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Antiferromagnetic phase in the Hubbard model by means of the composite operator method
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We have investigated the antiferromagnetic phase of two-dimensional~2D!, three-dimensional~3D!, and
extended Hubbard models on a bipartite cubic lattice by means of the composite operator method within a
two-pole approximation. This approach yields a fully self-consistent treatment of the antiferromagnetic state
that respects the symmetry properties of both the model and the algebra. The complete phase diagram, as
regards the antiferromagnetic and paramagnetic phases, has been drawn. We first reported, within a pole
approximation, three kinds of transitions at half-filling: Mott-Hubbard, Mott-Heisenberg, and Heisenberg tran-
sitions. We have also found a metal-insulator transition, driven by doping, within the antiferromagnetic phase.
This latter is restricted to a very small region near half-filling, and has, in contrast to what has been found by
similar approaches, a finite critical Coulomb interaction as a lower bound at half-filling. Finally, it is worth
noting that our antiferromagnetic gap has two independent components: one due to the antiferromagnetic
correlations, and another coming from the Mott-Hubbard mechanism.

DOI: 10.1103/PhysRevB.63.245117 PACS number~s!: 71.10.Fd, 71.27.1a, 75.10.2b
o
,
o

ad

re

te
th

o
th
a

et
in
rr
he
to
er
Th
t

ca

ac

an
s

ba

oje
u

n’s
en

es
nc-
ys
ta-
the
site
e
bra.
f the
to
ex-

at
the

sity
rd
al-
ia-
as
he
ts.
the

and
-
the
pre-

for
he
ase
o-
I. INTRODUCTION

For almost half a century, the Hubbard model1 has been
one of the fundamental models in a theoretical description
strongly correlated electron systems. Despite its simplicity
has always been taken as one of the prototypes when m
eling electrons in narrow bands. Within this context it h
wide applications in the theory of magnetism2–4 and metal-
insulator transitions.5 The discovery of the high-Tc supercon-
ducting cuprate materials,6 where the special properties a
to a large extent due to strong correlations,7 put an impetus
on the investigation of the Hubbard model and its deriva
as thet-t8-U model, the extended Hubbard model, and
t-J model. To gain a better theoretical understanding
high-Tc materials, not only the superconducting phase of
proposed models is studied, but also their normal phase
those with further broken symmetries. The antiferromagn
state is of particular interest, as it is believed that the pair
mechanism in the cuprates is mainly due to magnetic co
lations in an itinerant electronic system. In addition, t
high-Tc compounds show a wide range of metal-insula
transitions; in particular, a phase transition from an antif
romagnetic insulator to a superconductor is observed.
antiferromagnetic phase of the Hubbard model has been
subject of intensive study by both numerical and analyti
methods.

Despite the simplicity of the model, there are no ex
solutions known except for a few special cases,3,8 and one
must turn to approximate solutions. The dynamical me
field theory~DMFT!9 and a variety of projection technique
10–18are among the most popular approaches to the Hub
model and its derivates.

The composite operator method~COM!14,15,19 that we
present here belongs to the above-mentioned class of pr
tion techniques. Choosing a set of field operators built
from the electronic ones~hence the name! as elements of the
0163-1829/2001/63~24!/245117~20!/$20.00 63 2451
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fundamental spinor, the equation of motion for the Gree
function of this spinor is obtained. This equation has be
solved by means of both a pole approach14,15 and a two-site
resolvent method.19 The use of composite operators requir
a careful choice of the Fock space, where the Green’s fu
tion is realized. We have shown that the Pauli principle pla
a fundamental role in unambiguously fixing the represen
tion by determining the parameters that appear in
scheme, owing to the noncanonical algebra of the compo
operators.20,21 Let us note that, by the Pauli principle, w
mean all relations among operators dictated by the alge
A comprehensive treatment of the paramagnetic phase o
Hubbard model within the two-pole approximation has led
a good agreement with both numerical studies and some
perimental properties of the cuprates.15,22 In the case of the
one-dimensional~1D! Hubbard model we have shown th
the two-pole approximation reproduces almost exactly
Bethe ansatz results for the ground-state energy.23

In the last years an intensive study by the spectral den
approach~SDA!11,12 of the magnetic phases of the Hubba
model on different lattice types and by varying dimension
ity has been done,24–26and the complete magnetic phase d
gram of the Hubbard model on a 3D fcc lattice w
derived.26 The SDA corresponds to an expansion of t
Green’s function in terms of the electronic spectral momen
It has been shown that this approach corresponds to
COM when a specific choice of the basic spinor is made
the pole approximation is used.27 However, this correspon
dence is only relative to the functional dependence of
Green’s function, and huge differences arise when the re
sentation is not properly fixed.28,21,20

To complement the analysis of the paramagnetic phase
the Hubbard model in the two-pole approximation by t
COM, we present here a study of the antiferromagnetic ph
within this framework. As the most simple case of antiferr
©2001 The American Physical Society17-1
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AVELLA, MANCINI, AND MU¨ NZNER PHYSICAL REVIEW B63 245117
magnetism, where in general the spin and the translatio
invariance are broken, we consider an antiferromagnetic s
on a bipartite lattice characterized by its staggered magn
zation. It turns out that in this phase the simple Hubb
model does not provide sufficient internal parameters to
the representation. We therefore investigate thet-t8-U
model in the limit oft8→0 in two and three dimensions, an
the extended Hubbard model in two dimensions.

In Secs. II and III, we develop the analytical backgrou
needed for the calculations. We find a closed set of s
consistent equations for the antiferromagnetic thermal e
librium state, which respects the Pauli principle and
particle-hole symmetry. The numerical evaluation of the
self-consistent equations is presented in Secs. IV and V.
complete phase diagrams considering the paramagnetic
the antiferromagnetic phase for both models and in differ
dimensionality are calculated, as well as the density of st
and the quasiparticle dispersions. The main results of
paper are the following: the presence of three kinds of tr
sitions~Mott-Hubbard, Mott-Heisenberg, and Heisenberg! at
half-filling in the planeT-U; the existence of two compo
nents in the antiferromagnetic gap~one due to the antiferro
magnetic correlations, and another coming from the Mo
Hubbard mechanism!; a finite critical value of the Coulomb
interaction for the Mott-Hubbard and Mott-Heisenberg tra
sitions; the strong decay of the Ne´el temperature with dop
ing; and a metal-insulator transition away from half-fillin
inside the antiferromagnetic phase.

II. HUBBARD MODEL WITHIN THE TWO-POLE
APPROXIMATION

The Hamiltonian for the single-band Hubbard mod1

with chemical potentialm is defined by

H5(
i j ;s

~ t i j 2md i j !cs
†~ i !cs~ j !1U(

i
n↑~ i !n↓~ i !,

~2.1!

with sP$↑,↓%, and where the sum over the site indicesi and
j runs over the whole chemical lattice$Ri%, which we con-
sider to be of simple cubic type with lattice constanta. U is
the on-site Coulomb interaction. The kinetic part of t
Hamiltonian is given by the nearest-neighbor hopping. Ind
dimensions, the hopping matrix takes the formt i j 5
22 d t a i j 522 d t1/N(ke

ik•(Ri2Rj )a(k), with a(k)
5(1/d)( l 51

d cos(kla).
In the framework of the COM, as basic fields we take t

Hubbard operatorsjs( i )5cs( i )@12ns̄( i )# and hs( i )
5cs( i )ns̄( i ), wherens( i )5cs

†( i )cs( i ), describing the basic
excitationsn( i )50↔n( i )51 andn( i )51↔n( i )52 on the
lattice sitei, which are responsible for the leading contrib
tions in the electronic density of states.29 Let us define a
four-component composite field at lattice sitei,

C~ i ,t !5S j↑~ i ,t !

h↑~ i ,t !

j↓~ i ,t !

h↓~ i ,t !

D , ~2.2!
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where the variablet denotes the time translation of the o
erator under the Heisenberg dynamics generated byH. The
Heisenberg equation of motion for this basic fieldC may be
split into a part that is linear in the basic field and a rema
ing nonlinear part

i
]

]t
C~ i ,t !5J~ i ,t !5(

j
«~ i , j !C~ j ,t !1dJ~ i ,t ! ~2.3!

by projecting it on the basic field. Then, the matrix«( i , j ) is
fixed by

«~ i , j !5(
l

^$J~ i ,t !,C†~ l ,t !%&^$C~ l ,t !,C†~ j ,t !%&21,

~2.4!

where ^•& denotes the thermal average on the gra
canonical ensemble.

To simplify the notational effort, we introduce the so
called normalization matrixI and the so-calledm matrix

I ~ i , j !5^$C~ i ,t !,C†~ j ,t !%&, ~2.5!

m~ i , j !5^$J~ i ,t !,C†~ j ,t !%&, ~2.6!

and obtain the shorthand for the energy matrix«5mI21

from Eq. ~2.4!.
The pole approximation consists of neglecting the non

ear partdJ( i ,t) in the equation of motion. This is equivalen
to suppressing of the incoherent part in the retarded Gre
function matrix

S~ i , j ,t !5u~ t !^$C~ i ,t !,C†~ j ,0!%&

5
i

2p S a

2p D dE dve2 ivtE
VB

ddkeik"(Ri2Rj )

3E
VB

ddpeip"RiS~k,p,v!, ~2.7!

which then satisfies the linearized equation of motion

i
]

]t
S~ i , j ,t !5 id~ t !I ~ i , j !1(

l
«~ i ,l !S~ l , j ,t !. ~2.8!

d is the dimension of the system,a is the lattice spacing, and
VB is the Brillouin zone. The resulting set of algebraic equ
tions for the Fourier transform of the retarded Green’s fu
tion may then be solved. A knowledge of the retard
Green’s function will allow us to calculate the correlatio
functions ^C( i ,t)C†( j ,0)& by means of the spectral theo
rem. As already mentioned, the above scheme of trunca
the equation of motion by a projection technique is rath
common in the treatment of systems with strong correlatio
When, as in this work, we use operators coming from
hierarchy of the equations of motion as basic fields,27,28 the
COM is similar to the SDA.11,24–26However, the COM gives
the possibility of choosing the basic fields according to
physics of the system under investigation. This freedom
lows a better control on the dynamical information st
present in the generalized mean-field approximation. Le
7-2
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ANTIFERROMAGNETIC PHASE IN THE HUBBARD . . . PHYSICAL REVIEW B63 245117
emphasize that even in the pole approximation the electr
self-energy is not trivial as in the standard mean-field
proach, but a pole expansion of the exact electronic s
energy is used. Another fundamental difference between
COM and the approaches mentioned above consists
treatment of the higher-order correlation functions occurr
in the energy matrix@Eq. ~2.4!#, which are not directly re-
lated to elements of the Green’s function. As shown in
recent publication,20 there is no freedom in choosing th
equations to compute those parameters, as they have
used to fix the representation according to the relation

lim
j→ i

t→01

S~ i , j ,t !5^C~ i !C†~ i !&, ~2.9!

where the left-hand side comes from Eq.~2.7! and the right-
hand side derives from the basic algebraic properties of
electronic field algebra—namely, thePauli principle. Any
other choice of the self-consistent equations that fix th
parameters will lead to a representation for the Green’s fu
tion, where the main symmetries of the system are violate28

In the case of the Hubbard model, Eq.~2.9! leads to the
self-consistent equations

^js~ i !hs
†~ i !&50, ~2.10a!

^j↑~ i !j↑
†~ i !&5^j↓~ i !j↓

†~ i !&. ~2.10b!

The use of these equations, in the paramagnetic phase, l
a good agreement of the COM with the numerical results
the local, integrated, and thermodynamic quantities.15,22,23

In contrast to the paramagnetic solution—characteri
by a complete translational and spin rotational symmetr
where the number of parameters in the energy matrix em
ing from higher-order correlation functions is equal to t
number of constrains given by the Pauli principle@Eq.
~2.10!#, an antiferromagnetic solution with two composi
fields, which is characterized by a broken translational a
spin rotational symmetry~they are, however, not broken in
completely independent way!, requires additional paramete
to satisfy all constraints emerging from the algebraic prop
ties of the basic field operatorsj andh. It turns out that for
extensions of a simple Hubbard model@Eq. ~2.1!# by a next-
nearest-neighbor hopping term~the t-t8-U model!, or by a
nearest-neighbor Coulomb repulsion~the so-called extende
Hubbard model!, the number of those parameters is equa
the number of ‘‘algebraic’’ constraints in the case of an a
tiferromagnetic solution. According to this, in the followin
we will investigate the antiferromagnetic solution of the 2
and 3D t-t8-U model in the limit of t8 going to zero, and
that of the 2D extended Hubbard model. For the antifer
magnetic solution, the two poles corresponding to the t
composite fieldsj andh will split up into four poles due to
the broken translational and spin rotational symmetry.
24511
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III. ANTIFERROMAGNETIC SOLUTION
FOR THE HUBBARD MODEL

A. Antiferromagnetic solution on a bipartite lattice

As stated above, we will study the antiferromagnetic s
lution of the Hubbard model by considering thet8→0 limit
of the t-t8-U model. The Hamiltonian of the latter reads

Htt8U5(
i j ;s

~ t i j 1t i j8 2md i j !cs
†~ i !cs~ j !1U(

i
n↑~ i !n↓~ i !,

~3.1!

where thet i j8 matrix describes the next-nearest-neighbor h
ping. Thet8 hopping is an intra-sublattice hopping for ea
of the two sublatticesA and B of a bipartite square lattice
whereas thet hopping is an intersublattice hopping.

In this paper, we consider an antiferromagnetic solut
of Hamiltonian~3.1!, characterized by an opposite sign in th
spin density on nearest-neighboring lattice sites. Thus
antiferromagnetic ordering induces a magnetic lattice$R̃i%
with a lattice constantã5aA2, overlying the chemical Bra-
vais lattice$Ri% with lattice constanta. As shown in Fig. 1,
the magnetic lattice is obtained as a square lattice wit
basis, by collecting together two neighboring sites of t
chemical lattice.

During the calculation of the Green’s functions it will b
convenient to switch between two equivalent representat
of the system constructed on the chemical and magnetic
tices. We denote vectors belonging to the chemical lattice
their bare symbols, whereas the corresponding vectors on
magnetic lattice are denoted by an additional tilde. We i
pose the following global boundary conditions on the an
ferromagnetic thermal equilibrium state.

Assumption III.1The antiferromagnetic thermal equilib
rium state has to satisfy the following global boundary co
ditions:

1. The particle and spin densities are globally co
served.

FIG. 1. The bipartite lattice structure induced by the antifer
magnetic ordering on a two-dimensional square lattice.
7-3
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2. The mean value of the local particle density per s
satisfies the relation

^ns~ i !&5 1
2 @n2~21!sm cos~Q•Ri !#, ~3.2!

where m is the staggered magnetization, which has to
calculated self-consistently. The particle densityn is im-
posed as an external parameter. Further we adopt the
ventions51,2 for s5↑,↓ andQ5(p/a,p/a).

3. All expectation values are invariant under the co
temporary exchange of the spin direction and the sublat
index.

4. The normalization matrixI and them matrix from
Eqs.~2.5! and ~2.6! have to be real.

We remark that conditions~1!–~3! are natural boundary
conditions for an antiferromagnetic thermal equilibrium st
characterized by a staggered magnetization, whereas co
tion ~4! is a direct consequence of the fact that we are lo
ing for a state without quasiparticle damping, as required
the approximation scheme described in Sec. II.

To reduce the computational effort in solving the integ
self-consistent equations, we use aspherical approximation
for the t8 hopping, characterized by an additional hopping
next-next-nearest-neighbors with half the weight of the ne
nearest-neighbor hopping, in the calculations of the integ
in the momentum space. This permits a definition of
t8-hopping matrix bya(k) only, and therefore reduces th
number of evaluations toO(N)—N is the number of steps in
the integrals—independently from the dimensionality of t
-

e
e

y
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system, while it would have beenO(Nd) for a d-dimensional
system with the usual next-nearest-neighbort8-hopping ma-
trix. In two dimensions thet8-hopping matrix is given by
t i j8 5212t8b i j 5212t8(1/N)(ke

ik"(Ri2Rj )b(k) with b(k)
5 1

3 „4@a(k)#221…. In three dimensions we findt i j8 5
230t8b i j 5230t8(1/N)(ke

ik"(Ri2Rj )b(k), with b(k)
5 2

5 „3@a(k)#22 1
2 …. Let us remark that in the present defin

tions the hopping per lattice site is always normalized to 1
is worth noting that, as we will take thet8→0 limit hereaf-
ter, the use of thespherical approximationcannot affect at
all the results we will obtain.

In the following we will restrict our analysis to the 2D
case. The 3D case, which might be treated in complete a
ogy by renormalizing the hopping constants and by chang
the projectionsa i j andb i j , will be considered in Sec. IV C

B. Normalization and energy matrices

In order to calculate the energy matrix in the two-po
approximation under the antiferromagnetic boundary con
tions given in assumption III.1, we proceed along the gui
lines given in Sec. II. To this end it is convenient to use t
corresponding quantities defined on the chemical lattice,
to switch to the magnetic lattice only for the calculation
the Green’s functions.

First, we calculate the full equation of motion for th
composite field spinor@Eq. ~2.2!# according to Eq.~2.3! for
the t-t8-U Hamiltonian
i
]

]t
C~ i ,t !5@C~ i ,t !,Htt8U#5S 2mj↑~ i ,t !24tc↑

a~ i ,t !24tp↑
a~ i ,t !212t8c↑

b~ i ,t !212t8p↑
b~ i ,t !

2mh↑~ i ,t !1Uh↑~ i ,t !14tp↑
a~ i ,t !112t8p↑

b~ i ,t !

2mj↓~ i ,t !24tc↓
a~ i ,t !24tp↓

a~ i ,t !212t8c↓
b~ i ,t !212t8p↓

b~ i ,t !

2mh↓~ i ,t !1Uh↓~ i ,t !14tp↓
a~ i ,t !112t8p↓

b~ i ,t !

D , ~3.3!
d

where we used the notationps
g( i )52ns̄( i )cs

g( i )
1cs̄

†( i )cs( i )cs̄
g( i )1cs( i )cs̄

g†( i )cs̄( i ) with cs
g( i )

5( jg i j cs( j ), whereg5a,b stands for the projections de
fined in Sec. III A.

According to assumption III.1.1, the expectation valu
for spin-exchange operators vanish, and we find the gen
block structures

I 5I ↑ % I ↓ , «5«↑ % «↓ ,

M5M ↑ % M ↓ , S5S↑ % S↓ . ~3.4!

The explicit form of the normalization matrix is obtained b
direct evaluation of Eq.~2.5!,

I ~ i , j !5d i j I
(n)1d i j I

(m) cos~Q•Ri !, ~3.5!
s
ral

with I (n)5 Î (n)
% Î (n) andI (m)5 Î (m)

% 2 Î (m), where the blocks
are given by

Î (n)5S 12
n

2
0

0
n

2

D , Î (m)5S m

2
0

0 2
m

2

D . ~3.6!

For them matrix, from Eq.~2.6! we obtain

m~ i , j !5d i j M11a i j M31b i j M5

1cos~Q•Ri !~d i j M21a i j M41b i j M6!. ~3.7!

The matricesM1 , . . . ,M6 also have the above-mentione
block structures
7-4
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M15S M̂1 0

0 M̂1
D , M25S M̂2 0

0 2M̂2
D ,

M35S M̂3 0

0 M̂3
D , M45S M̂4 0

0 2M̂4
D , ~3.8!

M55S M̂5 0

0 M̂5
D , M65S M̂6 0

0 2M̂6
D ,

with

M̂15S 2mS 12
1

2
nD24t~D↓

a1D↑
a!26t8~D↓

b1D↑
b! 4t~D↓

a1D↑
a!16t8~D↓

b1D↑
b!

4t~D↓
a1D↑

a!16t8~D↓
b1D↑

b! ~U2m!
1

2
n24t~D↓

a1D↑
a!26t8~D↓

b1D↑
b!
D ,

M̂25S 2m
m

2
24t~D↓

a2D↑
a!26t8~D↓

b2D↑
b! 4t~D↓

a2D↑
a!16t8~D↓

b2D↑
b!

4t~D↓
a2D↑

a!16t8~D↓
b2D↑

b! 2
m

2
~2m1U !24t~D↓

a2D↑
a!26t8~D↓

b2D↑
b!
D ,

~3.9!

M̂35S 24t~12n1p! 24tS 1

2
n2pD

24tS 1

2
n2pD 24tp

D , M̂55S 212t8F12n1
1

2
~p↓

b1p↑
b!G 212t8F1

2
n2

1

2
~p↓

b1p↑
b!G

212t8F1

2
n2

1

2
~p↓

b1p↑
b!G 26t8~p↓

b1p↑
b!,

D ,

M̂45S 0 22tm

2tm 0 D , M̂65S 212t8Fm1
1

2
~p↓

b2p↑
b!G 6t8~m1p↓

b2p↑
b!

6t8~m1p↓
b2p↑

b! 26t8~p↓
b2p↑

b!
D .
e
pin
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e
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To shorten the notation of the occurring expectation valu
we defined the following parameters:

Ds
a5

1

2
~^js~ i !cs

a†~ i !&2^cs
a~ i !hs

†~ i !&! for i PA

p5
1

4
^nm~ i !nm

a~ i !&2^c↑~ i !c↓~ i !@c↓
†~ i !c↑

†~ i !#a&,

Ds
b5^js~ i !cs

b†~ i !&2^cs
b~ i !hs

†~ i !& for i PA,
~3.10!

ps
b5

1

4
^@n1~ i !2~2 !sin2~ i !#@n1~ i !1~2 !sin2~ i !#b&

1^ns~ i !ns
b~ i !&2^cs̄~ i !cs~ i !@cs

†~ i !cs̄
†
~ i !#b&

for i PA.
24511
s,Furthermore, we used the notationnm( i )5c†( i )smc( i ) for
the spin- and charge-density operators with the Pauli s
matricessmP$1,sx ,sy ,sz% and the electronic field spinor
c†( i )5@c↑

†( i ),c↓
†( i )#.

As the antiferromagnetic ordering breaks the translatio
invariance, the parametersDs

a , p, Ds
b , andps

b in principle do
depend on the lattice sitei. However, the antiferromagneti
state enjoys a translational invariance within each of the
sublatticesA andB. For definitions of parameters~3.10! we
arbitrarily chose the values on the sublatticeA. Their values
on the sublatticeB are then given by exchanging the sp
indices according to assumption III.1.3.

The operators, from which the expectation values for
parametersDs

a , p, Ds
b , andps

b are taken, are not Hermitian
However, the corresponding parameters have to be rea
cording to assumption III.1.4. This finally results in th
parameterp being independent of both the spin and the su
lattice. Furthermore, the normalization matrix and t
m-matrix result to be symmetric.

To calculate the energy matrix we note that Eq.~2.4!
givesm5«I . In Fourier space, we have
7-5
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m~k,p!5
a2

~2p!2EVB

d2q «~k1q, p2q!I ~q!

5«~k, p!I (n)1«~k1Q, p2Q!I (m), ~3.11!

where the Fourier transform of the normalization and them
matrix are given by

I ~k, p!5S 2p

a D 2

@d~p!I (n)1d~p2Q!I (m)#

m~k,p!5S 2p

a D 2

$d~p!@M11a~k!M31b~k!M5#

1d~p2Q!@M21a~k!M41b~k!M6#%.

~3.12!

We recall that the Fourier transform on the chemical lattice
defined as in Eq.~2.7! to benefit from the periodicity of the
thermal equilibrium states.

Using the 2Q periodicity of the thermal equilibrium state
in Eq. ~3.11!, we obtain the energy matrix in Fourier spac

«~k, p!5m~k,p!C2m~k1Q,p2Q!D, ~3.13!

with

C5~ I (m)!21@ I (n)~ I (m)!212I (m)~ I (n)!21#21,

D5~ I (n)!21@ I (n)~ I (m)!212I (m)~ I (nt)!21#21. ~3.14!

Using the explicit expressions 3.12 form and the normaliza-
tion matrix, we can write the energy matrix as

«~k, p!5S 2p

a D 2

$d~p!@« (1)1a~k!« (2)1b~k!« (5)#

1d~p2Q!@« (3)1a~k!« (4)1b~k!« (6)#%,

~3.15!

with

« (1)5M1C2M2D, « (2)5M3C1M4D,

« (3)5M2C2M1D, « (4)5M4C1M3D,

« (5)5M5C2M6D, « (6)5M6C2M5D. ~3.16!

C. Green’s functions

The solutions of the linearized equation of motion~2.8!
with expression~3.15! for the energy matrix can be inter
preted as translational invariant Green’s functionsSAA( k̃,v),
SAB( k̃,v), SBA( k̃,v), andSBB( k̃,v) on the magnetic lattice
as shown in Appendix A. They have the general structur

SXY~ k̃,v!5@v21vAXY~ k̃!1BXY~ k̃!#21

3@vCXY~ k̃!1DXY~ k̃!#. ~3.17!

The explicit form of the coefficientsAXY, BXY, CXY, and
DXY are given in Appendix B.
24511
s
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Due to assumption III.1 on the antiferromagnetic therm
equilibrium state, Green’s function~3.17! has the block
structureSXY5S↑

XY
% S↓

XY shown in Eq.~3.4!, where the poles

ˆEs,i
XY( k̃)u i P$1,2,3,4%‰ of the spin-dependent partsSs

XY of the
Green’s functions are given by the roots of the fourth-ord
equations

det@v21vAs
XY~ k̃!1Bs

XY~ k̃!#50. ~3.18!

The set of poles for the Green’s functionsSs
XY are all equal,

i.e., the quasiparticle energies depend on neither the spin
the sublattice. This reflects the property of the antiferrom
netic state with staggered magnetization, where the majo
spin states and the minority-spin states energetically occ
exactly the same regions and differ only in their correspo
ing spectral weights~cf. also Sec. IV!. Therefore, we simply
write Ei( k̃)5Es,i

XY( k̃).
We can write the retarded Green’s function~3.17! as

Ss
XY~ k̃,v!5 lim

h→0
(
i 51

4
1

v2Ei~ k̃!1 ih
ss,i

XY~ k̃!, ~3.19!

with X,YP$A,B%, sP$↑,↓% and the spin- and sublattice
dependent spectral weightsss,i

XY given by

ss,i
XY~ k̃!5

1

)
j 51
j Þ i

4

@Ei~ k̃!2Ej~ k̃!#

$@Ei~ k̃!#3Cs
XY~ k̃!1@Ei~ k̃!#2

3$Ds
XY~ k̃!1det@As

XY~ k̃!#@As
XY~ k̃!#21Cs

XY~ k̃!%

1Ei~ k̃!$det@As
XY~ k̃!#@As

XY~ k̃!#21Ds
XY~ k̃!%

1det@Bs
XY~ k̃!#@Bs

XY~ k̃!#21Cs
XY~ k̃!

1det@Bs
XY~ k̃!#@Bs

XY~ k̃!#21Ds
XY~ k̃!%. ~3.20!

D. Self-consistency equations

Given the temperatureT and the particle densityn as ex-
ternal thermodynamic parameters, as well as the Coulo
interactionU and the hopping constantst and t8, which are
the model-dependent parameters, we are now able to gi
closed set of self-consistent conditions for the internal
rameters characterizing an antiferromagnetic thermal equ
rium state. These internal parameters arep, p↑

b , p↓
b , D↑

a ,
D↓

a , D↑
b , andD↓

b from Eq. ~3.10!, the chemical potentialm,
and the magnetizationm from Eq. ~3.2!.

For the calculations of these parameters we need a kn
edge of the correlation functions, which are connected to
retarded Green’s functions of the fundamental spinor
means of the spectral theorem. In view of the special fo
@Eq. ~3.19!# of the retarded Green’s functions, the spect
theorem at equal time may be written as
7-6
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CXY~R̃i ,R̃j !5^CX~R̃i !C
Y†~R̃j !&

5
1

2

ã2

~2p!2 (
l 51

4 E
VB̃

d2k̃ ei k̃"(R̃i2R̃j )s l
XY~ k̃!

3F11tanhS El~ k̃!

2kBT
D G . ~3.21!

We denote the on-site, nearest-neighbor, and next-~next!-
nearest-neighbor correlation functions at equal time
CXX(R̃i), CXYã(R̃i), andCXXb̃(R̃i).

For the parametersm and m, we then find the self-
consistent equations

22n5C11
AA~R̃i !1C11

BB~R̃i !1C22
AA~R̃i !1C22

BB~R̃i !,

2m5C44
AA~R̃i !2C22

AA~R̃i !1C22
BB~R̃i !2C44

BB~R̃i !].
~3.22a!

The parametersD↑
a , D↓

a , D↑
b , andD↓

b are directly related to
matrix elements of the correlation functions by

D↑
a5 1

2 @C11
ABã~R̃i !1C12

ABã~R̃i !2C12
BAã~R̃i !2C22

BAã~R̃i !#,

D↓
a5 1

2 @C33
ABã~R̃i !1C34

ABã~R̃i !2C34
BAã~R̃i !2C44

BAã~R̃i !#,
~3.22b!

D↑
b5@C11

AAb̃~R̃i !2C22
AAb̃~R̃i !#,

D↓
b5@C11

BBb̃~R̃i !2C22
BBb̃~R̃i !#.

The parametersp, p↑
b , andp↓

b cannot be calculated explicitly
by the single-particle Green’s function@Eq. ~3.19!#, because
they derive from higher-order correlation functions. Accor
ing to what was stated in Sec. II, we will use the followin
equations to fix the representation of the Gree
function:15,21

C12
AA~R̃i !50,

C12
BB~R̃i !50, ~3.22c!

C11
AA~R̃i !5C33

AA~R̃i !.

We observe that all self-consistent equations are coup
and have to be solved as one set by means of a global
vergency scheme.

Finally we remark that the correlation functionsCXX(R̃i),
CXYã(R̃i), andCXXb̃(R̃i) actually do not depend on the la
tice site Ri of the magnetic lattice because of the trans
tional invariance enjoyed by the Green’s functions@Eq.
~3.19!#.

IV. NUMERICAL EVALUATION
OF THE ANTIFERROMAGNETIC PHASE

FOR THE HUBBARD MODEL

In the following the thermodynamics of the antiferroma
netic thermal equilibrium states for the Hubbard model
24511
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two and three dimensions is discussed. We report the ph
diagrams resulting from solutions of Eqs.~3.22!, as well as
some of the microscopic properties of the corresponding
lutions, which explain the phase behavior. In this conte
our main concern is in the interplay of the antiferromagne
~Mott-Heisenberg! gap and the Mott-Hubbard gap leading
a metal-insulator transition in the antiferromagnetic pha
Furthermore, we investigate the distribution of the spec
weight between the majority- and minority-spin states t
explains most of the phase properties found for the anti
romagnetic solution. As a first step, we establish an ave
ing procedure between solutions for positive and nega
values oft8 that is capable of ruling out a nonphysical ar
fact induced by the spherical approximation, and of est
lishing the correspondence to the simple Hubbard mode

A. Averaging procedure in t8

Due to the incompatibility of the nearest- and the ne
nearest-neighbor hoppings thet-t8-U model does not enjoy
particle-hole symmetry at half-filling (n51). In addition, the
spherical approximation for thet8 hopping overemphasize
the intrasublattice hopping to the next- and next-next-nea
neighbors. This leads to an instability of the antiferroma
netic solution for thet-t8-U model at half-filling: the mag-
netization goes to zero for positive values of thet8 hopping,
and for negative values oft8 diverges to infinity@cf. Fig.
2~a!#. Positive values of the intrasublattice hopping do su
press antiferromagnetism to a certain extent, whereas n
tive values are in favor of it by the additional phase factor
p.

For a simple Hubbard model the particle-hole symme
reflects the algebraic property

m~n51!5
U

2
. ~4.1a!

For an antiferromagnetic solution in the framework of t
two-pole approximation, we have the additional condition

D↑
a~n51!52D↓

a~n51!, ~4.1b!

which is a generalization of the conditionD↑
a(n51)50

5D↓
a(n51), imposed by the particle-hole symmetry on t

paramagnetic solution of the simple Hubbard model, beca
of the inequivalence of the majority and the minority sp
subsystems in the antiferromagnetic state. Condition~4.1a! is
satisfied in the limitt8 going to zero independently of th
direction @see Fig. 2~b!#. This is a direct consequence of th
fact that the proper representation for the Green’s functi
has been taken by using the complete set20,28 of constraints
coming from the Pauli principle@Eq. ~3.22c!#.

Taking the average between the solutions fort8 and2t8
with ut8u approaching zero, we obtain an antiferromagne
state—which formally has zerot8 hopping—that satisfies
Eqs. ~4.1!, has no divergence in the magnetization and
other parameters at half filling@see Figs. 2~a!, 2~c!, and 2~d!#
and can be considered as representative of the simple H
bard model. Averaging the solutions for6t8 thus combines
the large benefit in computational time provided by t
7-7
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FIG. 2. The average algorithm between positive and negative values oft8 in the 2D t-t8-U model for U510t and kT50.5t. ~a!
Sublattice magnetization as a function ofn. ~b! Chemical potentials as a function ofn. ~c! The parameterp as a function ofn. ~d! The
parametersDa as a function ofn.
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spherical approximation with an antiferromagnetic solut
that satisfies the complete set of symmetry constrains de
ing from the Pauli principle and enjoys the particle-ho
symmetry. The numerically accessible limit for thet8 hop-
ping, which has been used in combination with the abo
averaging procedure~see Fig. 2!, is t8561024t. Hereafter,
we will present results exclusively from the averaged so
tion, and we will consider them as results of the simple Hu
bard model.
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B. The antiferromagnetic state of the Hubbard model

1. Phase diagram

The n-T and U-n phase diagrams for the antiferroma
netic state of the 2D Hubbard model and the correspond
paramagnetic state are shown in Figs. 3 and 4. The ant
romagnetic state has a free energy lower than the one o
paramagnetic state over the whole phase region, leading
phase transition of second order between the antiferrom
.

FIG. 3. The n-T phase dia-

gram for the 2D Hubbard model
~a! U510t. ~b! U520t.
7-8
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FIG. 4. The U-n phase dia-
gram for the 2D Hubbard model
~a! kT50.01t. ~b! kT50.5.
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netic and paramagnetic phases at the lines of vanishing m
netization. The study of the phase diagram near half-fill
has to be completed by an investigation of the ferromagn
phase30 and the charge-ordered phase, which both can
studied in the framework of the approximation scheme
scribed above. The antiferromagnetic phase could be e
getically ruled out by one of these other phases in cer
regions of the phase diagrams, thus leading to phase tra
tions of first order.26,31–33 In this section we give a brie
overview of the properties of the antiferromagnetic pha
which then will be related to the inner structure of the an
ferromagnetic state—namely its density of states—in
subsequent sections.

The most striking features of the antiferromagnetic ph
are the finite critical Coulomb interactionUc as a lower
bound to the antiferromagnetic state at half-filling, the
striction of the antiferromagnetic state to a very narrow
gion in n around half-filling, and the metal-insulator trans
tion ~MIT ! within the antiferromagnetic phase. Th
vanishing of the staggered magnetization at half filling
U,Uc—we find Uc within 5t – 10t ~see Fig. 4!—is sup-
posed to be an effect of strong electron correlations. It can
be observed within simple mean-field treatments of the H
bard model,34–36where the antiferromagnetic phase is sta
down to U50 at n51. Also, in more sophisticated mean
field approximations, such as the SDA, a stable antife
magnetic state is found atn51 down to very small values o
U, and its stability down toU50 cannot be excluded.26 The
same holds for the antiferromagnetic state of the simple H
bard model treated by the DMFT.37

As we already mentioned in Sec. I, the SDA is rath
closely related to the COM, but to calculate the antifer
magnetic state further approximations on the correlat
functions are needed.25,26 The main difference lies in the
treatment of the internal parameters emerging from high
order correlation functions. While the COM uses these to
the representation of the Green’s functions@Eq. ~3.22c!#,
they are calculated by the equations of motion in the SD
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In a previous study38 we investigated the critical Coulom
interaction as a function of thet8 hopping, showing that a
finite value ofUc in the above-mentioned range has also
be expected in the exact limitt8→0.

The antiferromagnetic phase found in the high-Tc copper
oxide compounds generally shows a great stability at h
filling, just a few percent of electron or hole doping leads
a strong reduction of the Ne´el temperature and eventually t
the vanishing of the antiferromagnetic phase. On the ot
hand, it is well known that in general the mean-field tre
ment of the Hubbard model strongly overemphasizes the
bility of the antiferromagnetic phase in doping. In the COM
where the strong correlation effects are restored to some
tent by the Pauli principle symmetry constraint, the stabil
of the antiferromagnetic phase is actually reduced to a n
row region of a few percent of doping around half-fillin
with a strong reduction of the Ne´el temperature. For the
Hubbard model such a behavior has been confirmed by
merical results in quantum Monte Carlo studies.29,39 In
contrast, a larger region for the antiferromagnetic phase
been obtained by the SDA~Ref. 26! and the d5`
approximation.9,37

At zero temperature a transition from an antiferroma
netic insulator at half-filling and an antiferromagnetic me
for n,1 is observed. At higher temperatures, however,
find an extended region in doping aroundn51, where the
Fermi level is situated inside the Mott-Heisenberg ga
which itself is large with respect to the thermal energykT.
We thus have a state with poor conductivity of semicond
tor type, which we call an ‘‘antiferromagnetic insulator.
The metallic behavior is recovered when the Fermi le
joins the second antiferromagnetic band with decreasing
ues ofn.

Then-T phase diagrams show a strong qualitative diff
ence in the low-temperature region according to the prese
@Fig. 3~b!# or absence@Fig. 3~a!# of a Mott-Hubbard gap. For
values ofU that do not admit a Mott-Hubbard gap, the st
bility of the antiferromagnetic phase is enhanced by incre
7-9
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ing temperature~a phenomenon called ‘‘heat magnetiz
tion’’ !, whereas the reverse is true for values ofU where the
Mott-Hubbard gap is already opened.

Furthermore, the presence of the Mott-Hubbard gap
the fact that it closes within the antiferromagnetic pha
when the particle density is reduced, is also responsible
the intermediate reduction of the stability of the antiferr
magnetic state by increasing the Coulomb interaction~Fig.
4!. This reduction is reinforced by increasing temperat
and leads to a ‘‘noselike’’ shape of theU-n phase diagram
Both phenomena can be explained by the evolution of
spectral weights for the majority- and minority-spin su
systems as functions of the external parameters, as wil
explained in detail in Sec. IV B 2.

Finally, we remark that the phase diagrams shown in F
3 and 4 are completely symmetric with respect ton51; this
is due to the fact that the thermal equilibrium state respe
the particle-hole symmetry. To incorporate the experim
tally observed asymmetry in particle and hole doping, a p
jection of the two-band Hubbard model on an effecti
single-band one has been proposed.33

2. Band properties

The spectral properties of the antiferromagnetic state
deduced from the electronic single-particle Green’s funct
on each sublatticeScc†

XX ( k̃,v) with XP$A,B%. In the follow-
ing we will restrict our analysis to the sublatticeA, while the
quantities on the sublatticeB are obtained by simply ex
changing the majority- and minority-spin subsystems. W
thus have for the retarded electronic Green’s function on
sublatticeA:

Scc†
AA ~ k̃,v!5Sjj†

AA ~ k̃,v!1Sjh†
AA ~ k̃,v!1Shj†

AA ~ k̃,v!

1Shh†
AA ~ k̃,v!. ~4.2!

The spin-dependent electronic density of states within
antiferromagnetic state is then given by

Ns
A~v!ªS ã

2p
D 2E

VB̃

d2k̃ S 2
1

p
Im Scc†

AA ~ k̃,v! D
5S ã

2p
D 2E

VB̃

d2k̃ (
i 51

4

d @v2Ei~ k̃!#@s i ,jsj
s
†

AA
~ k̃,v!

1s i ,jsh
s
†

AA
~ k̃,v!1s i ,hsj

s
†

AA
~ k̃,v!1s i ,hsh

s
†

AA
~ k̃,v!#.

~4.3!

We recall that all energies refer to the chemical potentia
The two-pole approximation leads to a splitting of t

single electronic band into two Hubbard subbands that c
respond to the elementary excitations described by the c
posite operatorsj andh. Those two subbands are separa
by the on-site Coulomb interactionU, which may lead to a
gap at same critical value.9,40 The bipartite lattice approac
leads to a doubling of the two subbands by reflection aro
the band center at (U/2)2m @see Fig. 6~c!#. In the paramag-
netic case, when the magnetic lattice is introduced, this d
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bling of the Hubbard subbands by the reduction of the B
louin zone is completely artificial: the reflected bands occu
exactly the same energy interval, with the same spec
weights as the original Hubbard subbands.

The antiferromagnetic state, however, is characterized
the opening of Mott-Heisenberg gaps at the crossing po
of the four subbands induced by the switching to the m
netic lattice. Thus we find three Mott-Heisenberg gaps: o
in the lower Hubbard band, (Dj), one in the upper Hubbard
band, (Dh), and a central Mott-Heisenberg gap, (Dj2h), in
the region where the two Hubbard subbands overlap in
paramagnetic phase~see Fig. 5!.

If the two Hubbard subbands are already separated b
Mott-Hubbard gap~in the paramagnetic phase it has be
found40 that the Mott-Hubbard gap opens atU.13.2t), the
central Mott-Heisenberg gap adds to this gap@see Fig. 6~a!#.
The gapsDj and Dh are not symmetric around the Mo
separation6U/2, because the upper and the lower ba
edges are shifted by different amounts.

The antiferromagnetic ordering thus leads to a splitting
the two Hubbard subbands into four antiferromagnetic ba
that are occupied by both majority- and minority-spin su
systems. As can be seen from Fig. 5, the two spin s
systems energetically occupy the same regions—which is
reason why the staggered magnetization never reaches
ration~m5n!—but with rather different spectral weights: th
spectral weight of the majority spins is strongly enhanced
the upper band edges, whereas the minority spins hav
enhanced spectral weight at the lower band edges, leadin
staggered magnetization. At half-filling the density of sta
shows a complete symmetry between the minority and m
jority spins with respect to reflection of the energy arou
the Fermi level. This is due to the fact that our soluti
respects the particle-hole symmetry.

(a) The Mott-Heisenberg and the Mott-Hubbard gap.
The interplay between the Mott-Hubbard gap and

Mott-Heisenberg gap at half-filling is illustrated in Fig. 6
For U510t the two Hubbard subbands overlap at the N´el
temperatureTN , and by decreasingT we find the opening of
the Mott-Heisenberg gaps in the two Hubbard subbands
well as in the central region@Fig. 6~b!#. The corresponding

FIG. 5. The density of states on the sublatticeA, illustrating the
Mott-Heisenberg gaps in the lower and upper Hubbard bands
well as in their overlapping region in the paramagnetic phase.
values of the parameters areU510t, n51.0, andkT50.01t.
7-10



l

l

ANTIFERROMAGNETIC PHASE IN THE HUBBARD . . . PHYSICAL REVIEW B63 245117
FIG. 6. Density of states and
band structure at half-filling; the
thin vertical line atE50 denotes
the position of the Fermi leve
EF . ~a! Sublattice density of
states for U516. ~b! Sublattice
density of states forU510t. ~c!
Band structure on the chemica
lattice for U510t.
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evolution of the electronic band structure in the Brillou
zone of the chemical lattice is shown in Fig. 6~c!. We note
the doubling of the Hubbard subbands in the paramagn
state, which then evolves into the four antiferromagnetic s
bands by decreasing temperature, and the typical symm
of the band structure along the diagonal of the Brillouin zo
for the chemical lattice due to the reduced Brillouin zone
the magnetic lattice.

In Fig. 6~a! the case forU516t is shown, where the
Mott-Hubbard gap already separates the two Hubbard s
bands in the paramagnetic phase just above the trans
point. By decreasing temperature the Mott-Heisenberg g
Dj andDh open within each of the two Hubbard subband
In addition, the central Mott-Heisenberg gap adds to
Mott-Hubbard gap, leading to the central gapDj2h .

The temperature dependence of these gaps is illustrate
Figs. 7~a! and 7~b! for various values ofU. Above a certain
critical value ofU the central gap remains open at the pha
transition. At low temperatures the Mott-Heisenberg ga
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within the two Hubbard subbands,Dj andDh , increase as a
function of U up to a maximum valueU'11t, and then
decrease like 1/U @cf. Fig. 7~c!#. This reflects the 1/U depen-
dence of the antiferromagnetic exchange integral in
Heisenberg model, to which the half-filled Hubbard mod
can be mapped.41,42 For the central gap the additional Mo
separation prevents this behavior. Also, the Ne´el temperature
does not show a 1/U-like behavior~cf. Fig. 8!, which indi-
cates that the antiferromagnetic exchange integral is no
ways properly taken into account.

(b) The metal-insulator transition: The phenomenon o
metal-insulator transitions has been intensively studied in
context of strongly correlated electron systems.43 In the
framework of the COM the MIT within the paramagnet
state at half-filling is found40 in light of the Hubbard picture,
due to a separation of the two Hubbard subbands at a cri
value of the Coulomb interaction. This picture is quite d
ferent from the one found by the DMFT, where the MI
from a paramagnetic metal to a paramagnetic insulato
r
FIG. 7. The Mott gap and the Mott-Heisenberg gap atn51. ~a! Central gapDj2h as function ofT. ~b! Gaps in the lower and the uppe
Hubbard band,Dj andDh , as funciton ofT. ~c! Gaps in the lower and the upper Hubbard band,Dj andDh , as function ofU.
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AVELLA, MANCINI, AND MU¨ NZNER PHYSICAL REVIEW B63 245117
mainly due to the vanishing of a narrow coherent quasip
ticle peak at the Fermi level as in the Gutzwill
approximation.9 However, for an antiferromagnetic state on
bipartite lattice, this interpretation can be maintained with
the DMFT only when frustration by an additionalt8 hopping
is introduced.9,37

At half-filling, within the framework of the COM, we find
three kinds of transitions: a Mott-Heisenberg transition~i.e.,
a transition between a paramagnetic metal and an antife
magnetic insulator!, driven mainly by the temperature at lo
values of the Coulomb interaction; a Mott-Hubbard tran
tion ~i.e., a transition between a paramagnetic metal an
paramagnetic insulator!, almost insensitive to the tempera
ture, at high values of the Coulomb interaction; and
Heisenberg transition~i.e., a transition between an antiferro
magnet and a paramagnet!, within the insulating phase
driven by the temperature at high values of the Coulo
interaction. Moreover, the central gap has two compone
depending on the value of the Coulomb interaction and
temperature: one due to the antiferromagnetic correlat
~in the antiferromagnetic insulating phase!, and another com-

FIG. 8. The variety of transitions atn51.
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ing from the Mott-Hubbard mechanism~in the paramagnetic
and antiferromagnetic insulating phases!. In the Heisenberg
transition the antiferromagnetic component of the central
vanishes~i.e., the magnetization disappears and the late
gaps close up!, but the paramagnetic component remains
nite. We have a finite critical value of the Coulomb intera
tion for the Mott-Hubbard transition, in contrast to what w
found, for instance, by the Hubbard I approximation and
SDA. This fact allowed us to study the Mott-Heisenbe
transition existing at lower values of the Coulomb intera
tion, that is obviously absent in any picture based on
approximations mentioned above~they do not have a Mott-
Hubbard transition either!. In Fig. 8 we summarize the tran
sitions occurring at half-filling within a treatment of the Hub
bard model in the framework of the COM.

The filling-controlled MIT is discontinuous at zero tem
perature. We have an antiferromagnetic insulator atn51 and
an antiferromagnetic metal atn,1, because the central ga
is compensated for by the discontinuity in the chemical p
tential atn51, and thus the Fermi level always lies insid
the second antiferromagnetic band forn,1. This is exactly
the same result as found in the usual mean-fi
approximation43 and in the DMFT without frustration.37 In
the frustrated case with nonzerot8 hopping, DMFT as well
as quantum Monte Carlo studies additionally led to
U-controlled MIT inside the antiferromagnetic phase atn
51.44,45

Moving to finite temperature, the variation in the chem
cal potential, and thus in the overall band shift, is consid
ably moderated for higher values ofT, whereas the centra
gap still remains large in comparison tokT. Therefore, we
find a finite region around half-filling, where the Fermi lev
is still situated insideDj2h and we thus have an antiferro
magnetic phase of semiconductor type with very poor c
ductivity. When the Fermi level crosses the peak in the d
sity of states at the upper edge of the seco
antiferromagnetic band, a huge jump in the number of ca
ers is observed, and we finally obtain an antiferromagn
e

l

FIG. 9. The sublattice density
of states atU510t for various
values of the particle density. Th
thin vertical line atE50 denotes
the position of the Fermi leve
EF . ~a! kT50.2. ~b! kT50.5t.
7-12
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metal ~see Fig. 9!. Note that for the purely paramagnet
MIT such a filling controlled transition is not to be expecte

Comparing Figs.9~a! and 9~b! we see how the moderat
evolution of the chemical potential as function ofn leads to
a larger extension of the insulating antiferromagnetic ph
at higher temperatures.

The almost linear dependence of the central gapDj2h on
the Coulomb interactionU @cf. Fig. 7~a!# leads to a strong
stabilization of the insulating antiferromagnetic phase an
51. Near half-filling, however, this effect is compensat
for by larger values ofU due to the strong decay of th
chemical potential when moving to lower particle densiti
This decay of the chemical potential then leads to a la
overall shift of the band structure toward higher energi
bringing the Fermi level close to the upper edge of the s
ond antiferromagnetic band. After a small region, where
insulating phase is growing withU, this effect restricts the
insulating antiferromagnetic phase to regions very close
half-filling for large values ofU.

(c) Shape of the U-n phase diagram.For large values of
the Coulomb interaction close to the critical valueUc , where
antiferromagnetism is vanishing, the region of filling whe
the antiferromagnetic phase exists is enlarged by increa
U. Conversely, for intermediate values ofU the antiferro-
magnetic region in doping shrinks. This can be explained
the closing of the Mott-Hubbard gap as a function of dopin
When, at low values ofU, no Mott-Hubbard gap is presen
the magnetization and extension of the antiferromagn
phase inn grow with growingU. After the opening of the
Mott-Hubbard gap we find the system in a region where
Mott-Hubbard gap closes in the proximity ofn51, i.e., al-
ready within the antiferromagnetic phase. This leads t
shift of the Fermi level toward the middle of the seco
antiferromagnetic band, where majority and minority sp
nearly have the same spectral weight, and thus to a con
erable reduction of the staggered magnetization~cf. Fig. 10!.
For large values ofU the Mott-Hubbard gap remains ope
within the whole region of doping, where the antiferroma
netic phase exists, and we again find an increasing stab
of the antiferromagnetic phase with increasing Coulomb
teraction.

(d) Heat magnetization.For small values ofU we find an
increasing of the stability inn of the antiferromagnetic phas

FIG. 10. The sublattice magnetization as a function ofn at kT
50.2t.
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by increasing temperature. In the same manner, whenn is
close to the phase boundary, the magnetization itself
increases with increasingT and then goes down to zero, a
shown in Fig. 11. This so-called heat magnetization has
explanation in a strong change in the spectral weights of
spin subsystems by increasing temperature, whereas
Mott-Heisenberg gaps and the chemical potential are o
subject to very small changes~see Fig. 12!. At higher values
of U, after the opening of the Mott-Hubbard gap, the stro
ger Coulomb interaction considerably stabilizes the antif
romagnetic state at low temperatures, and excludes the e
of heat magnetization.

C. Antiferromagnetic state of the 3D Hubbard model

The antiferromagnetic phase of the 3D Hubbard mode
very similar to the one observed in two dimensions. T
shape and main features of the phase diagrams~Figs. 13 and

FIG. 11. The sublattice magnetization as a function ofT andn at
U510t.

FIG. 12. The sublattice density of states forU510t and n
50.96.
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FIG. 13. Then-T phase dia-
gram for the 3D Hubbard model
~a! Physical phase diagram atU
510t. ~b! Complete phase dia
gram atU523t.
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Sec.
14! remain unchanged~i.e., the MIT within the antiferromag-
netic phase, the finite critical Coulomb interaction for t
vanishing of the antiferromagnetic phase at half-filling, t
favoring of the insulating state at high temperatures, and
values of the Coulomb interaction and the heat magnet
tion!. Furthermore, as in the 2D case, all these properties
be explained by analyzing the density of states and the
ergy spectra.

The higher coordination number of the 3D model redu
the fluctuations, and leads to a greater stability of the a
ferromagnetic phase as a function of the external parame
T, n, andU. Comparing the extension inn of our antiferro-
magnetic phase with the one found within the SDA for a
lattice,26 the former is restricted to a much smaller region
doping.

The greater stability of the antiferromagnetic pha
shows, within the range of physically relevant values of
parameterU, that the metallic antiferromagnetic phase e
24511
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tends to much lower values ofn @cf. Figs. 13~b! and 14~b!#
than might be expected from the phase diagrams in F
13~a! and 14~a!. For higher values of the Coulomb intera
tion, up toU530t, this additional antiferromagnetic regio
is separated by the antiferromagnetic phase near half-fil
by a paramagnetic region.

The form of the sublattice magnetization as a function
n for different values of the Coulomb interaction is given
Fig. 15. This result indicates that the two antiferromagne
regions in the complete phase diagrams of Figs. 13 and
are actually two parts of a single antiferromagnetic soluti
which are only connected at rather high values ofU. We will
discuss the nature of this ‘‘tail’’ in more detail in Sec. V, i
the context of an analysis of the extended Hubbard mo
Here we only remark that the separation of the two antif
romagnetic phase regions by a paramagnetic one is du
the closing of the Mott-Hubbard gap nearn51. This leads to
a strong suppression of magnetization, as described in
.

-

FIG. 14. TheU-n phase dia-
gram for the 3D Hubbard model
~a! Physical phase diagram atkT
50.01t. ~b! Complete phase dia
gram atkT50.5t.
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IV B 2 c for the 2D case. The ‘‘antiferromagnetic tail,’
which can be considered as an artifact of the employed
proximation, is also present in the 2D case, but only appe
at values of the Coulomb interactionU'100t.

As we already mentioned in Sec. IV B 2, this ‘‘tail’’ a
lower particle densities could be energetically ruled out
other phases with magnetic or spatial ordering.

Finally, in Fig. 16, we show the evolution of the sublatti
density of states by changing the Coulomb interaction.

FIG. 15. The sublattice magnetization as a function ofn at kT
50.5t for different values of the Coulomb interaction.
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note a broader structure in comparison to the 2D model.
shown in Fig. 16~a!, the transitions from metallic- to
semiconductor-type antiferromagnetic states are related
the interplay between the global band shift and the evolut
of the central gap. This explains the form of the insulati
antiferromagnetic phase in Fig. 13~a!.

V. EXTENDED HUBBARD MODEL

A. Model

In this section we study the antiferromagnetic solution
the extended Hubbard modelin two dimensions. The mode
is described by the Hamiltonian

Hext5(
i j ;s

~ t i j 2md i j !cs
†~ i !cs~ j !1U(

i
n↑~ i !n↓~ i !

1 (
i j ;ss8

Vi j ns~ i !ns8~ j !, ~5.1!

with the nearest-neighbor Coulomb interaction

Vi j 52Va i j 52V
1

N (
k

eik"(Ri2Rj )a~k!. ~5.2!

We proceed along the guidelines given in Sec. III to obt
the antiferromagnetic state. The equation of motion for
fundamental spinor@Eq. ~2.2!# is given by
e
e

a
-

i
]

]t
C~ i ,t !5@C~ i ,t !,Hext#5S 2mj↑~ i ,t !24tc↑

a~ i ,t !24tp↑
a~ i ,t !14Vna~ i ,t !j↑~ i ,t !

2mh↑~ i ,t !1Uh↑~ i ,t !14tp↑
a~ i ,t !14Vna~ i ,t !h↑~ i ,t !

2mj↓~ i ,t !24tc↓
a~ i ,t !24tp↓

a~ i ,t !14Vna~ i ,t !j↓~ i ,t !

2mh↓~ i ,t !1Uh↓~ i ,t !14tp↓
a~ i ,t !14Vna~ i ,t !h↓~ i ,t !

D , ~5.3!

wherena( i )5( j sa i j ns( j ). The normalization matrixI takes exactly the form given in Eqs.~3.4! and~3.6!. For them matrix
we obtain the same result as given in Eq.~3.7! without the terms coming from thet8 hopping, which are described by th
projectionsb i j . The matricesM1 , . . . ,M4 are built up from matricesM̂1 , . . . ,M̂4, as in Eq.~3.8!, and these latter have th
forms

FIG. 16. The evolution of the
sublattice density of states under
variation of the Coulomb interac
tion at kT50.01t. The thin verti-
cal line atE50 denotes the posi-
tion of the Fermi levelEF . ~a! n
50.9. ~b! n51.0.
7-15



AVELLA, MANCINI, AND MU¨ NZNER PHYSICAL REVIEW B63 245117
M̂15S 2mS 12
1

2
nD24t~D↓

a1D↑
a!14V~n2y↓2y↑! 4t~D↓

a1D↑
a!

4t~D↓
a1D↑

a! ~U2m!
1

2
n24t~D↓

a1D↑
a!14V~y↓1y↑!

D ,

M̂25S 2m
m

2
24t~D↓

a2D↑
a!14V~2y↓1y↑! 4t~D↓

a2D↑
a!

4t~D↓
a2D↑

a! 2
m

2
~2m1U !24t~D↓

a2D↑
a!14V~y↓2y↑!

D ,

~5.4!

M̂35S 24t~12n1p!14Vl 24tS 1

2
n2pD14V~n↑1n↓!

24tS 1

2
n2pD14V~n↑1n↓! 24tp14Vk

D ,

M̂45S 0 22tm14V~n↑2n↓!

2tm24V~n↑2n↓! 0 D ,
-
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where we define the additional parameters

l5^js~ i !js
a†~ i !&5^js̄~ i !js̄

a†
~ i !& for i PA,

ns5 1
2 ^js~ i !hs

a†~ i !& for i PA, ~5.5!

k5^hs~ i !hs
a†~ i !&5^hs̄~ i !hs̄

a†
~ i !& for i PA,

ys5 1
2 ^na~ i !ns~ i !& for i PA.

We remark that the parametersl andk are not spin depen
dent because of the requirement for them matrix to be real,
and the additional symmetry constraint in assumption III.1
Furthermore, parametersDs

a can be expressed through p
rameters from Eq.~5.5! as

Ds
a5 1

2 l1ns2ns̄2 1
2 k. ~5.6!

The single-particle retarded Green’s functions are ca
lated as in Eqs.~3.17! and ~3.19!, omitting the parts corre-
sponding to thet8 hopping. The parameters in Eq.~5.4! can
then be calculated self-consistently by means of the corr
tion functions @Eqs. ~3.21!#. The parametersm and m are
calculated as in Eq.~3.22a!. The parametersl, ns , and k
are directly related to the single-particle retarded Gree
functions by

l5C11
ABã~R̃i !,

n↑5
1

2
C12

ABã~R̃i !,

~5.7!

n↓5
1

2
C12

BAã~R̃i !,

k5C22
ABã~R̃i !,
24511
.
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a-
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and the parametersp and ys , which derive from higher-
order correlation functions, are used as in Eq.~3.22c! to sat-
isfy the algebraic relations corresponding to the Pauli pr
ciple on the level of thermal equilibrium states:

C12
AA~R̃i !50,

C12
BB~R̃i !50,

C11
AA~R̃i !5C11

BB~R̃i !.

Again, all the self-consistent equations are coupled.

B. Antiferromagnetic state of the 2D extended Hubbard model

The phase diagram corresponding to the antiferrom
netic thermal equilibrium state, obtained as a solution of
self-consistent equations~5.7!, ~3.22a!, and~3.22c!, is shown
in Fig. 17 where we take a fixed ratioU/V55. Again, the
antiferromagnetic phase always has a lower free energy
respect to the paramagnetic phase, and the phase transit
always of second order.

The antiferromagnetic thermal equilibrium state fulfil
the particle-hole symmetry. In addition, the main qualitati
features of the antiferromagnetic states for the simple H
bard model in two and three dimensions can also be foun
the extended Hubbard model. There is a critical value of
Coulomb interaction, for which the antiferromagnetic pha
disappears and a metal insulator transition occurs.

The phenomenon of heat magnetization is more p
nounced than in the simple Hubbard model, and the occ
rence of a tail in the antiferromagnetic solution is observ
down to rather low values ofU, where they can even join fo
higher temperatures. This leads to paramagnetic inclus
7-16
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FIG. 17. The phase diagram
for the extended Hubbard mode
with V5U/5. ~a! The n-T phase
diagram atU58t. ~b! The U-n
phase digram atkT50.01t. ~c!
The U-n phae diagram atkT
50.4t.
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within the antiferromagnetic phase. For higher values oU
the antiferromagnetic phase is reduced to a very narrow
gion near half-filling.

The band structure turns out to be somehow differ
from the one found for the simple Hubbard model. The pr
ence of the intersite Coulomb interaction leads to a la
overlap of the antiferromagnetic bands, such that the ope
of the Mott-Heisenberg gap at the crossing points can
split the lower and upper Hubbard bands in most parts of
antiferromagnetic phase region. The sublattice density
states for the extended Hubbard model is thus mainly c
acterized by a single central gap, which is the superposi
of the Mott-Heisenberg and the Mott-Hubbard gap~cf. Fig.
18!.

The part of the antiferromagnetic phase at lower part
density is always characterized by this overlap of the anti
romagnetic subbands emerging from the lower and up
Hubbard bands, respectively. The absence of the M
Heisenberg gap within the Hubbard subbands reduces
number of peaks in the density of states to four: two pe
are due to the central gap, and two peaks are reminisce
the van Hove singularity in each Hubbard band46 ~cf. Fig.
18!.

In Fig. 19 we plot the sublattice magnetization as a fu
tion of the particle density for various values of the Coulom
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interactionU, showing the separation of the antiferroma
netic phase by a paramagnetic region for high as well as
values ofU.

The intersite Coulomb interactionV considerably reduces
the magnetization and stability of the antiferromagnetic sta
i.e., its extension inn, as can be seen from Fig. 20. Th
reduction of the magnetization also suppresses the separ
of the two parts of the antiferromagnetic states. However,
suppression of antiferromagnetism by the intersite Coulo
interaction is much smaller than the one found in the tre
ment of the simple Hubbard model.

VI. CONCLUSIONS

Among the variety of analytical methods developed in t
last decades to deal with strongly correlated electron s
tems, the COM has been rather successful in describing
properties of many correlated systems.14,15,19,28,40,47To add
another piece to the puzzle constituted by the phase diag
of the Hubbard model, here we investigated the antifer
magnetic phase characterized by a staggered magnetiza
A fully self-consistent treatment, respecting the symme
constrains emerging from the Pauli principle, was presen
for the Hubbard model in two and three dimensions and
two-dimensional extended Hubbard model.
f
FIG. 18. Sublattice density o
states and band structure atkT
50.4t and with V5U/5; the thin
vertical line atE50 denotes the
position of the Fermi levelEF . ~a!
Sublattice density of states forU
59.5t. ~b! Band structure on the
chemical lattice forU59.5t.
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The antiferromagnetic phases of the three systems, w
compared to the corresponding paramagnetic phases, le
a phase transition of the second order. In all cases the
ferromagnetic states have lower free energy. Furtherm
the antiferromagnetic states of all the models show the
lowing properties.

~a! The presence of three kinds of transitions~Mott-
Hubbard, Mott-Heisenberg, and Heisenberg! at half-filling in
the planeT-U.

~b! The existence of two components in the antiferrom
netic gap~one due to the antiferromagnetic correlations, a
another coming from the Mott-Hubbard mechanism!.

~c! A finite critical value of the Coulomb interaction fo
the Mott-Hubbard and Mott-Heisenberg transitions.

~d! The antiferromagnetic phase is stable only in a v
narrow region around half-filling, showing a strong reducti
of the Néel temperature with doping.

~e! A metal-insulator transition, driven by the temper
ture, takes place within the antiferromagnetic phase; at h
filling and higher temperatures, this transition coincides w
the paramagnetic-antiferromagnetic one.

~f! Away from half-filling, a metal-insulator transition
driven by the doping is observed. This transition has
following properties: at zero temperature it is discontinuo
and connects an antiferromagnetic metal and an antife

FIG. 19. Sublattice magnetization for different values of t
Coulomb interaction atkT50.4t, with V5U/5.

FIG. 20. Sublattice magnetization as a function of the part
density for different values of the intersite Coulomb interactionV,
with U59t andkT50.4t.
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magnetic insulator; at finite temperature it connects the a
ferromagnetic metal to an antiferromagnetic state of se
conductor type.

All these properties emerge from very strong correlatio
and are not usually found by approximations of mean-fi
type. They could be explained by analyzing the electro
density of states and the energy spectra.

Finally, we want to point out that a thermodynamic
study of the Hubbard model within the framework of th
two-pole approximation by means of the COM is far fro
being completed. Besides the normal phase and the ant
romagnetic phase, a detailed analysis of superconductin48

ferromagnetic,30 charge-ordered, and other phases with m
complex magnetic and charge ordering has to be compl
or undertaken, and these analyses should finally combin
give the complete phase diagram of the Hubbard model
der this approach.
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APPENDIX A: CALCULATION OF THE GREEN’S
FUNCTIONS FOR THE T-T8-U MODEL

On the magnetic lattice defined in Fig. 1, we can defi
the translationally invariant Green’s function
SAA(R̃i ,R̃j ,t), SAB(R̃i ,R̃j ,t), SBA(R̃i ,R̃j ,t), and
SBB(R̃i ,R̃j ,t) connecting two pointsR̃i and R̃j of the mag-
netic lattice. Their definition and the corresponding equ
tions of motion are illustrated in Fig. 21 for the translation

e

FIG. 21. The definition of the translationally invariant Green
function SAA.
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invariant Green’s functionSAA. By means of a Fourier trans
form on the magnetic lattice,

SXY~R̃i ,R̃j ,t !5SXY~R̃i2R̃j ,t !

5
i

2p S ã2

~2p!2D 2E dv e2 ivt

3E
VB̃

d2k̃ ei k̃"(R̃i2R̃j )SXY~ k̃,v!,

X,YP$A,B%, ~A1!

the equations of motion for the translationally invaria
Green’s functions take the forms

vSAA~ k̃,v!5@ I (n)1I (m)#1~@« (1)1« (3)#

1b̃~ k̃!@« (5)1« (6)# !SAA~ k̃,v!

1@ã~ k̃!#* @« (2)1« (4)#SBA~ k̃,v!,

vSAB~ k̃,v!5~@« (1)1« (3)#1b̃~ k̃!@« (5)1« (6)# !SAB~ k̃,v!

1@ã~ k̃!#* @« (2)1« (4)#SBB~ k̃,v!,

vSBA~ k̃,v!5~@« (1)2« (3)#1b̃~ k̃!@« (5)2« (6)# !SBA~ k̃,v!

1ã~ k̃!@« (2)2« (4)#SAA~ k̃,v!, ~A2!

vSBB~ k̃,v!5@ I (n)2I (m)#1~@« (1)2« (3)#

1b̃~ k̃!@« (5)2« (6)# !SBB~ k̃,v!

1ã~ k̃!@« (2)2« (4)#SAB~ k̃,v!,

where we used the projections on the magnetic latticeã( k̃)

5 1
4 @11eik̃xã1eik̃yã1ei ( k̃xã1 k̃yã)# and b̃( k̃)5 1

3 @4uã( k̃)u2

21# from Eq. ~B3!. Expressions~3.17! and ~3.22! are ob-
tained from Eqs.~A2! by lengthy but straightforward alge
braic manipulations.

APPENDIX B: EXPLICIT EXPRESSIONS FOR GREEN’S
FUNCTIONS OF THE ANTIFERROMAGNETIC

EQUILIBRIUM STATE

For X,YP$A,B%, the coefficientsAXY, BXY, andCXY oc-
curring in expression~3.17! of the Green’s functions, take
the explicit forms
24511
t

AAA52E 1
12E 2

1E 1
2

1

E 2
1

2b̃~ k̃!FE 3
11E 2

1E 3
2

1

E 2
1G ,

BAA5E 2
1E 1

2
1

E 2
1
E 1

11b̃~ k̃!FE 2
1E 3

2
1

E 2
1
E 1

1E 2
1E 1

2
1

E 2
1
E 3

1G
1@b̃~ k̃!#2E 2

1E 3
2

1

E 2
1
E 3

1uã~ k̃!u2E 2
1E 2

2 ,

CAA5I (n)1I (m),

DAA52@E 2
1E 1

21b̃~ k̃!E 2
1E 3

2#
1

E 2
1

@ I (n)1I (m)#,

ABB52E 1
22E 2

2E 1
1

1

E 2
2

2b̃~ k̃!FE 3
21E 2

2E 3
1

1

E 2
2G ,

BBB5E 2
2E 1

1
1

E 2
2
E 1

21b̃~ k̃!FE 2
2E 3

1
1

E 2
2
E 1

21E 2
2E 1

1
1

E 2
2
E 3

2G
1@b̃~ k̃!#2E 2

2E 3
1

1

E 2
2
E 3

22uã~ k̃!u2E 2
2E 2

1 ,

CBB5I (n)2I (m),
~B1!

DBB52@E 2
2E 1

11b̃~ k̃!E 2
2E 3

1#
1

E 2
2

@ I (n)2I (m)#

AAB5AAA,

BAB5BAA,

CAB50,

DAB5@ã~ k̃!#* E 2
1@ I (n)2I (m)#,

ABA5ABB,

BBA5BBB,

CBA50,

DBA5ã~ k̃!E 2
2@ I (n)1I (m)#.

To abbreviate the notation we used the following definitio

E 1
15« (1)1« (3), E 1

25« (1)2« (3),

E 2
15« (2)1« (4), E 2

25« (2)2« (4), ~B2!

E 3
15« (5)1« (6), E 3

25« (5)2« (6).

Furthermore, we used the convention that cos(Q•Ri) takes
positive values on the sublatticeA, and we note that the
projections on the nearest neighbors and on the next-
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next-next-nearest neighbors according to the spherical approximation are given on the magnetic lattice by the expre

ã~ k̃!5 1
4 ~11eik̃xã1eik̃yã1ei ( k̃xã1 k̃yã)!,

b̃~ k̃!5 1
6 ~eik̃xã1e2 i k̃xã1eik̃yã1e2 i k̃yã!,1 1

12 ~ei ( k̃xã1 k̃yã)1e2 i ( k̃xã1 k̃yã)1ei ( k̃xã2 k̃yã)1e2 i ( k̃xã2 k̃yã)!. ~B3!
d

of
,

ev

-

C

.

*Email address: avella@sa.infn.it
1J. Hubbard, Proc. R. Soc. London, Ser. A276, 238 ~1963!; 277,

237 ~1964!; 281, 401 ~1964!; 285, 542 ~1965!; P. W. Anderson,
Phys. Rev.115, 115 ~1959!.

2Y. Nagaoka, Phys. Rev.147, 392 ~1966!.
3H. Tasaki, J. Phys.: Condens. Matter~Paris! 10, 4353~1998!.
4H. Tasaki, Prog. Theor. Phys.99, 489 ~1998!.
5F. Gebhard,The Mott Metal-Insulator Transition: Models an

Methods~Springer, Berlin, 1997!.
6J. Bednorz and K. Mu¨ller, Z. Phys. B: Condens. Matter64, 189

~1986!.
7P. W. Anderson, Science235, 1196~1987!.
8E. Lieb, in Proceedings of the XIth International Congress

Mathematical Physics~International Press, Cambridge, MA
1995!, p. 392.

9A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, R
Mod. Phys.68, 13 ~1996!.

10L. M. Roth, Phys. Rev.184, 451 ~1969!.
11O. K. Kalashnikov and E. S. Fradkin, Phys. Status Solidi B59, 9

~1973!.
12W. Nolting, Z. Phys.255, 25 ~1972!.
13A. J. Fedroet al., Phys. Rev. B46, 14 785~1992!.
14S. Ishiharaet al., Phys. Rev. B49, 1350~1994!.
15F. Mancini, S. Marra, and H. Matsumoto, Physica C244, 49

~1995!; 250, 184 ~1995!; 252, 361 ~1995!.
16P. Fulde,Electron Correlations in Molecules and Solids, 3rd ed.

~Springer-Verlag, Berlin, 1995!.
17H. Mori, Prog. Theor. Phys.33, 423 ~1965!; 34, 399 ~1965!.
18R. Zwanzig, in Lectures in Theoretical Physics~Interscience,

New York, 1961!.
19H. Matsumoto, T. Saikawa, and F. Mancini, Phys. Rev. B54,

14 445 ~1996!; H. Matsumoto and F. Mancini,ibid. 55, 2095
~1997!.

20F. Mancini and A. Avella, cond-mat/0006377~unpublished!.
21F. Mancini and A. Avella, Condens. Matter Phys.1, 11 ~1998!.
22F. Mancini, D. Villani, and H. Matsumoto, Phys. Rev. B57, 6145

~1998!; A. Avella, F. Mancini, and D. Villani, Solid State Com
mun. 108, 723 ~1998!; A. Avella, F. Mancini, and D. Villani,
Phys. Lett. A240, 235 ~1998!; F. Mancini, H. Matsumoto, and
D. Villani, J. Phys. Stud.4, 474 ~1999!.

23A. Avella, F. Mancini, and M. M. Sa´nchez, Europhys. Lett.44,
328 ~1998!.
24511
.

24W. Nolting and W. Borgel, Phys. Rev. B39, 6962~1989!.
25S. Bei der Kellen, W. Nolting, and G. Borstel, Phys. Rev. B42,

447 ~1990!.
26T. Herrmann and W. Nolting, J. Magn. Magn. Mater.170, 253

~1997!.
27F. Mancini, Phys. Lett. A249, 231 ~1998!.
28A. Avella et al., Int. J. Mod. Phys. B12, 81 ~1998!.
29E. Dagotto, Rev. Mod. Phys.66, 763 ~1994!.
30A. Avella, F. Mancini, and R. Mu¨nzner, Physica B281-282, 857

~2000!.
31B. Chattopadhyay and D. Gaitonde, Phys. Rev. B55, 15 364

~1997!.
32W. Zhang, M. Avignon, and K. Bennemann, Phys. Rev. B45,

12 478~1992!.
33W. Zhang and K. Bennemann, Phys. Rev. B45, 12 487~1992!.
34J. E. Hirsch, Phys. Rev. B31, 4403~1985!.
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