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Multigrid method for electronic structure calculations
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A general real-space multigrid algorithm for the self-consistent solution of the Kohn-Sham equations ap-
pearing in the state-of-the-art electronic-structure calculations is described. The most important part of the
method is the multigrid solver for the Scldiager equation. Our choice is the Rayleigh quotient multigrid
method(RQMG), which applies directly to the minimization of the Rayleigh quotient on the finest level. Very
coarse correction grids can be used, because there is, in principle, no need to represent the states on the coarse
levels. The RQMG method is generalized for the simultaneous solution of all the states of the system using a
penalty functional to keep the states orthogonal. The performance of the scheme is demonstrated by applying
it in a few molecular and solid-state systems described by nonlocal norm-conserving pseudopotentials.
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[. INTRODUCTION ing the grid(or basis functiopdensity.(The PW methods do

One of the goals of computational materials science is t@o also, by adjusting the cutoff energy of the plane-wave
calculate from first principles the various physical andexpansions.The so-called “ordeiN” methods!? the com-
chemical properties. This requires the solution of the elecputational cost of what scales linearly with the number of
tronic and ionic structures of the materials system in queselectrons, require localized real-space wave functions lead-
tion. The density-functional theofDFT) makes a huge step ing naturally to the employment of RS methddsThe dis-
towards this goal by casting the untractable problem of mangretizations in the real-space grid can be made local, and
interacting electrons to that of noninteracting particles undetherefore, parallelization can effectively use data decomposi-
the influence of an effective potentialThe adiabatic ap- tion in which different real-space regions are handled with
proximation allows one to separate the ionic degrees of freedifferent processing units and the communications between
dom from those of the electrons. However, in order to applyprocessing units will be mainly short rang¥d.
DFT in practice one has to resort to approximations for elec- More specifically, our choice for the numerical method is
tron exchange and correlation such as the local-density ag multigrid schemeé>? Several approaches employing the
proximation (LDA) or the generalized-gradient approxima- multigrid idea within electronic structure calculations have
tion. Moreover, in the case of systems consisting of hundredappeared during recent yeafd:#1"88The main idea of
or more atoms it is still a challenge to solve numerically multigrid methods is that they avoid the critical slowing-
efficiently for the ensuing Kohn-Sham equations. down (CSD) phenomenon occurring when a partial differen-

The numerical solution of the Kohn-Sham equations is thdial equation discretized on a real-space grid is solved with a
concern of our present paper. It deals with real-sp@®&®  simple relaxation method such as the Gauss-Seidel method.
methods, in which the values of the different functions areThe discretization operators typically use information from a
presented using three-dimensional point grids, and the partiaéther localized region of the grid at a time. Therefore, the
differential equations are discretized using finite high-frequency error of the length scale of the grid spacing is
differences”® The RS methods, as suggested by the nameeduced very rapidly in the relaxation. However, once the
chosen, are contrasted with the popular plane-wd\) high-frequency error has effectively been removed, the very
scheme$:® There are several aspects favoring the RS methslow convergence of the low-frequency components domi-
ods over the PW methods. Both of the methods are used inates the overall error reduction rafe,e., CSD occurs. In
the context of pseudopotentials describing the electron-iomultigrid methods, one stops the relaxation on a gitfere)
interactions, but only the RS can easily be used in allgrid before CSD sets in and transfers the equation to a
electron calculations or with hard pseudopotentials of, i.e.coarser grid(the so-called restriction operatipwhere the
first-row or transition-metal atoms, because the RS grid catow-frequency components can be solved more efficiently.
be refined in a natural way in the ion core regi¢éosmposite  On the coarsest grid, the problem is solved exactly or as
grids®~® adaptive coordinatés'y). Systems, such as sur- accurately as possible, after which, one interpoléties so-
faces, containing different length scales are more economgalled prolongation operatigrthe correction to finer grids,
cally described in the RS than in the PW scheme because operforming simultaneously relaxations in order to remove the
need not waste many grid points in the vacuum regions tdigh-frequency errors introduced in the interpolation.
describe the slowly varying tails of wave functions. In the The solution of the Poisson equation by multigrid meth-
RS methods, periodic boundary conditions are not necessargds is straightforward® This is because the errgor the
This leads to ease and accuracy in describing charged atoméorrection neededalso obeys a Poisson equation, and thus,
clusters in contrast to PW methods, which require an artifiwill be a smooth function to be presented and solved on the
cial neutralizing background charge. Besides the aboveepeatedly coarser grids optimal to handle the lower frequen-
“physical arguments,” there are also methodological andcies. The solution of an eigenvalue problem, such as the
computational aspects favoring the RS methods. The RSchralinger equation, is a much more complicated task than
methods allow a systematic convergence control by increaghat of the Poisson equation. The problem is no more linear
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because both the eigenfunction and the eigenvalue have to beell approximate the solutions of the coarse grid equations
solved simultaneously; then the error no longer obeys théhemselves. As a consequence, the correction from coarse
same equation as the solution. Also, one has to solve fagrids, no matter how accurately the equation is solved, may
several eigenpairgigenvalues and corresponding eigenvec-be ineffective in correcting the fine grid solution, and as a
tors). Moreover, the existence of both negative and positiveresult, the overall process converges slowly. Therefore, one
eigenvalues makes the problem indefinite. This implies seis restricted to the use of rather fine grids only and the con-
vere difficulties for many simple iterative methods that con-vergence speed of the scheme is drastically lowered. In those
verge only in the case of a positive definite iteration matrix.multigrid methods, that use the potential on the coarse grids,
In particular, it can easily be shown that when using Gaussthe size of the coarsest grid has been typically of the order of
Seidel relaxation for the Schdinger equation, the high- 31x31x3187 However, using the FAS method, coarser
frequency components typically converge, as in the case ajrids are possible at least for systems with a small number of
the Poisson equation, but the low-frequency componentsigenstates solved even when the all-electron scheme is
may diverge, although the divergence may be sidMore  employed:® If a large number of eigenstates have to be
complicated methods, such as Kaczmarz relaxation, are guaselved, problems may arise, because the coarse grids may
anteed to converge, but may have clearly inferior high-not be able to represent eigenstates with many nodes or the
frequency reduction rates, which are essential for the overatirdering of the states may change between the successive
speed of multigrid methods. Another convergent method igrids. To bypass these problems in FAS, rather complicated
the generalized minimal residual algoritH@MRES, which  strategies are needéd.
is considerably more complex than Gauss-Seidel In order to avoid the coarse grid representation problems,
relaxation?’ we utilize the so-called Rayleigh Quotient Multigrid

A standard recipe for dealing with eigenproblems with(RQMG) method introduced by Mandel and McCorm#k.
multigrids is the full-approximation-storagé-AS) method In this method, the coarse grid relaxation passes are per-
originally described by Brandit al?! In FAS, one solves for formed so that the Rayleigh quotient calculated on fthe
the entire problem on the coarse grids also and ends up solgrid will be minimized. In this way, there is no requirement
ing for a properly modified problem so that its solution canfor the solution to be well represented on a coarse-grid and
be used in correcting the fine-grid solution. The FAS methodhe coarse-grid representation problem is avoided. Mandel
may not be very straighworward to implement the Sehro and McCormick* introduced the method for the solution of
dinger equation. It is also difficult to present some actuakhe eigenpair corresponding to the lowest eigenvalue. We
potential on the coarse levels accurately enough. Howevehave generalized it to the simultaneous solution of a desired
some successful applications of FAS have appeared in theumber of lowest eigenenergy states by developing a scheme
context of electronic structure calculations by Bextkal??  that keeps the eigenstates separated by the use of a penalty
and Wang and BecR and advanced strategies for FAS havefunctional, Gram-Schmidt orthogonalization, and subspace
been proposetf rotations. Our generalization of the RQMG method is an

Briggs et al**employ a multigrid method in electronic attractive alternative for large-scale electronic structure cal-
structure calculations by linearizing the Sodlimger problem  culations.
and presenting the potential contribution on the coarse levels The Kohn-Sham equations have to be solved self consis-
by an error ternm(residual only. Then, on the coarse levels, tently, i.e., the wave functions solved from the single-particle
they solve effectively for the Poisson problem. Ancilotto equation determine via the densifgolution of the Poisson
et all” modified the method by Briggst al. by shifting to a  equation and the calculation of the exchange-correlation po-
full multigrid (FMG) scheme and by solving on the coarsetential) the effective potential for which they should again be
grids, a problem including a local potential term. The idea ofsolved. To approach this self consistency requires an opti-
FMG is to start the smoothing iterations from a coarse gridmized strategy so that numerical accuracy of the wave func-
Then the interpolation to a finer grid provides a good initialtions and the potential increase in balance, enabling the most
guess of the solution. The FMG scheme can accelerate thafficient convergenct In order to avoid the divergence of
convergence remarkably with respect to tHabove- the self-consistency iterations, the mixing of the input and
describedl V-cycle scheme in which one starts from the finestoutput solutions is needed. For this feedback procedure, so-
level. Fattebeftused a multigrid method with a block Galer- phisticated schem&sand control strategiéShave been pre-
kin inverse iterationBGIlI) and GMRES in the relaxations. sented.
In the method, the current approximation is kept orthogonal The outline of the present paper is as follows. In Sec. Il
against all the nearby states during the multigrid cycle. Theve represent the most important ideas of the density-
inverse iteration converges for a given guess for the energfunctional theory. Section Il is devoted for numerical meth-
eigenvalue towards the nearest eigenvalue. In order to sohads, the most important of which is the Sctlimger equation
all the desired lowest eigenstates a good guess for the eigeselver developed; the strategy for the self-consistency itera-
value spectrum is needed in the beginning of iterations, butions is also discussed. In Sec. IV we demonstrate with the
thereafter, large computational savings may be expected béelp of a couple of examples, the performance of our scheme
cause explicit orthogonalizations are not nee@&deast not in calculating the electronic structures of small molecules
between well-separated states and solid-state systems described by pseudopotentials. Sec-

A severe problem in the existing multigrid schemes fortion V summarizes the work and gives outlines for the future
the Schrdinger equation is often that the coarse grids cannotlevelopments.
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II. THE KOHN-SHAM SCHEME The self-consistent solution of the above Kohn-Sham

In the Kohn-Sham method for electronic structure Calcu_equatlons leads to the ground state electronic structure mini-

lations, one solves for a set of equations self consistértly. mizing the total energy

the following, we present the equations in the spin- 1 1

compensated form. In practice, we have made the straight-Etot:E f \pi*(r)( — EVZ)\I’i(r)dH Ef Vi (r)n(r)dr
forward generalization using the spin-density functional !

theory. The set of equations reads (agomic units with7

=me=e=1 are used + f Vion(r)n(r)dr+ Exc+ Eion-ion» 9
(_ EV2+Veﬁ(r))‘Pi=6i\I’i ’ (1) where E;on.ion IS the repulsive interaction between the ions
2 (nucle) of the system. Instead of the self-consistency itera-
N tions, the solution of the Kohn-Sham problem can be found
_2 5 by minimizing directly the total energy with respect to the
n(r)= : (Wi, (2 wave-function parameters, e.g., plane-wave coefficiénts.
However, Kresse and Furthither>2® have found this scheme
Ves(1) = Vign(r) + V(1) + Vye(r), (3) less efficient than the self-consistency iterations.
n(r'’) I1l. NUMERICAL METHODS
V(= [ @ . _
lr—r’| A. Schrodinger equation solver
SE In our real-space method, we start from an initial guess
Vye(r) = M 5)  for the effective potential and initial wave functions gener-
on(r) ated by random numbers in grid points. The wave functions

and the Hartree potential are updated alternatingly towards
self consistency. The solution of the Poisson equation is a
tandard task for the multigrid scheme. If a reasonable guess

systems, the wave functions are required to vanish at th - .
boundaries of the computation volume. In the case of infinit or the Coulomb potentlal IS n'ot available, the FMG method
ill produce the solution starting from random numbers and

periodic systems, the complex wave functions have to obe L ) .
the Bloch theorem at the cell boundaries. The electron ded<d4"Nd the work that scales _Ilnearly as a functloq of the
sity n(r) is obtained from a sum over thi¢ occupied states. size of the systenfO(N)]. During the Kohn-Sham itera-

The effective potential consists of an external potential}“onz’ onte th"‘rl‘ Stadrt fr%mtth.? p_rttasent ap[f[)rtox;rk:watlon othou-
Vion(r) due to iongor nuclei in all-electron calculatiopsthe omb potential and update [t with respect {o the new charge

Hartree potentiaV(r) calculated from the electron-density density by performing only a few cycles.

distribution, and the exchange-correlation potentigs(r). The solution of the wave functions is a much more com-

In T examples of he present paper, e use the normPL°%EY 1k 1 o e Foleson Sauior ecause onc
conserving non-local pseudopotentials for the electron-io g P

interactions and the local-density approximati@A) for electronic structure calculations means the determination of

the exchange-correlation energy several hundreds of eigenpairs. For this purpose, we have
developed a scheme based on RQMG method introduced by

Mandel and McCormick for the solution of the eigenpair

The first equatiorfl) is a Schrdinger equation for noninter-
acting particles in an effective potentigly(r). For finite

EXC[n]zf exc(n(r))n(r)dr, (6) corresponding to the lowest eigenvalue. We begin by review-
ing the basic principles of RQMG. This is most easily done
and for the exchange-correlation potential in the framework of the so-called coordinate relaxation
q method. Thereafter, we go through the modifications made in
_ €xc order to simultaneously solve for several eigenpairs.
Vel = exc(n(n)+n(r) dnf _ o ™ Coordinate relaxation is a method of solving the dis-

cretized eigenproblem
The Hartree potential is solved from the Poisson equation

Hu=\Bu (10
VAVy(r)=—4mn(r). ) L . .
by minimizing the Rayleigh quotient
In practice, the electron-density(r) is substituted by the
total charge-density(r), which includes the positive ionic (ulH|u)
(nucleay charge neutralizing the system. In the case of finite W (11)

systems, Dirichlet boundary conditions are used with the

Coulomb potential values calculated using a multipole exAbove, H and B are matrix operators chosen so that the
pansion. For periodic systems, we fix the average CoulomBchralinger equation discretized on a real-space point grid
potential to zero and allow the periodic boundary conditionswith spacingh is satisfied to a chosen ordé&(h"). In Eq.

to result in the corresponding converged potential. (11) uis a vector containing the wave-function values at the
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grid points. In the relaxation method, the current estimate grid equation on the coarse grid itself. Here, on the other
is replaced by itself plus a multiple of some search-vedtor hand, one can calculate thexact change in the Rayleigh
quotient due toany coarse-grid change, no matter how

u'=u+ad, (12 coarse the grid itself is. There is no equation whose solution
and « is chosen to minimize the Rayleigh quotient. ThisWould have to be representable. o o
leads to a simple quadratic equation fer [Find the mini- Thus, in the Rayleigh quotient minimization multigrid

mum of the expressiofiL4) below with respect tar. In the (RQMG) algorithm, the.coordinat.e relaxation passes on each
case of a complex wave function, one has to solve for thd€Ve! keep track of the integrals in E€L4). Actually, on the
real and imaginary parts af from a coupled pair of qua- finest level, we use Gauss-Seidel relaxation, which very ef-
dratic equationg. Moreover, the search-vectat is simply ~ [€ctively smooths the errors of the wave length correspond-
chosen to be unity in one grid point and to vanish in all otherNd 0 the grid spacing. When calculating several eigenpairs,
points. A complete coordinate relaxation pass is then opSauss-Seidel relaxation may also work agsidual minimi-
tained by performing the minimization at each point in turn zationmethod. The idea is that the coarse-grid iterations with

and these passes can be repeated until the lowest state G&&mM-Schmidt orthogonalization can provide the separation
found with desired accuracy. of the eigenstates so well that the subsequent finest level
Naturally, the coordinate relaxation also suffers from€laxations converge to the corrénearesteigenstates with-

CSD because of the use of local information only in updatingPUt orthogonalization. This requires that the effect of the
uin a certain point. In order to avoid it, one applies the coarse-level smoothings on the low-frequency components
multigrid idea. In the multigrid scheme by Mandel and of the solutions overcomes the possible divergence tendency
McCormick2* the crucial point is thatoarsegrid coordinate of these_ components caused by the Gauss-Seidel relaxation
relaxation passes are performed so that the Rayleigh quotiefP the finest level. _ L _

calculated on thdine grid will be minimized. In this way, Moreover, we discretize the original equation separately
there is no requirement for the solution to be well repre-O" €ach grid [discretization coarse grid approximation
sented on a coarse grid. In practice, a coarse-grid seardffCA)] instead of using the Galerkin conditions of E#S).

substitutes the fine-grid solution by This may in principle decrease the convergence rate and
force a limit to the coarsest possible grid in order to avoid
uf’=uf+alédc, (13) instability or divergence. However, we have observed this

) ) DCA implementation of RQMG to be quite stable and effi-
where the subscripts and ¢ stand for the fine and coarse gjent To avoid possible coarse-level instabilities occurring,

grids, respectively, ant{ a prolongation operator interpolat- especially during the first few iteration cycles, we may recal-
ing the coarse grid vector to the fine grid. The Rayleighcyjate the Rayleigh quotient whenever coarse grid correc-
quotient to be minimized is then tions are interpolated to a finer grid. Later, when approaching
f f the convergence, the recalculation can be omitted.
(Uit al defH Jur+ alcde) For the matrix operator$i and B we have used either

(us+ al fd| Bi|us+ allde) high-order[O(h*) or highell Mehrstellen or central differ-
ence stencil§CD9).}*® The use of high-order stencils re-
_(ugHsup) +2a(IfHugldo) + a*(d[Hdc) duces remarkably the density of grid points needed. The ben-
(Uf Byup) + 201 B ;U] do) + a®(dg Bod,) . efit of the Mehrstellen scheme is that more local information

is used. The scheme leads to controlled accuracy and con-
(14 vergence properties and to more isotropic smoothing of the

The second form is obtained by relating the coarse-grid opEMr in comparison with the use of CDS's. The local nature
eratorsH, and B, with the fine-grid onesH; andB; by the also enables a more efficient parallel coding. As the prolon-

Galerkin condition gation operatoli we usually use trilinear interpolation and
as the restriction operatof its transpose, the so-called full-

Hc=|‘f’HfI£, (15  weighting operator, in which the coarse-grid values are cho-

sen to be the averaged values of the surrounding fine-grid

Bczl?BfIf:, points. The integrations are performed by the trapezoidal

rule.
and the restriction operatéf has to be the transpose of the Next we consider the generalization of the RQMG
prolongation operator

method to the simultaneous solution of seveid) (mutually
I?=(I£)T. (16) _orth_o_gonal_ eigenpairs. The separation _of the different states

is divided into two or three subtasks. First, in order to make
The key point to note is that wheru; andB;u; are pro- the coarse-grid relaxations converge towards the desired
vided from the fine grid to the coarse grid, the remainingstate, we apply a penalty functional scheme. Given khe
integrals can be calculated on the coarse grid itself. Thudowest eigenfunctions, the next lowesk+1)th state is
one really applies coordinate relaxation on the coarse grids teearched for by minimizing the functional
minimize thefine levelRayleigh quotient. This is a major K 5
departure from the earlier methods, which to some extent, (Ui 1/H U 1) ) (uilug 1)
rely on the ability to represent the solution of some coarse- (Ui 1|Blugs1) =1 Gi Uiupy - (U 1|ugs 1)

17
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The overlap integral in the penalty term is squared to make - <ui|HUj>

the penalty positive definite. The denominator is required to (ui|B 1H|Uj>~<ui|uj>m- (22)
make the functional independent of the norms wf i e

=1,... k+1. The minimization of this functional is

. : . . . . The Gram-Schmidt orthogonalization and the subspace
equivalent to imposing the orthonormality constraints against __ _ .. . .
. . . rotations are organized so that the space of the eigenvectors
the lowerk states, wheij;—oc. By increasing the shiftg; , - . . . )
. . . is first divided into small clusters corresponding to close ei-
any desired accuracy can be obtained, but in order to obtai X A
. S . .~ genvalues. The Gram-Schmidt orthogonalization is then per-
a computationally efficient algorithm, a reasonable finite

value should be used, for example formed for each cluste_r at a tirr_1e so that its eigenvectors
' become orthogonal against the eigenvectors of the clusters of

4= 1) +Q (18) Io_vve_r eigenvalues. Then a subspace rotation is perforr_n(_ad
: kel ' within the states belonging to the present cluster. The divi-

whereQ is a sufficiently large positive constant. In our test sion to clusters reduces remarkably the cost of the subspace
calculationsQ is of the order ofQ=0.5, ... ,2 Ha. rotation. This is because the cost is proportionaDidN®),

We minimize the expressiofl7) simultaneouslyor all N whereN is the number of states rotated. Moreover, the sub-
states. This simplifies the algorithm and enables a future pagPace rotation requires the calculation of matrix elements
allelization over the eigenstates. Thus, the current approxithat are more complicated than those for the simple Gram-
mations are used far;, i=1,... k. Moreover, changes in Schmidt orthogonalization. _ _ _
theu; during a given relaxation sweep are not used to update According to our test calculations, this subspace rotation
the penalty term in Eq(17). This is sufficient, when the Scheme leads quite effectively feorthogonal eigenstates.
states are always ordered in the same way, in the order dfiS is seen as a convergence of the eigenvalue problem
increasing eigenvalue. In order to reduce computations3 the Within the numerical accuracy, i.e., the residuals of different
innerproduct is actually used in calculating the penalty ternigenstates vanish. However, in order to achieve exactly van-
integrals because the valuesRi are readily available from ishing residuals, very accurate eigenvalues are needed—the
the finer level. The substitutiofild) is introduced in the residual norm scales as the square root of the error in the
functional(17) and the minimization with respect te leads elgenvalu.e.. Therefore_one introduces for every state a con-
again to a quadratic equation. This time the coefficients conStant additional potential equal to the current eigenvalue es-
tain terms due to the penalty part. timate, which shifts the elgenvalu_e t_o_wards zero. This effec-

On the finest level, we do not apply the minimization of t|vely increases the _number_ of significant digits that can be
the penalty functional. The ideal situation would be if a re-Obtained. The error in the eigenvalue scales as the square of
sidual minimization method, such as the Gauss-Seiddhe residual. When applying the subspace rotation it is im-
method, would keep the states calculated on the coarse levdi€rtant to complete the highest eigenvalue cluster; otherwise
separated. We found out in practical calculations that this i$h€ rotation may become inefficient. .
not true, at least when the states are far from convergence. 1he orthogonalization needed scales{”). For small
Therefore, we have developed for the finest level a schem@ystems of several tens of eigenpairs this is not yet a prob-
which by employing Gram-Schmidt orthogonalization and!ém. The qlgonthm is effectlve'and the'number of flne-gnq
subspace rotation, keeps the eigenstates orthogonal. The siithogonalizations remains quite plausible, for example, in
space rotation is a method to find the most optimally sepacomparison with the conjugate gradient search of eigenpairs
rated eigenvectors from the approximative ones. The majoMPloying only the finest griéf: But for larger systems with

steps of the rotation are: hundreds of states it will be the bottleneck. One solution

(i) Calculation of the Hamiltonian matrix elements be- could be to rely on the finest level only on a residual mini-

tween the current states: mization method when the initial stages of the iteration pro-
cess have been performed and the solution is clearly on a

H = (u|B"H|uy) (19) stable track towards convergence.
i i i’
(i) Calculation of the overlap matrix: B. Strategy for self consistency iterations

_ The Kohn-Sham problem has to be solved self-

Si,j:<ui|uj>- (20) consistently. This means that an optimal strategy is needed

so that computing time is not wasted in the beginning of the
self-consistency iterations to obtain unnecessarily accurate
; . wave functions, because these will change during the later
thog_pna)_ and nqt n the sense of i |_nnerproduct. iterations due to the changes in the potential. Updating the

(iii) Diagonalization to find the optimal eigenvectors (- otential, including the solution of the Poisson equation, is a
=2AkjU;) and corresponding eigenvalues,): much less time-consuming task that the update of all the
wave functions. Therefore, the potential update can be per-
formed frequently®

The use of matrix elements of Egdl9) and (20) leads to
eigenvectors orthogonal in the desired Euclidian sehse-(

; i i'kzxk; SiA k- (21) The examples of this paper are small-molecule and bulk-
solid systems described by pseudopotentials. The strategy
In practice, we apply the approximation used is schematically presented in Fig. 1. Similar strategies
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finest level, four successive sweeps are done if the potential

Non self-consistent solution is not updated. A potential update is always preceded and

h followed by two immediate smoothening sweeps.
2h IV. TESTS
4h

We test the performance of our scheme by calculating the
8h self-consistent electronic structures of a £@olecule as
well as that of perfect bulk Si lattice with a supercell of 64 Si

16 h ;
atoms. The former system is an example of the employment
of Dirichlet boundary conditions and the use of “hard”
pseudopotentials, whereas the latter system represents the
use of periodic boundary conditions and a supercell size typi-
Self-consistency iterations cal in electronic structure calculations for point defects in
solids.
® @ The ions are described by pseudopotentials of the
Kleinman-Bylander fornf’
Vion(r)zza: Vion,loc(|ra|)
1
FIG. 1. Strategy of self-consistency iterations. First, the wave +a,n,|m (AVR, [AVion(Ta)Uim(Ta))
functions are solved nonself-consistently using the full multigrid
method in the initial potential corresponding to the superposition of X(AVion i (rDUim(r' 2], (23

pseudoatoms. Then the effective potential is updéthis is de- an . L

noted byP in the figure. The potential update amounts to calcula- Where(AVyy) is a normalization factor,

tion of the new electron density, the solution of the Poisson equa-

tion, and calculation of the new exchange correlation potential. AV2 :f Ui (r AV r U (1) d3r 24
Next, the wave functions are updated by dneycle. These two (AVim) im(Ta)AVion, (Fa)Um(ra)d™r, — (24)

steps are repeated until self-consistency has been reached. . .
P P 4 andr,=r—R,, u,, are the atomic pseudopotential wave

can certainly be applied in other kinds of Kohn-Sham calcufunctions of angular and azimuthal momentum quantum
lations, for example, in those employing all-electron ornumbers (,m), from which thel-dependent ionic pseudopo-
jellium-type models. In the examples of this paper the initialtentials Vi, (r) are generated using the Troullier-Martins
electron density is the superposition of the pseudoatom derschemé? The ion core is assumed to be spherically symmet-
sities centered around given nuclear positions. From the stic. AVign (1) =Vion(r) = Vienioc(r) is the difference be-
perposition, we calculate the initial effective potential, wheretween thel component of the ionic pseudopotential and the
the wave functions are solved accurately enough using thcal ionic potential. We have chosen the s component of the
full-multigrid method. The FMG process is started from ran-pseudopotential as the local component.

dom numbers for the wave functions on the coarsest level. Because the functiongAVie, (ra)uim(ra)) are short
The accuracy of the wave functions is controlled by calcufanged, operating on the wave function by the nonlocal parts
lating the norms of the residuals of the eigenstates and it i8f the pseudopotential is in practice a multiplication by a
finally improved by adding mor® cycles starting from the sparse matrix. The numerical work required to compute this
finest level. A certain accuracy is needed in order to initiatescales as the square of the number of atoms in the system,
self-consistency iterations that converge without large denwhereas in the conventional reciprocal-space formulation,
sity oscillations. Then the new electron density and the enthe work scales as the cube of the system size. The advantage
suing effective potential are calculated. The new potential i®f implementing the nonlocal pseudopotentials in real space
not directly fed into the next iteration but it is mixed in this has been noted also in the context of plane-wave metffods.
place, as well as later between the self-consistency iterations, In the previous multigrid implementations of the pseudo-
with the input potential of the iteration. We monitor the ac- potential method;**the nonlocal parts have only been em-
curacy of the wave functions by calculating their residualsployed on the finest grid. It is, however, straightforward to
and require that the accuracy has improved from the previouglso implement them on the coarse levels, and we have found
iteration. Usually oneV cycle is sufficient for this, because that this may increase the convergence rate and stability of
the changes in the potential are small. the method.

An important point is to also find a proper balance with The CQ molecule is placed diagonically in the center of
respect to the pre- and postsmoothening sweeps on the di cubic computation volume of the size @?2.6 ag)®. The
ferent grid levels. Typically, on the finest level, we made twoexperimental C—O bond length @ 19, is used. Dirichlet
pre- and postsmoothening sweeps, whereas on the coardwyundary conditions are used so that the potential values
grids their number is four. Actually, this means that on theoutside the cube are obtained from a multipole expansion of
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"‘\,.’ FIG. 3. Valence electron density in tti#10) plane obtained in
“";: the I'-point calculation for the 64-atom supercell of bulk Si. The
0 area of the figure corresponds to the extent of the supercell.

5 10
SCF-ITERATION
scheme employing self-consistency iterations. The conver-
FIG. 2. Convergence of the total energy for the Q@olecule  gence rate of one decade per self-consistency iteration is bet-
using direct mixing with different values of the feedback parameteto . tnan that obtained by Ancilottet al 17 in the FMG

k; k=0.4 (solid line), k=0.5 (dashed ling x=0.6 (dash dotted - - .
line), andx=0.7 (dotted ling. A horizontal line has been added to §cheme gnq much better th‘f"“ the rﬁte reached in the linear
ized multigrid scheme by Briggst al.

indicate the chemical accuracy of 1 meV. . .
In our calculations for the COmolecule, the initial full-

the charge density. The point mesh used i&, &@ving the multigrid step takes about three cpu minutes on a 667 MHz
grid spacingh=0.20a. The Mehrstellen discretization by Compaq EV67 alpha processor. The succeedingycles
Briggs et al* is used. take about one minute each. In order to put these figures into
In this calculation we used a mixing scheme, where thed proper context, we have solved the O@olecule also by
new effective potentiaV!* is obtained from the input and the plane-wave codeasTEP(Ref. 30 using a Fourier grid of

output potentials according to 64° points. In both calculations, the errors in the total energy
_ _ _ reduce at similar rates as a function of the cpu time.
ViF=(1= k)i, + kVi . (295 We have solved for the electronic structure of perfect Si

. . . Jattice described by a supercell of 64 Si ions. The lattice
The convergence of the self-consistency iterations employ-

ing the strategy described aboig. 1) is shown in Fig. 2. constant of 20.380ajsgd is the equ_ilibrium value obtained in
The deviation of the total energy from the converged value i plane-wave calculatlon_, with _Wh'(_;h we h'°_“’e compar_ed our
given as a function of self-consistency iteration steps per[eal-space result§. The first Br|II(_)um zone is sampled in this
formed. The zeroth iteration is a full-multigrid solution for {€Stusing thé’ point only. The point mesh used for the wave
the wave functions in the initial potential. Twd cycles functions is 64, giving the grid spacingi=0.32a. For the
starting from the finest level are included in this step. Thedensities and potentials we use a finer grid of *@8ints.
effective potential obtained from the output electron densitylhe other numerical parameters and the iteration strategy are
is mixed with the initial potential using the feedbaek the same as in the GQest. The resulting valence electron
=0.4. Next, at iteration one, the wave functions are relaxedlensity on th€110) plane is given in Fig. 3. The area of the

in this new potential using on¥ cycle. From this point on, figure corresponds to the extent of the supercell. One notes
the four curves in the figure give the convergence with dif-that exactly the same features are reproduced at the equiva-
ferent values of the feedback parameterOneV cycle per lent points in different regions of the supercell. This means
self-consistency iteration step is done. A wide range of valthat a fully converged result has been found. We have com-
ues forx gives satisfactory convergence indicating a robustpared the results of our real-space code to those obtained
behavior for the scheme. The accuracy of 1 meV, which iausing the plane-wave method. The energy cutoff, 18 Ry, of
sufficient in practical calculations, is reached after three othe plane-wave expansion was chosen so that it results in a
four V cycles. The implementation of the nonlocal parts ofreal-space point mesh of 84i.e., it is the same as in our
the pseudopotential on the coarse levels is found to speed upal-space calculation. The widths of the valence band and
the convergence especially in this region. From Fig. 2 weband gaps obtained by the two methods agree with an accu-
obtain an average convergence rate of approximately onecy of 3 meV. In the case of degenerate eigenstates, the
decade per self-consistency iteration. This is of the sameeal-space code results in degenerate eigenenergies with an
order as those reported by Wang and B&dk their FAS  accuracy better than 1 meV. The convergence towards to the
scheme or by Kresse and Furthifer?® in their plane-wave  self-consistent solution occurs similarly as for the Q@ol-
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ecule in Fig. 2. Thus, the convergence process seems to loellations. However, some straightforward programming is

independent of the size of the system. still required. For calculations, where the optimization of the
ionic structure is necessary, the Hellmann-Feynman forces
V. SUMMARY AND OUTLOOK will be implemented. In order to remove the spurious depen-

) ) _ dence of the total energy on the position of the atoms with
In this paper we have generalized the RQMG method inyegpect to the grid points, Fourier filtering of the pseudopo-
troduced by Mandel and McCormitkfor the simultaneous  tentials is required® Complex wave functions for angk

solution of a desired number of lowest eigenenergy stategygint are easily implemented, and are already in use in two-
This approach can be viewed as belonging to a third group &fimensional geometries.

multigrid methods, in addition to FAS and the techniques  parallelization ovek points can be done easily. One only
where the eigenproblem is linearized. In principle, one Carheeds to communicate the electron density and effective po-
use arbitrarily coarse grids in RQMG, whereas in the othefentig| at the end of eacdticycle. During the RQMGY cycle,
multigrid methods, one has to be able to represent all thgye states are all relaxed simultaneously and independently
states on the coarsest grid. of each other. Therefore, parallelization over states is natural
We h.ave demonstrated t'he feasibility of the method by q easy to implement. However, for larger systems the
electronic structure calculations for the £@nolecule and  Gram-Schmidt orthogonalization becomes very inefficient in
bulk Si described by pseudopotentials. Our strategy for thg state-parallel code. The most efficient and yet straightfor-
self-consistent solution consists of a full-multigrid solution \ward choice is real-space domain decompositfomhere

self-consistency iterations. Less than fVecycles are gen-

erally sufficient for practically sufficient accuracy. The cpu
times required for the FMG and SCF steps are roughly equal.

We have applied the method also in two-dimensional
problems for quantum dots employing the current spin- M.H. acknowledges stimulating discussions with Profes-
density functional theory! in three-dimensional cylindri- sor S. F. McCormick and Professor T. L. Beck. T.T. ac-
cally symmetric systems, and also for calculation of positrorknowledges financial support by The Vilho, Yrjand Kalle
states in solidg® Vaisda Foundation. This research has been supported by the

We believe that our method will eventually compete with Academy of Finland through its Center of Excellence Pro-
the standard plane-wave methods for electronic structure cagram (2000—2005%.
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