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We study optical spectra of finite electronic quantum systems at frequencies smaller than the plasma fre-
guency using a quasiclassical approach. This approach includes collective effects and enables us to analyze
how the nature of thésingle-particl¢ electron dynamics influences the optical spectra in finite electronic
guantum systems. We present an analytical expression for the low-frequency absorption coefficient of electro-
magnetic radiation in a finite quantum system with regular ballistic electron dynamics; a two-dimensional
electron gas confined to a strip of widthwith specular reflection at the boundarigair approach is not
restricted to systems with regular electron dynamics; it applies equally in the case of diffusive or classically
chaotic electron motion By comparing with results of numerical computations using the random-phase ap-
proximation we show that our analytical approach provides a qualitative and quantitative understanding of the
optical spectrum.
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Optical spectra of finite metallic systems have been inten- Much less is known about optical spectra in the frequency
sively investigated for almost a century. Early approacheslomainA/i<w<w,, despite the fact that this regime is of
such as Mie’S are of classical nature. In Ref. 1 the absorp-Particular interest: One expects that the spectra strongly de-
tion of electromagnetic radiation by conducting spheres iPend on the nature of thsingle-particlg electron dynamics:
determined. It is shown that the absorption spectrum exhibitd? ballistic systems withregular dynamics, for example, it

. was argued that optical spectra should exhibigssonances
a resonance a&)p/\/§ (where w,, is the bulk plasma fre-

due t llocti ¥ ¢ the ch X near multiples ofw.=wvg/a (see also Ref. 18 Usually
quency due to collective motion of the charge carriers. 4,5 <, < ,. Moreover, according to Ref. 17, these reso-

In the last decades there has been a substantial amount @dnces should overlap to giveinear frequency dependence
work on the nature of such collective resonances in metalligf the absorption coefficient fop> w, in two-dimensional
clusters’ nuclei? thin films,*~® small metal particle$,and  systems(classical and local electromagnetic theories predict
dimensionally reduced quantum systém&investigating, in  a quadratic dependence independent of dimensithese
particular, quantum-mechanical effects. In most of theseare striking and unexpected results. They were, however, ob-
cases, the electron dynamicsiallistic (the mean free path  tained within a TF approximation which is valid in tiséatic
is larger than the system sizg. The majority of theoretical limit. It must be examined to which extedynamicscreen-

papers on the Mie resonance of finite metallic systems us#@d effects may modify the results. Finally, many experimen-
the so-called random-phase approximati®PA), a self- tally relevant systems exhibit chaotic electron dynamics. It is
consistent, quantum-mechanical approach incorporating co}hus necessary to quantify how optical spectra differ from the

lective effects. The nature of the Mie resonance in ﬁnitegﬁgggcgedlctlons when the electron dynamics is classically
electronic quantum systems is well understood, both qualita- Num.erical calculationgbased, for instance on the RPA
tively and quantitatively(for a recent review see, for in- gre jjl-suited to answer these questions: They provide little
stance, Ref. p qualitative insight in the low-frequency region and, more im-
The emergence of the field of mesoscopic physics haportantly, it is necessary to consider small systems or to
fueled an increased interest in the electronic and opticahake use of symmetries in order to make the numerical com-
properties of finite, disordered quantum systemigh diffu-  putations feasible. Disordered ata@symmetri¢ chaotic sys-
siveelectron dynamicd,<a) in external fields. In this con- tems are very difficult to deal with. In order to understand
text, attention has largely focused on static properties, i.e., ohow the classical single-particle dynamics is reflected in op-
frequencies of the order of or smaller thAtz, whereA is tical spectra of finite quantum systems, it is thus greatly de-
the mean level spacing of the system in questitii is  sirable to have an analytical theory incorporating collective
generally smaller tham, by many orders of magnitude. Me- effects.
soscopic fluctuations of the static polarizability and the ca- The main result of this paper is an analytical expression
pacitance, for instance, were characterized in Ref. 11, anfibr the absorption coefficient for a two-dimensional electron
the electron density itself in Ref. 12. In all of these casesgas confined to a strip of width [Egs. (14) and(15)]. This
collective effects must be taken into account in order to adis a simple example of a two-dimensional finite electronic
equately deal with the screening of the external field. In theguantum system. It should exhibit all features discussed in
static limit, a Thomas-FermiTF) ansatzis appropriaté’*?  Ref. 17. At the same time numerical RPA calculations are
This was pointed out in Refs. 13—15 discussing the results dieasible and allow us to discuss the accuracy of our analyti-
Gorkov and Eliashbeld on the polarizability of small me- cal approach.
tallic particles with disordered walls. In the following it is assumed thakh/i <w<wp,Eg/f
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whereEr is the Fermi energy. It is furthermore assumed that 7h2e?w? 2a=Er

M S>a>\g where ) is the wave length of the external a(w)ZT (Yol @l ) (5
radiation, 5 is the skin depth and( is the Fermi wave- 2A%Eg By gm0

length. . . .Second, the matrix elements gf are evaluated within a
We consider a closed metallic quantum system placed iy i |assical approximatidf2L=2* Third, ¢ itself is deter-

an external electric fieldEe, [with a time dependence | .iyoq within a quasiclassical approximation: According to
ocexp(@t)]. If the wavelength |s.much Iarger than the sys- Eq. (1), the effective electric potential is given kin sym-
tem sizea, the external field is approximately constant pq)ic notation

throughout the system angheglecting retardation effegts L
can be written as the gradient of an electric potential p=—1II, 0. (6)

Pexi() =Eoxe, [r=(x,y,2) is a three-dimensional coordinate |n order to determineSe, Egs. (1) are usually solved nu-

vector]. As is well known, within the RPA, the electronic merically, using a real-space discretizaftbor by expanding

response of the system E, is calculated by solving a set in a suitable basis set. An approximate analytical solution

of self-consistent equations for the effective electrical potenmay be obtained by noting that far<w,, ||GIIg|[>1. In

tial o(r) = @e, 1) + So(r) [ S¢(r) is the potential due to the other words e is well approximated by the classical charge

induced charge densit§o(r)] density 5o of the metallic system subjected to an external
potential @y,

5<p<r)=f dr' G(r,r')de(r"), (1) Apa=—0Qal€ (@)
With @ (1) — @ex(r) as|r|—o andey=0 within the system
(in the classical Iir_nit, the external field is thus s_creened out
so(r)=— f dr' Tlo(r,r @) o(r) completely. Eguauon(?) mgy be solyed foﬁg_c, using s'Fan-
dard method$® Fourth,I1, is determined within a quasiclas-

_ B _ sical approximatiof{:?°
with the boundary condition thate(r) vanishes agr|

—o. G(r,r') is the Green function of the Laplace equation o(r,r";0) =2 S(r—r") +iwP@(r,r";w)], (8
’ -1 ’ H H : . . . .
AG(r,r')=—¢€;6(r—r’), € is the dielectric constant. wherev, is the density of states per unit volumedmlimen-
Ho(r,r'";w) is the nonlocal polarizability sions andP{¥(r,r’; w) is the Fourier transform of the clas-
sical propagatoP@(r,r’;t). In ballistic systems it is written
f(e,)—f(ep) as a sum over classical pathgromr to r’

Mo(r,r';w)=—2e2>,

2 vamephoriy Vo)

. PO w)= >
X ‘!’B(r) ’/’a(r)y (2) cl. pathsp

de{(—,) lexp(im ).
(71p,Np) P
9

e is the electron charge,, and ¢,(r) are the single-particle Here 7p is the time taken fromm to r’ along the patlp, and

eigenvalues and eigenfunctions of the undisturbed systenm,, is a unit vector describing the direction of the initial

they are usually calculated with in a Hartree-Fock or a localvelocity. The case of diffusive dynamics was discussed in

density approximation.f(e)=0®(Eg—¢), and y>0 is Ref. 28.

smaller thanA. Within the RPA, the absorption coefficient ~ We emphasize that the assumptions and approximations

(proportional to the energy dissipation per unit timeay be  outlined above applindependently of the nature of the elec-

written as tron dynamics In the following we show by comparison
with quantum-mechanical RPA calculations that our ap-
proach provides a qualitative and quantitative description of

hw
a(w)z?lm d(w), (3) the absorption spectrum in the frequency rangei <w
0 <wp.
Two-dimensional stripWe consider a two-dimensional
where electron gas confined to a strip in tkey plane surrounded

by vacuun?® subject to a time-dependent electric figlgd,,
directed along the negativeaxis [compare Fig. (@)]. The
width of the strip(along thex axis) is a, its lengthL (along

the y axig), with L>a. Within the system, the electrons
is the (complexy dipole moment and the asterisk denotesmove ballistically, and they are specularly reflected at the
complex conjugation. boundaries ak= +a/2.

In the following we derive an explicit analytical expres-  We write do(r)= 6o (x,y) 8(z). For L>a, the surface-
sion for the absorption coefficient(w) of a finite electronic  charge densityyo depends o only and the resolver® is
guantum system in an external electric field, valid in thewritten as
frequency rangd /% <w<w,. We make use of the approxi-
mations suggested in Ref. 20. First, according to Fermi’s 1(dg 1 gid(x—x") g lal[z-2']

d(w)=f drdr’ So* (n)Iy(r,r";w)e(r") (4)

golden rule, the absorption coefficient is =) 27 2[q (19
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4761 - . a s FIG. 2. Left: o(x) for a strip of widtha=10°[a.u] with rg

=1: quantum-mechanical resulfs), analytical results according

(a) (b) to Eq.(12) (—) and Eq.(13) (— — —). The inset shows the correc-
tion term @pg(x). Right: Shows Imd(w) (for a= 10* [a.u]
FIG. 1. (a) Electric field lines(in the x-z plane for an infinitely andrs=1) as a function ofw: RPA result(—) and Eq.(14)

long metallic strip of widtha (in thex-y plane, oriented along the  (— — —). The inset showsr(w) as a function ofw: RPA result

axis) placed in a constant external electric figig,= — Eqe,. (b) (—) and Eq.(15 (———). As usualrg=ry/a, wherea, is the

Classical paths from to X" contributing toA o(X,x"; »). Bohr radius and is the length scale defined in terms of area per
electron.

With

1 The intuitive ansat413) is justified by observing that the
- Cere N ’. p difference between Eqél3) and(12) is small except fox in
Lj dydyTo(rir;@)=Ao(xX";@)8(2)8(z"), (1Y) boundary layer of widtlbx<v/w. This difference is thus
. _ termed boundary contributiomspg, -
the RP.A equatlon_s(l) are redLE:ed to. a set of one Figure Za) shows¢(x) according to Eqs(12) and (13
dimensional equations fore(x,z=0) with the kernel . . .
compared with the results of a numerical RPA calculation.

Ao(X,X"; ). We model the confinement in thxedirection by One observes excellent agreemé@nd is small excent
introducing hard-wall boundary conditions. This is adequate 9 Phdy P

in the range of parameters considered below and simplifie%t tge b)outr;](iaz)/ S:I;E;u Itsotz k;](ii\g/‘;hat:no;klzggzrgeg#; r;(r:]'te s
the quasiclassical analysis. We solve the resulting selff @~ @ y P dyn g

consistent equations numerically using a real-space discretﬁ:-OntrIbUtlon tog and dynamical screening effects cannot be

zation and obtain the absorption coefficient from E). neglected. For the absorption coefficient we obtain using

The corresponding quasiclassical approximationaftw) Egs.(5) and(12)
is obtained as described above: The classical surface-charge

dd
density is determined by solving E(}) in elliptic cylinder ()= Wzﬁfga w_2 . Mzwc_wsz( 2)
coordinates: S (X)=2eoEq(a%/4—x?) Y20 (|x| — al2). alw)= v, w? u-Tolod 2 ilpm

The corresponding classical field lines are shown in Fig. ¢ (14)

1(a). According to Egs.(8),(9) the one-dimensional kernel
Ao(x,x"; ) is given by a sum over classical paths as showrnwith limiting forms
in Fig. 1(b) which may be summed by Poisson summation.

Using Eq.(6) one obtains for the effective electric potential m?Chejan?l(e?v,0,) for w<wg,
a(w)= 15
(@) Wﬁegawl(4ezvz) for w>w, a9
e(x)= 2, @, codpm(xla+1/2)], (12
>0
M 2 N T T T T T
2megEy \/wz—wguz T 3 M '; 15 ]
o= > _ 2 23|n 7 1 T . T i i
e vy, w \/w [Opy7 E 0.5 ]
In the limit of w—0, ¢(X) tends to the linearized TF poten- =)
tial @gu(X,2=0)= (€90 " *80(x) where qs=€?v,/¢ey is & s
the two-dimensional TF screening vector. In the limit of ) /
large frequenciesd>w), ¢(x) tends toggy, in the bulk of -1t W, = 1,234 ]
the sample, a dynamical contribution corresponding to a cur- 15 ‘ N,
rent building up the screening charges. It 0be§@ 4,/ x* 2= ' ' ' '
= — (Mmw?/e?) o/ oy wherem, is the electron mass an, -04 -02 ﬂao 02 04
is the areal charge density of the electrons. One may argue
that FIG. 3. Showsg(x) for a thin film of width a=50[a.u] with
r«=1: RPA resulty*), analytical results according to E®) (—)

©= Pstat™ Pdyn- (13 and usinge= @gat @ayn (—— —).
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and C=0.12. In Fig. Zb), we show quantum-mechanical tions to ¢(x) are singular; we thus use the TF charge
RPA results in comparison with Eqél4) and (15) and ob-  density instead ofsg, (appropriate in the limit of smakk
serve excellent agreement. We observe prominent res@orresponding to high electron densiies 50 1r(X)
nances in the absorption coefficient near odd multiples ot k ¢,E, sinhsx)/coshka/2). Here ki=e?vy/e, is the

w, due to single-particle cyclotron orbifslectrons moving  three-dimensional TF screening vector. The RPA equations

ir_1 phase vyith the external fiQIdThis egtabliShes th'at the _are easily solved within a real-space discretization. Our re-
single-particle resonances conjectured in Ref. 17 exist withi ults fore(x) are shown in Fig. 3, and compared to results of
the RPA. Their positions, strengths and shapes are very wejl analytical approach using Eq8)—(9)

described by Eq(14). Equation(15) and the inset of Fig. We have also calculated the absorption coefficient for

2(b) ShO.W that m_the “m't 9f Iarg_e frequenC|es>£>w_c), t_he_ Alh<w<w, within the RPA. The analytical approach must
absorption coefficient is linear iw. In the opposite limit P Lo . . . :
be used with caution in the case of the film since it requires

(w<<w.) where the TF approach is adequate, it is quadratic;

We conclude that the quasiclassical approximation describe&ﬁ]at"o be smooth on the scale ak. It ums out thaia(w)

above, for the parameters considered here, provides a quali: 10 @ 90od approximation, quadraticanas opposed to the

titative description of the optical properties. two-dimensional case. As id=2 dimensions we observe
Three-dimensional thin filmTo conclude we discusg ~ ésonances near odd multiples of (not shown.

for a thin film® of width a in the y-z plane subject to an

external potentiatpext(r)onxéx. The classical charge den- We thank M. Milkinson for communicating unpublished

sity is concentrated at the boundar§py(x)=* o d(x results on the absorption of energy at metallic surfaces, based

+al2). The corresponding static and dynamical contribu-on Ref. 20.
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