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All-electron magnetic response with pseudopotentials: NMR chemical shifts
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A theory for theab initio calculation of all-electron NMR chemical shifts in insulators using pseudopoten-
tials is presented. It is formulated for both finite and infinitely periodic systems and is based on an extension
to the projector augmented-wave approach ofcBIgP. E. Blachl, Phys. Rev. B50, 17 953(1994] and the
method of Mauriet al. [F. Mauri, B. G. Pfrommer, and S. G. Louie, Phys. Rev. L&#.5300(1996]. The
theory is successfully validated for molecules by comparison with a selection of quantum chemical results, and
in periodic systems by comparison with plane-wave all-electron results for diamond.
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[. INTRODUCTION quired the explicit inclusion of theand 2p silicon orbitals
as valence and the use of a very high, and computationally
The experimental technique of nuclear magnetic resoexpensive, plane-wave energy cutoff of 600 Ryin the
nance(NMR) is widely used in structural chemistry and in- above applications of the MPL method the pseudopotential
creasingly in solid-state studié<hemical shift ¢) spectra  error had been assumed to be small and controllable. To
give information about the atomic structure of the samplecompute the NMR chemical shifts of nuclei heavier than
under investigation. In the case of molecular systems, enmmeon and to truly exploit the ability of pseudopotentials to
pirical rules are commonly used to extract this informationcalculate the properties of complex, low-symmetry structures
from the raw experimental data. However, this approach canawhich is well established for a wide range of structural
not be applied in the solid state, as the atomic configurationpropertie$, a theory is required that does not ignore the
often cannot be modeled by chemical analogs or referengeseudopotential approximation.

compounds. In these cased initio calculations of the Apart from the early and isolated attempt of Ridard, Levy,
chemical shifts are the only way to obtain an unambiguousand Millie,!® it has been widely expected within the quantum
determination of the microscopic structure. chemical community that any theory for the calculation of

Until recently, there has been no theory for the calculatiolNMR chemical shifts for nuclei described with a pseudopo-
of NMR chemical shifts in extended periodic systems, andential would fail® due to the nonrigid nature of the core
the conventional approach to the theoretical interpretation o¢ontributions to the total chemical shiftHowever, a careful
solid-state NMR spectra has been to approximate the infinitseparation of core and valence contributions that ensures that
solid by a clustef. In this way, the traditional quantum they are individually gauge invariant, by Gregor, Mauri and
chemical approach&2 can be used to calculate the chemical Carl’ has shown that this is not the case and that the core
shifts. Unfortunately, true convergence with respect to basisontributions are rigid. This suggests that a pseudopotential
set and cluster size is often not possible due to the limitationbased theory of NMR might, in fact, exist.
of available computational resources. One of the most obvious deficiencies of the pseudopoten-

The work of Mauri, Pfrommer, and Loui¢MPL) solved tial approach is that the pseudopotential approximation ex-
the problem of calculating NMR chemical shifts in the solid plicitly neglects the form of the electronic wave functions
state with an all-electron Hamiltonian. Integrated with theirnear the nucleus. The pseudo-wave-functions are chosen to
approach to the calculation of magnetic susceptibflitgey ~ be as smooth as possible in the core region, and the correct
presented a theory for thab initio computation of NMR  nodal structure of the wave functions is lost. This leads to a
chemical shifts in condensed matter systems using periodigood approximation for the calculation of total energies and
boundary conditions(hereafter referred to as the MPL their derivatives, and properties for which the matrix ele-
method. Although the MPL theory has been derived usingments are dominated by the regions outside the core. How-
an all-electron Hamiltonian, so far it has only been imple-ever, the quantitative calculation of many properties—
mented in an electronic structure code based on normhyperfine parameters, core-level spectra, electric-field
conserving pseudopotentials. In such implementation thgradients, and the NMR chemical shifts—depend critically
complications inherent within the pseudopotential approxi-on the details of the all-electron wave functions at the
mation have been neglected. For this reason, while severalucleus. Van de Walle and Bibl presented a solution to
useful applications have emergeéd’ the method’s use has this problem for the calculation of hyperfine parameférs
been restricted to the calculation of chemical shifts of lightbased on Blohl's projector augmented-wau@®AW) elec-
elements(hydrogen, carbon, and nitrogeand of silicon.  tronic structure methotf, which is itself closely related to
Moreover, the description of the silicon chemical shifts re-Vanderbilt’s ultrasoft pseudopotential scheffi&Vhile in all
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but a few reported casegsvhere core-electron polarization ments can measur&(r) at the nuclear positions. To com-
effects are importaft or in some magnetic systefisthe  pute the chemical shift tensor we first obt@®(r) by per-
PAW method gives similar results to pseudopotential aptyrbation theory and then we evaludg(r) using Eq.(1).
proaches, it does provide an extremely useful framework fofye now describe our new approach to the calculation of an
the unification of all-electron(full-potential) linearized  jnduced all-electron currerjt(r’) using pseudopotentials

augment_ed-plane-v_va?fe and pseudopotential approaches.ang in Sec. VIl the computational procedure we use to ob-
Indeed, it it becoming clear that the PAW approach, Wh'Chtainj(l)(r’), and finallyo(r), is detailed.

will be described in more detail in Sec. 1l A, offers a general
approach to the calculation of all-electron properties from

- . IIl. PSEUDOPOTENTIALS IN A MAGNETIC FIELD
pseudopotential-based schemes. Following the work of Van

de Walle and Blohl, core-level spectrd;?> momentum ma- In this section we develop the gauge-including projector
trix elements® and electric-field gradiert§ have all been augmented wave method, first describing the original projec-
calculated using the PAW scheme. tor augmented-wave method, and then extending it to the

In this paper we present a theory for all-electron magneticase of a uniform applied magnetic field.
response within the pseudopotential approximation and its
application to the calculation of first-principles NMR chemi- A. Projector augmented-wave method
cal shifts. The connection between the current response and D . .
the chemical shifts is outlined in Sec. Il. We introduce an N Ref. 19, Blahl introduced a linear transformation op-
extension of Blehl's PAW approach, which we call the erator7 that maps the valence pseudo-wave-functipbiy
gauge-including projector augmented-wat@IPAW) ap- onto the corresponding all-electron wave functions,

proach. This will be described in Sec. Ill. A Hamiltonian W)=T|\Ef>. The operator is defined by specifying a set of
constructed using GIPAW has the required translational 'nfarget all-electron partial waveshg ,) obtained by the ap-

variance in the presence of a magnetic field. This is not true .~ . . ~ .
for the original PAW formulation. In Sec. IV we present our plication of7'on to a set of pseudo-partial-waviess ) with

theory for finite systems. In Sec. V we reformulate our ex- B ~

pressions for extended systems. To be useful, these expres- T=1+ >, [l érn) — PR I{PRN| 3
sions must be restricted foeriodic extended systems, and R.n

the periodic theory is presented in Sec. VI. Both the theorieg ~ . ~ o~
for finite and extended periodic systems summarized in Seéinéj <pF3”| arga?:hse:opgci)or?:r?fjorsar?il;?r\;v;@??s'ngrs]Ré'crgmic-
VIl have been implemented in a plane-wave pseudopotentig], "R.R' “n,m- Proj P

electronic structure code. Details of our implementation ar rg‘eerfgt]gtlﬁg gﬁnﬁ;?dm%%zr;tﬁﬁmEaiﬁmaﬂﬂr;hbeegdaenﬂ 10 an
given in Sec. VIIl. We validate the method by comparison 9 q

with IGAIM (individual gauges for atoms in moleculesal- additional number, used if there is more than.one projector
culations by Gregoret all’ for a selection of small mol- per angular-momentum channel. The expectation value of an

ecules. The theory for extended systems is further Va"dateaperatoro between a”‘e'?c”on wave functions can bf ex-
by comparison to results obtained by an all-electron p|anepres+sed as the expectation value of a pseudo-opefator
wave calculation for a crystalline material, diamond. =7 OTbetween the corresponding pseudo-wave-functions.

To obtain a useful formalism we must make some further
assumptions. In particular, for each atomic site we define an
augmentation regioflr and suppose thafi) outside the

A uniform, external magnetic fiel@ applied to a sample augmentation regionlz, the |¢g,) coincide with the
of matter induces an electric current. In an insulating non o ; . : ~

; . . ) , (i) outside the augmentation regiéy, the
magnetic material, only the orbital motion of the electronslliﬁ’iﬁh Eiii)) within the aug?nentation reg?ogh the ||2R‘“§
contributes to this current. Moreover, for the field strength orm a,complete set for the valence wave fSr;ctions '?'(”a any
typlcally_ used in .NMR experiments, the mduc_ed ele.Ctron'Cphysical valence all-electron wave function can be written,
curren_t IS proportlonal(lt)o the external f'@(jf)md is the first- within Qg, as a linear combination of all-electron partial
order-mqfuced curren‘t., fcr ﬁj The currenf™(r") produces waves, and finallytiv) the augmentation regions of different
a nonuniform magnetic field, sites do not overlap. Bthl has shown that given these as-
sumptions, ifO is a local or a semilocalsuch asp or p?)
(1)  Operator

II. NMR CHEMICAL SHIFTS

r—r’
lr—r/|®

The chemical shift is defined as the ratio between the in- O=0+ >, PR ) { A0l Ol PR m) — (R0l Ol PR m)]
duced magnetic field and the external uniform applied mag- R.n,m

netic field, X(BR . 4)
B{(r)=—&(r)B. 2)

10,
Bf:><r>=5j () x

For simplicity, we shall further suppose that the norms

Here &(r) is the chemical shift tensor, and the isotropic computed withinQ) of |ER,n> and|¢r ) coincide. We then
chemical shift is given byr(r)=Tr[&(r)]/3. NMR experi- recover the norm-conserving pseudopotential formalism in
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the Kleinman-Bylandéf form. The pseudo-wave-functions field on the all-electron wave functions in the augmentation
that correspond to the all-electron valence eigenstates of thregion, wherd A(r)|? and its spatial derivatives attain their
all-electron HamiltonianH are eigenstates of the pseudo- minimum value. Moreover, with this choice of gauge, the
HamiltonianH with the same eigenvalues. In the absence ofnteraction between the valence and core states of the aug-
a magnetic field the pseudo-Hamiltonian is mented atom is negligibly smdil. This is essential if we are

to make the pseudopotential approximation. With

~ 1

H=T"HT= §p2+V'°°(r)+E Vo, (5) 1
R A(r)=§B><r, (8

wherep is the momentum operator, anvd%(r) is the local o

part of the pseudopotentials, which includes the selfthe all-electron Hamiltonian becomes

consistent part of the Hamiltonian. The nonlocal part of the

seudopotential at the atomic sRein the above expression 1 1 1

hsetidopotent ! I Ve expressi H=-p?+V(r)+ —L-B+—(BXr)?, 9

IS 2 2c 8c2

whereL =r X p is the angular-momentum operator computed

with respect to the atomic site within the augmentation re-

R o gion. Using Egs.(4) and (5), we obtain the corresponding
Thea, ,, are the strengths of the nonlocal potential in eachyseydo-Hamiltonian,

channel, and they depend Brsince each atomic site may be
occupied by a different chemical species. _ 1 1 1
The choice of the pseudo-partial-waves and projectors is H= —p2+V'°°(r)+V3'+ —L-B+—(Bxr)?
. 2 2C 8C2
largely arbitrary. However, for a scheme to be useful, all the
lowest eigenvalues dfi should coincide with a valence ei-

VR=2 [Prn)af nfPr,ml- (6)

genvalue ofH up to an given energ™, i.e., no ghost +;ﬂ [Po.n) (b5 +bEh) (Poml, (10)
states should be introduced into the pseudospectrum up to an ’

energyEy*. The energyE|* depends on the specific prop- where

erty we wish to compute, and should at least be larger than 1
the highest occupied eigenvalue. 1) _ "R Y ~

In contrast to the traditional formulation of pseudopoten- brm=5¢B [(bonlLl Gom) = (donlL|Som] (1D
tials, using the PAW formulation it is possible to obtain the q
expectation values of all-electron operators in terms of"
pseudo-wave-functions using the pseudo-operators defined in

1 ~ ~
Eq. (4. bth= 51 @onl (BXD)?] o) = (Bl (BX1) Do,
B. A single augmentation region in a uniform magnetic field (12
In the presence of a uniform external magnetic fielthe  If just one projector per angular momentum channel is used,
all-electron Hamiltonian is as is usually the case with norm conserving
. . , pseudopotential$*°b{!) exactly vanishes, sindes ) and
H==|p+=A(r)| +V(r), 7) |$on) are eigenstates df andL, with the same norm within
2 c the augmentation region. Moreover, sind@Xr)? goes to

wherec is the speed of lightV(r) is the all-electron local Z2€r0 in the center of the augmentau?n region, for norm-
potential, andB=V X A(r). We want to construct the corre- CONServing pseudopotentials the t?hﬁm can also be ne-
sponding pseudo-Hamiltonian for a complex system, whicrplected. Th_us, with one _augmentatlon reglon'cer'ltere_d at the
will contain many augmentation regions. However, befored@uge origin, the coupling with the magnetic field in the
treating this general case, we consider a simplified systerﬁseUdO' and all-electron Hamiltonians has the same form,
with just a single augmentation region. The spatial origin is!-€-:
chosen to coincide with the atomic site of the augmentation
region. In the symmetric gaug®(r) =3B X (r —d), whered

is a constant vector that indicates the gauge origin. The ex-
pectation values of the all-electron eigenstates for observable
operators do not depend on the gauge orgjirlowever, the
number of partial waves required to correctly describe the
valence all-electron eigenstates in the augmentation region The derivation in Sec. Il B is not useful for systems with
critically depends on the choice df To minimize the num- several augmentation regions. Indeed, the gauge origin can
ber of partial waves required we must put the gauge origin atoincide with just one augmentation site at any given time.
the atomic site of the augmentation region, settthg0.  As a result, the number for projectors of the other augmen-
Making this choice, we minimize the effect of the magnetictation regions would have to be increased to reach complete-

H= lp2+v'°°(r)+vn'+ 1L B+i(B>< 2 (13
2 0" 2¢ 8c? '

C. Translations in a uniform magnetic field
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ness in those regions. The cause of this problem is that thesed in the quantum chemical community. However, it

PAW approach does not preserve translational invariance ishould be recognized that in GIPAW the phase required to

a uniform magnetic field. maintain the translational invariance is carried by the opera-
In a uniform magnetic field the description of the systemtors, whereas in the GIAO and in IGLO approaches the field-

should be invariant upon a rigid translation of all the atomsdependent phase is attached to the basis functions and to the

by a vectort. Following the translation, the all-electron po- occupied electronic orbitals, respectively.

tential becomesV'(r)=V(r—t) and the corresponding

Hamiltonian is E. GIPAW Hamiltonian

2 Using Eq.(17), the identity
+V(r—t), (149

H=2(p+ A
=5\ Ptg (r)

—(il2c)r-RxB
a- e

1 no 1 n
whereA(r) is still given by Eq.(8). Because of the transl p+ EA(V)) S L EA(f—R)) :
tional invariance, the eigenenergiestdf coincide with the (18)
eigenenergies of the original Hamiltonid&h However, the ] ) ] ]
new eigenstate¥) are not just obtained by a rigid trans- fog)lntegerrgz,)and the outcomes qf the dlscu_ssmn concerning
lation of the original eigenstaté® ), but, upon translation, Prm @ndby’, in Sec. 111 B, we finally obtain the GIPAW
they pick up an additional phase factor proportional to thePSeudo-Hamiltonian
magnetic field

ﬁ: %pz_i_vloc“)_i_; e(i/20)r-RXBVgIef(iIZC)r-RXB

(r|wh)=elPImtE(r—t|w,). (15)
The PAW transformation does not ensure exact invariance 1 1
upon translation, since the pseudo-wave-functions con- + 2_C|_.|3+ —2(B><r)2. (19
8c

structed with the7 transformation operator of E¢3) do not

transform according to Eq15). o o )
The GIPAW Hamiltonian coincides with the PAW

Hamiltonian, Eq.(5) for B=0, and with the PAW Hamil-
) ) ) o _ tonian, Eq.(13), for B# 0 in systems with a single augmen-
To restore the translational invariance within a PAW-like tation region centered at the Origin_ Moreover, as expected,

approach, we introduce a field dependent transformation ophe GIPAW eigenenergies are exactly invariant upon trans-
eratorZg, which, by construction, imposes the translationaljation, in contrast to the PAW eigenenergies.

invariance exactly,

D. Gauge-including projector augmented-wave method

For later use in perturbation theorﬁ can be expanded in
powers ofB,

Teg=1+2, eV RXE| g ) —[ g )] (PR ale” 12 R¥E,
R,n

(16)

This new transformation defines our approach, which we calfthere H@=H( is the unperturbed Hamiltonian given by

the gauge-including projector augmented-wa\@PAW) Eq. (5) and
method. In the following, we indicate with a bar the pseudo-

H=H©+HD+0(B?), (20)

wave-functions and operators obtained usingZh@perator ﬁ(l):i L+2 Rx V| .B (21)
by analogy to B'Iohl’_s use of the tilde. By construction, the 2c R R '
pseudoeigenstate$¥), generated from the all-electron where
eigenstates usingV)=7g|V), satisfy the same translation
relation as the all-electron eigenstates given by(E§).. The 1

’ en by V=TIV, 22

GIPAW pseudo-operatc!szgOTB corresponding to a lo-

cal or a semilocal operatd is given b ) o
P g y and with square brackets we indicate the commutator.

0— (i/2c)r-RXB|R
O O+R;m e |PR,n) F. GIPAW current operator

X[ (g o€ (7207 RXBO 20 -RXB| Another observable required to compute the NMR chemi-
RN R.m cal shifts is the current. The all-electron electric current op-
— (g n|e” (2 RXBQglif2e)r-RXB| g )] erator evaluated at the positioh is
~ —(i/2c)r RXB A(r') Bxr’
X{Pronl® ' I (OB L R e Y N O S Ol

There are connections between our GIPAW approach and the (23)
gauge-including atomic orbitdlSGIAO) and the indepen-
dent gauge for localized orbitdl§IGLO) methods, widely whereJ®(r’) is the paramagnetic current operator,
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Py = — p[r'Xr |';|r r |p. (24 WY =G(e ) HO| W Oy, (32)
The Green-function operator is
Using Egs.(17) and (18), we obtain the corresponding Gl-

PAW operator POy (p )
g(s)=§ — (33)
_ r’ ) e
IrH)=J°(r")— ’ apm (i/2c)r-RXB AJP(r!
(r’) (r’) 2 (el ; © [AJR(rY) with the sum running over the empty orbitadsReordering

the different contributions of Eq31) we obtain

+AJCFie(r/)]e—(i/2C)r~R><B, (25)
(l) —i(1) (l) (L)
where ) = fhad 1) +Hiap(r) +iag(r’), (34)
where
R(r) =2 [Pra)[{brnl (1)l drm)
nm idr) =43 RE(TIIPr )G HOW )
~(Pral () [ Srm (PRl (26) .
is what we call the paramagnetic augmentation operator, and - zpps(r')BXr’. (35
dres BX(r'—=R) ~ N Re stands for taking the real part an@’Yr’)
A‘JR(r ): - T 2 |pR,n>[<¢R,n|r ><r |¢R,m> _(O) _(0) . .
nm =23 (W' )(r'| W) is the ground-state pseudodensity.
~ 1 ~ The paramagnetic correction to the current is
_<¢R,n|r ><r |¢R,m>]<pR,m| (27)
is what we call the diamagnetic augmentation operator. =2 4Re{<q7<o>|mp,(r/)g(so)ﬁu)@m)]
As for the Hamiltonian, for perturbation theory purposes R o ° °

it is useful to expand the operaﬁ(r) in powers ofB, . 1 o

. _ +2(W O —[BXR'-r,AJR,(r")]|[¥ )},

I =30(r")+ 3TN (r') +0(B?), 29) ° lize ® °

with (36)

and the diamagnetic correction is

IOy =3P(r")+ >, AJR(r) (29 _
R = 22 (VO[T O, (37)

and

Notice that the last two current contributiorj§)(r’) and

(1)(r ), are written as a sum over augmentation sites and

Ty = 2 e+ 3 | adke)
2 = R vanish outside the augmentation regions, where the all-
electron and pseudo-partial-waves coincide.
1 By construction, the currenf')(r’) computed within the
— ) Pr’ S "
+ 2ci [BXR-r AJR(r )]} (30 GIPAW formalism is, as all physical observables should be,

invariant upon translation of the system by a vedtor.e.,
after translation the new current shouldjb8(r’ —t). Inter-
estingly, all three termg ('), j$A(r"), andj§)(r’), are
Within density-functional perturbation theory, the currentindividually invariant upon translat|on The invariance of
can be computed using the GIPAW operators and wave fung{})(r’) is obvious from the definition of thAJi(r’) opera-
tions as tor, Eq.(27). The invariance of the other two contributions is
less evident, and to prove it, we need to manipulate E§.
Sy (1) 370)/ w7 a1 (O S (0)[370)/ 1 [ (1 and (36). To this end, we notice that the second term in the
i )_22 RTE’ )|‘]( r )|‘1'f) )>+<‘PE’ )|‘]( r )|‘1'f) )> right-hand sidgrhs) of Eq. (35) can be rewritten as a com-

IV. CURRENT RESPONSE IN FINITE SYSTEMS

_ _ mutator,

+H(PPIW )], (3D)
Here the factor of 2 accounts for spin degeneracy and the B Z_CPpS(r')er’
sum runs over the occupied orbitads The wavefunction
SHONE : ™ s 1 — 1 —
|w (0 is an unperturbed eigenstate 18t with eigenvalue =2> 2_C<\pgo)|i_[Ber.r'Jp(rf)]|\pE)0)>_
ey and | WYY is its linear variation, projected in the empty ©
subspace (38

245101-5
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We can now use the generalizédum rule established in
Appendix A, Eq. (A7), with the operatorsd®(r’) and
AJpR,(r’) in the place of© and the operatar in the place of
£, to rewrite the second terms in the rhs of both E85) and
(36), obtaining

I4r1=43) R (TP 16(eg O

!

— BXx
_ <\I,£)0)|Jp(r r)g(go) 2Cr

i) oo

Q= 42 Re[@é“lmp,<r'>g(eo>ﬁ<”|€é°>>

— BXR’
—(TOIATR, () G(50)n

2¢c 'V|\P20)>}'

(40)

wherev=1/i[r,H®] is the velocity operator. Now the trans-
lational invariance of{n{r") andj{(r’) is more explicit,
since on translation botBXxr'-v/2c and BXR'-v/2c gen-

erate an extra term equal Bx t-v/2c, as doeH @), if, after

the translation, we rewritel (1) in terms of the variable of the
translated coordinate system—(t).

V. CURRENT RESPONSE IN EXTENDED SYSTEMS

In Sec. lll we developed a theory for a system containing

PHYSICAL REVIEW B3 245101

then it becomes clear that they are indeed well defined. The
Green-function operatdj(e,), in an insulator, and both the
paramagnetic augmentation operam}g,(r’) and the non-
local pseudopotential operawﬂ' are short rangetf This
ensures that contributions to the current response for large
values of ¢—-r'), (R-r’"), (r—R’), or (R—R’) in Egs.

(41) and (42) vanish.

VI. CURRENT RESPONSE IN INFINITELY PERIODIC
SYSTEMS

The expressions given above are valid for any extended
system. However, the only such computationally tractable
systems are those exhibiting translational symmetry or infi-
nitely periodic systems. We now develop the equations mak-
ing this translational symmetry explicit, by writing the elec-

tronic states as Bloch functioria %) =e'*"[ul%), wherek
is a reciprocal-space vector within the first Brillouin zone
and the corresponding eigenvalues arg,. The cell-

periodic function(r|_(°) is normalized within the unit cell.
In order to take full advantage of this translational sym-
metry we first define the functior,{r’,q) andSyy(r’,q)

as
1
Re T

X (WO IP(r')G(e4)BX ;-

>

X,¥,Z O

Spard I',0) =

OII\)

glati (=

a single augmentation region located at the origin, and then
later for several augmentation regions. We must now check
that our results are still useful in situations involving an in-
finite number of these augmentation regions, as is the case in
the solid state.

The expression foj{l)(r') given by Eq.(37) can be
straightforwardly applied to solid state calculations. But, the
contributions to the all-electron currefif){r") andj(Alg(r’)
given in Eg.(39) and Eq.(40) involve expectation values of
the position operator. As these are not generally defined in an
extended system, one might worry that E®) and(40) are
not valid. However, if they are rewritten in the following
way:

> Re[
i=X¥.Z R’ o

X (WA, (1) G5 )BX -

OII\)

Sap(r’,a)=

glati r-R"p

"% eiqa"‘RR')VrF?)l*?é"b , (44)

where theu; are unit vectors in the three Cartesian direc-
tions. We can then write

O (! )— 2 Re{(\l_f(o)pp(r’)g(s )((r—r’)Xp 1
Joar 5 ° ° JGadr) = lim S Soard 1) = Spad T =] (49
q—0
+§R‘, (R—r")x VA ~B|~1rg°)>} (41)
J(r=lim —[sAp(r Q)= Spp(r',— )], (46)
and a0 2
This can be seen to be correct by expanding the exponentials
6= 3 R (WP (17)0e)| (- R)xp  1EGS(49 andgh aseh s iai, xi O(a ek
ing the limits in Egs.(45) and (46) and comparing them to

Egs.(41) and(42). The limits taken using the expanded ex-
ponentials are valid since only finite valuesxoontribute to

42
42 the total currentas established in Sec.)V

+, (R—R/ )XV
R

-B|\Iff)0))}
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The description of the electronic states as Bloch functions 2 2 E 1
allows us to rewrite the summations over the infinite numbe#" @ = cNy &, A ReT
of occupied states in Eq§43) and(44) as summations over
k-dependent quantities Comp_uteq within a single unit cell. KURIAR e 0 (1) G g (8010 BXG Vi (UKD |- (5
The k-dependent Green function is
These expressions fd,,{r',q) and S,,(r’,q) allow the
I_(O))(_(O)I 4 evaluation of the all-electron current response through Egs.
Glo)=2 = 47 (45), (46), and(37).

e

A consequence of reexpressing the current contributions in

terms of Sy {r',q) andSyy(r',q) is that we must evaluate VIl. SUMMARY OF APPROACHES

several quantities ak and k+q simultaneously. For ex- _ _

ample, the usual form of thk-dependent nonlocal pseudo-  There are three different approaches that we could take in
potential operator is generalized, the calculation of the first-order current response to a uni-

form external applied magnetic field. If the current response
2 2 in an extended periodic system is required, then the approach
k K’ |p7n>an m<p7m| (48 gescribed in Sec. VI must be taken. In this case, the expres-
sions given in Eqs(45), (46), (52), (54), and(37) are evalu-
This operator acts on Bloch functionslato the left, andk’  ated, and it is referred to as the “crystal approach.” The total
to the right. Fok=k’, VE[k, coincides with th&k-dependent current response in a finite system can be calculated using
nonlocal pseudopotential operator, as implemented in plandzgs.(35), (36), and(37). This approach is referred to as the
wave pseudopotential codes. Tkalependent projectors in  “molecular approach.” Alternatively, using the results of the
terms of|pg ), the real-space projectors, are given by generalized-sum rule, Eqs(39), (40), and(37) can be used.
This is the “molecular sum-rule approach.” Settiig=1 in
~K _2 k(LD the GIPAW formalism, i.e., in the all-electron case, the crys-
Pan= - € [Pt zn)s (49) tal approach becomes equivalent to the MPL methdue
molecular approach becomes equivalent to the single gauge
where thel are lattice vectors and the are the internal method[Eq. (3) of Ref. 17, and the molecular sum-rule
coordinates of the atoms. We arrive at analogous expressioggproach becomes equivalent to the continuous set of gauge

for both the velocity operator, transformation methdd (CSGT) with the d(r)=r gauge
function[Eq. (8) of Ref. 17].
Vi =—iV+HK += [r Vk ol (50) The crystal approach can be used to calculate molecular

properties through the use of large supercells. If the general-
izedf-sum rule holds, then the results obtained by each of the
three approaches should be equivalent. This is demonstrated
(=iVH+K)[r [+ W (=i V+K') in Sec. IX. If the generalizeéisum rule does not hold well
JE’k,(r’)z — 5 . (for example, if the basis set used is far from completeness as
(51) is the case for the atomic-orbital basis sets used in most
quantum chemical calculatio$ then the crystal approach
Combining the above we arrive at a compact expression foand the molecular sum-rule approach will still give the same

and the paramagnetic current operator,

Soardr'10): results. However, the results obtained using the molecular
approach will be different. In particular, we expect that the
Soud )= 2 R{} molgcular approach will require a mugh Iarg_er atomic-orbital
CNyi5%y.2 ok basis set to converge the NMR chemical shifts than the other

two methods, as it has been proved to be the case for all-
X<U¢(3(,)l1|‘]£,k+qi(r,)ngrqi(so,k)Bxai'Vk+qi WUl ], electron Hamiltonian& This is because the two terms in Eq.
(35) [as well as the two terms in E¢36)] of the molecular
(520  approach converge at different rates with respect to the com-

) pleteness of the basis s&t’
whereq;=qu; andN, is the number ok points included in

the summation. Similarly, by also defining
VIIl. CALCULATION OF NMR CHEMICAL SHIFTS

AR L) = nzm DS ( DLt mnl P(r )DL ) It is important to show that the GIPAW method is a prac-
' tical approach to the calculation of NMR chemical shifts. We
_<(7,L+Tn|\]p(rf)|(~m+7m>]<55’m|1 (53  have therefore implemented the method into a parallelized
' ’ plane-wave pseudopotential electronic structure Cd&aich
the expression for the paramagnetic augmentation term is codes self-consistently calculate the ground-state electronic
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structure. Specifically, the self-consistent Hamiltontaf?) ~ numerical derivatives which must be take in reciprocal space
. 12 (0) . in order to evaluate the velocity operators. And in practice
and the corresponglmg wave fu_nct|o|nlsn > that appearin e take the same value for the reciprocal-space step size in
the above expressions are obtained. In this section we O“t“rl?oth cases. The same considerations apply. The step should
the features of the implementation that are specific to th%e chosen to be small enough that the resulting limit is ac-

GIPAW method, and not to the pseudopotentlal me'ghod Irlzurately approximated, but not so small that numerical noise
general. The plane-wave pseudopotential method is moﬂominates A typical value is 0.01 Bohk.
naturally suited to the crystal approach for the calculation o ' ' '

NMR chemical shifts. However, we also implemented both

molecular methods in our plane-wave code, for complete- D. Finite systems in periodic boundary conditions
ness. This is described in Sec. VIII D. Both the molecular approach and the molecular sum-rule
approach were implemented. The major difference between
A. Application of the Green function these approaches and the crystal approach, from a computa-

tional perspective, is that the reciprocal-space numerical de-
rivative is replaced by a direct application of the position
operator to the wave functions. Clearly, the position operator
is not defined within periodic boundary conditions. But we

There are several points at which first-order wave func
tions of the form

1)\ Y 0
|\p$‘ )>_g(8”)H(1)|\PE‘ )> (59 can treat it approximately by constructing a periodic saw-
must be evaluated. The Green functi@fe) is given by toothlike function(in practice we build the function in recip-
rocal spacke Near the center of the simulation cell, or about
|\I_,(0)><E(0)| wherever the sawtooth is centered, this operator approxi-
Ge)=2, e e (56) mates the position operator. This approximation improves as
e €7 8e the size of the simulation cell is increased, and for good

and a naive approach would require the explicit summatioﬁeSUItS the magnitude of the induced curr_ent should be_small
n the surface where the sawtooth function changes sign.

over all empty states. This is unnecessarily arduous. We can
multiply Eq. (55) through by ¢,—H®). If we then write

Q=3 T ONTO|=1-3 | OV where the sums o
overo ande are over the occupied and empty states, respec- The GIPAW approach separates the contributions to the

E. From the current to the NMR chemical shifts

tively, we obtain current response into a bare tefi§})(r), and two correction
o o terms, the paramagnetic and diamagnetic correcti@j@)
(en—HO) | ¥ W)= oHD)|p )y (57) and j{)(r), respectively. To compute the NMR chemical

o ) ) ) _ shifts, using Eq.(2), the induced magnetic fieI(Bi(,})(R),
This is a linear system involving only the occupied statesmst be evaluated at each nuclear posifianin principle,
and can be solved using a conjugate gradient minimizatiogne could combine the three current contributions and obtain
schemé* as in Ref. 7. This approach ensures that OurBi(nl)(R) from the total current using Eq1). We use a dif-
r_nethod is comparable in compu_tational cost to the calculafgrent approach. We take advantage of the linearity of Eq.
tion of the ground-state electronic structure. (1), and we solve it for each of the three current contribu-
tions, obtaining a bare induced fi ?re( R), a paramagnetic
B. The velocity operator correction field B{)(R), and a diamagnetic correction field,

The velocity operatow= 1/i [r,ﬁ(o)] appears in various B(Ald)(R)- o _
guises throughout the relevant expressions above. The veloc- 10 compute the correction fields, we suppose that just the
ity operator may also be written as the first derivative of thecorrection currentg$(r) andj§J(r), within the augmenta-
k-dependent Hamiltonian with respectkoThe term related  tion region Qg contribute toBS{)(R) and B{J(R) at the
to the kinetic energy is straightforward to evaluate, and ishuclear positiorR. Using this on-site approximation, com-
simply the momentum operator. The term due to the nonlobining Egs.(1) and(37), we obtain
cal potential, which is defined numerically, is best obtained
numerically. In our implementation we simply take the ap- — . JU—
propriate numerical derivative of tHe-dependent nonlocal BH(R)=2 > (TOpr el n(Prml TP, (58)
potential operators. The derivatives are evaluated by calcu- o.mm
lating the nonlocal potential at, saly,andk+ q, whereq is

. . where
chosen to be small enough that the resulting numerical de-
rivative is accurate, but not so small so as to introduce nu-

merical noise. R (R=r)X[BX(R—r)]
en,m <¢R,n| 2CZ|R— r|3 |¢R,m>
C. The crystal approach
The crystal approach requires that the limits of E4®) —(3R n|(R—r)><[B><(R—r)] W,R . (59
and (46) are evaluated. These are, in effect, similar to the ’ 2¢?|R—r|3 ’
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The coefﬁcientseﬁm depend only on the atomic species, and ., 1
need only be calculated once. Similarly, within the on-siteQ(@)=— > Re{ 2
approximation, by combining Eq1) with the equations for =z ok [ENWVe

thej(Alg(r) correction current, we obtain expressions for the —oy ) . —0)
paramagnetic correction field{)(R), which depend lin- X(Uo [ UiX (= TV +K) Gt g (80,10 Ui X Vicr g k|Uo ) |+ (65)
early on the Coefficientﬁ?’m,

andV_. is the unit-cell volume. In support of this ansatz, one

R Ly - Lrp -~ can show that whefflg=1, i.e., in the all-electron case, the
fom=(Pronl m|¢R,m>_<¢R,n| mhﬁam)y definition of ¥yare, E. (64) becomes equal to the expression
(60) for the calculation of the all-electron macroscopic magnetic
susceptibility, as derived in Ref. 8.
where Lg=(r—R)Xp is the angular momentum operator F. Projectors

evaluated with respect to the atomic dReAgain, the coef- In our implementation, we use norm-conserving

. u R . .

ficients f, ,, depend only on the atomic species, and needrqjjier-Martins pseudopotentidfswith single projectors

only be evaluated once. _ ) ) for each angular-momentum channel. As a result, the argu-
To compute the bare induced fielfl;:(R), we Fourier  ment in Section 11l B holds and the(}) terms are zero.

transform Eq.(1) and j{Z}{r") into reciprocal space. The However, in contrast to what Van de Walle and &bfound
induced magnetic field can then be simply evaluated as, for the calculation of hyperfine parameté?sye found that a
minimum of two projectors per channel were required to

icxi® (g ensure good transferability of the GIPAW current correc-

1 477 | XJbare( ) . . . .

B{(G)=— — (61)  tions. Otherwise, the projectors are constructed as described
¢ G in Ref. 18, except that we choose a polynomial step function

. . ) f(r) so that the pseudo-wave-functions are cutoff smoothly

Where? is a reciprocal-lattice vector. We subsequently ob-at some distance less than the pseudopotential core radius.
tain B{L)(R) by a slow Fourier transform at the nuclear po-
sitions R (since the nuclear positions do not coincide, in
general, with the points of the fast Fourier transform prid IX. NUMERICAL TESTS OF THE GIPAW METHOD

For G=0, Eq. (61) cannot be applied. Indeed tl@&=0 A. Comparison with IGAIM results
component of the induced magnetic field is not a bulk .
property’ The G=0 component of the induced field is af- ~ Quantum chemical approaches have long been able to
fected by the surface currents that appear on the surface Bfedict the NMR chemical shifts of smigllsmolecules, and one
the sample. In particular, its value depends on the the shag the most widely used is theaussiang4™ quantum chemi-
of the sample, and is determined by macroscopic magnet&-al code. Rather than compare our GIPAW method directly

statics. Following the experimental convention, we assume & €xperimental chemical shifts, to avoid ambiguity we
spherical sample in our calculations, for which choose to benchmark our method against this established all-

electron quantum chemical approach. The agreement of
quantum chemically calculated chemical shifts with experi-
Bi(nl)(G=0)= 8_77)7 B, (62 m%nt has been com_prehensively exar_nined by.Cheeseman
3 al,” and so success in this benchmarking exercise would lead
us to expect that the GIPAW method will show similar
where ¥ is the macroscopic magnetic susceptibilitfo be agreement with experiment. Gregerall’ used thecAuss-
consistent with the on-site approximation for the correctioniangs code to optimize the geometry and calculate the iso-
currents, we should not take into account the contribution ofropic chemical shift of a selection of small molecules using
j$(r) andj{(r) to B{)(G=0), and so we use both the GIAO and IGAIM method$We compare our Gl-
PAW results[all chemical shifts reported here have been
8 calculated within the local-density approximatidriLDA)]
B (G=0)= 7 Xoard, (63)  to the IGAIM results for several of these moleculesing
exactly the same relaxed geometyigs Table |. The total

- I . _isotropic chemical shifts computed with GIPAW agree very
where Ypare IS the contribution to the macroscopic suscepti-yell in all cases with thesAUSSIAN94 results.

bility coming from the bare curren){r). Within the crys- The GIPAW results presented in Table | were evaluated
tal approach, we use the following ansatz j@ye: using the crystal approach, but results obtained using the
molecular approaches differ typically by less than 0.1 parts
~ E(a)— 2F0) + B(— per million (pp_m) in sufficiently large simulation cells, as
Xbare= liM (@)-2R0)+ K q)' (64)  demonstrated in Table II.

q—0 q° The GIPAW results are converged to the 0.1 ppm level
using a plane-wave cutoff of 100 Rydbergs, a super-cell vol-

whereF;;(q) = (2— 6;)Q;;(q), i andj are Cartesian indices, ume of 6000 Boht, and a 2<2x2 Monkhorst-Pack
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TABLE I. Isotropic absolute chemical shifts calculated using the IGAIM method by Gregal (Ref.
17) and the corresponding GIPAW-LDA results. The GIPAW calculations were performed using a plane-
wave cut-off of 100 Ry and in a 6000 Bdohsimulation cell. With “bare,” “Ad,” and “Ap,” we indicate
the valence GIPAW contributions to the chemical shifts, given by the bare E%R) and the two
correction fieldsB{)(R) andBS)(R), respectively. The core contribution to the GIPAW chemical shifts is
assumed to be constant and evaluated in an all-electron atomic code. All quantities are given as ppm.

Molecule TGIPAW TI1GAIM
Core bare Ad Ap Total Total
H atom
CH, 0.00 30.47 0.40 0.00 30.87 30.99
CH;F 0.00 25.71 0.41 0.00 26.13 26.50
CeHs 0.00 22.33 0.41 0.00 22.74 23.25
T™MS 0.00 30.41 0.40 0.00 30.80 31.02
SiHzF 0.00 24.92 0.38 0.00 25.30 25.13
Si,H, 0.00 24.53 0.36 0.00 24.90 24.78
SiH,4 0.00 26.96 0.37 0.00 27.33 27.28
C atom s
CO 198.88 —126.25 4.59 —100.15 —22.93 —21.16
CH, 198.88 16.86 3.97 —28.76 190.96 191.22
CH;F 198.88 —49.64 3.93 —54.70 98.47 99.66
CH;NH, 198.88 —13.98 3.91 —39.05 149.77 150.44
CeHe 198.88 —89.51 4.07 —77.32 36.12 39.52
CF, 198.88 —-92.12 3.51 —76.05 34.22 35.29
T™MS 198.88 9.12 3.97 —32.65 179.33 182.08
Si atom -2s2p
SiF, 832.39 —19.43 5.28 —408.26 409.97 409.69
SiH;F 832.39 —19.50 5.70 —510.30 308.29 305.45
SibHy 832.39 —9.04 5.80 —622.45 206.70 202.99
SiH, 832.39 -0.21 5.98 —410.20 427.97 424.37
T™MS 832.39 —17.39 5.70 —518.00 302.70 304.39
P atom k2s2p
PR 902.47 —32.94 6.08 —697.61 178.00 172.52
P, 902.47 —33.84 7.58 —1236.95 —360.75 —375.45
P, 902.47 49.84 7.42 —126.79 832.94 826.62

k-point grid® The states indicated in Table | were treated asand IGAIM results differ the mostalthough the errors as a
core states in the pseudopotential calculations. The core cofffaction of the range of the chemical shifts are similar for all
tribution to the GIPAW chemical shifts is assumed to benucle). So, the dominant reason for the small residual dif-
constant(following the observations of Greget all’), and  ferences between the GIPAW and IGAIM results is due to
evaluated in an all-electron atomic code. For hydrogen dhe problems associated with achieving convergence with re-
pseudization core radius of 1.2 Bohr was used and only thepect to localized basis functions. However, remaining
s-channel was augmented. As a result, since the paramageurces of the discrepancies may be due to the small, much
netic correction term is proportional to the angular momeness than 1 ppm, nonrigidity of the core contributidhsind

tum of the augmentation channgdee Eq.(60)], only the a difference in the parametrization of the local-density func-
bare and diamagnetic correction terms contribute to the totalonal used. The GIPAW calculations use the parameterisa-
isotropic chemical shifts. There is no core contribution fortion due to Ceperley-Aldet while the IGAIM calculations
hydrogen. For the carbon shifts tiseand p channels were use that due to Vosko-Wilk-Nusaif.While the diamagnetic
augmented and a core radius of 1.6 Bohr used in the generaerrection term is found to be rigid with respect to the
tion of the pseudopotential. For silicon and phosphorugithe chemical environment, both the bare and paramagnetic cor-
channel was also augmented and core radii of 2.0 Bohr usegction terms are found to be strongly dependent on the sys-
in both cases. Gregat al. attempted to converge the chemi- tem. The correction terms introduced by the GIPAW ap-
cal shifts with respect to their localized basis-set size, and thproach are therefore seen to be important even in the
convergence appears to be to the 1 ppm level for the carbgprediction of relative chemical shifts, and the rigid nature of
and silicon shiftgsee Fig. 2 of Ref. 17 However, the con- the core contribution is reconfirmed.

vergence appears to be less complete for the phosphorus In Table Il we examine the robustness of the GIPAW
shifts. It is just these chemical shifts for which the GIPAW method with respect to pseudopotentials used. A variety of
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TABLE II. Comparison of the three different GIPAW ap- TABLE Ill. The NMR chemical shift for carbon in methane
proaches described in Sec. VII. The GIPAW-LDA calculations using Troullier-Martins potentials with a range of core radii. These
were performed using a plane-wave cutoff of 100 Ry and in aLDA calculations were performed using a plane-wave cutoff of 180
6000 Boh? simulation cell. The total isotropic chemical shifts are Ry (converged to 0.01 ppm for the hardest potehtiald in a simu-

given as ppm. lation cell of 1000 Boht. With “bare,” “ Ad,” and “Ap,” we
indicate the valence GIPAW contributions to the chemical shifts,

Molecule Molecular Molecular sum rule Crystal  given by the bare fieldB{L\{(R) and the two correction fields
o atom B{J(R) andB{)(R), respectively.
CH, 30.75 30.76 30.87  core radius Tepaw
CH;F 26.02 26.01 26.13 (Bohr) Core Bare Ad Ap Total
CsHs 22.69 22.69 22.74
™S 30.76 30.76 30.80 1.2 198.88 7.30 3.96 —19.14 191.00
SiH,F 2540 25.40 o530 14 198.88 12.22 3.99 —24.08 191.01
Si,H, 24.92 24.93 24.90 1.6 198.88 17.03 3.98 —28.64 191.25
SiH, 27.57 27.58 27.33 1.8 198.88 21.65 3.92 —-32.86 191.59
C atom
CcO —22.92 —22.90 —22.93
CH, 191.08 191.09 190.96 required to reach convergence. We therefore choose diamond
CH,F 98.53 98.52 98.47  as our example periodic system. Carbon is sufficiently light
CHsNH, 149.61 149.62 149.77  that an all-electron plane-wave calculation is possible, and
CeHs 36.13 36.14 36.12  the diamond structure has a very small primitive unit cell and
CF, 34.62 34.30 3492  ahigh dggree of symmetry. The,12s, and 2 electrons are
™S 17917 179.19 17933  @all considered to be valencoe electrons an_d we construct a
Si atom pur_ely local Trother-I\_/_Iarnﬁ pseudopotential with a core
SiF, 410.12 409.85 409.97 radius of 0.4 Bohr radii.

. Table IV compares the results of a GIPAW pseudopoten-
SiHzF 308.27 308.23 308.29 . .

. tial calculation(the 1s electrons are treated as core electrons,
SibH, 206.50 206.49 206.70 . -
Sil 427 95 42795 427 97 and a core radius of _1.6 Bohr radn us)gmd the all-electron

4 plane-wave calculation obtained with the purely local

T™MS 80261 30261 302.70  Troullier-Martin pseudopotential. The contributions can be
P atom separated into core and valence terms in a gauge-invariant
PR 177.90 177.70 178.00  \yay, as shown in Ref. 17. Thus, in the case of the all-
P, —360.97 —360.97 —360.75  electron result we performed two calculations of the chemi-
Py 832.87 832.87 832.94  cal shift after achieving self-consistency, once taking into

account all the electrons, and a second time excluding the
valence electrons from the calculation of the chemical shift.
Troullier-Martins pseudopotentiaf§ with core radii ranging  The valence term presented is the difference between these
from 1.2 to 1.8 Bohr, were used to calculate the NMRtwo results. We present the all-electron results at two plane-
chemical shift for carbon in methane. While the bare contri\yave cutofis—800 and 1400 Rydbergs and ax10x 10
bution to the chemical shift is observed to change by over 1@onkhorst-Packk-point grid. All the contributions to the
ppm, the total shifts, including the GIPAW correction terms, chemical shifts are converged to within a part per million.
are constant to within 1 ppm. There is virtually no differenceThe valence contributions of the GIPAW and all-electron
in the tOtal ShiftS betWeen pOtentials W|th core radii of 1.2resu|ts differ by 0n|y 1.39 ppm which may be attributed to
and 1.4 Bohr. the slight uncorrected pseudization error that remains in the
all-electron result. We have confidence that if the core radius
were reduced to less than 0.4 Bohr radii the difference be-
tween the results of the two approaches would decrease. The

. GIPAW pseudopotential result is expected to be closer to the

As the GIPAW method presented here is, to the authorsiy,e all-electron NMR chemical shift.
knowledge, the only approach available for the calculation of
3&&'?/2&32,[::')??5 %r:)etnglgiiksjlhéf.tzg]wz?/lg?,b?/ téglrilsl[?gg?negn-a _TABLE V. The yalence contribution to the isotropic chemical
suitable pseudopotential and taking a high enough planes—hnct of crystalline diamondppm.
wave cut-off energy we are able to compare with essentiall;&,I ethod

all-electron results—in which all the electrons in the chosen

B. Comparison with all-electron plane-wave results
for diamond

Valence contribution tor

system are considered to be valence electrons. In this way welPAW —65.85
can check the corrections to the conventional pseudopoteml-electron at 800 Ry —64.89
tial results. Obviously, such calculations are computationallyaji-electron at 1400 Ry —64.46

intensive due to the extremely large number of plane waves
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X. CONCLUSIONS The sums oveo ando’ (below) run over the occupied or-

. , ;
We have presented ab initio theory for the evaluation bitals, and those over’ over the empty ones. Using the fact

of NMR chemical shifts in both finite and infinitely periodic thatH®|W{®) =& |W(®), Eq.(33), andZe|We )(We|=1
systems. We have correctly treated the complications intro—_go,|\po,><\po,|, the expression fos may be rewritten as
duced due to the use of pseudopotentials, and so, in contrast
to the original implementation of the MPL approdcive are 1 — _
not restricted to the calculation of the chemical shifts for s=—4>, Re{.—<qu°>|og|qu°>>}
light elements. We introduced an extension to the projector 0 :
augmented-wave method which is valid for systems in non- 1 — . _
zero uniform magnetic fields, the gauge-including projector +4 Re{.—(\lfﬁfwO|\I’E)9)><‘I’f)9)|€|\lf§,°)>}. (A4)
augmented-wave method. 0,0’ :

Our implementation of GIPAW into a parallelized plane- —
wave pseudopotential code allows the calculation of NMRSince the eigenstat¢® (”’) can be chosen in such a way that
chemical shifts in large, low-symmetry extended systemsr|w(®) is a real quantity, (¥(?|O]¥?)=
We expect that the methodology will prove useful in the  —., —0) 0 A T O _ (O] o1 (0) .
calculation of other magnetic properties. Our work also sug-"{ ¥k’ |O|\.I'k >. and (Wi [E[W,") = (¥, | €] W) Using
gests that the implementation of GIPAW into quantumthese relations it follows that
chemical approaches would lead to a considerable improve-
ment in their efficiency for the calculation of NMR chemical W O] (g (O /11 (0] o3 (O
shifts for heavy elements. E <\I’g )|O|\P°’ Ko |g|\pg )>
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APPENDIX: THE GENERALIZED f-SUM RULE double summation of EqA4) is equal to zero and

The generalized-sum rule holds for any pair of Hermit- 1
ian operatorg) and&, whereO and¢ are, respectively, odd s=—4> RE{.—(\I_f(°)|(’)5| E(O)>
and even on time reversal, i.e., o it °

N\ — ’ Al J— 1 .
and ° !
(&l P"Y=('|El ) (A2) From this expression we finally obtain the generalizedm
rule
for any|¢) and|¢’) such thatr|¢) and(r|¢’) are real. It
is straightforward to verify thap, L, v, v[;', J°(r"), and _ 1 _
AJR(r') are odd, and that and operators that are a function > (v i—[€,(’)]|‘lf§)°’)
of r are even. To derive the sum rule, we consider the quan- °
tity

=—43 Re{@g(’)lOg(eoﬁ[aﬁw’]l\?éob :

— 1 _ —
_ (0) - (0)7]r (0)
s 42 Re{mfo [0G(20)7 [EHPN[WS7) | (A3) (A7)
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