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Multigrid method for electronic structure calculations

M. Heiskanen, T. Torsti, M. J. Puska, and R. M. Nieminen
Laboratory of Physics, Helsinki University of Technology, P.O, Box 1100, FIN-02015 HUT, Finland
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A general real-space multigrid algorithm for the self-consistent solution of the Kohn-Sham equations ap-
pearing in the state-of-the-art electronic-structure calculations is described. The most important part of the
method is the multigrid solver for the Schro¨dinger equation. Our choice is the Rayleigh quotient multigrid
method~RQMG!, which applies directly to the minimization of the Rayleigh quotient on the finest level. Very
coarse correction grids can be used, because there is, in principle, no need to represent the states on the coarse
levels. The RQMG method is generalized for the simultaneous solution of all the states of the system using a
penalty functional to keep the states orthogonal. The performance of the scheme is demonstrated by applying
it in a few molecular and solid-state systems described by nonlocal norm-conserving pseudopotentials.
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I. INTRODUCTION

One of the goals of computational materials science is
calculate from first principles the various physical a
chemical properties. This requires the solution of the el
tronic and ionic structures of the materials system in qu
tion. The density-functional theory~DFT! makes a huge ste
towards this goal by casting the untractable problem of m
interacting electrons to that of noninteracting particles un
the influence of an effective potential.1 The adiabatic ap-
proximation allows one to separate the ionic degrees of f
dom from those of the electrons. However, in order to ap
DFT in practice one has to resort to approximations for el
tron exchange and correlation such as the local-density
proximation ~LDA ! or the generalized-gradient approxim
tion. Moreover, in the case of systems consisting of hundr
or more atoms it is still a challenge to solve numerica
efficiently for the ensuing Kohn-Sham equations.

The numerical solution of the Kohn-Sham equations is
concern of our present paper. It deals with real-space~RS!
methods, in which the values of the different functions a
presented using three-dimensional point grids, and the pa
differential equations are discretized using fin
differences.2,3 The RS methods, as suggested by the na
chosen, are contrasted with the popular plane-wave~PW!
schemes.4,5 There are several aspects favoring the RS me
ods over the PW methods. Both of the methods are use
the context of pseudopotentials describing the electron
interactions, but only the RS can easily be used in
electron calculations or with hard pseudopotentials of, i
first-row or transition-metal atoms, because the RS grid
be refined in a natural way in the ion core regions~composite
grids,6–8 adaptive coordinates9–11!. Systems, such as su
faces, containing different length scales are more econo
cally described in the RS than in the PW scheme because
need not waste many grid points in the vacuum regions
describe the slowly varying tails of wave functions. In t
RS methods, periodic boundary conditions are not necess
This leads to ease and accuracy in describing charged at
clusters in contrast to PW methods, which require an ar
cial neutralizing background charge. Besides the ab
‘‘physical arguments,’’ there are also methodological a
computational aspects favoring the RS methods. The
methods allow a systematic convergence control by incre
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ing the grid~or basis function! density.~The PW methods do
so also, by adjusting the cutoff energy of the plane-wa
expansions.! The so-called ‘‘order-N’’ methods,12 the com-
putational cost of what scales linearly with the number
electrons, require localized real-space wave functions le
ing naturally to the employment of RS methods.13 The dis-
cretizations in the real-space grid can be made local,
therefore, parallelization can effectively use data decomp
tion in which different real-space regions are handled w
different processing units and the communications betw
processing units will be mainly short ranged.14

More specifically, our choice for the numerical method
a multigrid scheme.15,2 Several approaches employing th
multigrid idea within electronic structure calculations ha
appeared during recent years.16,14,17,8,18The main idea of
multigrid methods is that they avoid the critical slowin
down ~CSD! phenomenon occurring when a partial differe
tial equation discretized on a real-space grid is solved wit
simple relaxation method such as the Gauss-Seidel met
The discretization operators typically use information from
rather localized region of the grid at a time. Therefore,
high-frequency error of the length scale of the grid spacing
reduced very rapidly in the relaxation. However, once
high-frequency error has effectively been removed, the v
slow convergence of the low-frequency components do
nates the overall error reduction rate,15 i.e., CSD occurs. In
multigrid methods, one stops the relaxation on a given~fine!
grid before CSD sets in and transfers the equation t
coarser grid~the so-called restriction operation! where the
low-frequency components can be solved more efficien
On the coarsest grid, the problem is solved exactly or
accurately as possible, after which, one interpolates~the so-
called prolongation operation! the correction to finer grids
performing simultaneously relaxations in order to remove
high-frequency errors introduced in the interpolation.

The solution of the Poisson equation by multigrid me
ods is straightforward.15 This is because the error~or the
correction needed! also obeys a Poisson equation, and th
will be a smooth function to be presented and solved on
repeatedly coarser grids optimal to handle the lower frequ
cies. The solution of an eigenvalue problem, such as
Schrödinger equation, is a much more complicated task th
that of the Poisson equation. The problem is no more lin
©2001 The American Physical Society06-1
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because both the eigenfunction and the eigenvalue have
solved simultaneously; then the error no longer obeys
same equation as the solution. Also, one has to solve
several eigenpairs~eigenvalues and corresponding eigenv
tors!. Moreover, the existence of both negative and posit
eigenvalues makes the problem indefinite. This implies
vere difficulties for many simple iterative methods that co
verge only in the case of a positive definite iteration matr
In particular, it can easily be shown that when using Gau
Seidel relaxation for the Schro¨dinger equation, the high
frequency components typically converge, as in the cas
the Poisson equation, but the low-frequency compone
may diverge, although the divergence may be slow.19 More
complicated methods, such as Kaczmarz relaxation, are g
anteed to converge, but may have clearly inferior hig
frequency reduction rates, which are essential for the ove
speed of multigrid methods. Another convergent method
the generalized minimal residual algorithm~GMRES!, which
is considerably more complex than Gauss-Sei
relaxation.20

A standard recipe for dealing with eigenproblems w
multigrids is the full-approximation-storage~FAS! method
originally described by Brandtet al.21 In FAS, one solves for
the entire problem on the coarse grids also and ends up s
ing for a properly modified problem so that its solution c
be used in correcting the fine-grid solution. The FAS meth
may not be very straighworward to implement the Sch¨-
dinger equation. It is also difficult to present some act
potential on the coarse levels accurately enough. Howe
some successful applications of FAS have appeared in
context of electronic structure calculations by Becket al.22

and Wang and Beck18 and advanced strategies for FAS ha
been proposed.23

Briggs et al.16,14 employ a multigrid method in electroni
structure calculations by linearizing the Schro¨dinger problem
and presenting the potential contribution on the coarse le
by an error term~residual! only. Then, on the coarse level
they solve effectively for the Poisson problem. Ancilot
et al.17 modified the method by Briggset al. by shifting to a
full multigrid ~FMG! scheme and by solving on the coar
grids, a problem including a local potential term. The idea
FMG is to start the smoothing iterations from a coarse g
Then the interpolation to a finer grid provides a good init
guess of the solution. The FMG scheme can accelerate
convergence remarkably with respect to the~above-
described! V-cycle scheme in which one starts from the fine
level. Fattebert8 used a multigrid method with a block Gale
kin inverse iteration~BGII! and GMRES in the relaxations
In the method, the current approximation is kept orthogo
against all the nearby states during the multigrid cycle. T
inverse iteration converges for a given guess for the ene
eigenvalue towards the nearest eigenvalue. In order to s
all the desired lowest eigenstates a good guess for the e
value spectrum is needed in the beginning of iterations,
thereafter, large computational savings may be expected
cause explicit orthogonalizations are not needed~at least not
between well-separated states!.

A severe problem in the existing multigrid schemes
the Schro¨dinger equation is often that the coarse grids can
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well approximate the solutions of the coarse grid equati
themselves. As a consequence, the correction from co
grids, no matter how accurately the equation is solved, m
be ineffective in correcting the fine grid solution, and as
result, the overall process converges slowly. Therefore,
is restricted to the use of rather fine grids only and the c
vergence speed of the scheme is drastically lowered. In th
multigrid methods, that use the potential on the coarse gr
the size of the coarsest grid has been typically of the orde
31331331.8,17 However, using the FAS method, coars
grids are possible at least for systems with a small numbe
eigenstates solved even when the all-electron schem
employed.18 If a large number of eigenstates have to
solved, problems may arise, because the coarse grids
not be able to represent eigenstates with many nodes o
ordering of the states may change between the succes
grids. To bypass these problems in FAS, rather complica
strategies are needed.23

In order to avoid the coarse grid representation proble
we utilize the so-called Rayleigh Quotient Multigri
~RQMG! method introduced by Mandel and McCormick.24

In this method, the coarse grid relaxation passes are
formed so that the Rayleigh quotient calculated on thefine
grid will be minimized. In this way, there is no requireme
for the solution to be well represented on a coarse-grid
the coarse-grid representation problem is avoided. Man
and McCormick24 introduced the method for the solution o
the eigenpair corresponding to the lowest eigenvalue.
have generalized it to the simultaneous solution of a des
number of lowest eigenenergy states by developing a sch
that keeps the eigenstates separated by the use of a pe
functional, Gram-Schmidt orthogonalization, and subsp
rotations. Our generalization of the RQMG method is
attractive alternative for large-scale electronic structure c
culations.

The Kohn-Sham equations have to be solved self con
tently, i.e., the wave functions solved from the single-parti
equation determine via the density~solution of the Poisson
equation and the calculation of the exchange-correlation
tential! the effective potential for which they should again
solved. To approach this self consistency requires an o
mized strategy so that numerical accuracy of the wave fu
tions and the potential increase in balance, enabling the m
efficient convergence.18 In order to avoid the divergence o
the self-consistency iterations, the mixing of the input a
output solutions is needed. For this feedback procedure,
phisticated schemes25 and control strategies11 have been pre-
sented.

The outline of the present paper is as follows. In Sec
we represent the most important ideas of the dens
functional theory. Section III is devoted for numerical met
ods, the most important of which is the Schro¨dinger equation
solver developed; the strategy for the self-consistency ite
tions is also discussed. In Sec. IV we demonstrate with
help of a couple of examples, the performance of our sche
in calculating the electronic structures of small molecu
and solid-state systems described by pseudopotentials.
tion V summarizes the work and gives outlines for the futu
developments.
6-2
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II. THE KOHN-SHAM SCHEME

In the Kohn-Sham method for electronic structure cal
lations, one solves for a set of equations self consistently1 In
the following, we present the equations in the sp
compensated form. In practice, we have made the strai
forward generalization using the spin-density function
theory. The set of equations reads as~atomic units with\
5me5e51 are used!:

S 2
1

2
¹21Veff~r ! DC i5e iC i , ~1!

n~r !5(
i

N

uC i~r !u2, ~2!

Veff~r !5Vion~r !1VH~r !1VXC~r !, ~3!

VH~r !5E n~r 8!

ur2r 8u
dr 8, ~4!

VXC~r !5
dEXC@n~r !#

dn~r !
. ~5!

The first equation~1! is a Schro¨dinger equation for noninter
acting particles in an effective potentialVeff(r ). For finite
systems, the wave functions are required to vanish at
boundaries of the computation volume. In the case of infin
periodic systems, the complex wave functions have to o
the Bloch theorem at the cell boundaries. The electron d
sity n(r ) is obtained from a sum over theN occupied states
The effective potential consists of an external poten
Vion(r ) due to ions~or nuclei in all-electron calculations!, the
Hartree potentialVH(r ) calculated from the electron-densi
distribution, and the exchange-correlation potentialVXC(r ).
In the examples of the present paper, we use the no
conserving non-local pseudopotentials for the electron-
interactions and the local-density approximation~LDA ! for
the exchange-correlation energy

EXC@n#5E eXC„n~r !…n~r !dr , ~6!

and for the exchange-correlation potential

VXC~r !5eXC„n~r !…1n~r !
deXC

dn U
n5n(r )

. ~7!

The Hartree potential is solved from the Poisson equa

¹2VH~r !524pn~r !. ~8!

In practice, the electron-densityn(r ) is substituted by the
total charge-densityr(r ), which includes the positive ionic
~nuclear! charge neutralizing the system. In the case of fin
systems, Dirichlet boundary conditions are used with
Coulomb potential values calculated using a multipole
pansion. For periodic systems, we fix the average Coulo
potential to zero and allow the periodic boundary conditio
to result in the corresponding converged potential.
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The self-consistent solution of the above Kohn-Sh
equations leads to the ground state electronic structure m
mizing the total energy

Etot5(
i
E C i* ~r !S 2

1

2
¹2DC i~r !dr1

1

2E VH~r !n~r !dr

1E Vion~r !n~r !dr1EXC1Eion-ion, ~9!

where Eion-ion is the repulsive interaction between the io
~nuclei! of the system. Instead of the self-consistency ite
tions, the solution of the Kohn-Sham problem can be fou
by minimizing directly the total energy with respect to th
wave-function parameters, e.g., plane-wave coefficien4

However, Kresse and Furthmu¨ller5,25 have found this scheme
less efficient than the self-consistency iterations.

III. NUMERICAL METHODS

A. Schrödinger equation solver

In our real-space method, we start from an initial gue
for the effective potential and initial wave functions gene
ated by random numbers in grid points. The wave functio
and the Hartree potential are updated alternatingly towa
self consistency. The solution of the Poisson equation
standard task for the multigrid scheme. If a reasonable gu
for the Coulomb potential is not available, the FMG meth
will produce the solution starting from random numbers a
requiring the work that scales linearly as a function of t
size of the system@O(N)#. During the Kohn-Sham itera
tions, one can start from the present approximation of C
lomb potential and update it with respect to the new cha
density by performing only a fewV cycles.

The solution of the wave functions is a much more co
plicated task than that of the Poisson equation because
has to solve an eigenvalue problem that in the state-of-the
electronic structure calculations means the determination
several hundreds of eigenpairs. For this purpose, we h
developed a scheme based on RQMG method introduce
Mandel and McCormick24 for the solution of the eigenpai
corresponding to the lowest eigenvalue. We begin by revie
ing the basic principles of RQMG. This is most easily do
in the framework of the so-called coordinate relaxati
method. Thereafter, we go through the modifications mad
order to simultaneously solve for several eigenpairs.

Coordinate relaxation is a method of solving the d
cretized eigenproblem

Hu5lBu ~10!

by minimizing the Rayleigh quotient

^uuHuu&

^uuBuu&
. ~11!

Above, H and B are matrix operators chosen so that t
Schrödinger equation discretized on a real-space point g
with spacingh is satisfied to a chosen orderO(hn). In Eq.
~11! u is a vector containing the wave-function values at t
6-3
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HEISKANEN, TORSTI, PUSKA, AND NIEMINEN PHYSICAL REVIEW B63 245106
grid points. In the relaxation method, the current estimatu
is replaced by itself plus a multiple of some search-vectod

u85u1ad, ~12!

and a is chosen to minimize the Rayleigh quotient. Th
leads to a simple quadratic equation fora. @Find the mini-
mum of the expression~14! below with respect toa. In the
case of a complex wave function, one has to solve for
real and imaginary parts ofa from a coupled pair of qua
dratic equations.# Moreover, the search-vectord is simply
chosen to be unity in one grid point and to vanish in all oth
points. A complete coordinate relaxation pass is then
tained by performing the minimization at each point in tu
and these passes can be repeated until the lowest sta
found with desired accuracy.

Naturally, the coordinate relaxation also suffers fro
CSD because of the use of local information only in updat
u in a certain point. In order to avoid it, one applies t
multigrid idea. In the multigrid scheme by Mandel an
McCormick,24 the crucial point is thatcoarse-grid coordinate
relaxation passes are performed so that the Rayleigh quo
calculated on thefine grid will be minimized. In this way,
there is no requirement for the solution to be well rep
sented on a coarse grid. In practice, a coarse-grid se
substitutes the fine-grid solution by

uf85uf1aI c
f dc , ~13!

where the subscriptsf and c stand for the fine and coars
grids, respectively, andI c

f a prolongation operator interpola
ing the coarse grid vector to the fine grid. The Raylei
quotient to be minimized is then

^uf1aI c
f dcuH f uuf1aI c

f dc&

^uf1aI c
f dcuBf uuf1aI c

f dc&

5
^uf uH fuf&12a^I f

cH fuf udc&1a2^dcuHcdc&

^uf uBfuf&12a^I f
cBfuf udc&1a2^dcuBcdc&

.

~14!

The second form is obtained by relating the coarse-grid
eratorsHc andBc with the fine-grid ones,H f andBf by the
Galerkin condition

Hc5I f
cH f I c

f , ~15!

Bc5I f
cBf I c

f ,

and the restriction operatorI f
c has to be the transpose of th

prolongation operator

I f
c5~ I c

f !T. ~16!

The key point to note is that whenH fuf and Bfuf are pro-
vided from the fine grid to the coarse grid, the remaini
integrals can be calculated on the coarse grid itself. Th
one really applies coordinate relaxation on the coarse grid
minimize thefine levelRayleigh quotient. This is a majo
departure from the earlier methods, which to some ext
rely on the ability to represent the solution of some coar
24510
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grid equation on the coarse grid itself. Here, on the ot
hand, one can calculate theexact change in the Rayleigh
quotient due toany coarse-grid change, no matter ho
coarse the grid itself is. There is no equation whose solu
would have to be representable.

Thus, in the Rayleigh quotient minimization multigri
~RQMG! algorithm, the coordinate relaxation passes on e
level keep track of the integrals in Eq.~14!. Actually, on the
finest level, we use Gauss-Seidel relaxation, which very
fectively smooths the errors of the wave length correspo
ing to the grid spacing. When calculating several eigenpa
Gauss-Seidel relaxation may also work as aresidual minimi-
zationmethod. The idea is that the coarse-grid iterations w
Gram-Schmidt orthogonalization can provide the separa
of the eigenstates so well that the subsequent finest l
relaxations converge to the correct~nearest! eigenstates with-
out orthogonalization. This requires that the effect of t
coarse-level smoothings on the low-frequency compone
of the solutions overcomes the possible divergence tende
of these components caused by the Gauss-Seidel relax
on the finest level.

Moreover, we discretize the original equation separat
on each grid @discretization coarse grid approximatio
~DCA!# instead of using the Galerkin conditions of Eq.~15!.
This may in principle decrease the convergence rate
force a limit to the coarsest possible grid in order to avo
instability or divergence. However, we have observed t
DCA implementation of RQMG to be quite stable and ef
cient. To avoid possible coarse-level instabilities occurri
especially during the first few iteration cycles, we may rec
culate the Rayleigh quotient whenever coarse grid corr
tions are interpolated to a finer grid. Later, when approach
the convergence, the recalculation can be omitted.

For the matrix operatorsH and B we have used eithe
high-order@O(h4) or higher# Mehrstellen or central differ-
ence stencils~CDS!.14,8 The use of high-order stencils re
duces remarkably the density of grid points needed. The b
efit of the Mehrstellen scheme is that more local informat
is used. The scheme leads to controlled accuracy and
vergence properties and to more isotropic smoothing of
error in comparison with the use of CDS’s. The local natu
also enables a more efficient parallel coding. As the prol
gation operatorI c

f we usually use trilinear interpolation an
as the restriction operatorI f

c its transpose, the so-called ful
weighting operator, in which the coarse-grid values are c
sen to be the averaged values of the surrounding fine-
points. The integrations are performed by the trapezo
rule.

Next we consider the generalization of the RQM
method to the simultaneous solution of several (N) mutually
orthogonal eigenpairs. The separation of the different sta
is divided into two or three subtasks. First, in order to ma
the coarse-grid relaxations converge towards the des
state, we apply a penalty functional scheme. Given thk
lowest eigenfunctions, the next lowest, (k11)th state is
searched for by minimizing the functional

^uk11uHuuk11&

^uk11uBuuk11&
1(

i 51

k

qi

^ui uuk11&
2

^ui uui&•^uk11uuk11&
. ~17!
6-4
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The overlap integral in the penalty term is squared to m
the penalty positive definite. The denominator is required
make the functional independent of the norms ofui , i
51, . . . ,k11. The minimization of this functional is
equivalent to imposing the orthonormality constraints aga
the lowerk states, whenqi→`. By increasing the shiftsqi ,
any desired accuracy can be obtained, but in order to ob
a computationally efficient algorithm, a reasonable fin
value should be used, for example

qi5~lk112l i !1Q, ~18!

whereQ is a sufficiently large positive constant. In our te
calculationsQ is of the order ofQ50.5, . . . ,2 Ha.

We minimize the expression~17! simultaneouslyfor all N
states. This simplifies the algorithm and enables a future
allelization over the eigenstates. Thus, the current appr
mations are used forui , i 51, . . . ,k. Moreover, changes in
theui during a given relaxation sweep are not used to upd
the penalty term in Eq.~17!. This is sufficient, when the
states are always ordered in the same way, in the orde
increasing eigenvalue. In order to reduce computations, thB
innerproduct is actually used in calculating the penalty te
integrals because the values ofBu are readily available from
the finer level. The substitution~13! is introduced in the
functional~17! and the minimization with respect toa leads
again to a quadratic equation. This time the coefficients c
tain terms due to the penalty part.

On the finest level, we do not apply the minimization
the penalty functional. The ideal situation would be if a r
sidual minimization method, such as the Gauss-Se
method, would keep the states calculated on the coarse le
separated. We found out in practical calculations that thi
not true, at least when the states are far from converge
Therefore, we have developed for the finest level a sche
which by employing Gram-Schmidt orthogonalization a
subspace rotation, keeps the eigenstates orthogonal. The
space rotation is a method to find the most optimally se
rated eigenvectors from the approximative ones. The m
steps of the rotation are:

~i! Calculation of the Hamiltonian matrix elements b
tween the current states:

H̄ i , j5^ui uB21Huuj&. ~19!

~ii ! Calculation of the overlap matrix:

S̄i , j5^ui uuj&. ~20!

The use of matrix elements of Eqs.~19! and ~20! leads to
eigenvectors orthogonal in the desired Euclidian sense (I or-
thogonal! and not in the sense of theB innerproduct.

~iii ! Diagonalization to find the optimal eigenvectors (uk8

5( j Āk, juj ) and corresponding eigenvalues (lk):

(
j

H̄ i , j Ā j ,k5lk(
j

S̄i , j Ā j ,k . ~21!

In practice, we apply the approximation
24510
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^ui uB21Huuj&'^ui uuj&
^ui uHuj&

^ui uBuj&
. ~22!

The Gram-Schmidt orthogonalization and the subsp
rotations are organized so that the space of the eigenve
is first divided into small clusters corresponding to close
genvalues. The Gram-Schmidt orthogonalization is then p
formed for each cluster at a time so that its eigenvect
become orthogonal against the eigenvectors of the cluste
lower eigenvalues. Then a subspace rotation is perform
within the states belonging to the present cluster. The d
sion to clusters reduces remarkably the cost of the subs
rotation. This is because the cost is proportional toO(N3),
whereN is the number of states rotated. Moreover, the s
space rotation requires the calculation of matrix eleme
that are more complicated than those for the simple Gra
Schmidt orthogonalization.

According to our test calculations, this subspace rotat
scheme leads quite effectively toI-orthogonal eigenstates
This is seen as a convergence of the eigenvalue prob
within the numerical accuracy, i.e., the residuals of differe
eigenstates vanish. However, in order to achieve exactly v
ishing residuals, very accurate eigenvalues are needed
residual norm scales as the square root of the error in
eigenvalue. Therefore one introduces for every state a c
stant additional potential equal to the current eigenvalue
timate, which shifts the eigenvalue towards zero. This eff
tively increases the number of significant digits that can
obtained. The error in the eigenvalue scales as the squa
the residual. When applying the subspace rotation it is
portant to complete the highest eigenvalue cluster; otherw
the rotation may become inefficient.

The orthogonalization needed scales asO(N3). For small
systems of several tens of eigenpairs this is not yet a p
lem. The algorithm is effective and the number of fine-g
orthogonalizations remains quite plausible, for example,
comparison with the conjugate gradient search of eigenp
employing only the finest grid.26 But for larger systems with
hundreds of states it will be the bottleneck. One solut
could be to rely on the finest level only on a residual mi
mization method when the initial stages of the iteration p
cess have been performed and the solution is clearly o
stable track towards convergence.

B. Strategy for self consistency iterations

The Kohn-Sham problem has to be solved se
consistently. This means that an optimal strategy is nee
so that computing time is not wasted in the beginning of
self-consistency iterations to obtain unnecessarily accu
wave functions, because these will change during the l
iterations due to the changes in the potential. Updating
potential, including the solution of the Poisson equation, i
much less time-consuming task that the update of all
wave functions. Therefore, the potential update can be
formed frequently.18

The examples of this paper are small-molecule and bu
solid systems described by pseudopotentials. The stra
used is schematically presented in Fig. 1. Similar strateg
6-5
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can certainly be applied in other kinds of Kohn-Sham cal
lations, for example, in those employing all-electron
jellium-type models. In the examples of this paper the init
electron density is the superposition of the pseudoatom d
sities centered around given nuclear positions. From the
perposition, we calculate the initial effective potential, whe
the wave functions are solved accurately enough using
full-multigrid method. The FMG process is started from ra
dom numbers for the wave functions on the coarsest le
The accuracy of the wave functions is controlled by cal
lating the norms of the residuals of the eigenstates and
finally improved by adding moreV cycles starting from the
finest level. A certain accuracy is needed in order to initi
self-consistency iterations that converge without large d
sity oscillations. Then the new electron density and the
suing effective potential are calculated. The new potentia
not directly fed into the next iteration but it is mixed in th
place, as well as later between the self-consistency iterati
with the input potential of the iteration. We monitor the a
curacy of the wave functions by calculating their residu
and require that the accuracy has improved from the prev
iteration. Usually oneV cycle is sufficient for this, becaus
the changes in the potential are small.

An important point is to also find a proper balance w
respect to the pre- and postsmoothening sweeps on the
ferent grid levels. Typically, on the finest level, we made tw
pre- and postsmoothening sweeps, whereas on the co
grids their number is four. Actually, this means that on t

FIG. 1. Strategy of self-consistency iterations. First, the wa
functions are solved nonself-consistently using the full multig
method in the initial potential corresponding to the superposition
pseudoatoms. Then the effective potential is updated~this is de-
noted byP in the figure!. The potential update amounts to calcul
tion of the new electron density, the solution of the Poisson eq
tion, and calculation of the new exchange correlation poten
Next, the wave functions are updated by oneV cycle. These two
steps are repeated until self-consistency has been reached.
24510
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finest level, four successive sweeps are done if the pote
is not updated. A potential update is always preceded
followed by two immediate smoothening sweeps.

IV. TESTS

We test the performance of our scheme by calculating
self-consistent electronic structures of a CO2 molecule as
well as that of perfect bulk Si lattice with a supercell of 64
atoms. The former system is an example of the employm
of Dirichlet boundary conditions and the use of ‘‘hard
pseudopotentials, whereas the latter system represents
use of periodic boundary conditions and a supercell size t
cal in electronic structure calculations for point defects
solids.

The ions are described by pseudopotentials of
Kleinman-Bylander form,27

Vion~r !5(
a

Vion,loc(urau)

1 (
a,n,lm

1

^DVlm
a &

uDVion,l~r a!ulm~ra!&

3^DVion,l~r a8!ulm~r 8a!u, ~23!

where^DVlm
a & is a normalization factor,

^DVlm
a &5E ulm~ra!DVion,l~r a!ulm~ra!d3r , ~24!

and ra5r2Ra , ulm are the atomic pseudopotential wav
functions of angular and azimuthal momentum quant
numbers (l ,m), from which thel-dependent ionic pseudopo
tentials Vion,l(r ) are generated using the Troullier-Martin
scheme.28 The ion core is assumed to be spherically symm
ric. DVion,l(r )5Vion,l(r )2Vion,loc(r ) is the difference be-
tween thel component of the ionic pseudopotential and t
local ionic potential. We have chosen the s component of
pseudopotential as the local component.

Because the functionsuDVion,l(r a)ulm(ra)& are short
ranged, operating on the wave function by the nonlocal p
of the pseudopotential is in practice a multiplication by
sparse matrix. The numerical work required to compute t
scales as the square of the number of atoms in the sys
whereas in the conventional reciprocal-space formulati
the work scales as the cube of the system size. The advan
of implementing the nonlocal pseudopotentials in real sp
has been noted also in the context of plane-wave method29

In the previous multigrid implementations of the pseud
potential method,17,14 the nonlocal parts have only been em
ployed on the finest grid. It is, however, straightforward
also implement them on the coarse levels, and we have fo
that this may increase the convergence rate and stabilit
the method.

The CO2 molecule is placed diagonically in the center
a cubic computation volume of the size of~12.6 a0)

3. The
experimental C–O bond length of2.19a0 is used. Dirichlet
boundary conditions are used so that the potential va
outside the cube are obtained from a multipole expansion

e

f

a-
l.
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the charge density. The point mesh used is 633, giving the
grid spacingh50.20a0. The Mehrstellen discretization b
Briggs et al.14 is used.

In this calculation we used a mixing scheme, where
new effective potentialVin

i 11 is obtained from the input and
output potentials according to

Vin
i 115~12k!Vin

i 1kVout
i . ~25!

The convergence of the self-consistency iterations emp
ing the strategy described above~Fig. 1! is shown in Fig. 2.
The deviation of the total energy from the converged valu
given as a function of self-consistency iteration steps p
formed. The zeroth iteration is a full-multigrid solution fo
the wave functions in the initial potential. TwoV cycles
starting from the finest level are included in this step. T
effective potential obtained from the output electron dens
is mixed with the initial potential using the feedbackk
50.4. Next, at iteration one, the wave functions are rela
in this new potential using oneV cycle. From this point on,
the four curves in the figure give the convergence with d
ferent values of the feedback parameterk. OneV cycle per
self-consistency iteration step is done. A wide range of v
ues fork gives satisfactory convergence indicating a rob
behavior for the scheme. The accuracy of 1 meV, which
sufficient in practical calculations, is reached after three
four V cycles. The implementation of the nonlocal parts
the pseudopotential on the coarse levels is found to spee
the convergence especially in this region. From Fig. 2
obtain an average convergence rate of approximately
decade per self-consistency iteration. This is of the sa
order as those reported by Wang and Beck18 in their FAS
scheme or by Kresse and Furthmu¨ller25 in their plane-wave

FIG. 2. Convergence of the total energy for the CO2 molecule
using direct mixing with different values of the feedback parame
k; k50.4 ~solid line!, k50.5 ~dashed line!, k50.6 ~dash dotted
line!, andk50.7 ~dotted line!. A horizontal line has been added t
indicate the chemical accuracy of 1 meV.
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scheme employing self-consistency iterations. The conv
gence rate of one decade per self-consistency iteration is
ter than that obtained by Ancilottoet al.17 in the FMG
scheme and much better than the rate reached in the lin
ized multigrid scheme by Briggset al.14

In our calculations for the CO2 molecule, the initial full-
multigrid step takes about three cpu minutes on a 667 M
Compaq EV67 alpha processor. The succeedingV cycles
take about one minute each. In order to put these figures
a proper context, we have solved the CO2 molecule also by
the plane-wave codeCASTEP~Ref. 30! using a Fourier grid of
643 points. In both calculations, the errors in the total ene
reduce at similar rates as a function of the cpu time.

We have solved for the electronic structure of perfect
lattice described by a supercell of 64 Si ions. The latt
constant of 20.38 a0 used is the equilibrium value obtained
a plane-wave calculation, with which we have compared
real-space results. The first Brillouin zone is sampled in t
test using theG point only. The point mesh used for the wav
functions is 643, giving the grid spacingh50.32a0. For the
densities and potentials we use a finer grid of 1283 points.
The other numerical parameters and the iteration strategy
the same as in the CO2 test. The resulting valence electro
density on the~110! plane is given in Fig. 3. The area of th
figure corresponds to the extent of the supercell. One n
that exactly the same features are reproduced at the eq
lent points in different regions of the supercell. This mea
that a fully converged result has been found. We have co
pared the results of our real-space code to those obta
using the plane-wave method. The energy cutoff, 18 Ry
the plane-wave expansion was chosen so that it results
real-space point mesh of 643, i.e., it is the same as in ou
real-space calculation. The widths of the valence band
band gaps obtained by the two methods agree with an a
racy of 3 meV. In the case of degenerate eigenstates,
real-space code results in degenerate eigenenergies wi
accuracy better than 1 meV. The convergence towards to
self-consistent solution occurs similarly as for the CO2 mol-

r

FIG. 3. Valence electron density in the~110! plane obtained in
the G-point calculation for the 64-atom supercell of bulk Si. Th
area of the figure corresponds to the extent of the supercell.
6-7
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ecule in Fig. 2. Thus, the convergence process seems t
independent of the size of the system.

V. SUMMARY AND OUTLOOK

In this paper we have generalized the RQMG method
troduced by Mandel and McCormick24 for the simultaneous
solution of a desired number of lowest eigenenergy sta
This approach can be viewed as belonging to a third grou
multigrid methods, in addition to FAS and the techniqu
where the eigenproblem is linearized. In principle, one c
use arbitrarily coarse grids in RQMG, whereas in the ot
multigrid methods, one has to be able to represent all
states on the coarsest grid.

We have demonstrated the feasibility of the method
electronic structure calculations for the CO2 molecule and
bulk Si described by pseudopotentials. Our strategy for
self-consistent solution consists of a full-multigrid solutio
for the wave functions in the initial potential, and subsequ
self-consistency iterations. Less than fiveV cycles are gen-
erally sufficient for practically sufficient accuracy. The cp
times required for the FMG and SCF steps are roughly eq

We have applied the method also in two-dimensio
problems for quantum dots employing the current sp
density functional theory,31 in three-dimensional cylindri-
cally symmetric systems, and also for calculation of posit
states in solids.26

We believe that our method will eventually compete w
the standard plane-wave methods for electronic structure
o

.
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culations. However, some straightforward programming
still required. For calculations, where the optimization of t
ionic structure is necessary, the Hellmann-Feynman for
will be implemented. In order to remove the spurious dep
dence of the total energy on the position of the atoms w
respect to the grid points, Fourier filtering of the pseudop
tentials is required.29 Complex wave functions for anyk
point are easily implemented, and are already in use in t
dimensional geometries.

Parallelization overk points can be done easily. One on
needs to communicate the electron density and effective
tential at the end of eachV cycle. During the RQMGV cycle,
the states are all relaxed simultaneously and independe
of each other. Therefore, parallelization over states is nat
and easy to implement. However, for larger systems
Gram-Schmidt orthogonalization becomes very inefficient
a state-parallel code. The most efficient and yet straight
ward choice is real-space domain decomposition,14 where
each processor is mapped to a specific region of space.
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