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Antiferromagnetic phase in the Hubbard model by means of the composite operator method
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We have investigated the antiferromagnetic phase of two-dimensi@bBa) three-dimensional3D), and
extended Hubbard models on a bipartite cubic lattice by means of the composite operator method within a
two-pole approximation. This approach yields a fully self-consistent treatment of the antiferromagnetic state
that respects the symmetry properties of both the model and the algebra. The complete phase diagram, as
regards the antiferromagnetic and paramagnetic phases, has been drawn. We first reported, within a pole
approximation, three kinds of transitions at half-filling: Mott-Hubbard, Mott-Heisenberg, and Heisenberg tran-
sitions. We have also found a metal-insulator transition, driven by doping, within the antiferromagnetic phase.
This latter is restricted to a very small region near half-filling, and has, in contrast to what has been found by
similar approaches, a finite critical Coulomb interaction as a lower bound at half-filling. Finally, it is worth
noting that our antiferromagnetic gap has two independent components: one due to the antiferromagnetic
correlations, and another coming from the Mott-Hubbard mechanism.
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[. INTRODUCTION fundamental spinor, the equation of motion for the Green’s
function of this spinor is obtained. This equation has been
For almost half a century, the Hubbard mddehs been solved by means of both a pole approdchiand a two-site
one of the fundamental models in a theoretical description ofesolvent method® The use of composite operators requires
strongly correlated electron systems. Despite its simplicity, ia careful choice of the Fock space, where the Green'’s func-
has always been taken as one of the prototypes when moden is realized. We have shown that the Pauli principle plays
eling electrons in narrow bands. Within this context it hada fundamental role in unambiguously fixing the representa-
wide applications in the theory of magnet&thand metal- tion by determining the parameters that appear in the
insulator transitionS The discovery of the higfi; supercon-  scheme, owing to the noncanonical algebra of the composite
ducting cuprate materiafswhere the special properties are gperator€®?! Let us note that, by the Pauli principle, we
to a large extent due to strong correlatiénsyt an impetus  mean all relations among operators dictated by the algebra.
on the investigation of the Hubbard model and its derivates, comprehensive treatment of the paramagnetic phase of the

as thet-t’-U model, the extended Hubbard model, and they,phard model within the two-pole approximation has led to
t-J model. To gain a better theoretical understanding of; 4504 agreement with both numerical studies and some ex-
high-T. materials, not only the superconducting phase of the) i antal properties of the cuprafé? In the case of the
proposed models is studied, but also their normal phase a

those with further broken symmetries. The antiferromagneti? e-dimensional1D) Hubbard model we have shown that
state is of particular interest, as it is believed that the pairin he two-pole approximation reproduces almost exactly the

R i . . %Bethe ansatz results for the ground-state enétgy.

mechanism in the cuprates is mainly due to magnetic corre- In the last years an intensive study by the spectral densit

lations in an itinerant electronic system. In addition, the yll 12 -y by b y
approach(SDA)*"< of the magnetic phases of the Hubbard

high-T. compounds show a wide range of metal-insulator del on diff latti db ing di ional
transitions; in particular, a phase transition from an antifer0de! on different lattice types and by varying dimensional-

romagnetic insulator to a superconductor is observed. ThiY has been dong&~**and the complete magnetic phase dia-
antiferromagnetic phase of the Hubbard model has been tf#fam of the Hubbard model on a 3D fcc latice was
subject of intensive study by both numerical and analyticaderived=” The SDA corresponds to an expansion of the
methods. Green’s function in terms of the electronic spectral moments.
Despite the simplicity of the model, there are no exactlt has been shown that this approach corresponds to the
solutions known except for a few special ca&snd one COM when a specific choice of the basic spinor is made and
must turn to approximate solutions. The dynamical meanthe pole approximation is uséd However, this correspon-
field theory(DMFT)® and a variety of projection techniques dence is only relative to the functional dependence of the

10-183re among the most popular approaches to the Hubbai@reen’s function, and huge differences arise when the repre-
model and its derivates. sentation is not properly fixed:?2°
The composite operator methotCOM)*+*519 that we To complement the analysis of the paramagnetic phase for

present here belongs to the above-mentioned class of projethe Hubbard model in the two-pole approximation by the
tion techniques. Choosing a set of field operators built ugCOM, we present here a study of the antiferromagnetic phase
from the electronic one§ence the names elements of the within this framework. As the most simple case of antiferro-
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magnetism, where in general the spin and the translationalhere the variableé denotes the time translation of the op-
invariance are broken, we consider an antiferromagnetic statrator under the Heisenberg dynamics generateti.oyhe

on a bipartite lattice characterized by its staggered magnetHeisenberg equation of motion for this basic fidldmay be
zation. It turns out that in this phase the simple Hubbardsplit into a part that is linear in the basic field and a remain-
model does not provide sufficient internal parameters to fixng nonlinear part

the representation. We therefore investigate the-U
model in the limit oft’—0 in two and three dimensions, and
the extended Hubbard model in two dimensions.

In Secs. Il and lll, we develop the analytical background
needed for the calculations. We find a closed set of selfby projecting it on the basic field. Then, the matsitd, ) is
consistent equations for the antiferromagnetic thermal equifixed by
librium state, which respects the Pauli principle and the
particle-hole symmetry. The numerical evaluation of these Ciy— i t T -1
self-consistent equations is presented in Secs. IV and V. The e(L) Z QO LOHETAD.PIG0H
complete phase diagrams considering the paramagnetic and (2.9
Ejhe antlferromagnetlc phase for both models and in dlfferen\tNhere (-) denotes the thermal average on the grand-
imensionality are calculated, as well as the density of stateé .
and the quasiparticle dispersions. The main results of theanomc_al ensemble. . .
paper are the following: the preseﬁce of three kinds of tran- ||T%| S|mpl|f3|( th? notath;nal gﬁﬁrt’ we ||r|1t§]duce .the so-
sitions (Mott-Hubbard, Mott-Heisenberg, and Heisenbeag called normalization matrix and the so-calleth matrix

d . o . .
IE‘I’(I,t)=J(|,t)=; e(i,)W(,)+38it) (2.3

half-filling in the planeT-U; the existence of two compo- (L) = 36,0, PG ,01 (2.5
nents in the antiferromagnetic gépne due to the antiferro- ’ Y o
magnetic correlations, and another coming from the Mott- m(@i,j) =3, T O} (2.6)

Hubbard mechanisma finite critical value of the Coulomb

interaction for the Mott-Hubbard and Mott-Heisenberg tran-and obtain the shorthand for the energy matsix ml—*
sitions; the strong decay of the  dletemperature with dop- from Eq.(2.4).

ing; and a metal-insulator transition away from half-filling  The pole approximation consists of neglecting the nonlin-

inside the antiferromagnetic phase. ear partsJ(i,t) in the equation of motion. This is equivalent
to suppressing of the incoherent part in the retarded Green’s
Il. HUBBARD MODEL WITHIN THE TWO-POLE function matrix

APPROXIMATION S(1L, 0 = 00T (.0, 71(],00)

The Hamiltonian for the single-band Hubbard mddel §
dee—iwtj dok gk (Ri-Ry)
0p

with chemical potential is defined by _ i

a
27\ 2

H=2 (tj—md)ch(ic,(j)+UX niin (), ,
ij;o i X ddpe'p'RiS(k,p,w), 2.7
2.9 Qg

with oe{T, ]}, and where the sum over the site indice®id  which then satisfies the linearized equation of motion
j runs over the whole chemical latti¢&;}, which we con-

sider to be of simple cubic type with lattice constantJ is d . ) . ) )

the on-site Coulomb interaction. The kinetic part of the 1= S0, ,t)=|5(t)|(|,])+2l e(i,h)S(,j,1). (2.9
Hamiltonian is given by the nearest-neighbor hoppingdIn

dimensions, the hopping matrix takes the forty= d is the dimension of the systerajs the lattice spacing, and
—2dtae;=-2dtUNZ e RRda(k), with a(k) Qgisthe Brillouin zone. The resulting set of algebraic equa-
=(1/d)={_, coska). tions for the Fourier transform of the retarded Green’s func-

In the framework of the COM, as basic fields we take thetion may then be solved. A knowledge of the retarded
Hubbard operatorsé, (i)=c,(i)[1—n;(i)] and 7,(i)  Green’s function will allow us to calculate the correlation
=c,(i)n(i), whereng(i)=cz(i)cg(i), describing the basic functions (W (i,t)¥'(j,0)) by means of the spectral theo-
excitationsn(i)=0<n(i)=1 andn(i)=1<n(i)=2 on the rem. As already mentioned, the above scheme of truncating
lattice sitei, which are responsible for the leading contribu- the equation of motion by a projection technique is rather
tions in the electronic density of stat€sLet us define a common in the treatment of systems with strong correlations.

four-component Composite field at lattice S”:e When, as in this WOI’k, we use OperatOI’S Coming from the
hierarchy of the equations of motion as basic figld€ the
& (i,1) COM is similar to the SDAM24-2®However, the COM gives
71(i) the possibility of choosing the basic fields according to the
Wi, t)= ) , (2.2 physics of the system under investigation. This freedom al-
(1,0 lows a better control on the dynamical information still
7,(i,t) present in the generalized mean-field approximation. Let us
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emphasize that even in the pole approximation the electronic O o O o O o
self-energy is not trivial as in the standard mean-field ap-
proach, but a pole expansion of the exact electronic self-
energy is used. Another fundamental difference between the
COM and the approaches mentioned above consists of a
treatment of the higher-order correlation functions occurring
in the energy matriXEq. (2.4)], which are not directly re-
lated to elements of the Green’s function. As shown in a
recent publicatioR? there is no freedom in choosing the
equations to compute those parameters, as they have to be
used to fix the representation according to the relation

. ) _ _ O [ o O [ )
lim S(i,j,t)=(¥ (i) ¥'(i)), (2.9
tjj)i+ & a
o O ® O
e,

where the left-hand side comes from E8.7) and the right- L . . i
hand side derives from the basic algebraic properties of the F'C: 1. The bipartite lattice structure induced by the antiferro-
electronic field algebra—namely, tHeauli principle Any magnetic ordering on a two-dimensional square lattice.

other choice of the self-consistent equations that fix those
parameters will lead to a representation for the Green'’s func-
tion, where the main symmetries of the system are viol&ted.
In the case of the Hubbard model, E@.9) leads to the A. Antiferromagnetic solution on a bipartite lattice
self-consistent equations

IIl. ANTIFERROMAGNETIC SOLUTION
FOR THE HUBBARD MODEL

As stated above, we will study the antiferromagnetic so-
lution of the Hubbard model by considering ttie—0 limit
of thet-t’-U model. The Hamiltonian of the latter reads

(£,(1)ml(i))=0, (2.103

HYU= (1 +t),— w8,)ch()e, () +US niin, (i),
(E:(DE))=(&,()E)). (2.108 v | 3.

! . . .
The use of these equations, in the paramagnetic phase, Ied\zeglere thetj; matrix describes the next-nearest-neighbor hop-

a good agreement of the COM with the numerical results foP'"n9- Thet’ hoppi_ng is an intra-subl_atticg hopping for _each
the local, integrated, and thermodynamic quantitiég:23 of the two sublattice®\ andB of a bipartite square lattice,
In contrast to the paramagnetic solution—characterized/Nereas the hopping is an intersublattice hopping.

by a complete translational and spin rotational symmetry— ||_|n th_'ls pgpeg Xve ﬁonsmer_ ar:j Entlferromag_netl_c SQIUt;]OH
where the number of parameters in the energy matrix emerd?l Hamiltonian(3.1), characterized by an opposite sign in the

ing from higher-order correlation functions is equal to theSPIN density on nearest-neighboring lattice sites. Thus the

number of constrains given by the Pauli princigleq.  antiferromagnetic ordering induces a magnetic lat{iBg}
(2.10], an antiferromagnetic solution with two composite with a lattice constand=a/2, overlying the chemical Bra-
fields, which is characterized by a broken translational andais lattice{R;} with lattice constana. As shown in Fig. 1,
spin rotational symmetrithey are, however, not broken in a the magnetic lattice is obtained as a square lattice with a
completely independent wayrequires additional parameters basis, by collecting together two neighboring sites of the
to satisfy all constraints emerging from the algebraic properehemical lattice.

ties of the basic field operato&sand ». It turns out that for During the calculation of the Green’s functions it will be
extensions of a simple Hubbard modEl. (2.1)] by a next-  convenient to switch between two equivalent representations
nearest-neighbor hopping tertthe t-t'-U mode), or by a  of the system constructed on the chemical and magnetic lat-
nearest-neighbor Coulomb repulsitthe so-called extended tices. We denote vectors belonging to the chemical lattice by
Hubbard mode| the number of those parameters is equal tatheir bare symbols, whereas the corresponding vectors on the
the number of “algebraic” constraints in the case of an an-magnetic lattice are denoted by an additional tilde. We im-
tiferromagnetic solution. According to this, in the following pose the following global boundary conditions on the anti-
we will investigate the antiferromagnetic solution of the 2D ferromagnetic thermal equilibrium state.

and 3Dt-t'-U model in the limit oft’ going to zero, and Assumption 11.1The antiferromagnetic thermal equilib-
that of the 2D extended Hubbard model. For the antiferrorium state has to satisfy the following global boundary con-
magnetic solution, the two poles corresponding to the twalitions:

composite field§ and » will split up into four poles due to 1. The particle and spin densities are globally con-
the broken translational and spin rotational symmetry. served.
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2. The mean value of the local particle density per spinsystem, while it would have be@d(N®) for a d-dimensional
satisfies the relation system with the usual next-nearest-neighiehopping ma-
W\ 1lre_1\o S trix. In two dimensions the'-hopping matrix is given by

(o) =2in=(=DmeosQ-RIL. - B2 1 yorp — 1o (N, @ RRIB(K) with (k)

wherem is the staggered magnetization, which has to be=1(4[«(k)]°~1). In three dimensions we ﬁnd;i’j:

calculated self-consistently. The particle densityis im- _3(1’18”.:_3(]:’(1/N)Ekeik'(Ri_Rj)lB(k), with  B(K)
posed as an external parameter. Further we adopt the con-2(3[ o(k)]2— ). Let us remark that in the present defini-
ventionoc=1,2 foro=1,| andQ=(w/a,w/a). tions the hopping per lattice site is always normalized to 1. It

3. All expectation values are invariant under the con-is worth noting that, as we will take tHé—0 limit hereaf-
temporary exchange of the spin direction and the sublatticgr the use of thepherical approximatiorcannot affect at

index. o . _ all the results we will obtain.
4. The normalization matrix and them matrix from In the following we will restrict our analysis to the 2D
Egs.(2.5 and(2.6) have to be real. case. The 3D case, which might be treated in complete anal-

We remark that conditionél)—(3) are natural boundary oqy by renormalizing the hopping constants and by changing
conditions for an antiferromagnetic thermal equilibrium statejne projectionsy;; and;: , will be considered in Sec. IV C.
characterized by a staggered magnetization, whereas condi- ! J

tion (4) is a direct consequence of the fact that we are look-
ing for a state without quasiparticle damping, as required by
the approximation scheme described in Sec. Il. In order to calculate the energy matrix in the two-pole
To reduce the computational effort in solving the integralapproximation under the antiferromagnetic boundary condi-
self-consistent equations, we useherical approximation tions given in assumption 1ll.1, we proceed along the guide-
for thet’ hopping, characterized by an additional hopping tolines given in Sec. Il. To this end it is convenient to use the
next-next-nearest-neighbors with half the weight of the nextcorresponding quantities defined on the chemical lattice, and
nearest-neighbor hopping, in the calculations of the integralt switch to the magnetic lattice only for the calculation of
in the momentum space. This permits a definition of thethe Green’s functions.
t’-hopping matrix bya(k) only, and therefore reduces the  First, we calculate the full equation of motion for the
number of evaluations t@(N)—N is the number of steps in composite field spinofEq. (2.2)] according to Eq(2.3) for
the integrals—independently from the dimensionality of thethet-t"-U Hamiltonian

B. Normalization and energy matrices

— p& (i) =4t (i) —4taf(i,t) — 12 ch(i,t) — 12" (i t)

— (1,0 Uy (1, 0) + 4t 0 + 12" (i b)

—p€ (i, —4tef(i,n) -4t —12"cf(i, ) — 12" 73 t) |
— (i, +Up (i,0)+4taf(i, )+ 12 78(i 1)

i%\lf(i,t)=[\1f(i,t),H“’U]= (3.3

where we used the notationw)(i)=—n,(i)c(i) with 1M =TMgTM and M =7Mg —7(M where the blocks
+CH(i) e, () (i) + c, (i) X (i) i) with c2(i)  are given by
=27ijCy(j), wherey=a,B stands for the projections de-

fined in Sec. Il A.

n m
According to assumption 111.1.1, the expectation values 1- > 0 0 0
for spin-exchange operators vanish, and we find the general = Tm = . (3.6
block structures nj’ m
0 3 0o -— >

IZITGBIL’ SZST@Sl, i .
For them matrix, from Eq.(2.6) we obtain

M=M,&M,, S=S &S, . 3.4 .
[ T 34 m(i,j)=6;jM1+ a;jM3+ Bi;Ms
The explicit form of the normalization matrix is obtained by +c04Q-R)(5jM,+ ajjM4+ BijMg). (3.7)
direct evaluation of Eq(2.5),
The matricesM,, ... ,Mg also have the above-mentioned
1(i,)) =81 ™M+ 8;1(™ cog Q- Ry), (3.5  block structures
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M, O M, O
Ml: ~ ’ MZ_ ~ y
0o M, 0o —M,
My O M, O
My= ol M= - (3.9
0 Mg 0 —-M,
Mg O Mg O
M5_ ° ~ ] MG_ ° ~ ’
0 Ms 0  —M,
with
1 o o !
) —M(l—5n)—4t(Af+A$)—6t’(Af+A§) A(AT+AT)+6t (A +AP)
M]_: ’
a @ ’ B B 1 a a ’ B B
At(ATH+AT)+6t"(AT+AY) (U=p)5n—4t(AT+Af) -6t (Af+AF)
m (23 a !
) — o —AUAT AT =6t (AP AF) A(AT— AT+ 6t (AP AP)
MZZ m 3
A(AT—AD)+6t (AF—AP) — S (—p+U)—4t(AT- A7) -6t (Af-AF)
(3.9
1 , 1o, Jro1 o,
) —4t(1-n+p) -4t Sn=p ) —12'|1-n+ (pf+pf)| —12'|5n-S(pf+pf)
M3: 1 y M5: Il l 5 p , p p ’
—4t >n=p —4tp —12t En—z(lerpT) —6t'(p+p7),

1
m+ 5 (pf—pf)| 6t'(m+pf -pp)

>
i

0 —2tm ) —12t
2tm 0O » Me=

6t'(m+pf-pf)  —6t'(pf-pf)

To shorten the notation of the occurring expectation valuesi-urthermore, we used the notatiog(i)=c*(i)crﬂc(i) for
we defined the following parameters: the spin- and charge-density operators with the Pauli spin
matriceso, € {1,04,0y,0,} and the electronic field spinors
1 c'(i)=[cl(i).cl()].

AZ=§(<§g(i)CgT(i)%(Cﬁ(i)nl(i))) for ieA As the antiferromagnetic ordering breaks the translational
invariance, the parametefs’ , p, Ag, andpg in principle do
depend on the lattice siie However, the antiferromagnetic

1 s ) e g state enjoys a translational invariance within each of the two
p= Z<nu(')nu(')>_<CT(')Ci(')[Ci(')CT(')] ) sublatticesA andB. For definitions of parameter8.10 we
arbitrarily chose the values on the sublattieTheir values
on the sublatticeB are then given by exchanging the spin
AB=(&,()eB (D)) —(chi)nh(i)) for ieA, indices according to assumption 111.1.3.
(3.10 The operators, from which the expectation values for the
parametera®, p, A?, andp? are taken, are not Hermitian.
1 However, the corresponding parameters have to be real ac-
pg=z<[n1(i)—(—)“in2(i)][nl(i)+(—)"in2(i)]ﬁ> cording to assumption 111.1.4. This finally results in the
parametep being independent of both the spin and the sub-
+(n0(i)nﬁ(i))—(c;(i)ca(i)[cZ(i)c%(i)][”) lattice. Furthermore, the normalization matrix and the
m-matrix result to be symmetric.
To calculate the energy matrix we note that E.4)
for i eA. givesm=c¢l. In Fourier space, we have
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a2 Due to assumption Ill.1 on the antiferromagnetic thermal
m(k,p)= zf &g e(k+q, p—q)l(q) equilibrium state, Green’s functiof3.17 has the block
(2m)°J0g structureS*¥=SYo S shown in Eq(3.4), where the poles

=e(k ) MW+e(k+Q, p—Q)™,  3.10 {Exi(K)|i €{1,2,3,4} of the spin-dependent parg " of the

Green’s functions are given by the roots of the fourth-order
where the Fourier transform of the normalization andrthe g y

: . equations
matrix are given by
2\ 2 2 XY, T XY, TN
K p):<£> L)1 ™+ 8(p— Q)1 ™ defw?+0AX () +BX(K)]=0. (3.8

272 The set of poles for the Green'’s functioﬁﬁY are all equal,

m(k,p)=(—> {8(p)[M 1+ a(k)Mz+ B(k)M5] i.e., the quasiparticle energies depend on neither the spin nor
a the sublattice. This reflects the property of the antiferromag-

+8(p—Q)[ Mo+ a(k)M 4+ B(K)Mg]L. netic state with staggered magnetization, where the majority-

spin states and the minority-spin states energetically occupy
(3.12 exactly the same regions and differ only in their correspond-
We recall that the Fourier transform on the chemical lattice idng Spectral weightscf. also Sec. IV. Therefore, we simply
defined as in Eq(2.7) to benefit from the periodicity of the write E;(k)=E} (k).

thermal equilibrium states. We can write the retarded Green’s functi®17) as
Using the 2 periodicity of the thermal equilibrium states
in Eq. (3.11), we obtain the energy matrix in Fourier space, 4
XY/ T N — |i XY(T
e(k, p)=m(k,p)C—m(k+Q,p—Q)D,  (3.13 So (k””)_,'?'ino 21 w—E (k) +i na“"(k)’ (319

with
— (=2 () pm)y—1_ (M) (n)y—17-1 with X,YE{A,B}, O'E{T,l} and the Spin- and sublattice-
C=T0) AT =) = dependent spectral weights. | given by
D=(1M) =M my =1 m0)=11-1" (3,14

Using the explicit expressions 3.12 forand the normaliza-
tion matrix, we can write the energy matrix as

XK= {[E () 1P () +[E (k)]

4
I1 (B0 —E;(K)]

? =
e(k, p)= % {8(p)[eD+ a(k)e@+ B(k)e®] 1
X {DXY(K)+ detf AL (R) [ AR (K)] 1K)}
+68(p— Q)@+ a(k)e®+ B(k)e®7}, ’ X \ :
(3.19 +E;(K){detf AXY(K) JTAXY(K) ]~ 1DXY(k)}
with +det[B} (k) ][B) " (k)] *CxY(k)
8(1):M10_M2D, 8(2)=M3C+ M4D, _|_det[BéY(E)][BéY(’R)]_1D§Y(E)}. (32(»

e®=M,C-M;D, £®=M,C+M;D,
D. Self-consistency equations

)= — (6)— —
e=M5C—M¢eD, &™'=MeC—MsD. (3.16 Given the temperatur€ and the particle density as ex-

ternal thermodynamic parameters, as well as the Coulomb
C. Green’s functions interactionU and the hopping constantsandt’, which are

The solutions of the linearized equation of motighg) the model-dependent parameters, we are now able to give a

with expression(3.15 for the energy matrix can be inter- closed set of self-consistent conditions for the internal pa-
oreted as translational invariant Green’s functisha(k, o), rameters characterizing an antiferromagnetic thermal equilib-

~ o ~ rium state. These internal parameters B pP, A,
S*B(k,w), SBA(k, w), andSBB(k,w) on the magnetic lattice, P RI; P 2

. . A%, A? andA? from Eq.(3.10, the chemical potentigk
J’ ] T ’ L ’ ’
as shown in Appendix A. They have the general structure and the magnetizatiom from Eq. (3.2).

For the calculations of these parameters we need a knowl-
edge of the correlation functions, which are connected to the
X[ wCXY(K)+ DXY(K)]. (3.17 retarded Green’s functions of the fundamental sp_inor by
means of the spectral theorem. In view of the special form
The explicit form of the coefficient&*Y, B*Y, C*Y, and [Eq. (3.19] of the retarded Green’s functions, the spectral
DXY are given in Appendix B. theorem at equal time may be written as

Yk, w)=[ 0+ oA*Y(k)+B*Y(k)] !
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CX(R, ,ﬁj):<q,x(§i)q,Y’r(ﬁj)> two and three d_imensions is (_jiscussed. We report the phase
diagrams resulting from solutions of E(48.22), as well as

1 22 4 - - _ some of the microscopic properties of the corresponding so-
7T Aik(Ri—R;) XY . . . . -

=35 5 _dk e T o (k) lutions, which explain the phase behavior. In this context,
(2m)= =1 Jog our main concern is in the interplay of the antiferromagnetic
E(K) (Mott-Heisenberggap and the Mott-Hubbard gap leading to

x| 14 ! 3.2 a metal-insulator transition in the antiferromagnetic phase.

tan . (3.21 . ¢ antietr
2kgT Furthermore, we investigate the distribution of the spectral

We denote the on-site, nearest-neighbor, and (ressth- weight between the majority- and minority—spin states 'ghat
nearest-neighbor correlation functions at equal time byeXPlains most of the phase properties found for the antifer-
Cxx(ﬁ) nyg(ﬁl) andcxxﬁ(ﬁ-) _romagnetlc solution. As a flrsF step, we es_t_abllsh an averag-
v ' 1 ing procedure between solutions for positive and negative
values oft’ that is capable of ruling out a nonphysical arti-
fact induced by the spherical approximation, and of estab-

For the parameterg. and m, we then find the self-
consistent equations

2—n=CﬁA(ﬁi)ﬂLC?lB(ﬁi)JrC?{\(ﬁi)JngzB(ﬁi), lishing the correspondence to the simple Hubbard model.
2m=CAAR,) - CAAR,)+ C(R,) — CER(R)]. A- Averaging procedure in
(3.223 Due to the incompatibility of the nearest- and the next-

The parameterd ¢, A, Af, andAf are directly related to nearest-neighbor hoppings the¢’-U model does not enjoy

matrix elements of the correlation functions by particle-hole symmetry at half-filingn(=1). In addition, the
spherical approximation for th€ hopping overemphasizes

A= 11 CABY( R ) + CABY Ry — CBAY(R.) — CBAY(R. ’ th(nT intrasublatf[ice hopping to _the next- and next-next-nearest
1= 2l CL(R)+ C"(R) ~ C2"(R) ~ 2" (Ri)] neighbors. This leads to an instability of the antiferromag-
netic solution for the-t’-U model at half-filling: the mag-

a_ 11 ~ABa ABa 5\ _ ~BAa B \_ ~BAa/
AT=3[Ca"(R)+Ca"(Ri) — C34"(Ri)— Cag “(Ri)], netization goes to zero for positive values of théhopping,

(3.229 and for negative values df diverges to infinity[cf. Fig.
B[ ~AABIS \ ~AAB TS 2(a)]. Positive values of the intrasublattice hopping do sup-
AP=[C 7 (Ri) = C2 (R, press antiferromagnetism to a certain extent, whereas nega-
~ ~ tive values are in favor of it by the additional phase factor of
AP=[CEPA(R) - CEA(R)]. .

For a simple Hubbard model the particle-hole symmetry

The parameterp, p?, andp? cannot be calculated explicitl :
P B, P Py PICIY " eflects the algebraic property

by the single-particle Green'’s functid&q. (3.19], because
they derive from higher-order correlation functions. Accord-

) . . X U

ing to what was stated in Sec. Il, we will use the following wn=1)=—. (4.1a
equations to fix the representation of the Green’s 2

function21

For an antiferromagnetic solution in the framework of the
AAL = two-pole approximation, we have the additional condition
C2(Ri)=0,
_ Af(n=1)=—-Af(n=1), (4.1b
C(R)=0, (3220 o o y
which is a generalization of the conditioA{(n=1)=0
C/ff\(ﬁi)zcg?(ﬁi)- =Af(n= 1),_ imposgd by the particle—hole symmetry on the
paramagnetic solution of the simple Hubbard model, because
We observe that all self-consistent equations are coupleaf the inequivalence of the majority and the minority spin
and have to be solved as one set by means of a global cogubsystems in the antiferromagnetic state. Conditoha is
vergency scheme. satisfied in the limitt’ going to zero independently of the
Finally we remark that the correlation functioﬁ§x(§i), direction[see Fig. 20)]. This is a direct consequence of the
CXYa(ﬁi), andcxxﬁ(ﬁi) actually do not depend on the lat- fact that the proper representation for the Green’s fu_nctions
tice site R, of the magnetic lattice because of the transla-"as been taken by using the complet€s&tof constraints
tional invariance enjoyed by the Green’s functiofisq. ~ coming from the Pauli principléEg. (3.229].

(3.19]. Taking the average between the solutionstfoand —t’
with |t’| approaching zero, we obtain an antiferromagnetic
IV. NUMERICAL EVALUATION Etatezvi/hlcl?]h formg!ly has zerp rr:opplng—t_hat_sausfl((jash
OF THE ANTIFERROMAGNETIC PHASE ?\S'( 1), has no 'l‘q’e{fgf‘?”r.‘ce In It:.e magnzet'zat'oé‘ 6&” the
FOR THE HUBBARD MODEL other parameters at half fillingee Figs. &), 2(c), and Zd)]

and can be considered as representative of the simple Hub-
In the following the thermodynamics of the antiferromag- bard model. Averaging the solutions fart’ thus combines
netic thermal equilibrium states for the Hubbard model inthe large benefit in computational time provided by the

245117-7
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FIG. 2. The average algorithm between positive and negative valugs infthe 2D t-t'-U model forU=10t and kT=0.5. (a)
Sublattice magnetization as a functionof(b) Chemical potentials as a function of (c) The parametep as a function ofn. (d) The

parameterd\“ as a function oh.

spherical approximation with an antiferromagnetic solution
that satisfies the complete set of symmetry constrains deriv-

ing from the Pauli principle and enjoys the particle-hole

symmetry. The numerically accessible limit for thehop-

B. The antiferromagnetic state of the Hubbard model

1. Phase diagram

The n-T andU-n phase diagrams for the antiferromag-

ping, which has been used in combination with the abovenetic state of the 2D Hubbard model and the corresponding

averaging procedurésee Fig. 2, ist’'=+10 “t. Hereafter,

paramagnetic state are shown in Figs. 3 and 4. The antifer-

we will present results exclusively from the averaged solutomagnetic state has a free energy lower than the one of the
tion, and we will consider them as results of the simple Hub-paramagnetic state over the whole phase region, leading to a

phase transition of second order between the antiferromag-

bard model.
0.7 . T . . . o E : : : : :
Paramagnetic g
0.6 - Metal ; |
0.5 _ 15 F | AF
, Insulator
04 AF A Paramagnetic
= Insulator | = Metal L
~ = 1+ \
0.3 | .
0.2 L ““‘ _ \\\‘
05 F -
‘\‘\ AF \\\
0.1 N A Metal 3
0 1 I 1 ] ] ) 0 | ) ) L |
094 095 096 097 098 099 1 094 095 096 097 098 099 1
@ n (b) n
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netic and paramagnetic phases at the lines of vanishing mag- In a previous studi we investigated the critical Coulomb
netization. The study of the phase diagram near half-fillinginteraction as a function of th& hopping, showing that a
has to be completed by an investigation of the ferromagnetitinite value ofU. in the above-mentioned range has also to
phasé® and the charge-ordered phase, which both can bke expected in the exact limit—0.
studied in the framework of the approximation scheme de- The antiferromagnetic phase found in the higheopper
scribed above. The antiferromagnetic phase could be eneoxide compounds generally shows a great stability at half-
getically ruled out by one of these other phases in certaifiilling, just a few percent of electron or hole doping leads to
regions of the phase diagrams, thus leading to phase transi-strong reduction of the N&temperature and eventually to
tions of first ordef®31=3|n this section we give a brief the vanishing of the antiferromagnetic phase. On the other
overview of the properties of the antiferromagnetic phasehand, it is well known that in general the mean-field treat-
which then will be related to the inner structure of the anti-ment of the Hubbard model strongly overemphasizes the sta-
ferromagnetic state—namely its density of states—in thehility of the antiferromagnetic phase in doping. In the COM,
subsequent sections. where the strong correlation effects are restored to some ex-
The most striking features of the antiferromagnetic phaséent by the Pauli principle symmetry constraint, the stability
are the finite critical Coulomb interactiod. as a lower of the antiferromagnetic phase is actually reduced to a nar-
bound to the antiferromagnetic state at half-filling, the re-row region of a few percent of doping around half-filling
striction of the antiferromagnetic state to a very narrow re-with a strong reduction of the & temperature. For the
gion in n around half-filling, and the metal-insulator transi- Hubbard model such a behavior has been confirmed by nu-
tion (MIT) within the antiferromagnetic phase. The merical results in quantum Monte Carlo studi@d® In
vanishing of the staggered magnetization at half filling forcontrast, a larger region for the antiferromagnetic phase has
U<U.—we find U, within 5t—1Q (see Fig. 4—is sup- been obtained by the SDARef. 26 and the d=w«
posed to be an effect of strong electron correlations. It cannapproximatior?:’
be observed within simple mean-field treatments of the Hub- At zero temperature a transition from an antiferromag-
bard modef*~3®where the antiferromagnetic phase is stablenetic insulator at half-filling and an antiferromagnetic metal
down toU=0 atn=1. Also, in more sophisticated mean- for n<1 is observed. At higher temperatures, however, we
field approximations, such as the SDA, a stable antiferrofind an extended region in doping aroune: 1, where the
magnetic state is found at=1 down to very small values of Fermi level is situated inside the Mott-Heisenberg gap,
U, and its stability down tdJ=0 cannot be excluded.The  which itself is large with respect to the thermal enekgy.
same holds for the antiferromagnetic state of the simple Hubwe thus have a state with poor conductivity of semiconduc-
bard model treated by the DMFT. tor type, which we call an “antiferromagnetic insulator.”
As we already mentioned in Sec. |, the SDA is ratherThe metallic behavior is recovered when the Fermi level
closely related to the COM, but to calculate the antiferro-joins the second antiferromagnetic band with decreasing val-
magnetic state further approximations on the correlatiorues ofn.
functions are needed:?® The main difference lies in the  Then-T phase diagrams show a strong qualitative differ-
treatment of the internal parameters emerging from higherence in the low-temperature region according to the presence
order correlation functions. While the COM uses these to fi{Fig. 3(b)] or absencéFig. 3(a)] of a Mott-Hubbard gap. For
the representation of the Green's functigi&g. (3.229], values ofU that do not admit a Mott-Hubbard gap, the sta-
they are calculated by the equations of motion in the SDA. bility of the antiferromagnetic phase is enhanced by increas-
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ing temperature(a phenomenon called “heat magnetiza- bling of the Hubbard subbands by the reduction of the Bril-

tion”), whereas the reverse is true for valuetJoivhere the louin zone is completely artificial: the reflected bands occupy

Mott-Hubbard gap is already opened. exactly the same energy interval, with the same spectral
Furthermore, the presence of the Mott-Hubbard gap aneveights as the original Hubbard subbands.

the fact that it closes within the antiferromagnetic phase, The antiferromagnetic state, however, is characterized by

when the particle density is reduced, is also responsible fathe opening of Mott-Heisenberg gaps at the crossing points

the intermediate reduction of the stability of the antiferro-of the four subbands induced by the switching to the mag-

magnetic state by increasing the Coulomb interacti®ig.  netic lattice. Thus we find three Mott-Heisenberg gaps: one

4). This reduction is reinforced by increasing temperaturen the lower Hubbard bandA(;), one in the upper Hubbard

and leads to a “noselike” shape of thé¢-n phase diagram. band, @A,), and a central Mott-Heisenberg gag\ { ,), in

Both phenomena can be explained by the evolution of théhe region where the two Hubbard subbands overlap in the

spectral weights for the majority- and minority-spin sub- paramagnetic phagsee Fig. 5.

systems as functions of the external parameters, as will be If the two Hubbard subbands are already separated by a

explained in detail in Sec. IVB 2. Mott-Hubbard gap(in the paramagnetic phase it has been
Finally, we remark that the phase diagrams shown in Figsfound® that the Mott-Hubbard gap opens dt=13.2), the

3 and 4 are completely symmetric with respechtel; this  central Mott-Heisenberg gap adds to this ape Fig. 6a)].

is due to the fact that the thermal equilibrium state respectShe gapsA, and A, are not symmetric around the Mott

the particle-hole symmetry. To incorporate the experimenseparation+U/2, because the upper and the lower band

tally observed asymmetry in particle and hole doping, a proedges are shifted by different amounts.

jection of the two-band Hubbard model on an effective The antiferromagnetic ordering thus leads to a splitting of

single-band one has been propod&d. the two Hubbard subbands into four antiferromagnetic bands
that are occupied by both majority- and minority-spin sub-
2. Band properties systems. As can be seen from Fig. 5, the two spin sub-

The spectral properties of the antiferromagnetic state aréyStéms energetically occupy the same regions—which is the
deduced from the electronic single-particle Green’s functiorf€ason why th% Stagghefedh m%gf?etlzaﬂon nev:er rgaﬁh(?shsatu—
on each sublattic& % (k,) with X e {A,B}. In the follow- ration(m=n)—but with rather different spectral weights: the
ing we will restrict our analysis to the sublattiée while the spectral weight of the majority spins is strongly enhanced at

9 y the upper band edges, whereas the minority spins have an

qﬁ""”"?'es tﬁn the_ Sl_thIattlch are O.Ta'n?d byb S|mtply ex\-N enhanced spectral weight at the lower band edges, leading to
changing the majonty- and minority-pin Subsystems. estaggered magnetization. At half-filling the density of states

thus have fF)r the retarded electronic Green’s function on the, oo complete symmetry between the minority and ma-
sublatticeA: jority spins with respect to reflection of the energy around
~ ~ ~ ~ the Fermi level. This is due to the fact that our solution
Sﬁé(k'w):S?Q‘(k"")+S?$T(k-w)+s?7?f(k"") respects the particle-hole symmetry.
+ A (K, o) 4.2 (a) The Mott-Heisenberg and the Mott-Hubbard gap
(AR ' The interplay between the Mott-Hubbard gap and the
The spin-dependent electronic density of states within thé/ott-Heisenberg gap at half-filling is illustrated in Fig. 6.
antiferromagnetic state is then given by For U= 10t the two Hubbard subbands overlap at theeNe
temperaturd, and by decreasing we find the opening of

2 \2 1 _ the Mott-Heisenberg gaps in the two Hubbard subbands as
Nﬁ(w):: e erZR ( - Im CCA}(k,w) well as in the central regiofFig. 6b)]. The corresponding
B
5 2 4
=32 erz; 2 slo-E0)]lo]] 1(K.w)
B = 7o
+Gﬁ‘?av;(ﬁ’w)+Uﬁgvfz(i’w)+0—ﬁ':0v2(§’w)]'
Agy Ay

4.3

We recall that all energies refer to the chemical potential.
The two-pole approximation leads to a splitting of the
single electronic band into two Hubbard subbands that cor-
respond to the elementary excitations described by the com
posite operatorg and 5. Those two subbands are separated ] PO —
by the on-site Coulomb interactidd, which may lead to a Eit
gap at same critical valu¥.° The bipartite lattice approach  FiG. 5. The density of states on the sublatiigllustrating the
leads to a doubling of the two subbands by reflection aroungott-Heisenberg gaps in the lower and upper Hubbard bands, as

the band center all/2)— u [see Fig. €)]. In the paramag- well as in their overlapping region in the paramagnetic phase. The
netic case, when the magnetic lattice is introduced, this dowalues of the parameters dde=10t, n=1.0, andk T=0.01t.
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evolution of the electronic band structure in the Brillouin within the two Hubbard subband&, andA , , increase as a
zone of the chemical lattice is shown in Figch We note  function of U up to a maximum valudJ~11t, and then
the doubling of the Hubbard subbands in the paramagnetidecrease like U [cf. Fig. 7(c)]. This reflects the U depen-
state, which then evolves into the four antiferromagnetic subeence of the antiferromagnetic exchange integral in the
bands by decreasing temperature, and the typical symmetiyeisenberg model, to which the half-filled Hubbard model
of the band structure along the diagonal of the Brillouin zonecan be mappett*? For the central gap the additional Mott
for the chemical lattice due to the reduced Brillouin zone ofseparation prevents this behavior. Also, theeNemperature
the magnetic lattice. does not show a W-like behavior(cf. Fig. 8, which indi-

In Fig. 6@ the case forU=16t is shown, where the cates that the antiferromagnetic exchange integral is not al-
Mott-Hubbard gap already separates the two Hubbard sulways properly taken into account.
bands in the paramagnetic phase just above the transition (b) The metal-insulator transitionThe phenomenon of
point. By decreasing temperature the Mott-Heisenberg gapsietal-insulator transitions has been intensively studied in the
A. and A, open within each of the two Hubbard subbands.context of strongly correlated electron systéthdn the
In addition, the central Mott-Heisenberg gap adds to thdramework of the COM the MIT within the paramagnetic
Mott-Hubbard gap, leading to the central gap ,,. state at half-filling is foun® in light of the Hubbard picture,

The temperature dependence of these gaps is illustrated @ue to a separation of the two Hubbard subbands at a critical
Figs. & and 7b) for various values ofJ. Above a certain value of the Coulomb interaction. This picture is quite dif-
critical value ofU the central gap remains open at the phasderent from the one found by the DMFT, where the MIT
transition. At low temperatures the Mott-Heisenberg gapsrom a paramagnetic metal to a paramagnetic insulator is

Adt-a

1 i ty 1 1 L 1L 1 1
3 5 10 15 20 25 30 35 40 45 50
(c) U

FIG. 7. The Mott gap and the Mott-Heisenberg gamatl. () Central gapA,_, as function ofT. (b) Gaps in the lower and the upper
Hubbard bandA, andA ,,, as funciton ofT. (c) Gaps in the lower and the upper Hubbard bakdandA ,,, as function ofU.
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20
U L

18 |

ing from the Mott-Hubbard mechanis(m the paramagnetic
and antiferromagnetic insulating phasds the Heisenberg
transition the antiferromagnetic component of the central gap
vanishes(i.e., the magnetization disappears and the lateral
gaps close up but the paramagnetic component remains fi-
nite. We have a finite critical value of the Coulomb interac-
tion for the Mott-Hubbard transition, in contrast to what was
found, for instance, by the Hubbard | approximation and the
SDA. This fact allowed us to study the Mott-Heisenberg
transition existing at lower values of the Coulomb interac-
tion, that is obviously absent in any picture based on the
approximations mentioned aboviey do not have a Mott-
Hubbard transition eitherin Fig. 8 we summarize the tran-

16 |-
14 |
12

10

A T e S < sitions occurring at half-filling within a treatment of the Hub-
T bard model in the framework of the COM.
FIG. 8. The variety of transitions at=1. The filling-controlled MIT is discontinuous at zero tem-

perature. We have an antiferromagnetic insulater-af and

mainly due to the vanishing of a narrow coherent quasiparan antiferromagnetic metal at<1, because the central gap
ticle peak at the Fermi level as in the Gutzwiller is compensated for by the discontinuity in the chemical po-
approximatior?. However, for an antiferromagnetic state on atential atn=1, and thus the Fermi level always lies inside
bipartite lattice, this interpretation can be maintained withinthe second antiferromagnetic band fox 1. This is exactly
the DMFT only when frustration by an additiortdlhopping  the same result as found in the usual mean-field
is introduced®’ approximatioft® and in the DMFT without frustratiof. In

At half-filling, within the framework of the COM, we find the frustrated case with nonzerb hopping, DMFT as well
three kinds of transitions: a Mott-Heisenberg transitioe., as quantum Monte Carlo studies additionally led to a
a transition between a paramagnetic metal and an antiferrdJ-controlled MIT inside the antiferromagnetic phasenat
magnetic insulator driven mainly by the temperature at low =1.%4°
values of the Coulomb interaction; a Mott-Hubbard transi- Moving to finite temperature, the variation in the chemi-
tion (i.e., a transition between a paramagnetic metal and aal potential, and thus in the overall band shift, is consider-
paramagnetic insulatpralmost insensitive to the tempera- ably moderated for higher values @f whereas the central
ture, at high values of the Coulomb interaction; and agap still remains large in comparison kd. Therefore, we
Heisenberg transitiofi.e., a transition between an antiferro- find a finite region around half-filing, where the Fermi level
magnet and a paramaghewithin the insulating phase, is still situated insideA,_, and we thus have an antiferro-
driven by the temperature at high values of the Coulombmagnetic phase of semiconductor type with very poor con-
interaction. Moreover, the central gap has two componentductivity. When the Fermi level crosses the peak in the den-
depending on the value of the Coulomb interaction and theity of states at the wupper edge of the second
temperature: one due to the antiferromagnetic correlationantiferromagnetic band, a huge jump in the number of carri-
(in the antiferromagnetic insulating phasand another com- ers is observed, and we finally obtain an antiferromagnetic

0.5 ["n=0.952 J P ] 05 = ' =036
0.25 b Oal reeeeen - 025 1| o=l == | .
ol AT ] ol J,...J‘ { B )
| n=0.96 ] | n=0.97 i
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8 o025l i 8 o2l ‘ ] FIG. 9. The sublattice dgnsﬁy
o L e - o L J \ . of states atU=10t for various
T = 0 T values of the particle density. The
r ] r T thin vertical line atE=0 denotes
025 r J N j 025 r . ] the position of the Fermi level
0 o . ) 0 i = — Er. (8 kT=0.2.(b) kT=0.5.
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FIG. 10. The sublattice magnetization as a functiomaift kT FIG. 11. The sublattice magnetization as a functioit ehdn at
=0.2. u=10t.

metal (see Fig. 9. Note that for the purely paramagnetic Py increasing temperature. In the same manner, when

MIT such a filling controlled transition is not to be expected. close to the phase boundary, the magnetization itself first
Comparing Figs.@) and 9b) we see how the moderate increases with increasing and then goes down to zero, as

evolution of the chemical potential as functionmfeads to  shown in Fig. 11. This so-called heat magnetization has its

a larger extension of the insulating antiferromagnetic phas€xplanation in a strong change in the spectral weights of the

at higher temperatures. spin supsystems by increasing temperature, \_/vhereas the
The almost linear dependence of the central 4ap, on ~ Mott-Heisenberg gaps and the chemical potential are only

the Coulomb interactiot [cf. Fig. 7(@)] leads to a strong Subject to very small changésee Fig. 12 At higher values

stabilization of the insulating antiferromagnetic phasenat ©f U, after the opening of the Mott-Hubbard gap, the stron-

=1. Near half-filling, however, this effect is compensated9er Coulomb interaction considerably stabilizes the antifer-

for by larger values ofU due to the strong decay of the romagnetic state at low temperatures, and excludes the effect

chemical potential when moving to lower particle densities.0f heat magnetization.

This decay of the chemical potential then leads to a large

overall shift of the band structure toward higher energies,  C. Antiferromagnetic state of the 3D Hubbard model

bringing the Fermi level close to the upper edge of the sec-

ond antiferromagnetic band. After a small region, where the{/ery similar to the one observed in two dimensions. The

insulating phase is growing with), this effect restricts the shape and main features of the phase diagidigs. 13 and
insulating antiferromagnetic phase to regions very close to '

The antiferromagnetic phase of the 3D Hubbard model is

half-filling for large values olU. 0.5 . :

(c) Shape of the th phase diagramFor large values of [o=T —— KT=0.531 |
the Coulomb interaction close to the critical valug, where 0.25 H gzl - i
antiferromagnetism is vanishing, the region of filling where L g
the antiferromagnetic phase exists is enlarged by increasing 0 ] —
U. Conversely, for intermediate values Of the antiferro- L KT=0.45t |
magnetic region in doping shrinks. This can be explained by 025 | -
the closing of the Mott-Hubbard gap as a function of doping. - A .
When, at low values o), no Mott-Hubbard gap is present, 0 =« e ey
the magnetization and extension of the antiferromagnetic ¢, o T
phase inn grow with growingU. After the opening of the Q 025} .
Mott-Hubbard gap we find the system in a region where the Q - ) =l \ .
Mott-Hubbard gap closes in the proximity af=1, i.e., al- 0 ] S
ready within the antiferromagnetic phase. This leads to a i 1
shift of the Fermi level toward the middle of the second 0.25 | .
antiferromagnetic band, where majority and minority spins i !J i ]
nearly have the same spectral weight, and thus to a consid- 0 KT=0.01t
erable reduction of the staggered magnetizat@nFig. 10. i 1
For large values ofJ the Mott-Hubbard gap remains open 0.25 | J T
within the whole region of doping, where the antiferromag- i . JJH_J 1
netic phase exists, and we again find an increasing stability 0_15 -10 5 0 5 10 15
of the antiferromagnetic phase with increasing Coulomb in- E/t
teraction.

(d) Heat magnetizatiorf-or small values otJ we find an FIG. 12. The sublattice density of states for=10t and n

increasing of the stability im of the antiferromagnetic phase =0.96.
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14) remain unchanged.e., the MIT within the antiferromag-
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tends to much lower values of[cf. Figs. 13b) and 14b)]

netic phase, the finite critical Coulomb interaction for thethan might be expected from the phase diagrams in Figs.
vanishing of the antiferromagnetic phase at half-filling, thel3(a) and 14a). For higher values of the Coulomb interac-
favoring of the insulating state at high temperatures, and lowiion, up toU =30, this additional antiferromagnetic region

values of the Coulomb interaction and the heat magnetizais separated by the antiferromagnetic phase near half-filling
tion). Furthermore, as in the 2D case, all these properties cdoy a paramagnetic region.

be explained by analyzing the density of states and the en- The form of the sublattice magnetization as a function of
ergy spectra. n for different values of the Coulomb interaction is given in
The higher coordination number of the 3D model reduced-ig. 15. This result indicates that the two antiferromagnetic
the fluctuations, and leads to a greater stability of the antiregions in the complete phase diagrams of Figs. 13 and 14
ferromagnetic phase as a function of the external parameteese actually two parts of a single antiferromagnetic solution,
T, n, andU. Comparing the extension imof our antiferro-  which are only connected at rather high valuesJoive will
magnetic phase with the one found within the SDA for a fccdiscuss the nature of this “tail” in more detail in Sec. V, in
lattice 2® the former is restricted to a much smaller region inthe context of an analysis of the extended Hubbard model.
doping. Here we only remark that the separation of the two antifer-
The greater stability of the antiferromagnetic phaseromagnetic phase regions by a paramagnetic one is due to
shows, within the range of physically relevant values of thethe closing of the Mott-Hubbard gap ne&r 1. This leads to
parameterd, that the metallic antiferromagnetic phase ex-a strong suppression of magnetization, as described in Sec.

30

30 . T T H T T T T '| T
AF AF |
§ Metal Metal{
25 25 1 i
<}
20 - 20 | g
2
£ FIG. 14. TheU-n phase dia-
5 15¢ 5 15¢ < gram for the 3D Hubbard model.
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Paramagnetic
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.

.,
o,
-,
Y
“,
s,
2
s
2,

0
085 0875 09

0925 0985 0975 1
n

Paramagnetic
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0
0.6 065 07 075 0.8 0.85
(b) n
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= ; - - - ; - note a broader structure in comparison to the 2D model. As
09 - shown in Fig. 16a), the transitions from metallic- to
08 semiconductor-type antiferromagnetic states are related to
o7l the interplay between the global band shift and the evolution
06 L of the central gap. This explains the form of the insulating
c 0'5 I antiferromagnetic phase in Fig. (B3
04 V. EXTENDED HUBBARD MODEL
ZZ A. Model
o1 | In this section we study the antiferromagnetic solution of
o the extended Hubbard modei two dimensions. The model
. is described by the Hamiltonian
n
FIG. 15. The sublattice magnetization as a functiomaft kT HeX‘=Z (t —,u&ij)cl(i)ca(j)nL UZ ny(i)n (i)
=0.% for different values of the Coulomb interaction. o !
IVB2c for the 2D case. The “antiferromagnetic tail,” + 2 Vyny(ing()), (5.3)

ij;00’

which can be considered as an artifact of the employed ap- . ) . )
proximation, is also present in the 2D case, but only appear¥ith the nearest-neighbor Coulomb interaction
at values of the Coulomb interactidh~ 100Qt.

1 _
As we already mentioned in Sec. IVB 2, this “tail” at Vij=2V01ij=2VN > ek Ri=R) 4 (k). (5.2
lower particle densities could be energetically ruled out by K
other phases with magnetic or spatial ordering. We proceed along the guidelines given in Sec. Il to obtain

Finally, in Fig. 16, we show the evolution of the sublattice the antiferromagnetic state. The equation of motion for the
density of states by changing the Coulomb interaction. Wéundamental spinofEg. (2.2)] is given by

— & (i) —4tef(i,1) — 4tm{(i,0) +4Vn*(i, 1) & (i,t)
= (i,t) + Ui ,t)+4t77?(i ) +4VN(iLt) 7, (it)
—pé (i,1) —4tel(i,t) —4ta(i,t) +4Vn*(i,t) & (i,t)
—pn (i, )+ Un (i, ) + 4t (i,t) +4Vne(i,t) »,(i,1)

|E‘P(|,t)=[‘P(|,t),He’“]= : (5.3

wheren®(i)=ZX;,a;jn,(j). The normalization matrik takes exactly the form given in Eg&8.4) and(3.6). For them matrix
we obtain the same result as given in E8.7) without the terms coming from th€ hopping, which are described by the

projectionsg;; . The matricesM 4, ... ,M, are built up from matrice# 4, ... My, as in Eq.(3.8), and these latter have the
forms
05 [ U=300t ' i T ] 08 [ U=30.0t j ' ' ]
025 b J - 025 b j “ §
i _) )(: d i 7 i ‘\\_ 7
0 _U=25.0t | 0 _U=20.0t ]
0.25 . - 025 | ‘ -
oL/ L iy ol j N ] FIG. 16. The evolution of the
| U=20.0t . ] | U=15.0t ] sublattice density of states under a
8 0.25 i . 8 0.25 - - variation of the Coulomb interac-
= - \ ‘| 4 © - J i\ . tion atkT=0.01. The thin verti-
Oromme e 0 Mo=roon cal line atE=0 denotes the posi-
i 1 I ] tion of the Fermi leveEg. (@) n
0.25 . 025 | .
I | ] [ j A ) ~0.9.(b) n=1.0.
0 '_ f\l_ 0 i
R U=14 48t ] | U=5.19t ]
0.25 - | o=T — |1 0.25 | J o=T — |1
r o=l - . - N .
0 Vs an 0 . e
20 10 0 10 20 30 40 30 20 -10 0 10 20 30
@ Eft (®) Et
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1
—,u(l— En) —4t(AT+AD)+4V(n—v —vy) At(AT+AT)
'\7'1: 1 ’
4t(AT+AT) (U=p) 5n=4t(AT+ A +4V(v +vy)
) — o —AAT AN +AV(—y + ) At(AT—AT)
M2: m ’
At(AT—AT) —5(—,u,+U)—4I(AT—A?)+4V(UL—UT)
(5.9
1
) —4t(1—n+p)+4VN —4t En—p +4V(v,+v))
M3: l ’
—4t(§n—p +4V(v;+v)) —4tp+4Vk
M =
Sl 2tm=-4v(v,—v)) 0 ’
where we define the additional parameters and the parameterg and v,, which derive from higher-
ot Coat _ order correlation functions, are used as in E32209 to sat-
N=(E )€ (1)) =(EADE (1)) for ieA, isfy the algebraic relations corresponding to the Pauli prin-
ciple on the level of thermal equilibrium states:
=L(&,() (i) for ieA, (5.5
AATS \ _
k=m0 72 (D)) = (msD 72 (1)) for i eA, C2(R)=0.
=3(n*(i)ny(i)) for ieA. CB8(R)=0,
We remark that the parametexsand x are not spin depen-
dent because of the requirement for thematrix to be real, AAR,)=CBB(R,)

and the additional symmetry constraint in assumption 111.1.3.
Furthermore, parametets;; can be expressed through pa- Again, all the self-consistent equations are coupled.
rameters from Eq(5.5) as

1 1
AG=Ntv,— vy~ 3k (5.6 B. Antiferromagnetic state of the 2D extended Hubbard model

The single-particle retarded Green’s functions are calcu- The phase diagram corresponding to the antiferromag-
lated as in Eqs(3.17) and (3.19, omitting the parts corre- netic thermal equilibrium state, obtained as a solution of the
sponding to the’ hopping. The parameters in EG.4) can  Self-consistent equatiortS.7), (3.223, and(3.229, is shown
then be calculated self-consistently by means of the correldn Fig. 17 where we take a fixed ratld/V=>5. Again, the
tion functions[Egs. (3.21)]. The parametersn and . are  antiferromagnetic phase always has a lower free energy with
calculated as in Eq3.229. The parametera, v,, and respect to the paramagnetic phase, and the phase transition is

are directly related to the single-particle retarded Green'@lways of second order. - _
functions by The antiferromagnetic thermal equilibrium state fulfills

the particle-hole symmetry. In addition, the main qualitative

A= CABQ(R) features of the antiferromagnetic states for the simple Hub-
bard model in two and three dimensions can also be found in

AB the extended Hubbard model. There is a critical value of the

a(R )s Coulomb interaction, for which the antiferromagnetic phase

(5.7 disappears and a metal insulator transition occurs.

: The phenomenon of heat magnetization is more pro-

BA‘“(R) nounced than in the simple Hubbard model, and the occur-
rence of a tail in the antiferromagnetic solution is observed

ABH down to rather low values dfi, where they can even join for

(R), higher temperatures. This leads to paramagnetic inclusions
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T T 20— : T 30
Paramagnetic k i

Metal YoaF |
i Metal |

25 AF

Metal

FIG. 17. The phase diagrams

20 for the extended Hubbard model

Paramagnetic [

AF Metal

. 5] < Metal - with V=U/5. (a) The n-T phase
£ osr i1 S1r ", 515 1 .
AF Metal i 2 {5 diagram atU=8t. (b) The U-n
os te | ol 12 phase digram akT=0.01. (c)
0al i sl \* The U-n phae diagram atkT
Paramagnetic 5 Paramagnetic = =0.4.
o2} [\ v Metal z [ Moetal
Paramagnetic ‘\“ f

0 0‘6 0‘7 0‘8 0‘9 \\1 005 0‘6 UI7 UIB 0‘9 : 1 004 OI5 0‘6 0‘7 OIB 0‘9 1

(@ ' T ' (9N © 7 7 n

within the antiferromagnetic phase. For higher valuedJof interactionU, showing the separation of the antiferromag-
the antiferromagnetic phase is reduced to a very narrow reietic phase by a paramagnetic region for high as well as low
gion near half-filling. values ofU.

The band structure turns out to be somehow different The intersite Coulomb interactiovi considerably reduces
from the one found for the simple Hubbard model. The presthe magnetization and stability of the antiferromagnetic state,
ence of the intersite Coulomb interaction leads to a largd-€., its extension im, as can be seen from Fig. 20. The
overlap of the antiferromagnetic bands, such that the openingduction of the magnetization also suppresses the separation
of the Mott-Heisenberg gap at the crossing points cannc®f the two parts of t.he anuferromagnetlc states. I-_|owever, the
split the lower and upper Hubbard bands in most parts of th€UPPression of antiferromagnetism by the intersite Coulomb
antiferromagnetic phase region. The sublattice density ofnteraction is _much smaller than the one found in the treat-
states for the extended Hubbard model is thus mainly Chalr_nent of the simple Hubbard model.
acterized by a single central gap, which is the superposition
of the Mott-Heisenberg and the Mott-Hubbard gap Fig.

18).

The part of the antiferromagnetic phase at lower particle Among the variety of analytical methods developed in the
density is always characterized by this overlap of the antiferlast decades to deal with strongly correlated electron sys-
romagnetic subbands emerging from the lower and uppetems, the COM has been rather successful in describing the
Hubbard bands, respectively. The absence of the Mottproperties of many correlated systetfid®1928404fTq add
Heisenberg gap within the Hubbard subbands reduces thenother piece to the puzzle constituted by the phase diagram
number of peaks in the density of states to four: two peak®f the Hubbard model, here we investigated the antiferro-
are due to the central gap, and two peaks are reminiscent afiagnetic phase characterized by a staggered magnetization.
the van Hove singularity in each Hubbard b&h¢tf. Fig. A fully self-consistent treatment, respecting the symmetry
18). constrains emerging from the Pauli principle, was presented

In Fig. 19 we plot the sublattice magnetization as a funcfor the Hubbard model in two and three dimensions and the
tion of the particle density for various values of the Coulombtwo-dimensional extended Hubbard model.

VI. CONCLUSIONS

1.0 = . r
oo n=0.6'1_
05 H o=d -----mmmm B
0 | = n=0.7_
0.5 - . . .
L LJJ . ] FIG. 18. Sublattice density of
0 \""‘""“‘n:O_s states and band structure Ri
» - 1 = =0.4 and withV=U/5; the thin
8 05 i J i = vertical line atE=0 denotes the
0 ot B position of the Fermi leve, . (a)
L n=0.9 | Sublattice density of states faf
05+ . =9.%. (b) Band structure on the
i i . 7 chemical lattice folU =9.5.
0 | n=0.999_
05| J i
. & BN - E
-10 -5 0 5 10 0.0) (mm (m.0) 0,0
(@) Eft (b) k
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0.6
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04|

01

[ 3 S

FIG. 19. Sublattice magnetization for different values of the
Coulomb interaction akT=0.4t, with V=U/5.

The antiferromagnetic phases of the three systems, when
compared to the corresponding paramagnetic phases, lead to
a phase transition of the second order. In all cases the antj- "
ferromagnetic states have lower free energy. FurthermorgUInCtlon

the antiferromagnetic states of all the models show the fOI_r’na netic insulator; at finite temperature it connects the anti-
lowing properties. 9 ’ P

(@) The presence of three kinds of transitiofidott- ferromagnetic metal to an antiferromagnetic state of semi-
Hubbard, Mott-Heisenberg, and Heisenheaghalf-filling in conductor type. . .
the planeT-U. All these properties emerge from very strong correlations,

(b) The existence of two components in the antiferromag-ande a_rrehgotcléilljc?lL))/efoet:(ncliait?]);spbpro;;]glatzliC)nns t?};”;?:(;}gilii
netic gap(one due to the antiferromagnetic correlations, andYPe- y P y yzIng

another coming from the Mott-Hubbard mechanism density of states and the energy spectra.

(c) A finite critical value of the Coulomb interaction for Finally, we want to point ou_t _that a thermodynamical
the Mott-Hubbard and Mott-Heisenberg transitions. study of the Hubbard model within the framework of the

: : : : two-pole approximation by means of the COM is far from
(d) The antiferromagnetic phase is stable only in a very, : .
narrow region around half-filling, showing a strong reductionbemg completed. BeS|des.the normaj phase and theu%ntlfer-
of the Neel temperature with doping. romagnetic phoase, a detailed analysis of superconq ing,
(e) A metal-insulator transition, driven by the tempera- feromagnetic| c_harge-ordered, and pther phases with more
ture, takes place within the antiferromagnetic phase; at hah@omplex magnetic and charge ordering has_ to be completed
or undertaken, and these analyses should finally combine to

m'é”gaa:ggnZ'g:;:;ea”r:ﬁgﬁgurL?’rfgt'isct:)?‘ls't'on coincides With e the complete phase diagram of the Hubbard model un-
p g 9 ’ der this approach.

(f) Away from half-filling, a metal-insulator transition
driven by the doping is observed. This transition has the
following properties: at zero temperature it is discontinuous, ACKNOWLEDGMENTS

and connects an antiferromagnetic metal and an antiferro- s work was partially supported by tigtudienstiftung
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FIG. 21. The definition of the translationally invariant Green’s
SHA,

0.6

05 -

APPENDIX A: CALCULATION OF THE GREEN’S

or L FUNCTIONS FOR THE T-T'-U MODEL

Pl i On the magnetic lattice defined in Fig. 1, we can define

0 YR o7 o8 09 ” the translationally invariant  Green's  functions
n SAA(Ri 1RJ !t)v SAB(Ri 1RJ !t)v SBA(Ri IRJ 1t)1 and

FIG. 20. Sublattice magnetization as a function of the particleS*®(R; ,R; ,t) connecting two point®; andR; of the mag-

density for different values of the intersite Coulomb interactipn  netic lattice. Their definition and the corresponding equa-
with U=9t andkT=0.4t. tions of motion are illustrated in Fig. 21 for the translational
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invariant Green’s functio®*”. By means of a Fourier trans-
form on the magnetic lattice,

YRR, H=SYR-R; 1)

i 52 ? —ilwt
_5<<2w>2) fd“’ ©

x| d%k e*R-RISXY(K o),
Qp

X,Ye{A,B}, (A1)

the equations of motion for the translationally invariant
Green'’s functions take the forms

wsAA(E,w) — [l (n)+ | (m)] + ([8(1)+ 8(3)]
+BK)[e®+ON SNk, w)

+[a(k)*[e@P+e@]1SPAK, w),

0SBk, 0)=([eW+e®+BK)[e®+O]) S Bk, w)

+a(k) ¥ [e@+e®]SEB(K, w),

0S*(k, 0) = ([eW =N+ B[ @] Ak, 0)

+a(k)[e@— ™MK, w), (A2)

0SBB(K, ) =[1M = 1M+ ([eD—@)
+B(K)[®~£®])SPB(k, )

+a(k)[e@-eWSPB(K, w),

where we used the projections on the magnetic |latdicie)

= [1+eRatgkvayeikark@] and BK) = L [4|a(®)|?
—1] from Eg. (B3). Expressiong3.17) and (3.22 are ob-

tained from Eqgs(A2) by lengthy but straightforward alge- To abbreviate the notation we used the following definitions:

braic manipulations.

APPENDIX B: EXPLICIT EXPRESSIONS FOR GREEN'’S
FUNCTIONS OF THE ANTIFERROMAGNETIC
EQUILIBRIUM STATE

o1 L
Af=—E1-E281 =Bk

1 -
BM=£7&] €—+51++/3(k)

1 - -
AP=-E1-E,61 ——B(k)

1 -
BBB=£, &7 5—_5;+5(k)
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1
+ +o—
Ea+ELE, 571,

2 2

1 1
£,8;5 5—+5I5§51 g—+5§

2 2 2

-~ [ S _
+HBKIPE; €5 g—+5§|a(k)|25552 ,

2

CAA= (M) 4| (m),

- 1
=[5 +BK)ES E T [1M+1(M],

£;

R
€3+52535—_,

2 2

563 157+575+ 157
283 7 —E1 8281 =83

2

-~ R S oy
+[BK)I%E, €5 8__53_|a(k)|252521

2
CBB= (M| (m),
(BY)

- 1
BB —[&, &7 +BK)ES E51—[1M—1(M]

€2

APB= pAAA
BAB=pBAA

CA8=0,

DAB=[a(K)]* &5 1M —1(M],

ABA= ABB
BBA—pBBE

CBA=0,

DBA=a(K) &, [1M+1(M7],

Ei=eWte®, g7 =M@
£ =e@te®, g5 =g@_g®) (B2)

E5=6® 450 g5=gO)_5®)

For X,Y e {A,B}, the coefficientsA*Y, BXY, andC*Y oc-  Furthermore, we used the convention that Q@<;) takes

curring in expressiorn3.17) of the Green'’s functions, take positive values on the sublatticg, and we note that the
the explicit forms projections on the nearest neighbors and on the next- and
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next-next-nearest neighbors according to the spherical approximation are given on the magnetic lattice by the expressions

PHYSICAL REVIEW B63 245117

E(E) =11+ eiﬁx};_'_ eiEy'é_|_ ei(~kx§+7<y5)),

‘B(E): %(eikxa+efikxa_,_eikya_i_efikya),+%z(ei(kanrkya)_i_efi(kxa+kya)+ei( xafkya)_,_efi(kxafkya)).

(B3)
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