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We study the transmission properties of light through the symmetric Fibonacci-8lB€4%n) | quasiperiodic
dielectric multilayers, which possess a mirror symmetry. For a normal incidence of light, many perfect trans-
mission peaksthe transmission coefficients are unigre numerically obtained. The transmission coefficient
exhibits a two-cycle feature in a family of the SFQ(with an oddn, while a three-cycle feature in another
family with an evenn. The scaling factord(n), which give a description of the self-similar behaviors of
transmission spectra, are analytical obtainedm@(k) (i,j=1,2) be the elements of the total transfer matrix
of the kth generation of SFQ); it is proven that the positionsvavelength of the perfect transmission peaks
can be uniquely determined (% (k) + mi)(k)=0. The analytical results are very well confirmed by the
numerical calculations.
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[. INTRODUCTION The basic reason for the appearance of extended electronic
states in the RDM has been traced to the existence of sym-
The experimental discovery of quasicrystals by Shechtmetric internal structuré® Motivated by these investigations,
manet al' has led to intense investigations of the structurerecently we introduced the internal symmetric into a 1D bi-
and physical properties of deterministic aperiodicnary Fibonacci dielectric multilayer. Surprisingly, many per-
system$~%° In the early days, the dominating part of the fect transmission peaks are definitely found in the optical
. ’ . iaai 7
theoretical work had been focused on the electronic propeffansmission spectra of the study systénin the paper,
ties of the Fibonacci sequent® In 1985, Merlinet al.’® though, there is strong numerical evidence that optical per-
reported the fabrication of semiconducting and metallic quaf€Ct fransmission phenomenon can be observed in the sys-
siperiodic superlattices using the molecular-beam-epitax m, yet no sanschtory explanatlo_n of the phy5|_callnature of
(MBE) technique. Afterwards, several interesting experimen—he re_sults IS prowded and tha_t arigorous quantitative under-
tal studies have been reportdl® These experimental standing of this phenomenon is still a problem to be solved.

- . : In this present paper, we will study in detail the optical trans-
works exhibit unusual properties that are very different frommission properties of light through the quasiperiodic multi-

those of periodic and disordered systems. layers that are arranged in the Fibonacci-claf<(n)]

Recently, there has been significant interest in studies o equence along two opposite directions and that also pos-
the localization of electromagnetic waves\W) in photonic  gess 3 mirror symmetry. We will try to explain the general

band-gap(PBG) mgterlalsz:o‘24Th|s interest is partly due 10 hechanism behind the numerical conclusions. In particular,
the fact that the interactions between the electrons are nqfe will show analytically where the perfect transmission
existent any more and the experiments can be performed gkaks can be found in a given system and make comparisons
the room temperature. Furthermore, the unusual property ®fetween the theoretical results and the numerical calcula-
the control of the propagation of light in the PBG has poten+jons.

tial applications in many optical devices. At the same time, We organize this paper as follows. In Sec. Il we introduce
studies on the PBG have been extended to photonic quasihe models we are studying. In Sec. Il we study the optical
periodic structures, and some interesting results have bedransmission properties of the studied models. Two-cycle
reported"*825-34The photonic Fibonacci lattice was pro- and three-cycle behavior of transmission coefficients are
posed by Kohmotet al?® They predicted a fractal behavior theoretically predicted and numerically confirmed. The scal-
of the transmission spectrum. Later, the experimental realizang factorsf(n) are also analytically obtained. Then, in Sec.
tion of optical Fibonacci dielectric multilayers has beenlV, we theoretically predict the positiona §/2\, here)g is
reported'® In our opinion, the rich multifractal structures of the central wavelengihwhere the transmission coefficients
transmission spectra of the quasiperiodic optical multilayerare unity and perform numerical simulations. A brief sum-
may provide a possible application of these systems amary is given in Sec. V.

narrow-band filters. However, we have noted that the trans-

mission coefficients of the mentioned works above are far Il. MODEL
below unity and it is still difficult to apply these results in
real optical systems. On the other hand, Durégaml. re- Let us consider a multilayer in which two types of layers

ported the delocalization-localization transition in the so-A and B are arranged in a binary Fibonacci-cld$sC(n) ]
called one-dimensionallD) random-dimer mode(RDM). sequence. Then, we can construct two kinds of binary sym-
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FIG. 1. Schematic representation of the SFC(1) multilayer,

whereE, , Eg, andEg are the input, reflective, and output electro-
magnetic fields, respectively.

metric Fibonacci-classSFC(n)] sequences. For théh gen-

eration of the SFQY), these two symmetric sequences can

be expressed aSJ(”)={G](“),Hj(“)} and Pf“)z{HJ(”),GJ(“)},
where G{” and H(" are Fibonacci-class sequences; the
obey the recursion relations

GV =[G{"I"G|",. M
H{Y =H{Z,[H{?, ] 2
SV =[GP11"G| D H, " @

with G{V=B,G{"=B""!A, andH{"=B,H{"=AB""1. If
we setn=1, the substitution rulé¢l) turns back to the Fi-
bonacci case, and ih=2, it is exactly the intergrowth
sequencé’®

In this paper we will restrict ourselves to the casés}:?? .
As an example, the fourth sequenceS§Y is

S{={BAABAABAAB. (4)

The corresponding structure ¢f) is shown in Fig. 1. As
can be seen from this figure, the sequence has a mirror sy

metry. For studying the transmission coefficient, we use th

formalism presented in Ref. 26. For the SRE(with two
different kinds of layersA and B, we denote the index of
refraction byn, andng and thickness by, anddg, respec-
tively. The incident monochromatic electromagnetic wave i
supposed to be normal to the layer surfaces. For simplicit
the thickness of layers are chosenmagl,=ngdg. Let ma-

trices Tag and Tga represent the light propagation across

interfacesA<B andB<«=A, respectively. They are given by
1 0

o

whereR=n,/ng, and the light propagation within laye#fs
or B is described by matriX 5 and Ty, respectively. They
can be presented by

TAB:TB_AIZ

©)

cosd —sind
Ta= (6)

TB:

sind cosd

where the phasé is given by §=kn,d,=kngdg, andk is

%
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wiched by two medias of typA. There are E{" layers in
s, where F{; =nF™+F", for j>2, with F{"=1,
F=n. The total transmission matrix & cannot be ex-
pressed as simple recursion relations, while each half part
H{™ and G can be expressed as

X{W=[X{D, ] X, (7)

8
where X{™ and ZJ(”) are the transmission matrices bITJ(“)
andGJ(“), respectively. Therefore, the total transmission ma-
trices of S can be expressed as follows:

miP () m&?(j)}
m&Y() mi)]

From this expression the transmission coefficient is given in
erms of the matrixv (" as

ZJ(n) = Z}rl)z[zj(rl)l]n_l,

M (W =Z{Mx(M = (9)

UERE (10)

IM{[242"
where|M{V|? denotes the sum of the squares of the four
elements oM ("

In the following investigation, we choose SiQA) and
TiO, (B) as two elementary layers, with the indices of re-
fraction of A andB as 1.45 and 2.3, respectively. The optical
thickness of each layer is a quarter wavelengty/'4), where
N\o is the central wavelength. These conditions imply the
phased= m\g/2\.

Here, we first briefly display the transmission coefficient
as a function ofs/ 7 for two different systems. Figureg&®
and 2b) show the numerical result for FC(4.Y13 layers
and SFC(14 (26 layers, respectively. In Fig. @), no per-
nquct transmission peak can be found for ther approxi-
mately belonging to the interval9.3,0.7. It is of great in-
Serest to make a short comparison with the transmission of
light through a multilayer with a mirror symmetry. From Fig.
2(b) it is clearly seen that the transmission coefficient be-
haves rather differently from that of Fig(&). Many sharp

Stransmission peaks with a unit transmission coefficient are
Yshown in the figure. These results together seem to indicate

that the symmetric internal structure can also influence the
localization property of optical waves in a quasiperiodic op-
tical system. In other words, the initially poor transmission
of the optical wave can become a perfect transmission when
the symmetric internal structure exists in the quasiperiodic
optical multilayer. Following this section, we will extend our
discussions to multilayers having different structure. The
purpose of these investigations is to gain insight into this
phenomenon.

I1l. SELF-SIMILAR TRANSMISSION SPECTRA
A. Analytical results

For the case of the ideal Fibonacci sequepE€(1)],

the vacuum wave vector. Now we consider the light propa«ohmoto et al?® concluded the corresponding transfer ma-

gation through a SF@®) multilayer S, which is sand-

trices exist in a six-cycle property aroundl m=(m+3),
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Kohmotoet al?® pointed out, around/7=0.5, the scal-

ing behavior of the transmission coefficient of FC(1) is char-
acterized by the scale fact®(1)=\1+4[1+J(1)]?+2[1
+J(1)], where the constant of motionJ(1)=(R?
—1)?/4R?. In a recent papeY, we have performed a numeri-
cal simulation of the transmission coefficient of the SFC(1)
and found thaf (1) andJ(1) can still be used to describe the
scaling property of the corresponding transmission spectra.
For this reason, in the following study we will mainly pay
attention to the property cx(“) .

We assume thak;(n)= lTr[x(”)l] yj(n)= 3T X",
and z;(n)= 1Tr[X(”)X]('B1 Then an invariant is as
follows:26:29.33

1.0

0.5

0.0

TRANSMISSION COEFFICIENT

J(n)=x;(n)2+y;(n)?+z;(n)*=2x;(n)y;(n)z;(n)—1

=Xo(N)2+Yo(N)2+2o(N)2 = 2X0(N)Yo(N)Zo(N) — 1.
0.0 0.5 1.0 (16)

o/m By the use of the recursion relatidi), the first and sec-

FIG. 2. The transmission coefficient verséisr for (a) FC(1)g ond transfer matrices are, respectively, given by

(13 layers and (b) SFC(1) (26 layers, respectively. The indices X =T, T-T

of refraction are chosen as,=1.45 andng=2.3. 1 ABTBIBA
. . - . (n— n-1

wheremis an integer. For the case of a symmetric Fibonacci X2 =TasTe Teala,

sequencd SFC(1)], we found that thed/7—=(m+ %) case T T 2T T eTeTasTa= XM Dx(M 1

also has a very special feature that the matrices s&tisfy ABTB  TBATABTBIBATATIR Y

Because the propagation matricéd’ are all unimodular,

when applying Eq(17), one finds from the relatio(iL6) that
J(n) is a constant which is given by

M1 =M§ = —MG =—1, k=012...,
(11

wherel is the unit matrix. Equatioill) can be rewritten as
o J=J(n)=J(n—1)=---=J(1)=si*8(R?— 1)%/4R?.
MP=(-DF", j=012..., (12) (18)

where F(V is the jth Fibonacci number. Generally, for a A Proof is shown in the Appendix. The invariant of B48)

given SFCO) if the number of the layersl= 2F(n) then is always positive and represents the strength of the effect of
at 8/7=0.5 (')\ \o), the total transfer matrix may be ex- quasiperiodicity. By defining a three-dimensional veatpr
pressed as =[x(n),yi(n),z(n)], then

Mj(n)=(—|)FJ(n)=(—|)nFl(rl)1+FJ(n—)2. (13 M1 =[X1(N),Y141(N), 1 (N J=TX(N),y1(n),z(n) ]

In the renormalization-group point of view, the magan
regarded as a scale transformation. The orbits given by
successive iterations ofl are confined on the two-
dimensional manifold uniquely determined I/ When n

=1, the nonlinear dynamical map is given explicitly by

From this relation we can obtain the properties of the transfeB
matrices of different sequencesé&ltr=0.5. Whenn is even €

F(n)

MV =(=1)Fi=2=M(",. (14)

Namely for the SFQ{) there is a two-cycle feature @ =
=0.5. M+1=Taln]1=[2(1),x(1),2¢4(1)z(1) =y (1)].

Whenn is odd, one has The mapT; has a six-cycle orbit given By

2 (n) (n)
MW= (= 1) (0" DR R A(0,08)—By(—2,0,0)—C4(0,—a,0)—D(0,0~a)

i = M, . (15) —E«(a,0,00—F0,a,0)—As, (19

=(=1"™
Namely, there is a three-cycle atw=0.5. Since the trans- wherea=\1+J. ThenAq, Bg, Cs, Dy, Eg, andFg are the
mission matrix id or — 1|, there must be perfect transmission fixed points ofT6 Linearization ofT6 around these fixed
at 8/m=0.5 \=X\g). points yields the Jacob|an matrix of the mapping. The eigen-

Y= (= 1)F)
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value of the linearized equation gives the scale faet(t), Yi+1(4)=x,(4),
which can be exactly calculated as

a(1)=1+8a*+4a%|1+4a" (20)

In fact, the two fixed points of$, A andDy, are antipo- ) . )
dal andA, is mapped td, by three iterations. The rescaling  From the ab'ove expressions, we can 'defme a renormaliza-

Z1(4)=16%(4)*2/(4) —8x/(4)%7(4) — 12x/(4)?z(4)
+4x(4)y(4)+z7(4). (29)

follows:28 sequently, the rescaling factb(4) is
— Ja(1) =282+ J1+ 2422 1
f(1) a(l)=2a“++1+4a". (21 f(4):§(\/§+m) Where

Whenn=2, we obtain the following results:

c=2+576a*—2304°+2304°. 29
Xi+1(2)=2%(2)2(2) = y(2), 29

We have derived the recursion relation of the dynamical

Yi+1(2)=x(2), (220 maps of the FQf) for several special casea<1,2,3,4). It
B _ _ is rather straightforward to prove that the F¢(can be di-
21+1(2)=2X(2)[2x(2)2(2) = yi(2)] = 2(2). vided into two kinds:n is odd andn is even. The six-cycle

Expressiong22) can also be written as a nonlinear dynami- fixed points for odch and four-cycle fixed points for evem
cal mapr,.;=T,[r]. Clearly, we have a four-cycle orbit, ~are the common properties. It should be noted that, in the
following study, the obtained rescaling factofgn) (n
Ap(0,2,00—Bp(a,0,00—~C,(0,—a,00—~Dp(—a,0,9) —A,. =1,2,3,4) will be applied to describe the self-similar prop-
(23) erties of transmission spectra of the symmetric Fibonacci-
class multilayers.

With linearization of T3 around these fixed pointsAf,
By, Cp, andDy), one of the eigenvalues of the fixed points B. Numerical results

of period four is To illustrate the scaling properties of the transmission

spectra of the SFQ®@(), we numerically study the transmis-
sion coefficients for  {[SFC(1),,SFC(1)s]},
{[SFC(3),SFC(3)]1}, and  {[SFC(2)%,SFC(2)l,
[SFC(4),,SFC(4)]}. The main results are shown in Figs. 3
and Figs. 4 for two different families of the SFQ((odd n
and evenn), respectively. Figures(d and 3b) show the

f(2)=Va(2)=(4a%2—-1)+2a\4a%-2. (25)  transmission spectra of thg 12th a_nd 15th generation of the
SFC(1) around/ m, respectively. It is clearly seen that these

a(2)=1-16a%+32a*+4a(4a’—1)\4a’—2. (24

We note that, like the cast:, A, andC, are antipodal
andA, is mapped td , by two iterations. Then the rescaling
parameter is

Whenn=3, we have two figures are similar except for the scaling. This conclu-
sion is also true for the 6th and 9th generation of the SFC(3)
X1+1(3)=2x(3)1[2%(3)z(3) = yi(3)] = z(3), [see Figs. &) and 3d)]. Furthermore, Figs. 3 confirm that,

whenn is odd, the transmission spectra of the SRCére
Yi+1(3)=x(3), (26)  similar with a three-cycle orbit about th# . In Fig. 4 we

show the transmission coefficient for another family of
21.1(3)=8x(3)°2(3) —4x(3)°2(3) —4x,(3)z/(3) SFC(n) (n is even with n=2 and 4, respectively. Whem
+Yi(3). =2, the 8th(816 layer$ and 10th(4656 layers generation

of quasiperiodic optical multilayers are studied. For the case
Equation(26) can be expressed as, ;=Tj[r|]. Itiseasy to  of n=4, we chose the fiftlic10 layers and seventi{10946

verify that the maprs; also has the six-cycle orbit of Equa- generation of the optical sequences. The self-similar proper-
tion. (19). With the same analytical technique above, theties are also demonstrated clearly in these figures. Note the

rescaling factorf (3) is obtained exactly and given by generation change of the chosen sequences in these figures;
then, their similarity well confirms the above theoretical pre-
f(3)=3(Vb—2+\b+2) where diction of the two-cycle orbit of the transmission coefficient
of SFC(2m), where m=1,2,.... Recall that the self-
b=2+784a"—3584°+4096°. (27)  similarity of the transmission coefficients of the FC(1) is six

cycle at 8/7=0.5%% and the FC(2) is quasi-four-cycfé.
The discrepancy is caused by the symmetry. The scaling is
also displayed in these two figures. From Figs. 3 we have the

We now turn to the case=4 for which the nonlinear
dynamical map is given by

4)=8x(4)37/(4) — 4x,(4)2z,(4) — Ax, (4)Z, (4 scaling factors f(1)=(0.5165-0.5)/(0.503 25-0.5)
X+1(4)=8%(4)72(4) ~4x(72(4) ~ 4x(4)z(4) ~507692 and f(3)=(0.5059-0.5)/(0.500 095 0.5)
+vy,(4), ~62.105 26 for SFC(1) and SKR), respectively. We also
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SFC(1),,, N=754 (a) SFC(), N=720 (©)

1.0 1.0
|_ 4
P-4
w
o %% M M 0.5
T
Ll_ 4
w
Q 0.0 0.0
(S T T T - T T T . -
o 0483 0.5000 05165 ¢ 4041 05000 0.5059 FIG. 3. The transmission coefficient versus
o Sl for a family of SFCf) with oddn. (a) and
@ SFC(1),, N=1974 )] SFC(3),, N=25940 (Y] (b) for the casen=1, (c) and (d) for the casen
= 0 1 =3, respectively.
%) ]
p-d
<
o 054 0.5
|_

00 . T . 00 T r

0.49675 0.50000 0.50325 0.499905 0.500000 0.500095

o/n o/n

respectively obtain the scaling factors of SFC(Bjgs. 4a)  matrix M;(n). Hence, in order to gain a deep insight into the
and 4b)] and SFC(4)[Figs. 4c) and 4d)]. They aref(2)  physical implication of the numerical results in Figs. 2, 3,
=(0.5055-0.5)/(0.5007150.5)~7.69231 and f(4) and4, itisinstructive to analyze the transfer matriesn),
=(0.5059-0.5)/(0.500 142-0.5)~41.54930. These nu- Z;(n), andM;(n). In this section we restrict ourselves to the
merical results are well predicated by our analytical result®ptical system of SFQ). From Egs.(5)—(8), the transfer
of Egs.(21), (29), (27), and(29). As can be seen, wheR  matricesX;(n) andZ;(n) are, respectively, given by
=ng/n, is given, the invariant J=J(n)=sin*&R?
—1)%/4R? is the same for all the SF@] at the central wave-
length(corresponds té/ w=0.5). Forny,=1.45n5=2.3, we W _
obtain J~0.228375 and the scaling factors can be X’ = ﬂs
obtained by calculating Eq$21), (25), (27), and(29). They R
are f(1)~2.45675-7.03562=5.10922, f(2)~3.9135
+2.2135/2.9135+7.697 28, f(3)~0.5(/3865.79 Sirés
+/3869.79%62.1947, andf(4)~0.5(,/1844.4+ /1848.4) (:0525—T —(1+R)cosésiné
~42.97211 for the SF@), SFC(2),SFC(3), andSFC(4), X(zl):

respectively. (

cosé —Rsiné .
cosé —siné
XY=

C0oSd sind coséd

1
1+§ cosdsind  coSS—Rsirs

IV. POSITIONS OF PERFECT TRANSMISSION PEAKS (30)

From the form of Eq(10) it is clear that the transmission
coefficient is determined entirely by the properties of the and

SFC(2),. N=816 (a) SFC(),, N=610 (©)

1.04 1.04
|_
zZ
LLJ 0.5 0.5
o 5
[T
W
w
Q 0.0 0.0
= 0495 05000 05055 04941 0.5000 0.5059 FIG. 4. The transmission coefficient versus
e} Sl for a family of SFCh) with evenn. (a) and
D |5, N=t6ss b o] SEC, net0%46 (@ (b) for the casen=2, (c) and (d) for the casen
s 1 1 =4, respectively.
)
=z
<
o 05 0.5
|_

0.0 T A T 0.0 .

0.499285 0.500000 0.500715 0.499858 0.500000 0.500142

o/n oin
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Z(()l)=XE,1), Z(ll)=X(11),

cogd—Rsitd —(1+R)cosdsinéd
Sirts

coszé—T

AQE 1 o
2 1+=

= cososiné

(31
If we write the matrices of Eq30) in a general form
C D}

E F/| (32

Xl(l):

whereC, D, E, andF are four elements ok{", then it can
be shown thaZ(l) can be represented by these four elements

as

F D

E ¢l (33

z]il):[

The total transfer matrif (" can now be rewritten by sub-

stituting Egs.(32) and(33) in Eq. (9),

2DF
CF+DE/|

CF+DE
2CE

It can then be seen that the diagonal eIemenMﬁ‘? satisfy

M J(l): Z](l)xj(l):

(1+R)%cos 45— (R—1)2

PHYSICAL REVIEW B3 245104

mY(j) =mb(J). (34

By using the condition d&v(Y|=1, it is not difficult to
prove that the standard expression of Ed)) will be deter-
mined by a relation involving only the off-diagonal elements.
For theS{”, the expression of[S{M] is then

4
(i) +mbs ()12 +4

UERE (35)

It follows directly from Eq.(35) that the reflection coeffi-
cient will vanish only when

m{3(j)+m&(j)=0. (36)

We should point out that E¢36) is the key expression in the
following study. In fact, Eq(35) can be applied quite gen-
erally to any kind of one-dimensional optical multilayers
with a mirror symmetric.

In what follows, the above-obtained formuld6) will be
applied to the symmetric Fibonacci multilayers constructed
according to the substitution ru(@) of n=1. Consider first
the second generation SED, which is arranged aBAAB
and the corresponding total transfer matrix is given by

[(14+R)%cos 25+ R?>—1]sin 26

o [MP2) mP2) 4R 2R a7
2T mB2) mP2)| | [(1+R)%cos 25+ 1—R?]sin 28 (1+R)2cos 45— (R—1)? ’
2R 4R

such that the sum of the off-diagonal elements of &7)
can be explicitly written as

(1-R?)sin26

m{3(2)+mP(2)= =

(39

From Eqgs.(36) and(38) it is evident that, wheR# 1, the

condition for the existence of perfect transmission coeffi-
cients is entirely determined by si#20. As a result, the

corresponding phasesare

o(2)=km/2, k=0,1,2.... (39
If the phased is expressed in units of, for the phase’ in

the interval[1,2], three phases which uniquely determine the
positions of the perfect transmission peaks are given by

P(2)=8(2)/m=k/2, k=0,1,2. (40)

This result is exemplified in Fig.(8), where the solid line is

the numerical result and the analytical results of @) are
indicated by chain lines in this figure.

the transfer matrix of the optical multilayers with a mirror
symmetry, we shall apply it to the exactly soluble SFG(1)
Similarly, in this case, the associated off-diagonal elements
are given by

sin 26
)= T

[A;+4+B;cos 25+ C,cos 45]

X[A;+4R—B;Rcos 25+ C,cos45], (41)

(1)(4)_

—B;Rcos 25+ C;cos 45]

><[A1+4R3+BlR200325+Clcos46], (42)
whereA;= —R®+R?+R-1, B;=—4(1+R), andC;=(1

To have a better understanding of this technique and to

emphasize the role played by the off-diagonal elements of

+R)3. Consequently, the sum of two off-diagonal elements
can be expressed as
R2—1)sin26
m{P(4)+miP(4)= ¥[A2+ B,C0S 25
8R3
+ C,cos 46+ D,cos 66], (43
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FIG. 5. The transmission coefficient versdfsr for (a) SFC(1),
(four layerg and(b) SFC(1), (ten layers, respectively. The chain
lines are the theoretical results of resonant positions.

where A,=2—4R+4R?>-4R3%+2R* B,=—-(1+R)%(1
—6R+R?), C,=—-2(1+R)?(1+R?, and D,=(1+4R
+6R?+4R3+R*). From Eqs.(36) and(43), for a givenR,
there exist some special values of ph@sghere the electro-
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2 2
Pe(4)—1— arcco$(1+2RTr)/(1+ R)“] ,
arcco$y1+R%/(1+R)]

P, (4)=1- 5

Pg(4)=1.0.

When R=ng/n,=1.45/2.3=0.6304378, we have eight
resonant peaks at

Po(4)=0.0,
P.(4)~arcco$0.725 043 F/27~0.120909 7,
P,(4)~arcco$0.525 688 4/27~0.161 903 8,

P4(4)=0.5—P;(4)~0.379090 3,
P,(4)=0.5,
Ps(4)=0.5+P;(1)=0.620909 7,
Ps(4)=1.0—P,(4)~0.838069 2,

P-(4)=1.0-P.(4)~0.879090 3,

and

Pg(4)=1.0.

magnetic waves corresponding to these phases are transpBy applying Eq.(10) again, we calculate the transmission
ent with unit transmission coefficients. These special valuesoefficient as a function o/ 7 for the fourth generation of

of & are the solutions of the following equation:

2 2

W sin26=0.
+

(1+R)?
(44)

If 7<6<2m, from the above equation one can obtain
eight solutions that directly determine the positions of reso
nant peaks. These positions are

Po(4)=0.0, (45)
3 arccof 1+ R%/(1+ R)]

P1(4) oy

_arcco$(1+R?)/(1+R)?]
- P ,

P2(4)

arccof1+R%/(1+R)]
2 '

1
Pa(4)=5—

P,(4)=0.5,

1 arcco$y1+R/(1+R
P 5+ §V 2:< 1

the SFC(1). Asshown in Fig. %b), our numerical result
(solid line) agrees very well with the theoretical predictions
(chain lines.

V. SUMMARY

We have studied the light-waves propagation in the sym-
metric Fibonacci-class quasiperiodic dielectric multilayers.

We have shown that the symmetric internal structure in one-
dimensional quasiperiodic systems can greatly enhance the
transmission intensity. The scaling properties are retained in
all the symmetric Fibonacci-class sequences; it demonstrates
that in the transmission spectra, the quasiperiodicity is still
deterministic. But the perfect transmission and the periodic-
ity about the central wavelength demonstrate that the sym-
metry is an important factor. These two factors influence
each other and cause rich structures of the transmission spec-
tra. These phenomena will find their applications in the fab-
rication of the multiwavelength narrow-band optical filters.
The experimental verification of these properties of electro-
magnet waves in the SF@) is in process.
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APPENDIX: THE INVARIANT OF THE TRACE MAP (valid for any 2<2 unimodular matricea andb), Eq. (A3)

. : . . il i
In this appendix we shall prove EL8). First, using the can easily be rewritten as

definitions: x;(n)=3TrX{?,], y;(n)=3TX"], and 43(n)+4=Tr[ X, ]+ Tr X~ 23]
z(n)= 3T X{MX{7,], then,J(n) of Eq. (16) is given by TG O TXE )
43(n)+4=Tr X+ TR X DX] TR, ]+ TR X
FTEDAXET X —{T X~ IX, T X, ]

=TI XMIT X DX T XX DX M,
[ 1] [ 2 l] [ 1 2 l] _Tr[x(znfl)]}-l—r[x(znfl)]

(A1)
— T2 2ry(n—1) 2ry(N—2)y2
From Eq.(17), we have an initial condition TEIX TG I TELXS T X
~ — T X T X DT X~ 22
x(ln)zx(ln 1):...:)((11):)(1, 1 2 2 1
. =4J(n—1)+4.
X57=X5" X, A2
2 ! (A2) And finally we obtain
Substituting these into E¢A1), one gets
J(N)=J(n—1)=-..=J(1)=sin*8(R?>— 1)?/4R?.
4J(n)+4=Tr [ X ]+ T X IX2 + T X D2 (A4)
X{Tr[X(Z”’l)Xf]—Tr[Xl]Tr[X(Z“’l)Xl]}. From Eqg.(A4) one finds that, for the normal incidence of

light (6= =/2), the recurrence relation d{n) is determined
(A3) only by the physical properties of chosen optical materials.
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