F15~El!e2bEl

1
1

A2
(

a56,7,8
F7~Ea!@F6~Ea!1F8~Ea!#e2bEaJ

~25!

We will now determine the Matsubara one-partic
Green’s functions of localizedd and f electrons:

Gs
dd(0)~t2t8!52^Tds~t!d̄s~t8!&0 , ~26a!

Gs
f f (0)~t2t8!52^T fs~t! f̄ s~t8!&0 , ~26b!

Gs
d f(0)~t2t8!52^Tds~t! f̄ s~t8!&0 , ~26c!

where d(t)5etH0de2tH0, d̄(t)5etH0d†e2tH0, etc., and
their Fourier components,

Gs~t!5
1

b (
vn

e2 ivntGs~ ivn!, vn5
p

b
~2n11!.

By using Eqs.~21!, ~26a!, and the properties of the Hubbar
operators, we obtain the following equation for th
d-electron Green’s function:
G↑
dd(0)~ ivn!5

1

Z0
H (

l52,3
F2

2~El!
e2bE11e2bEl

ivn1E12El
1

3

2 (
l52,3

F3
2~El!

e2bEl1e2bE9

ivn1El2E9

1 (
a56,7,8

(
l52,3

S F3~El!
1

A2
F7~Ea!1F2~El!F6~Ea!D 2

e2bEl1e2bEa

ivn1El2Ea

1
3

2 (
l512,13

F12
2 ~El!

e2bE91e2bEl

ivn1E92El
1 (

l512,13
F13

2 ~El!
e2bEl1e2bE16

ivn1El2E16

1 (
a56,7,8

(
l512,13

S 2
1

A2
F7~Ea!F12~El!1F8~Ea!F13~El!D 2

e2bEl1e2bEa

ivn1Ea2El
J ; ~27!

for f electrons we have
9-5
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G↑
f f (0)~ ivn!5

1

Z0
H (

l52,3
F3

2~El!
e2bE11e2bEl

ivn1E12El
1

3

2 (
l52,3

F2
2~El!

e2bEl1e2bE9

ivn1El2E9

1 (
a56,7,8

(
l52,3

S F2~El!
1

A2
F7~Ea!1F3~El!F8~Ea!D 2

e2bEl1e2bEa

ivn1El2Ea

1
3

2 (
l512,13

F13
2 ~El!

e2bE91e2bEl

ivn1E92El
1 (

l512,13
F12

2 ~El!
e2bEl1e2bE16

ivn1El2E16

1 (
a56,7,8

(
l512,13

S 2
1

A2
F7~Ea!F13~El!1F6~Ea!F12~El!D 2

e2bEl1e2bEa

ivn1Ea2El
J ; ~28!

and finally for the mixed local Green’s function it follows that

G↑
d f(0)~ ivn!5

1

Z0
H (

l52,3
F2~El!F3~El!S e2bE11e2bEl

ivn1E12El
2

3

2

e2bE91e2bEl

ivn1El2E9
D

1 (
l512,13

F12~El!F13~El!S 2
3

2

e2bE91e2bEl

ivn1E92El
1

e2bEl1e2bE16

ivn1El2E16
D

1 (
a56,7,8

(
l52,3

S F3~El!
1

A2
F7~Ea!1F2~El!F6~Ea!D S F2~El!

1

A2
F7~Ea!1F3~El!F8~Ea!D

3
e2bEl1e2bEa

ivn1El2Ea
1 (

a56,7,8
(

l512,13
S 2

1

A2
F7~Ea!F13~El!1F6~Ea!F12~El!D

3S 2
1

A2
F7~Ea!F12~El!1F8~Ea!F13~El!D e2bEl1e2bEa

ivn1Ea2El
J . ~29!
-

of
ng
s

to
a
d
.

p-

bard

be
am
s.

ard
When the symmetry condition~14! holds, we have the fol-
lowing simplifications:

F12~E12,13!5F2~E3,2!, F13~E12,13!5F3~E3,2!.

If in addition E1650 is fulfilled and we make use of Eq.~15!
for the chemical potential at half-filling, the following sym
metry properties are easily verified:

Gs
aa(0)~2 ivn!52Gs

aa(0)~ ivn!, a5~d, f !, ~30a!

Gs
d f(0)~2 ivn!5Gs

d f(0)~ ivn!. ~30b!

The diagonal local functions~27! and ~28! are even and the
mixed functions~29! are odd with respect to the change
sign of the hybridization. Therefore, we have the followi
antisymmetry relation valid for all local Green’s function
for the case when Eq.~14! holds andE1650,

Gs
ab(0)~2 ivn ,2V!52Gs

ab(0)~ ivn ,V!. ~31!

IV. THE DELOCALIZATION PROCESS

The renormalization of the local Green’s function due
d-electron hopping is now discussed in a rather comp
fashion, since many elements of the perturbation theory
veloped earlier for the Hubbard model15,16 can be used here
24511
ct
e-

The full Matsubara Green’s functions in the interaction re
resentation are defined by

Gss8
dd

~x2x8!52^TdxWs~t!d̄xW8s8~t8!U~b!&0
c , ~32a!

Gss8
f f

~x2x8!52^T fxWs~t! f̄ xW8s8~t8!U~b!&0
c , ~32b!

Gss8
d f

~x2x8!52^TdxWs~t! f̄ xW8s8~t8!U~b!&0
c ~32c!

with x5(xW ,t). The evolution operator

U~b!5 (
n50

`
~21!n

n! E
0

b

dt1•••E
0

b

dtnTH8~t1!•••H8~tn!

has the same form as in the case of the one-band Hub
model ford electrons with hoppingt i j in Eq. ~1b! as pertur-
bation. The statistical averages in Eq.~32! will be evaluated
with the partition function of the local model. The indexc in
Eq. ~32! means that only connected diagrams have to
taken into account. The GWT and corresponding diagr
technique15–22 will be used to obtain the Green’s function
Because the first Green’s function in Eqs.~32! formally co-
incides with the corresponding one of the one-band Hubb
model,15,16 we may write the Dyson equation as
9-6
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Gss8
dd

~x2x8!5Lss8
dd

~x2x8!1(
s1

(
1W 2W

E
0

b

dt1E
0

b

dt2

3Ls1s8
dd

~x21!t~122!Gs1s8
dd

~22x8!,

~33!

wheret(122)5t(1W 22W )d(t12t2) and

Lss8
dd

~x2x8!5Gss8
dd(0)

~x2x8!1Zss8
dd

~x2x8!. ~34!

Here Zss8
dd is the correlation function first obtained in Ref

14 and 15 as the sum of allstrongly connected diagramsthat
contain irreducible Green’s functions. Figure 1 shows so
of the lower order Feynman diagrams for the correlat
function Zss8

dd of the d electrons. Retaining all terms in low
est order leads to15,16

Zss8
dd(2)

~x2x8!52dxW ,xW8 (
s1s2

(
1W 2W

E
0

bE
0

b

dt1dt2G2
(0)ir

3~st,s1t1us2t2 ,s8t8!t~xW22W !t

3~1W 2xW !Gs1s2

dd(0)~221!. ~35!

If we take into account only the chain diagrams and neg
all contributions that contain irreducible Green’s function
we obtain the Hubbard I–like approximation of our mod
The Fourier transform of thed-electron Green’s function is
then of the form

Gs
ddI~kW ,iv!5Gs

dd(0)~ iv!@12e~kW !Gs
dd(0)~ iv!#21. ~36!

In the same approximation, the propagator of thef electrons
and of thed-f transfer can be expressed as

Gs
f f I~kW ,iv!5Gs

f f (0)~ iv!1
Gs

f d(0)~ iv!e~kW !Gs
d f(0)

12e~kW !Gs
dd(0)~ iv!

~37!

and

Gs
d f I~kW ,iv!5Gs

d f(0)~ iv!@12e~kW !Gs
dd(0)~ iv!#21,

~38a!

Gs
f dI~kW ,iv!5Gs

f d(0)~ iv!@12e~kW !Gs
dd(0)~ iv!#21.

~38b!

It is clear that in this approximation the energy spectrum
delocalized states of the PAM is determined by the equa

12e~kW !Gs
dd(0)~E!50, ~39!

whereGs
dd(0)(E) is the analytical continuation of the Ma

subara function from the discrete number of points,ivn , into
the complexE plane. For the one-band Hubbard model, t
Hubbard I approximation gives two branches, the lower a
upper Hubbard subbands. But in our case, due to the c
plicated structure of Eq.~27!, Eq. ~39! will be nontrivial and
will have as many roots as there are distinct energy dif
ences for all possible quantum transitions on the ion.
24511
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In order to simplify the problem of finding the energ
subbands, we will discuss only the case of the symmetr
PAM given by the condition~14!. Additionally, we assume
that the Falicov-Kimball term is zero,G50. In this case, we
find from the denominators of the Green’s functions~27! and
~28! that some of the 20 energy differences coincide a
only eight of them remain different,

E12E25E32E95E72E1252Ef ,

E12E35E22E95E72E1352Ed ,

E22E65E82E1352Ed1a2U,

E32E65E82E1252Ef1a2U, ~40!

E22E75E92E135E122E1652Ed2U,

E32E75E92E125E132E1652Ef2U,

E22E85E62E1352Ed2U2a2U,

E32E85E62E1252Ef2U2a2U,

where

Ed5ed1
F2

122F2
~ed2e f !,

Ef5e f2
F2

122F2
~ed2e f !,

F25
1

2 F12
1

A11@2V/~ed2e f !#
2G ,

a25
C2

122C2
,

C25
1

2 F12
1

A11~4V/U !2G ,

D25
1

2 FF21C222F2C22
4V2~122F2!~122C2!

U~ed2e f !
G .

In this case, the Green’s function~27! takes the form

G↑
dd(0)~E!5

~12F2!A1

E2Ed
1

1

2

~122D2!A2

E2Ed1a2U
1

~12F2!A3

E2Ef2U

1
1

2

~122D2!A4

E2Ef2U2a2U
1

F2A5

E2Ef
1

F2A6

E2Ed2U

1
D2A7

E2Ed2U2a2U
1

D2A8

E2Ef1a2U
. ~41!

The values of the coefficientsAn are equal to
9-7
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Z0A15e2bE11e2bE31 3
2 ~e2bE21e2bE9!

1 1
2 ~e2bE71e2bE13!,

Z0A25e2bE21e2bE61e2bE81e2bE13,

Z0A35 1
2 ~e2bE31e2bE7!1 3

2 ~e2bE91e2bE12!

1e2bE131e2bE16,

Z0A45e2bE31e2bE81e2bE61e2bE12, ~42!

Z0A55e2bE11e2bE21 3
2 ~e2bE91e2bE3!

1 1
2 ~e2bE71e2bE12!,

Z0A65e2bE121e2bE161 3
2 ~e2bE91e2bE13!

1 1
2 ~e2bE21e2bE7!,

A75A2 , A85A4 .

In the following, we show that the energy spectrum for t
symmetrical case can be discussed analytically for ener
close to the local energiesEf andEd1U and for weak hy-
bridization~exact numerical results are discussed at the e!.
Close toEf , the main contributions to the Green’s functio
~41! are terms that contain the coefficientsA5 and A8. Be-
cause the numerators of these terms contain small pa
eters, it is necessary to keep only the terms of the same o
of smallness in the denominators, i.e.,V/U,V/(ed2e f)!1.
This leads close toEf to two energy subbands,

E5Ef1F2l11O~F4!, F2!1, ~43!

wherel1 is determined from

A5

l1
1

D2

F2

A8

l11a2U/F2
1

A11 1
2 A2

e f2ed
2

A31 1
2 A4

U
5

1

e~kW !
.

~44!

Near the local energyEd1U we obtain also two subbands

E5Ed1U1F2l21O~F4!, F2!1, ~45!

wherel2 is determined by

A6

l2
1

D2

F2

A7

l22a2U/F2
1

A11 1
2 A2

U
1

A31 1
2 A4

ed2e f
5

1

e~kW !
.

~46!

We will now try to find the four missing solutions of Eq
~39!. There are contributions from those terms in Eq.~41!
that contain in the denominatorsE2Ed andE2Ef2U. All
of them have no small parameters in the numerators. Th
fore, it is necessary to find first the solutions of Eq.~39! for
the case in which all small parameters are equal to zero.
equation is of the form,

A11 1
2 A2

l (0)2ed

1
A31 1

2 A4

l02e f2U
5

1

e~kW !
. ~47!
24511
es
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After solving this equation, we determine the correctio
conditioned by the small parameters. From Eq.~47!, one
obtains

l6
(0)5 1

2 „ed1e f1U1e~kW !~A11 1
2 A21A31 1

2 A4!

6$@ed2e f2U1e~kW !~A11 1
2 A22A32 1

2 A4!#2

14e2~kW !~A11 1
2 A2!~A31 1

2 A4!%1/2
…. ~48!

The improved solutions have the form

E65l6
(0)1F2l6

(1)1O~F4!, ~49!

wherel (1) is determined from

l6
(1)H A11 1

2 A2

~l6
(0)2ed!2

1
A31 1

2 A4

~l6
(0)2e f2U !2J 52

A11A2D2/F2

l6
(0)2ed

2

1
2 A2Ua2/F2

~l6
(0)2ed!2

2
A31A4D2/F2

l6
(0)2e f2U

1

1
2 A4Ua2/F2

~l6
(0)2e f2U !2

1
~ed2e f !~A11 1

2 A2!

~l6
(0)2ed!2

1
A51A8D2/F2

l6
(0)2e f

2
A61A7D2/F2

l6
(0)2ed2U

2
~ed2e f !~A31 1

2 A4!

~l6
(0)2e f2U !2

. ~50!

Two further solutions remain to be found. We suppose t
one of them is close toEd and can be written in the form

E5Ed1F2l11O~F4!. ~51!

The second one is close toEf1U,

E5Ef1U1F2l21O~F4!. ~52!

When evaluatingl1 and l2, special care must be take
whene(kW )50. If we usee(kW )5F2ē(kW ), essential energetic
contributions are transferred to the main part of the exp
sion ensuring its existence also forkW50. The result is

l15 1
2 ē~kW !~A11 1

2 A2!2a2U/~2F2!

2 1
2 sgnē~kW !@$ē~kW !~A11 1

2 A2!%2

12U ē~kW !~A12 1
2 A2!a2/F21~a2U/F2!2#1/2.

~53!

From the two possible solutions forl1, we take that one for
which ē5e/F2→` gives us the correct solution. In th
same way, we obtain the following forl2:

l25 1
2 ē~kW !~A31 1

2 A4!2a2U/~2F2!

2 1
2 sgnē~kW !@$ē~kW !~A31 1

2 A4!%2

12U ē~kW !~ 1
2 A42A3!a2/F21~a2U/F2!2#1/2

~54!
9-8
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Both quantitiesl1 and l2 now have correct values for a
band energiese(kW ).

V. COMPUTATION OF QUASIPARTICLE BANDS

The Hamiltonian of our model contains two differe
types of matrix elements, namely the on-site hybridization
d and f electrons and thed-electron transfer term betwee
nearest neighbor sites. The first one is, among other thi
responsible for pairing fluctuations of electrons.13,14,29 This
term is taken into account exactly in zero order, where i
already responsible for the appearance of singlet pairs,
uC7& in Eq. ~2!. The second type of interaction is responsib
for the delocalization of the electrons and contributes to c
ductivity processes.

The local model has been treated exactly by using a n
form of canonical transformation on the basis of the co
plete set of orthonormalized functionsFn(El) determined
by Eqs.~4! and~5!. These functions allow us to classify th
eigenvalues and eigenfunctions of the local Hamilton
~1a!. We have obtained 10 different renormalized values
the bare on-site energies, which can be classified by u
the number of particles that participates in the correspond
quantum state as well as the spin and its projections.
renormalized vacuum stateuE1&5u0& is not altered by the
hybridization. But all one-, two-, and three-particle sta
with spin S5 1

2 , 0 and 1 are essentially changed. For e
ample, instead of the two one-particle states with energieed
ande f , uE2& anduE3& appear~and alsouE4& andE5&) having
bonding and antibonding character, respectively. The co
sponding operators that create the bonding and antibon
states are determined by the canonical transformation,10–12

bs
†5F2~E2!ds

†1F3~E2! f s
† , ~55a!

as
†5F2~E3!ds

†1F3~E3! f s
† . ~55b!

For the energies of the three two-electron singlet states
N52 andS50, we find in the limit of weak hybridization

E6.ed1e f1G2
4V2~U2G!

~U2G!22@ed2e f1
1
2 ~Ud2U f !#

2
,

~56a!

E7.2ed1Ud1
2V2

ed2e f1Ud2G
, ~56b!

E8.2e f1U f1
2V2

e f2ed1U f2G
, ~56c!

whereU5 1
2 (Ud1U f), E2d52ed1Ud , andE2 f52ed1U f

~the latter two quantities are the energies of the dou
states!. From Eqs.~56! it follows that E6 is much lower in
energy thanE7 andE8. If the hybridization is not weak, the
same observation follows from Eqs.~A4! and ~A5! in the
Appendix. The lowest renormalized stateuE6& is the super-
position of the original ionic singlet states,
24511
f
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uE6&5F6~E6!d↑
†d↓

†u0&1
1

A2
F7~E6!~d↑

†f ↓
†2d↓

†d↑
†!u0&

1F8~E6! f ↑
†f ↓u0&, ~57!

where the functionsFn(E6) are the probability amplitudes
that the ionic states are involved in the renormalization. O
for very special cases can the singlet state of lowest ene
be presented by two bonding states,b↑

†b↓
†u0&.

Three triplet states,uE9, . . . ,11&, are situated above this sin
glet state all having the same energyE95ed1e f1G. The
corresponding energy difference determines some crit
temperature,

kBT* 5E92E6 , ~58!

being equal to the energy gain associated with the forma
of the singlet stateuE6&. This temperature is crucial for un
derstanding the magnetic properties of the model. For te
peraturesT!T* and low enough electron concentration, it
mainly the singlet state that is populated, giving rise to z
magnetic moment. With increasing temperature, the trip
states can be populated, giving rise to a nonvanishing m
netic moment.6 For strong correlations, the energy spectru
can be separated into a low-energy part containing the st
uEl& (l51, . . .,6,9, . . . ,11) and a high-energy part (l
57,8,12, . . . ,16) with a separation in energy that is propo
tional to the Coulomb interaction.

We now discuss the resulting renormalization of the o
site transitions~40! by using Eqs.~36! and ~39! for the case

e f,ed50, G50, U f ,Ud ,ed2e f@uVu ~59!

leading to 0.E9.E2.E6. This allows us to estimate th
values ofAn in the low-temperature limit.T→0,

A1. 3
2 g, A2.12g, A3. 3

2 g1 ,

A4.122g, A5.g, A6. 1
2 g, ~60!

g5e2b(E22E6), g15e2b(E92E6),

whereg andg1 are very small quantities. For small hybrid
ization, also the quantitiesF2, C2, and D2 become small
and can be approximated by

F2.
V2

~ed2e f !
2

, a2.C2.
4V2

U2
,

~61!

D2.
V2

2 S 1

ed2e f
2

2

U D .

For such typical values of the parameters ased50, e f5
21 eV, U5124 eV, Ud5021 eV, anduVu5(10)21/2 eV,
the coefficients in Eq.~61! are of the order of 1021. Using
the smallness of (g,g1) and (F2,a2,D2), we can obtain
from Eqs.~43! and~44! a simplified expression for two sub
bands,

E6
(1)5e f2F2~ed2e f !1F2l1

(6) , ~62!
9-9
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where

l1
(2)52

a2U

F2 H 12
D2

a2

e~kW !

U1 1
2 e~kW !~g11!

J
2ge~kW !UH 1

U1 1
2 e~kW !~g1122D2/a2!

2
12D2/F2

11 1
2 e~kW !~g11!

1
a2

F2

D2

F2

e~kW !~g1g1 /g2 1
2 !

@U1 1
2 e~kW !~g11!#2J ,

~63a!

l1
(1)5

ge~kW !U

U1 1
2 e~kW !~g1122D2/a2!

, ~63b!

g5
U

ed2e f
,

D2

F2
5

1

2 S 12
2

g D 2

,
D2

a2
5

1

8
~g22!2.

For T50, the subbandE2
(1) remains broadened whileE1

(1) is
reduced to the initial local energy. The two simplified so
tions behave in much the same way. They can be obta
from Eqs.~45! and ~48!,

E6
(2)5ed1U1F2~ed2e f !1F2l2

(6) , ~64!

where

l2
(2)5~22g!2

gU

4

e~kW !

e~kW !~11g!22U

3H 12
e~kW !

2@U2e~kW !~12 1
8 g!#

J , ~65a!

l2
(1)5

U

g2 H 42~g22!2
e~kW !

e~kW !~11g!22U
J ge~kW !

2

3H U

U2e~kW !g~12 1
8 g!

1
4

g

e~kW !~12g!~g22!2U

@e~kW !~11g!22U#2 J .

~65b!

For T→0, E2
(2) is reduced to the ionic level, whereasE1

(2)

keeps some dispersion.
Using the same simplifications as before, two further s

bands can be obtained from Eqs.~47!–~50!,

E6
(3)5l0~6 !1F2l1

(6) . ~66!

with

l0
(6)5 1

2 $ed1e f1U1e~kW !~11 3
2 g1!6@~ed2e f2U !2

1e2~kW !~113g1!14ge~kW !~ed2e f2U !

3~12 3
4 g1 /g!#1/2%, ~67a!
24511
-
ed

-

l1
(6)H 112g

~l0
(6)2ed!2

1
122g13g1

~l0
(6)2e f2U !2J

5
2D2

F2 H 1

l0
(6)2e f

1
1

l0
(6)2ed2U

2
1

l0
(6)2ed

2
1

l0
(6)2e f2U

1J
1~ed2e f2a2U/F2!

3H 1

~l0
(6)2e f !

2
2

1

~l0
(6)2e f2U !2J

1gH 2
322D2/F2

l0
(6)2ed

1
2~ed2e f !1a2U/F2

~l0
(6)2ed!2

2
~ed2e f !~3g1 /g22!1a2U/F2

~l0
(6)2e f2U !2

2
3g1 /g24D2/F2

l0
(6)2e f2U

1
2~122D2/F2!

l0
(6)2e f

1
122D2/F2

l0
(6)2ed2U

J . ~67b!

In this case, both subbands survive in the limitT50 K.
From Eqs.~51!,~53! and~52!,~54!, respectively, we obtain

two further subbands, both of which do not survive forT
→0,

E(4)5ed1F2~ed2e f !1F2l1 , ~68a!

E(5)5e f1U2F2~ed2e f !1F2l2 ~68b!

with

l1523g
a2U

F2

e~kW !

e~kW !22a2U
, ~69a!

l2523g1

a2U

F2

e~kW !

e~kW !12a2U
. ~69b!

The renormalization of the eight one-particle quantu
transitions due to correlation and hybridization effects
shown in Figs. 2–4 for different temperatures. Figure
shows those bands that survive in the limitT→0, while the
remaining figures show the complete set of eight bands
their variation if T is increased. With respect to the zer
temperature solutions, the individual bands~from bottom to
top! correspond to the following transitions:

E2
(3) :E32E65E62E1252Ef1a2U,

E2
(3) :E22E65E82E1352Ed1a2U,
9-10
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E1
(3) :E32E85E62E1252Ef2U2a2U,

E1
(2) :E22E85E62E1352Ed2U2a2U.

For finite temperatures, the situation is more complica
because additional hybridization and repulsion effects app
due to four additional bands, which correspond to the follo
ing quantum transitions~with energies from bottom to top!:

E12E25E32E95E72E1252Ef'2« f ,

E12E35E22E95E72E1352Ed'2«d ,

E32E75E92E125E132E1652Ef2U'2« f2U,

E22E75E92E135E122E1652Ed2U'«d2U.

In view of the nature of the states in Eqs.~2! and~7! and
because the one-particle Green’s functions in Eqs.~27!–~29!
can only describe quantum transitions with change of p
ticle number byN51, the latter describe the transition
uE1&
uE2& or uE3&, uE2,3&
uE9&, uE14,15&
uE6,7,8&,
uE10&
uE12,13&, uE14,15&
uE16&, anduE6,7,8&
uE12,13&, Cor-
responding to 20 transitions altogether. For the symmetr

FIG. 2. Results for quasiparticle bands as they result from

solution of Eq.~39!, 12e(kW )Gs
dd(0)(E)50, at zero temperature fo

the simple case of an underlying two-dimensional square lattice

the d electrons with tight-binding dispersion«(kW ). The labeling of
the bands follows the notation in the approximate expressions g
by Eqs.~62!, ~64!, and~66!. Although the effect of hopping is take
into account only in a Hubbard I–like fashion, there are stro
renormalization effects observable betweenX andG. Parameter val-
ues are«d50, « f521.25, t51, V50.5, andU55 ~in units of
eV!.
24511
d
ar
-

r-

al

FIG. 3. Results for quasiparticle bands as they result from

solution of Eq.~39!, 12e(kW )Gs
dd(0)(E)50, for nonzero tempera-

ture (T55 K!. Parameter values are the same as in Fig. 2.

FIG. 4. Quasiparticle bands forT51000 K, otherwise the same
parameter values as in Fig. 3.
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case, only the eight different transitions in Eqs.~40! survive,
from which four vanish forT→0.

VI. DISCUSSION

In this paper, we have exactly solved the ionic problem
correlatedd and f electrons, including for simplicity only a
local hybridization. The problem of delocalization due
electron hopping cannot be solved exactly. In order to see
influence of hopping on the ionic quantum states, we h
used for simplicity the Hubbard I–like approximation~which
means that important features such as Kondo- and he
fermion behavior, etc., cannot be described, although,
pending on the parameters localized, and less localized i
states are observed!. The final result for the Hubbard I–like
approximation is that from the eight subbands of the sy
metrical model, only four subbands survive at low tempe
tures. The physical picture of these one-particle transiti
will change in a complicated way when going beyond t
Hubbard I approximation.
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APPENDIX: ATOMIC LIMIT RESULTS

Because of the quasidiagonal character of the eigenv
problem~3! in matrix form, the system of equations for th
16 atomic eigenfunctions (n51, . . . ,16) andeigenvalues
(l51, . . .,16) breaks up into 10 subsystems of equatio
which can be easily solved. There are five linear equation
the form Hnn

0 Fn(El)5ElFn(El) for n51, 9, 10, 11, and
16. For n51, we have the solutionE150, F1(E1)51,
F1(ElÞ1)50. Then there are four equations of second or
for the group of functionsn52, . . . ,5,12, . . . ,15. Finally,
there is one equation of third order forn56, . . . ,8. It is
clear that the functions of one group are equal to zero w
the values of energiesEl belong to other groups and that th
orthonormalization conditions~4! are fulfilled for each group
separately. We now give a brief account of the atomic so
tions as the finite-temperature quasiparticle bands rely
them.

For n,l52,3, we have

E2,35
1

2
@ed1e f7A~ed2e f !

214V2#, ~A1a!

F2~E2,3!5
1

A2
F17

ed2e f

A~ed2e f !
214V2G 1/2

, ~A1b!

F3~E2,3!57
sgnV

A2
F16

ed2e f

A~ed2e f !
214V2G 112

~A1c!
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n

-
n

with F2,3(El)50 for lÞ(2,3). In Eqs.~A1a!–~A1c! and in
all following equations, the first number index refers to t
upper sign, the second index to the lower sign. Forn,l
54,5 we find

E4,55E2,3, F4~E4,5!5F2~E2,3!, F5~E4,5!5F3~E2,3!.
~A2!

For the triple group of functions, the corresponding eigenv
ues, El (l56,7,8), have to be determined by the cub
equation

x32x@~ed1e f1U !22~2ed1Ud!~2e f1U f !

1 1
3 ~G2U !214V2#1 2

3 ~G2U !@~ed1e f1U !2

2~2ed1Ud!~2e f1U f !2 1
9 ~G2U !222V2#50,

~A3!

whereE5ed1e f1
1
3 (2U1G)1x has been used;U5 1

2 (Ud
1U f). For the special caseG5U, there are simple solutions

E6,85ed1e f1U7A~D/2!21~2V!2, ~A4a!

E75ed1e f1U, ~A4b!

F6~E7!52F8~E7!5
A2uVu

A~D/2!21~2V!2
, ~A4c!

F7~E7!52
sgnV

A2

D/2

A~D/2!21~2V!2
, ~A4d!

F6~E6,8!5F8~E8,6!5
1

2 F17
D/2

A~D/2!21~2V!2G ,

~A4e!

F7~E6,8!57
A2V

A~D/2!21~2V!2
~A4f!

with D52ed1Ud2(2e f1U f). For the symmetrical caseD
50 ~for which we have computed the quasiparticle band!,
we find

E6,85ed1e f1
1
2 ~U1G!7 1

2 A~U2G!21~4V!2,
~A5a!

E75ed1e f1U, ~A5b!

F6~E7!52F8~E7!5
1

A2
, F7~E7!50, ~A5c!

F6~E6,8!5F8~E6,8!5
1

2 F17
U2G

A~U2G!21~4V!2G 1/2

,

~A5d!
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F7~E6,8!57
sgnV

A2
F16

U2G

A~U2G!21~4V!2G 1/2

.

~A5e!

The three linear equations forn59, . . . ,11 yield

El5ed1e f1G, l59, . . . ,11, Fn~El!5dn,l .
~A6!

For n512, . . . ,15follows that

E12,135
1

2
@3~ed1e f !12U14G7A~D1/2!21~2V!2#,

~A7a!

F12~E12,13!5
1

A2
F17

D1

A~D1!21~4V!2G 1/2

, ~A7b!
24511
F13~E12,13!56
sgnV

A2
F16

D1

A~D1!21~4V!2G 1/2

,

~A7c!

F12,13~El!50 for lÞ12,13, ~A7d!

E14,155E12,13, F14~E14,15!5F12~E12,13!, ~A7e!

F15~E14,15!5F13~E12,13!, F14,15~El!50, lÞ~14,15!
~A7f!

with D15D1Ud2U f . Finally, for F16(El) we obtain

E1652~ed1e f !12U14G, F16~El!5dl,16. ~A8!

The forestanding solutions correspond to a generalizatio
previous works5–12 to the case of two correlated electro
systems including a Falicov-Kimball term. They coincid
with previous works for the caseUd5G50.
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