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Nucleation, adatom capture, and island size distributions:
Unified scaling analysis for submonolayer deposition

J. W. Evans1 and M. C. Bartelt2
1Department of Mathematics and Ames Laboratory, Iowa State University, Ames, Iowa 50011

2Department of Chemistry and Materials Science, Lawrence Livermore National Laboratories, Livermore, California 94550
~Received 18 December 2000; published 25 May 2001!

We consider the irreversible nucleation and growth of two-dimensional islands during submonolayer depo-
sition in the regime of large island sizes. A quasihydrodynamic analysis of rate equations for island densities
yields an ordinary differential equation~ODE! for the scaling function describing the island size distribution.
This ODE involves the scaling function for the dependence on island size of ‘‘capture numbers’’ describing the
aggregation of diffusing adatoms. The latter is determined via a quasihydrodynamic analysis of rate equations
for the areas of ‘‘capture zones’’ surrounding islands. Alternatively, a more complicated analysis yields a
partial differential equation~PDE! for the scaling function describing the joint probability distribution for
island sizes and capture zone areas. Then, applying a moment analysis to this PDE, we obtain refined versions
of the above ODE’s, together with a third equation for the variance of the cell area distribution~for islands of
a given size!. The key nontrivial input to the above equations is a detailed characterization of nucleation. We
analyze these equations for a general formulation of nucleation, as well as for an idealized picture considered
previously, wherein nucleated islands have capture zones lying completely within those of existing islands.

DOI: 10.1103/PhysRevB.63.235408 PACS number~s!: 68.55.Jk, 81.15.Hi, 05.40.2a
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I. INTRODUCTION

For decades, there has been interest in characterizin
land formation during the initial stages of film growth.1,2 Of
particular interest is the nature of the island size distributi
There are heuristic predictions for this distribution goi
back to the earliest theoretical analyses,1,2 self-consistent
mean-field rate-equation treatments,3,4 subsequent postulate
analytical forms,5 and also simple geometric interpretatio
based on adatom capture.6 However, each of these fails t
recover key qualitative features observed in precise sim
tion results for the size distribution.4 Key to a resolution of
these shortcomings is recognizing that this size distribu
is controlled by the non-mean-field~non-MF! dependence on
island sizes ~measured in atoms! of the ‘‘capture numbers’’
ss .6,7 These capture numbers describe the propensity o
lands to capture diffusing adatoms. Most significantly,
were able to obtain an explicit andexact formula, which
relates the shape of the island size distribution to the beh
ior of the capture numbers,7 thus providing a much sought
after theory for explaining this shape.

The remaining challenge is to understand the non-MF
pendence ofss . Some insight comes from a geometric pi
ture of adatom capture in terms of ‘‘capture zones’’ whi
surround each island.6–9 The idea is that atoms deposite
within such a capture zone will typically aggregate with t
associated island. The main observation is that larger isla
have larger capture zones.6–9 This implies the existence of
correlation between island size and separation, which is
nored in MF treatments. As an aside, the problem of c
structing capture zones which precisely reflect adatom c
ture leads to an analysis of an appropriate continu
diffusion equation for deposited atoms. This procedure
central to developing continuum treatments of island grow
i.e., in connecting atomistic and mesoscopic len
scales.8–10

To date, there have been two significant attempts to
0163-1829/2001/63~23!/235408~15!/$20.00 63 2354
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plain the form ofss versuss. These include our previou
rate-equation formulation for mean capture zone areas ve
island size,11 and a more complicated analysis of the joi
probability distribution for island size and capture zone ar
by Mulheran and Robbie.12 However, a quantitatively pre
cise theory has yet to be developed. It is clear that the e
nucleation stage is crucial, noting, for example, that islan
nucleated earlier tend to have larger capture zones.7 Further-
more, recent studies reveal a strong sensitivity of the isl
size distribution to the prescription of nucleation.13 Thus a
sophisticated characterization of the nucleation proces
key to a comprehensive understanding of adatom capture
island size distributions.

To this end, we consider the simplest regime of irreve
ible island formation during submonolayer deposition. O
discussion will focus on the common case of compact tw
dimensional islands, further restricting attention to the p
coalescence regime. We shall also consider and show re
for the special case of ‘‘point islands.’’ In the latter idealize
model, islands occupy a single site on the lattice, but carr
label indicating their size.4 This idealized model is useful fo
elucidating scaling behavior at low coverages. In both ca
the key atomistic processes involved are as follows. Ato
are deposited at random at a rateF per site, and subsequentl
undergo terrace diffusion with a hop rateh ~per direction!.
This leads to the irreversible nucleation of islands when t
diffusing adatoms meet. Also, existing islands grow due
irreversible aggregation of diffusing adatoms, and due to
incorporation of atoms deposited directly on top of islan
In this analysis, we regard the latter process as instantane
The fundamental quantities of interest are the densities~per
adsorption site! of islands ofs atoms, which are denoted b
Ns ~so N1 gives the density of diffusing atoms!, the average
island density denoted byNav5Ss.1Ns , the coverage byu
5Ss>1sNs , and the average island size~measured in atoms!
by sav5(u2N1)/Nav'u/Nav. Below, we shall consider ex
©2001 The American Physical Society08-1



f
e
si

fo

t
sc
te

ua
te
in
cr
th
si
de
l
c

s-
m

t
iz
o
e

ze
ea
d
a

ha
in

e-

or

is

n
-

loss

x-
-

ic
e

r-
ite

-

po-

s
t

J. W. EVANS AND M. C. BARTELT PHYSICAL REVIEW B63 235408
clusively thescaling regimeof largesav.
In Sec. II, we first present the standard rate equations

evolution of the island densities. We then apply to thes
quasihydrodynamic analysis, treating the scaled island
s/sav as a continuous variable~denoted byx!. This yields an
ordinary differential equation~ODE! for the scaling function
describing the island size distribution in terms of that
capture numbers~or capture zone areas!. We extend our pre-
vious derivation for point islands7 to the case of compac
islands, and also present several basic relations for the
ing functions. Next, in Sec. III, we develop approximate ra
equations for capture zone areas, and again perform a q
hydrodynamic analysis to obtain an ODE for the associa
scaling function. This extends our previous formulation
Ref. 11. These equations are analyzed for an exact pres
tion of nucleation, and reproduce the key features of
island size dependence of adatom capture. We also con
a simplified description corresponding to ‘‘nucleation insi
a cell,’’ where just nucleated islands have capture zones
ing completely within those of existing islands. Next, in Se
IV, following ideas of Mulheran and Robbie,12 we develop
equations describing the joint probability distribution for i
land sizes and capture zone areas. A quasihydrodyna
analysis yields a partial differential equation~PDE! for the
associated scaling function. Applying a moment analysis
this PDE, we recover the above ODE for the island s
distribution, and obtain a refined version of the ODE f
capture zone areas~where the refinement accounts for th
distribution of capture zone areas for islands of a given si!.
We further obtain a third ODE for the variance of this ar
distribution. However, the formulation is still not exact, an
requires specific input on the nucleation process. A summ
and brief discussion of proposed developments in the c
acterization of nucleation are presented in the conclud
Sec. V.

II. ISLAND SIZE DISTRIBUTION: RATE EQUATIONS
AND SCALING

A. Basic formulation

In the following, the rate at which diffusing atoms aggr
gate with islands of sizes is denoted by Ragg(s)
[hssNsN1 , defining a dimensionless ‘‘capture number’’ss
for islands of sizes atoms. The total aggregation rate f
diffusing atoms satisfies Ragg(total)5Ss.1Ragg(s)
5hsavNavN1 , where sav5Ss.1ssNs /Nav is the average
capture number. The rate of direct deposition on top of
lands of sizes is denoted byRdep(s)[FksNs . This relation
defines the direct capture numberks's for compact islands,
neglecting possible perimeter corrections of orders1/2 (ks
;1 for point islands!. Then, ifRtot(s)5Ragg(s)1Rdep(s), the
rate equations for the evolution of the island densitiesNs
have the form1,2,5–7

d/dtNs5Ragg~s21!2Ragg~s!1Rdep~s21!2Rdep~s!

5Rtot~s21!2Rtot~s!, for s.1. ~1!

The equation forN1 involves a gain term due to depositio
~excluding on-top deposition events!, loss terms due to ag
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gregation with islands of all sizess.1, and others due to
nucleation. Contracting this equation forN1 ~neglecting loss
due to nucleation!, and the equation forNav, yields

d/dt N1'F~12u!2Ragg~ total!

and

d/dt Nav'hs1~N1!2. ~2!

Thus in the steady-state regime where adatom gain and
roughly balance, one has

F~12u!'hsavNavN1 . ~3!

This steady-state relation can be used to integrate theNav
equation yieldingNav;G(u)(h/F)21/3. Here, the nontrivial
u dependence ofG(u) reflects that ofsav and s1 .3 If this
dependence is weak, then one obtainsG;uv with v5 1

3 .
This implies thatsav;uv̄(h/F)1/3, where Ã512v, and
thus Ã5 2

3 . Scaling withÃ5 2
3 applies for point islands,4

whereas one tends to find effective values ofÃ closer to~but
below! unity for compact islands.8,9 This latter feature re-
flects a greater inhibition of nucleation due to the finite e
tent of the compact~versus point! islands. However, we be
lieve that for compact islands with sufficiently smallu,
point-island behavior whereÃ5 2

3 would eventually be re-
covered in the scaling regime~for very largeh/F or sav!.

B. Quasihydrodynamic scaling analysis

In this scaling regime of largesav, we introduce the natu-
ral variable x5s/sav, and perform a quasihydrodynam
analysis treatingx as a continuous variable. We write th
island densities in the general scaling form4 Ns
'Nav(sav)

21f (x,u)'u(sav)
22f (x,u), where the constraints

*0
`dx f(x,u)5*0

`dx x f(x,u)51 ensure that the above no
malization conditions are satisfied. One could also wr
ss /sav'Cagg(x,u), where *0

` dx Cagg(x,u) f (x,u)51. In
choosing these forms, we have allowed~at this stage! for the
possibility of an explicitu dependence in the scaling func
tions. Forcompact islands, whereks /kav's/sav5x, one can
show that~cf. Refs. 7 and 14!

d/dtNs'F~sav!
22@~122Ã! f 2Ãx] f /]x1u] f /]u#,

Ragg~s!2Ragg~s21!']/]sRagg

'F~sav!
22~12u!]/]x~Cagg f !,

~4!
Rdep~s!2Rdep~s21!']/]sRdep'F~sav!

22u]/]x~x f !,

Rtot~s!2Rtot~s!'F~sav!
22]/]x~Ctot f !.

Here Eq.~3! is used to analyze theRagg term. We have de-
finedÃ5d(ln sav)/d(ln u), and ignored anyu-dependence of
Ã. We also naturally combine aggregation and on-top de
sition terms into a single natural scaling function,Ctot(x,u)
[ux1(12u)Cagg(x,u). The above normalization condition
on f andCagg imply the further normalization condition tha
*0

` dx Ctot(x,u)f(x,u)51. One thus obtains thefundamental
equation
8-2
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~122Ã! f 2Ãx] f /]x1u] f /]u52]/]x~Ctot f !. ~5!

We emphasize that Eq.~5! is an exact relation. Forpoint
islands, one hasks /sav'0, and naturally definesCtot(x)
[Cagg(x), so Eq.~5! still applies~cf. Ref. 7!.

If Ctot has no explicitu dependence, then it follows that
solution of the partial differential equation~PDE! ~5! subject
to the normalization constraints mentioned above is sele
with f independent ofu. See Ref. 10 for a more detaile
discussion. In this way, we recover the well-know
u-independent scaling form forf versusx observed previ-
ously in simulations.4 Furthermore, in this case,f (x) can be
determined by integrating the ODE obtained by dropping
]/]u term in Eq.~5!. One thus obtains

f ~x!5 f ~0! expH E
0

x

dy@~2Ã21!2d/dy Ctot~y!#/

@Ctot~y!2Ãy#J , ~6!

extending the result of Ref. 7. Equation~6! can be rewritten
as ~cf. Ref. 10!

f ~x!5 f ~0!Ctot~0!@Ctot~x!2Ãx#21

3expH 2~12Ã!E
0

x

dy@Ctot~y!2Ãy#21J . ~7!

Here f (0) is chosen to ensure that*0
` dx f(x)51. Typically,

our focus will be on the regime of lowu!1, whereCtot
'Cagg ~or on the case of point islands, whereCtot[Cagg!, so
u-independent scaling derives from that of the scaling fu
tion, Cagg(x), for the capture numbers.

C. Properties of the scaling functionf „x…

In this subsection, we consider only the case
u-independent scaling. We shall see below that bothCagg(x)
andCtot(x) exceedÃx, for smallx. Then it is clear from Eq.
~6! or Eq. ~7! that the form off (x) depends sensitively on
whether or notCtot(x) exceedsÃx, for all x. Thus we now
examine the different possible scenarios in more detail.

First, suppose thatCtot(x)2Ãx.0, for all x, and that
Ctot(x);yx, for large x, with y.Ã. Then, from Eq.~6!, it
immediately follows that

f ~x!Ctot~x!; f ~0!Ctot~0!x2~12Ã!/~y2Ã! as x→`,

so ~12Ã!/~y2Ã!.1 or y,1. ~8!

The latter condition isrequiredto ensure convergence of th
integral *0

` dx f(x)Ctot(x)51. The inequalityy,1 consti-
tutes an important constraint on the behavior of the cap
numbers. Note that the unphysical formCtot(x)5x can be
associated with the complete absence of nucleation,15 indi-
cating the importance of continuous nucleation in determ
ing the form of f (x). If Ctot(x).Ãx, and Ctot(x)2Ãx
→const ~.0!, or Ctot(x)2Ãx→01, asx→`, then one can
show thatf (x)Ctot(x)→0, asx→`, sufficiently fast to en-
sure normalization.
23540
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Second, suppose thatCtot(x)2Ãx→01, as x→x* ~,`!
from below. Then, one has thatf (x)[0 for x.x* , and,
from Eq. ~7!, that

f ~x!;~x* 2x!g

where g5@d/dx Ctot~x* !

2~2Ã21!#/@2Ã2d/dx Ctot~x* !#

for x,x* . ~9!

There are two distinct cases to consider. Ifd/dx Ctot(x* )
.2Ã21 ~so g.0!, then f (x)→0, asx→x* from below. If
d/dx Ctot(x* ),2Ã21 ~so g,0!, then f (x) diverges asx
→x* from below. The latter corresponds to unphysic
mean-field-type behavior.7–11

Finally, we comment on some basic normalization issu
Simply applying the operation*0

`xndx" to Eq. ~5! ~after
dropping the]/]u term! yields the key relations16

~12Ã!E
0

`

dx f~x!5 f ~0!Ctot~0! ~512Ã! for n50,

~10a!

E
0

`

dx x f~x!5E
0

`

dx Ctot~x! f ~x! ~51! for n51,

~10b!

~11Ã!E
0

`

dx x2f ~x!52E
0

`

dx xCtot~x! f ~x! for n52.

~10c!

The result forn50, that f (0)Ctot(0)512Ã, provides a key
constraint on the behavior off (x) andCtot(x) for small island
sizes. Substitution into Eq.~7! simplifies this expression fo
f (x), and further demonstrates the requirement thatÃ,1.
The result forn51 ensures that normalization of the scalin
functions is consistent with the conditions onCtot(x) stated
above. The result forn52 provides insight into the varianc
s f

2 of the scaling function for the island size distribution:

s f
25E

0

`

dx~x21!2f ~x!

52~11Ã!21E
0

`

dx xCtot~x! f ~x!21

52~11Ã!21E
0

`

dx@x2 1
2 ~11Ã!#Ctot~x! f ~x!

.~12Ã!/~11Ã!. ~11!

For the last inequality, we have used th
*0

` dx xCtot(x)f(x).1. This quantity is the mean of the no
malized distributionCtot(x)f(x), which should exceed the
mean~of unity! of the normalized distributionf, due to the
feature thatCtot(x) is a monotonically increasing functio
~see below!.
8-3
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D. Simulation results for scaling functions

It is appropriate here to review previous simulation resu
for both point and compact islands with largeh/F, which
elucidate the forms off (x), and Cagg(x) or Ctot(x). These
will provide a benchmark for our subsequent analyses
Fig. 1~a!, we show results forCagg(x)'ss /sav versuss/sav
for point islandsat 0.1 ML with h/F5107 ~a value used
throughout this work!. These results indicate thatCtot(x)
[Cagg(x) exhibits a plateau forx,1 ~roughly!, followed by
a quasilinear increase forx.1 with Cagg(x);yx, andy' 2

3

~with considerable uncertainty iny!. It is not clear whether
the true asymptotic form ofCagg(x) crossesÃx52x/3.
However, if it does, its derivative certainly exceeds 2Ã21
5 1

3 at the crossing point, so the island size distributio
shown in Fig. 1~b! reveal thatf (x) exhibits no singularity.
Results show thatf (0)'0.35 is nonzero, contrasting propo
als in Refs. 5 and 6. Also, sinceCtot(0)'0.91, the behavior is
consistent with Eq.~10a! given thatÃ5 2

3 .
In Fig. 2~a!, we show results forCtot(x)'uks/kav1(1

2u)ss /sav vs s/sav for square islandsat 0.1 ML with h/F
5107. These results indicate much less of a plateau inCtot(x)
than for point islands, and a steeper increase forx.1 with y
closer to unity. The behavior ofCagg(x) is similar.14 The
island size distributions for square islands, shown in F
2~b!, are similar to those for point islands. These differen
in the form ofCtot(x) for compact and point islands may t
some extent reflect nonasymptotic behavior for compact
lands deriving from the non-negligibleu, and finiteh/F used
in the simulations. For non-negligibleu, nucleation is inhib-
ited for compact islands compared to point islands~with the
same nominalu!, forcing an effectiveÃ close to unity, and
perhaps forcing behavior closer toCtot(x)'x ~corresponding

FIG. 1. ~a! Capture number behavior, and~b! island size distri-
bution for the point-island model at 0.1 ML withh/F5107.

FIG. 2. ~a! Capture number behavior, and~b! island size distri-
bution for the square-island model at 0.1 ML withh/F5107.
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to the absence of nucleation!. This issue will be explored in
detail in a separate paper focusing on simulation results.
also note that behavior for compact islands is expected to
roughly independent of their shape. See Ref. 8 for co
sponding results for hexagonal islands. Finally, it should
emphasized that the observed small-x behavior, wheref (0)
'0.35 andCtot(0)'0.4, is again consistent with Eq.~10a!
using the observed effectiveÃ'0.9.

III. CAPTURE ZONE AREAS: RATE
EQUATIONS AND SCALING

A. Basic formulation

Intuition suggests that most deposited atoms should
gregate with nearby islands. Thus, as indicated in Sec. I,
natural to construct a tessellation of the surface into cells
‘‘capture zones’’ based on the island distribution, so th
each cell contains a single island. Specific choices of tes
lations will be discussed in Sec. III C. In all cases, the me
area for cells corresponding to islands of sizes ~including the
area of the enclosed island! is denoted byAs ~in units of
adsorption site area!, so Aav5Ss.1AsNs /Nav51/Nav. For
compact islands, it is appropriate also to introduce the ‘‘fr
areas,’’ As

f5As2s, of the cells, which exclude the islan
area, so thenAav

f 5(12u1N1)Aav'(12u)Aav. For point
islands, one hasAav

f 'Aav.
One might anticipate that the dependence ofAs on island

sizes would provide basic insight into the form ofss versus
s, and thus the form ofCagg(x). Bales17 suggested develop
ing rate equations forAs as a way to assess their dependen
on s. As a first attempt to resolve this central issue in nuc
ation theory, we previously developed such rate equati
for the As for point islands in Ref. 11, and furthermore d
veloped the quasihydrodynamic scaling form of these eq
tions. Here we present a more general derivation, discuss
approximations inherent in such equations, and also ana
the behavior of the solutions of these equations.

For compact islands, we consider the fractional areaAsNs
of cells associated with islands of sizes.1. Changes in this
quantity occur primarily for two reasons:~i! islands increase
their size in increments ofds51 due to aggregation or direc
on-top deposition, thus shifting cells to islands of larger si
and~ii ! when new islands~of size 2! are nucleated, some o
the area is removed from the cells of existing islands. S
Fig. 3 for a schematic of these processes. The first contr
tions are easy to treat~approximately!, but the latter requires
a more detailed characterization of the nucleation proc
For this purpose, we letAavnuc denote theaveragecell area
associated with just-nucleated islands. We also letPs denote
the typical fraction of the areaAavnuc that is removed from
the cells of pre-existing islands of sizes ~per nucleation
event!. Thus Ps satisfies the normalization conditio
Ss.1Ps51. Then one has that11

d/dt~AsNs!'As21Ragg~s21!2AsRagg~s!

1As21Rdep~s21!2AsRdep~s!

2AavnucPs~dNav/dt!
8-4
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'As21Rtot~s21!2AsRtot~s!2AavnucPs~dNav/dt!

for s.2. ~12!

The equation ford/dt(AsNs) for s52 has a different form:
there is a gain term due to nucleation, and loss terms du
aggregation and direct deposition,~see Appendix A!. Finally,
we note that thePs should scale with the density of island
of sizes, so we naturally writePs5(Ns /Nav)Qs . This fac-
torization will be utilized below.

There are two subtle approximations inherent in formul
ing Eq. ~12!. First, we ignore the feature that the area of
specific cell typically changes due to a growth of the co
pact island within the cell, and a growth of the neighbori
islands, as this can lead to slight shifts in the location of
cell boundaries.18 However, we anticipate that the net effe
is small.Second, we ignore the correlation between the ca
ture zone area and aggregation rate~and between the captur
zone area and the direct on-top deposition rate! in replacing
‘‘means of products’’ by ‘‘products of means’’ in the aggre
gation and deposition terms in Eq.~12!. This approximation
will be discussed further in Sec. IV.

Another subtle issue is the identification ofAavnuc. If the
rate of growth of ‘‘dimer’’ islands of sizes52 greatly ex-
ceeds their nucleation rate, then essentially all dimers wo
be ‘‘just-nucleated islands,’’ andAavnucwould correspond to
A2 . However, from Eqs.~1! and ~2!, the rates of dimer
nucleation and growth are comparable, so we do not exp
this correspondence to be precise. See below for further
cussion.

B. Quasihydrodynamic scaling analysis

To perform a quasihydrodynamic analysis of Eq.~12! for
compact islands in the regime of largesav we again treatx
5s/sav as a continuous variable. We will assume a scal
form a(x,u)'As /Aav for cell areas, where

FIG. 3. Schematics for~a! transfer of cells of areaA from is-
lands of sizes21 to s by aggregation; and~b! reduction of cell area
for islands of sizes from A to A2pAnuc by nucleation, wherep
indicates the fraction of the area,Anuc, of the nucleated cell by
which A is reduced. The notation ...→As associates the area on th
left of the arrow with cells of islands of sizes.
23540
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*0
` dx a(x,u) f (x,u)51, and also writeAavnuc/Aav5aavnuc.

In Sec. III C, it will also be useful to introduce the scalin
form af(x)'As

f /Aav
f for free cell areas. Then, sinceAs'As

f

1s, it follows thata(x)5ux1(12u)af(x). In addition, be-
low we set

Ps'~sav!
21p~x,u! and Qs;q~x,u!,

so p~x,u! factors asp~x,u!5 f ~x,u!q~x,u!, ~13!

where*0
` dx p(x,u)5*0

` dx f(x,u)q(x,u)51.
Using these assumed scaling forms, one can show th

d/dt~AsNs!'21/~ tsav!@Ã]/]x~xa f !2u]/]u~a f !#,

As21Rtot~s21!2AsRtot~s!']/]s@AsRtot~s!#

'1/~ tsav!]/]x~aCtot f !,

~14!

and AavnucPs dNav/dt'1/~ tsav!~12Ã!aavnucq f .

Thus it follows that

Ã]/]x~xa f !2u]/]u~a f !5]/]x~aCtot f !

1~12Ã!aavnucq f . ~15!

The terms on the left-hand side~LHS! of ~15! come from
d/dt(AsNs), the first term on the right-hand side~RHS!
combines aggregation and deposition contributions, and
second term on the RHS comes from nucleation contri
tions. Again, we focus on solutions of this first-order PD
whereCtot , anda, q, andf areindependentof u ~cf. Ref. 10!.
In this situation, Eq.~15! is simplified by using Eq.~5! ~with-
out the]/]u term! to rewrite ] f /]x in terms of f, Ctot , and
]/]x(Ctot). After some rearrangement, and cancellation
]/]x(Ctot) terms, one obtains the simple ODE

@Ctot~x!2Ãx#d/dx a~x!5~12Ã!@a~x!2aavnucq~x!#.
~16!

At this level of treatment, Eq.~16! is the fundamental equa-
tion for the scaling function describing capture zone or c
areas. It isnot exact, and its inherent approximations will b
described in Sec. IV. This equation also applies for po
islands, whereCtot(x)[Cagg(x).11,19

One consequence of Eq.~16!, which should be noted here
follows most easily from applying the operation*0

`dx• to
Eq. ~15!. After dropping the]/]u term, one obtains the rela
tion a(0)Ctot(0)f(0)5(12Ã)aavnuc, where we have used th
normalization conditions onq(x). Then, using Eq.~10a!,
this implies thataavnuc5a(0), which follows if Aavnuc'A2 .
As noted above, this corresponds to the scenario where m
s52 dimer islands are ‘‘just nucleated,’’ a condition whic
is not precisely satisfied. This problem is addressed in
refined equation fora(x) obtained in Sec. IV.

C. Specific choices of capture zone tessellations

The above formulation applies for any tessellation of t
island distribution. The cells in such tessellations might
8-5
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generated bygeometric Voronoi-type constructions. Apply-
ing the conventional Voronoi construction, points within t
Voronoi cells~VC’s! are closer to the centers of the enclos
islands than to the center of other islands. For compac
lands at higher coverages, one inadequacy of VC’s is
islands may overlap cell boundaries. To avoid this probl
and better reflect adatom capture, it is natural for the c
struction to be based instead on the distance from isl
edges, producing ‘‘edge cells’’~EC’s!.6–9 From analysis of
EC’s for square islands with ‘‘moderate’’u'0.1– 0.2 ML,
one finds that9,16,20

Ctot~x!'gsa~x!1~12gs!, with gs'1.0

@ i.e., Ctot~x!'a~x!#. ~17!

For point islands, VC’s and EC’s are equivalent, andaf(x)
5a(x). Simulation data for point islands reveal that~to quite
high precision!7

Ctot~x!5Cagg~x!'gpa~x!1~12gp!, with gp'0.7.
~18!

Substitution of Eq.~17! or Eq. ~18! for Ctot(x) into Eq. ~16!
yields a ‘‘closed’’ equation fora(x), assuming thatq(x) is
determined independently. Figure 4 shows an example
VC tessellation for point islands, and an EC tessellation
square islands.

Alternatively, in a more sophisticated choice of tesse
tion ~for either point or compact islands!, the cells or capture
zones are constructed based on analysis of diffusion e
tions for deposited atoms, thus precisely reflecting ada
capture. These cells are described asdiffusion cells
~DC’s!.8,9,14 By construction, the free area of the diffusio
cells is exactly proportional to the capture rate,8,9 i.e.,

ss /sav5As
f /Aav

f , so Cagg~x!5af~x!,

and thusCtot~x!5a~x!. ~19!

Substituting the latter relation into Eq.~14! yields, for a(x)
for DC’s, the basic equation

@a~x!2Ãx#d/dx a~x!5~12Ã!@a~x!2aavnucq~x!#,
~20!

FIG. 4. Examples of~a! a VC tessellation for point islands, an
~b! an EC tessellation for square islands. In both cases,h/F5109,
u50.1 ML, the picture size is 1503150 sites, and we have indi
cated the sizes of all islands~in atoms!.
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whereq(x) has yet to be determined, and we note again tha
Eq. ~20! is not exact. Certainly, the choice of DC’s simplifies
the formulation of the theory, since Eq.~19! applies. How-
ever, when comparing against simulation data, it is conve
nient to have theflexibility of using VC’s or EC’s.

If q(x) is treated as a known quantity, then Eq.~20! has
the form of an Abel equation of the second kind.21 @The same
also applies for thea(x) equation for VC’s or EC’s obtained
from Eq.~16! after using Eq.~17! or Eq.~18!.# Furthermore,
the specific form of these equations allows conversion to a
Abel equation of the first kind in terms of the variable
u(x)5@Ctot(x)2Ãx#21.21 For example, from Eq.~20!, one
obtains

du/dx5~2Ã21!u21~12Ã!@aavnucq~x!2Ãx#u3,

where u~0!5Ctot~0!215a~0!21.0 ~21!

It follows from Eq. ~21! that unlessaavnucq(x) decreases be-
low Ãx, with increasingx ~see below!, there is a divergence
u→`, which corresponds toCtot(x)→Ãx, for finite x.

D. Analysis for an exact prescription of nucleation

Here we use simulations to monitor a large number o
nucleation events. The cell of each just-nucleated island
constructed, allowing determination ofAavnuc, and thus
aavnuc. These cells are also partitioned into subregions ove
lapping the cells of existing islands of various sizes, allowing
a determination ofPs and thusq(x). For thepoint-island
model, one hasa(0)'0.88 andaavnuc'0.93 @cf. Eq. ~41!#.
Simulation results~thick curves! are shown forq(x) using
VC’s in Fig. 5~a!, and for the correspondinga(x) in Fig.
5~b!. In Fig. 5~b!, we also show the prediction~thin curve!
for a(x) obtained from Eq.~16! with Ã5 2

3 using Eq.~18! to
relateCtot(x) to a(x), and using the simulatedq(x) in Fig.
5~a!. Conversely, in Fig. 5~a!, we show the prediction~thin
curve! for q(x) obtained from Eq.~16! using the simulated
a(x) in Fig. 5~b!. The predictions of Eq.~16! capture the
basic features of the simulation results quite well, given tha
there still are approximations built into this equation. It
should be noted that using Eq.~16! to predict a(x) from
specifiedq(x) can produce a singular behavior for finitex, if
q(x) increases ‘‘too quickly.’’ This does occur in our calcu-

FIG. 5. Simulation results~thick lines! using VC’s for the point-
island model at 0.1 ML withh/F5107 for ~a! q(x) and ~b! the
associateda(x). Also shown are predictions obtained from Eq.~16!
~thin lines!, as described in the text.
8-6
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lations, presumably again reflecting approximations in
~16!, and our nonasymptotic inputq(x). For the square-
island model,4 where a(0)'0.5 and aavnuc'0.6 @cf. Eq.
~41!#, simulation results~thick curves! are shown forq(x)
using EC’s in Fig. 6~a!, and for the correspondinga(x) in
Fig. 6~b!. In Fig. 6~b!, we also show the predicteda(x) from
Eq. ~16! with an effectiveÃ50.87 usingCtot(x)'a(x) from
Eq. ~17!, and using the simulatedq(x) in Fig. 6~a!. Con-
versely, in Fig. 6~a!, we show the predictedq(x) from Eq.
~16! using the simulateda(x) in Fig. 6~b!. The predictions
from Eq.~16! are reasonable fora(x), but not forq(x). The
latter no doubt reflects the feature that the simulateda(x) is
far from its asymptotic form, and other uncertainties with t
use of effective exponents.

E. Further analysis and the ‘‘nucleation-inside-a-cell’’ picture

First we introduce a natural factorization of quantiti
such as Ps and Qs @or p(x) and q(x)#. Let Ps*
5(Ns /Nav)Qs* denote the probability that the cell of th
just-nucleated islandoverlaps the cell of some existing is
land of sizes. Then one has the normalization conditio
Ss.1Ps* 5Mo , the mean number of overlapped cells p
nucleation event. LetAnuc(s) denote the mean area of th
cell of a just-nucleated island which overlaps cells of ex
ing islands of sizes. Then we can write

AavnucPs5Aavnuc~Ns /Nav!Qs5Anuc~s!~Ns /Nav!Qs*

5Anuc~s!Ps* . ~22!

Introducing scaling functionsanuc(x)'Anuc(s)/Aav and
q* (x)'Qs* ~for largesav!, one has that

aavnucq~x!5anuc~x!q* ~x!, ~23!

which can be used in Eq.~16!. The normalization conditions
on Ps* and Ps imply that *0

` dx f(x)q* (x)5Mo and
*0

` dx f(x)anuc(x)q* (x)5aavnuc, respectively.
Next we introduce an idealized ‘‘nucleation-inside-

cell’’ picture, providing a simpler interpretation ofPs* and
Anuc(s). It was used in previous work by Mulheran and Ro
bie ~MR!,12 and makes the formalism following in Sec. I
less complex. It involves the simplified view that captu
zones or cells of just-nucleated islands always lie entir

FIG. 6. Simulation results~thick lines! using EC’s for the
square-island model at 0.1 ML withh/F5107 for ~a! q(x) and~b!
the associateda(x). Also shown are predictions obtained from E
~16! ~thin lines!, as described in the text.
23540
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within the capture zone or the cell of a single existing islan
In this case,Ps* is just the probability for nucleation within
the cell of an island of sizes, Mo51, and Anuc(s) is the
mean area of the cell of such a nucleated island. Specific
MR assumed that each nucleation event splits an existing
in two. This requires that nucleation positions be ‘‘de
within’’ cells of existing islands. However, we recognize th
it is somewhat unrealistic: nucleation positions tend to
close to the boundaries of capture zones, so that j
nucleated cells typically overlap two or more existing ca
ture zones.22

Since nucleation inside a cell doesnot strictly apply, this
limits possibilities to test the above ideas. However, for a
tessellation of an island distribution, the following analys
are instructive. We determine the probability for nucleati
within the cell of an island of sizes, and the average area o
the cells of such just-nucleated islands,irrespective of
whether these cells lie entirely within the existing cell of
island of sizes. The former might be interpreted asPs* and
the latter asAnuc(s), although of course these interpretatio
do not precisely match the above descriptions. Nonethele
from these quantities, we obtain estimates forq* (x) and
anuc(x) @or l(x)[anuc(x)/a(x)#. Figure 7 shows suchq* (x)
andl(x) using VC’s for point islands, and EC’s for squa
islands. Corresponding predictions fora(x), using Eq.~23!
in Eq. ~16!, capture the key features of simulation results

IV. JOINT PROBABILITY DISTRIBUTIONS
FOR ISLAND SIZE AND CELL AREA

A. Basic quantities

A particularly significant recent development in nucl
ation theory was the idea of MR~Ref. 12! to derive rate
equations for the joint probability distributionNs,A for the
densities of islands of sizes atoms, and cell areaA ~for a
suitable tessellation of the island distribution!. This quantity
is normalized so thatSANs,A5Ns , with the island densities
Ns defined as above. We shall see that this approach com
ments the treatment of Sec. III, as the distributionNs,A in-
corporates the feature that the mean cell area for island
size s, i.e., As5SAANs,A /Ns , depends ons in a nontrivial
non-mean-field fashion. This approach also supplement
extends that of Sec. III in that the distributionNs,A further-

FIG. 7. q* (x) andl(x)5anuc(x)/a(x) ~insets! for ~a! the point-
island model, and~b! the square-island model, at 0.1 ML wit
h/F5107.
8-7
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more incorporates the feature~not explicitly accounted for in
Sec. III! that islands of a given sizes have cells with a
distribution of cell areasA.

Clearly, sources of change for theNs,A include aggrega-
tion of diffusing atoms with islands, direct deposition on t
of islands, and nucleation. We now deal in a unified fash
with the first two contributions. In the following, the rate
which diffusing atoms aggregate with islands of sizes and
cell areaA is denoted byRagg(s,A)[hss,ANs,AN1 , defining
a dimensionless ‘‘capture number’’ss,A . Then, one has
SAss,ANs,A5ssNs . The rate of direct deposition on top o
islands of sizes is denoted byRdep(s,A)[FksNs,A ~where
ks's for compact islands, orks;1 for point islands!. Be-
low, we setRtot(s,A)5Ragg(s,A)1Rdep(s,A). For diffusion
cells one hasss,A /sav5Af /Aav

f , whereAf5A2ks . If the
steady-state condition@Eq. ~3!# is recast ashN1sav/Aav

f

5F, then for DC’s it readily follows that

Ragg~s,A!5hN1sav~s/sav5Af /Aav
f !Ns,A

5FAfNs,A , so Rtot~s,A!5FANs,A . ~24!

Equation~24! applies either for compact or point islands.
The treatment of nucleation terms is more difficult. W

introduce the probabilityPs,A* that the cell of the just-
nucleated islandsoverlapsthe cell of an existing island o
size s and cell areaA. Then, the typical number of cell
overlapped per nucleation event isSs.1SAPs,A* 5Mo ~cf.
Sec. III E!. Since this probability should scale with the de
sity Ns,A , it is natural to decompose:

Ps,A* 5~Ns,A /Nav!Qs,A* . ~25!

We also letAnuc(s,A) denote the average~portion of the!
area of the cell for a just-nucleated island whichoverlapsthe
cell of an existing island of sizes and cell areaA. Note that
SAPs,A* Anuc(s,A)5Anuc(s)Ps* , and that applying Ss.1

givesAavnuc. For small coveragesu!1, or for point islands,
we expect the characteristics of the nucleation process
determined primarily by the geometry of the capture zo
tessellation~rather than by the sizes of the small islan
within the cells!. Thus we expect aweak dependence on
island sizes of Qs,A* 'QA* andAnuc(s,A)'Anuc(A). We em-
phasize that cells of just-nucleated islands exhibit adistribu-
tion of overlap areas,Anuc with cells of existing islands of
sizes and areaA, and thatAnuc(s,A) gives only the average
Our formulation does not incorporate the full distributio
Finally, it is also convenient to introduce the probabilitypA ,
that the just-nucleated island has a cell area ofA, so SApA
51 andSAApA5Aavnuc.

B. Rate equations for the joint probability distribution

The populationNs,A , of islands of sizes with cells of size
A changes primarily for two reasons:~i! Aggregation of dif-
fusing atoms with islands or direct deposition on-top of
lands of sizes21 ~of size s!, and cell areaA, increases
~decreases! Ns,A . ~ii ! Nucleation of islands with cellsover-
lapping those of existing islands of sizes decreasesNs,A if
the cell area prior to nucleation isA. Nucleation increases
23540
n
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Ns,A if the cell size prior to nucleation,A1 , is suitably larger
than A. In the latter case, the average value of the areaA1

should satisfyA15A1Anuc(s,A1). See Fig. 8~a!. Given a
specific functional form forAnuc this relation can be solved
to determine a unique functional relationshipA1

5A1(s,A). See Appendix B. In fact~for a given island size
s!, there will be adistribution of cell areas,A1 , for which
nucleation events will create a smaller cell with areaA, and
A1(s,A) gives only the average.Neglectingthis distribution
of A1 values~i.e., utilizing only the average value!, we con-
clude that the rate equations forNs,A have the form

d/dt Ns,A5Rtot~s21,A!2Rtot~s,A!1(A1
# Ps,A1*

3~dNav /dt!2Ps,A* ~dNav/dt!, for s.2.

~26!

The restricted sumSA1
# is for fixed A, and accounts for the

feature that the equationA15A1Anuc(s,A1) can have more
than one solutionA1 for fixed A ~i.e., a cell of sizeA can be
created by nucleation within a larger cell sometimes w
more than one sizeA1 after removal of an areaAnuc.! In the
scaling regime, this restricted sum may be replaced b
factor dA1 /dA. Perhaps the simplest scenario is th
Anuc(s,A1)5Anuc(A1)5mA1 ~where we expect thatmMo
,1!, soA1(A)5A/(12m), anddA1 /dA51/(12m). It is
necessary to develop a separate equation forN2,A , which
provides a ‘‘boundary condition’’ on the above coupled s
of equations. One has that

d/dt N2,A52Rtot~2,A!1pA~dNav/dt!. ~27!

FIG. 8. Schematics for the relation between~a! A1 andA, and
~b! A18 andA. HereAnuc(tot) denotes the total area of the cell of
just-nucleated island, of which a portionAnuc(s,...) overlaps the
cell of the existing island of sizes. ~This picture is oversimplified
for DC’s where introducing new cells changes boundaries of ex
ing cells external as well as internal to the new cell.!
8-8
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The above equations~26! and~27! no longer suffer from the
approximation implicit in Eq.~12! of neglecting the distribu-
tion of cell areas for each island size. However, they do n
account for changes in cell areas due to growth of the isla
within the cell and of neighboring islands, leading to slig
shifts in cell boundaries.18 Again, we anticipate that the ne
effect is small.

C. Quasihydrodynamic scaling analysis

Again, our interest is in the scaling regime of largesav and
Aav, so we introduce the natural scaling variablesx5s/sav
and a5A/Aav, and the appropriate scaling functionF, de-
fined by

Ns,A'Nav~savAav!
21F~x,a,u!5u2~sav!

23F~x,a,u!,
~28!

where *0
` da F(x,a,u)5 f (x,u) and *0

` da aF(x,a,u)
5a(x,u) f (x,u). Defining the average ^•&
5(*0

` da F)21(*0
` da F•)5 f 21(*0

` da F•), then these
conditions correspond tô1&51 and^a&5a(x). To proceed
further, we introduce a scaling function forss,A /sav
'Cagg(x,a,u), and set

Ctot~x,a,u!5~12u!Cagg~x,a,u!

1u x for compact islands,

and

Ctot5Cagg for point islands. ~29!

Then one has *0
` da Ctot(x,a,u)F(x,a,u)

5Cagg(x,u) f (x,u) and Ctot(x,a,u)5a for DC’s. We also
set Qs,A* 'q* (x,a,u), so that *0

` dx *0
` daF(x,a,u)

3q* (x,a,u)5Mo , which follows from the normalization
condition onPs,A* . We also introduce scaling functions de
scribing

Anuc~s,A!/Aav'anuc~x,a,u!,

A1~s,A!/Aav'a1~x,a,u!,

pA'~Aav!
21p~a,u!, ~30!

which satisfy the normalization conditions tha
*0

` dx *0
` da anuc(x,a)q* (x,a)F(x,a)5aavnuc, and

*0
` da p(a,u)51. Note that if Anuc(s,A)5Anuc(A)5mA,

then one hasanuc(x,a,u)5ma and A1(A)5A/(12m), so
a1(x,a,u)5a/(12m). Appendix C provide a discussion o
the relationship between these scaling functions and the
duced functions,q* (x) andanuc(x), introduced in Sec. III.

Analyzing the various terms in the rate equations~26! in
the scaling limit, one has

d/dt Ns,A'uF~sav!
23@~223Ã!F2Ãx]/]xF

1~12Ã!a]/]aF1u]/]uF#,

Rtot~s21,A!2Rtot~s,A!'2]/]sRtot~s,A!

'2uF~sav!
23]/]x~CtotF!,

~31!

23540
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Ps,A* ~dNav/dt!'uF~sav!
23~12Ã!q* F,

(A1
# Ps,A1* ~dNav/dt!'uF~sav!

23~12Ã!

3q* ~x,a1 ,u!F~x,a1 ,u!da1 /da,

where the arguments ofF andq* are (x,a,u), unless other-
wise indicated. Substituting these results into Eq.~26! yields
the PDE

~223Ã!F~x,a,u!2Ãx]/]xF~x,a,u!

1~12Ã!a]/]aF~x,a,u!1u]/]uF~x,a,u!

52]/]x@Ctot~x,a,u!F~x,a,u!#

1~12Ã!q* ~x,a1,u!F~x,a1,u!da1 /da

2~12Ã!q* ~x,a,u!F~x,a,u!. ~32!

The terms on the LHS of Eq.~32! come fromd/dt Ns,A . The
first term on the RHS describes island growth~by both ag-
gregation and direct on-top deposition!, and the last two
terms on the RHS describe gain and loss by nucleation,
spectively. We note again that ifAnuc(s,A)5mA, then one
hasa15a/(12m) andda1 /da51/(12m). Equation~32!
generalizes the PDE obtained by MR12 in the following
ways: ~i! it is not restricted to the idealized and unphysic
‘‘nucleation within a cell’’ picture~cf. Secs. III E and IV E!,
and allows for general functional forms forQ* andAnuc ~and
their scaling functions!; ~ii ! it applies for any tessellation
~i.e., not just DC’s!; and ~iii ! it allows for an explicitu de-
pendence. The first generalization is of fundamental imp
tance for a physically realistic formulation, and the second
of practical value. We also emphasize that it isapproximate,
as it neglects fluctuations inA1 areas~cf. Sec. IV C!.

A similar analysis of Eq.~27! reveals that the terms on th
RHS dominate those on the LHS by a factor ofsav. Setting
the scaled form of the RHS terms to zero yields the ‘‘boun
ary condition’’

Ctot~0,a,u!F~0,a,u!5~12Ã!p~a,u!, ~33!

which refines and simplifies MR’s result.12 The term on the
LHS corresponds to the loss of dimers with cells of sca
areaa due to island growth, and the term on the RHS to g
due to nucleation. A key constraint following from this rel
tion will be discussed in Sec. IV E.

D. Moment analysis of the PDE for F:
relation to previous ODE’s

In this section, we assume thatu-independent scalingap-
plies ~but see Appendix C!, although some of the analysi
can be straightforwardly extended to the more general c
where additionalu]/]u terms appear. One might analyze E
~32! by either integrating with respect tox, or with respect to
a. The former analysis is presented in Appendix D. The l
ter is presented below. More specifically, the general strat
is to apply the operation*0

`anda" to Eq. ~32!, performing
integration of parts on thea]/]aF term, together with suit-
8-9
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able rearrangements of the resulting equations to ob
ODE’s for various moments ofF. We will also use the iden-
tities

E
0

`

da F5 f , E
0

`

da aF5a f , E
0

`

da a2F5a2f 1s2f ,

E
0

`

da a3F5a3f 13as3f 1k f ,... ~34!

where a5^a&, s2(x)5Š(a2^a&)2
‹, k(x)5Š(a

2^a&)3
‹,..., are themean, variance, skewness, . . . , respec-

tively, of the scaled cell area distribution~for a given scaled
island size,x!. Below we present an analysis for the mome
with n50, 1, and 2.

~i! Zeroth moment(n50): Applying *0
` da" to Eq. ~32!,

one immediately recovers exactly the fundamental equa
~5! for the scaling functionf (x) describing the island size
distribution:

~122Ã! f ~x!2Ãxd/dx f~x!52d/dx@Ctot~x! f ~x!#.
~35!

Note that the nucleation terms exactly cancel under this p
cedure.

~ii ! First moment(n51): First we comment on the resu
of applying*0

`a da" to the nucleation terms in Eq.~32!. If
a1

I denotes the inverse function toa15a1(x,a), i.e., a
5a1

I (x,a1), then one has that

E
0

`

da a@q* ~x,a!F~x,a!2q* ~x,a1!F~x,a1!da1 /da#

5E
0

`

da@a2a1
I ~x,a!#q* ~x,a!F~x,a!

5E
0

`

da anuc~x,a!q* ~x,a!F~x,a!

5anuc~x!q* ~x! f ~x!, ~36!

using the identitya2a1
I (x,a)5anuc(x,a) from Appendix

B, and the relation foranuc(x) in AppendixC. Thus, applying
*0

`a da" to Eq. ~32! yields

Ãd/dx~xa f !5d/dx~aCtot f !

1d/dxF E
0

`

da@a2a~x!#Ctot~x,a!F~x,a!G
1~12Ã!anuc~x!q* ~x! f ~x!, ~37!

refining Eq.~15! by introducing an extra term which scale
with the variances2. This leads to an important correctio
of Eq. ~16! by accounting for the distribution of cell areas f
each island size.

Further reduction of Eq.~37! is achieved conveniently by
assuming thatCtot(x,a)5ga1(12g), which is consistent
with Ctot(x)5ga(x)1(12g), so then the integral in Eq.~37!
reduces togs2(x) f (x). This relationship applies exactly fo
diffusion cells, whereg51 ~and we assume it holds approx
23540
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mately for point islands and VC’s whereg'0.7, or for
square islands and EC’s at around 0.1 ML, whereg'1!.
One can use Eq.~5! or ~35! to reduce Eq.~37! to an equation
analogous to Eq.~16!, i.e.

@Ctot~x!2Ãx#d/dx a~x!5~12Ã!@a~x!2anuc~x!q* ~x!#

2gd/dx~s2f !/ f . ~38!

Using Eq. ~5! or Eq. ~35! again to completely eliminatef
yields

@~Ctot2Ãx!2g2s2~Ctot2Ãx!21#da/dx1gd/dx~s2!

5~12Ã!@a2anucq* #2g~2Ã21!s2~Ctot2Ãx!21.

~39!

This equation can be integrated fora(x) given information
on s2 ~andanuc andq* !. An alternative strategy is to obtain
a second equation involvings2 ~see below!.

~iii ! Second moment(n52): Next, we apply*0
`a2da" to

Eq. ~32!. For simplicity, we discuss only on the case whe
Ctot(x,a)5a ~e.g., tessellations based on DC’s!. Then, after
some manipulation, one obtains

~11Ãx]/]x!~a2f 1s2f !

5]/]x~a3f 13as2f 1k f !1~12Ã!

3E
0

`

da anuc~x,a!@2a2anuc~x,a!#

3q* ~x,a!F~x,a!. ~40!

To close this equation together with Eq.~38!, one might set
the third-order cumulant to zero~i.e., k'0!, as well as
higher-order cumulants, of the cell area distribution. See A
pendix E.

E. Analysis and further constraints from moment equations
†or from Eq. „33…‡

The simplest strategy for an analysis of Eq.~39! is moti-
vated by simulation results, indicating thats2 is roughly
independent ofx @so d/dx(s2)'0#. This applies for either
point islands using VC’s, or square islands using EC’s,
shown in Fig. 9. Our goal here is to obtain some insight in
the effect of constants2.0, for the case of point islands

FIG. 9. Simulation results fors2 vs x for ~a! the point-island
model using VC’s, and~b! the square-island model using EC’s, a
0.1 ML with h/F5107.
8-10
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whereÃ52/3 andg'0.7. First, we have taken simulation
results for a(x) from Fig. 5~b! as input to Eq.~39!, and
extracted correspondinga(x) for various choices of fixed
s2.0. Results shown in Fig. 10~a! indicate some improve-
ment in the match to simulationa(x) increasings2.0. Sec-
ond, we take simulation results forq(x) from Fig. 5~a!, and
integrated Eq.~39! for a(x), after replacinganucq* with
aavnucq. Results shown in Fig. 10~b! indicate that the in-
crease ofa(x) with x is reduced with increasings2, a feature
which improves the agreement with simulation results show
in Fig. 5~b!. However, the singular behavior mentioned in
Sec. III D due toq(x) increasing ‘‘too rapidly’’ becomes
problematic for largers2, limiting the range of integrability.
This must reflect inadequacies in Eq.~38!, and our nonas-
ymptotic inputq(x).

Next we comment on some significant constraints follow
ing from the moment equations in Sec. IV D. First applyin
*0

` dx" to Eq. ~35! readily recovers the identity@Eq. ~10a!#
thatCtot(0)f(0)512Ã. Second, applying*0

` dx" to Eq.~37!,
one obtains

~12Ã!@aavnuc2a~0!#5E
0

`

da@a2a~0!#Ctot~0,a!F~0,a!

5gs2~0! f ~0!, ~41!

where the last equality assumes again thatCtot(x,a)5ga
1(12g). To obtain Eq.~41!, we also use a relation foraavnuc
in Appendix C, and the identityCtot(0)f(0)512Ã. Since
s2.0, Eq. ~41! implies thataavnuc.a(0) ~contrasting Sec.
III !. The inequality is reasonable, since not all dimers a
‘‘just nucleated,’’ and those nucleated earlier should typ
cally have smaller cell areas. However, sinces2!1 ~see Fig.
9!, one finds thataavnucis quite close toa(0). Third, we note
that applying*0

` dx" to Eq. ~40! does not yield a simple
constraint, unlike for the lower order equations.

Finally, it is instructive to note that one can perform a
moment analysis of the boundary condition@Eq. ~33!#, which
in fact has the advantage of clarifying the significance of th
somewhat obscure constraint. Applying to Eq.~33! the op-

FIG. 10. ~a! q(x) for point islands for various choices of fixed
s2.0 predicted from Eq.~39! taking simulation results fora(x)
from Fig. 5~b! as input.~b! a(x) for point islands various choices of
fixed s2.0 predicted from Eq.~39!, after replacinganucq* with
aavnucq, taking simulation results forq(x) from Fig. 5~a!. Specifi-
cally, we chooses250.0, 0.03, 0.06, and 0.09~curves from top to
bottom atx51!. Other parameters are described in the text.
23540
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eration *0
` da" recovers the key result@Eq. ~10a!#, which

was also obtained by applying*0
` dx" to the ODE@Eq. ~35!#.

Applying to Eq. ~33! the operation*0
`a da" recovers rela-

tion ~41!,23 which was also obtained by applying*0
`dx" to

the ODE@Eq. ~37!#.

F. Formulation for the ‘‘nucleation-inside-a-cell’’ picture

To make a closer connection with the formulation
MR,12 we follow Sec. III E and restrict our consideration
the somewhat artificial ‘‘nucleation-inside-a-cell’’ picture
Again, we emphasize that this picture is somewhat unrea
tic. Here Ps,A* 5(Ns,A /Nav)Qs,A* simply becomes the prob
ability for nucleation within the cell of an island of sizes and
cell areaA, whereSs.1SA Ps,A* 5Mo51. Also, Anuc(s,A)
now denotes the average area of the~entire! cell for an island
which is just-nucleated inside a cell of area A belonging
an existing island of sizes. To provide some specific ex
amples, MR~Ref. 12! suggested thatPs,A* }A4, for irrevers-
ible island formation. The idea is that the probability of fin
ing a diffusing atom in a cell should scale likeA2 ~the
probability for deposition in the cell;A timesthe lifetime
;A!, and two such atoms are required for nucleation. M
also suggested thatAnuc(s,A)5lA, where they regardedl
,1 as a fitting parameter~roughly corresponding tomMo in
Sec. IV B!, and chosel'0.4. However, for a realistic de
scription of nucleation, we expect that at leastl should de-
crease with increasings ~cf. Fig. 7!, i.e. for increasing
As /Aav.

For the nucleation-within-a-cell picture, the derivation
the rate equations forNs,A , and the scaling equation fo
F(x,a) is unchanged from the more general presentat
above. To make a direct comparison with the analysis
MR, note that if Anuc(s,A)5lA, then one hasA1(A)
5A/(12l) and dA1 /dA51/(12l), which implies that
a15a/(12l) and da1 /da51/(12l). If Ps,A* }A4, then
one also has thatq* (x,a)}a4. Using these results in Eq
~32! recovers the MR form.

Finally, we discuss the form of the boundary conditio
@Eq. ~27!#, and specificallypA , for the ‘nucleation-in-a-cell’
picture. As shown schematically in Fig. 8~b!, islands of size
2 with cell areaA are obtained by nucleation in cells o
existing islands with larger areaA18 where on average
Anuc(s,A18 )5Anuc(tot)5A. This relation can be solved to
determine a unique functional relationshipA18 5A18 (s,A).
See Appendix B.Neglectingthe distribution ofA18 values, it
follows that

pA5(
s.2

(A81
# Ps,A81

* . ~42!

The restricted sumSA* 1
# is for fixedA, and accounts for the

feature that the equationAnuc(s,A18 )5A can have more than
one solutionA18 for fixed A. In the scaling limit, this re-
stricted sum may be replaced by a factordA18 /dA. The MR
proposal implies thatAnuc(A18 )5lA18 , so A18 (A)5A/l,
anddA18 /dA51/l. Introducing a scaling function describin
8-11
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A18 (s,A)/Aav'a18 (x,a), one hasa18 5a/l and da18 /da
51/l for the MR proposal. The RHS of Eq.~33! can be
rewritten to give the relation

Ctot~0,a,u!F~0,a,u!5~12Ã!E
0

`

dx q* ~x,a18 ,u!

3F~x,a18 ,u!da18 /da, ~43!

which can be directly compared with MR’s ‘‘boundary co
dition’’ equation12 @after usingq* (x,a)}a4#, and which re-
fines and simplifies their result.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have provided a theoretical analysis
the non-mean-field dependence of adatom capture on is
size, noting that this dependence is of central importanc
it controls the shape of the island size distribution. We fi
developed an analysis based on rate equations for the ca
zone areas,11 and demonstrated the success of its predicti
for an exact prescription of nucleation. We also extend
analysis by Mulheran and Robbie12 for the joint probability
distribution function for island sizes and cell areas. A m
ment analysis of equations for this joint distribution is sho
to recover those above from a direct analysis of capture z
areas, with some refinements accounting for the distribu
of cell areas for each island size. The key quantities in
formalism are scaling functions for the island size distrib
tion, f (x), and capture zone areas,a(x), and the variance o
the cell area distribution,s2(x), as functions of the scale
island sizex. These and many other scaling functions intr
duced in this work, and the basic relations satisfied by
between them, can be tested in simulations for both point
compact islands. However, since the main focus of this pa
was on the development of an analytical theory for nuc
ation, comprehensive simulation results will be presen
elsewhere.

An important success of our analysis is that it does in f
produce a strong non-mean-field correlation between isl
size and cell area, that was first discovered in simulatio7

and later in experimental data.8,9 We note that visual inspec
tion of the form of F(x,a) in the numerical study of MR
~Ref. 12! shows that it also recovers this strong correlatio
As an aside, it is appropriate to note that scatter plots
ss /sav versuss/sav obtained from our previous analyses
experimental data8,9 in fact constitute crude versions ofF
plots consistent with the numerical analysis of MR. Fro
these scatter plots, one can even estimate the variance o
cell area distribution,s2(x), the quantity considered in Se
IV D and in Appendix E. Other recent work24 used a level se
approach to analyze adatom capture beyond the mean-
treatment, thus providing an accurate island size distribu
when incorporated into the rate equations~in the spirit of
Refs. 7–9!. However, this study considered only a ‘‘rela
tively small’’ range ofh/F5105– 107 ~and a broad range o
coverages up to 0.2 ML!, rather than examining the scalin
limit via a quasihydrodynamic analysis as here and in R
7–9. As a result, it seems that the observed quasilineass
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'as1b ~Ref. 24! are strongly influenced by nonasymptot
effects, and by the inhibition of nucleation for higher cove
ages.~Indeed, our analyses reveal a more linear behavior
higher coverages.! Such a simple linear form forss would
not emerge exactly from the type of theories developed h
or by MR.

Finally, we note again that our analyses use data fr
simulations characterizing nucleation as input to rate eq
tions. A self-contained analysis requires some hypothe
about the functions characterizing nucleation~as in the MR
analysis of the joint probability distribution which invoke
various such assumptions within the framework of a simp
fied nucleation-inside-a-cell picture!. Utilizing both experi-
mental data and simulations,22 we have characterized nucle
ation positions, and find that these typically occur close
the boundaries of capture zones. Thus cells of just-nucle
islands typically overlap more than one cell of an existi
island. We shall present details of these observations, an
a corresponding refined theoretical analysis, in a sepa
paper.
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APPENDIX A: SHORT-TIME EXPANSIONS

It is instructive to use rate equations to examine trans
behavior forvery short timesbefore the steady-state regim
is established. Since hereu!1, we can ignore direct depos
tion terms. UsingN1'Ft5u from Eq. ~2!, and d/dt Ns. l
'Ragg(s21) from Eq. ~1! after neglecting the higher-orde
Ragg(s) term, we obtain

Ns'~s1s2 ...ss21!~h/F !s21u2s21/~2s21!!!. ~A1!

Analyses of cell or capture zone areas is more com
cated. Note that for short times, the above shows t
most islands haves52, so thatN2'Nav, A2N2'1, and
A2'Aav5(Nav)

21. Below we consider only the ‘nuclea
tion-inside-a-cell’ picture, and adopt a MR-type choi
of Anuc(s)5lAs , with l,1 ~cf Sec. III E!, so initially
Aavnuc5Ss.1Anuc(s)Ns /Nav,(Nav)

21'A2 . Then, using
AavnucPs55Anuc(s)(Ns /Nav)Qs* , and (Nav)

21dNav/dt
'3F(Ft)21, we have, from Eq.~12!, that

d/dt~A2N2!'2A2Ragg~2!1AavnucP3~dNav/dt!

'2hs2~Ft !13lF~Ft !21~A3N3!Q3*

~A2!

and
8-12
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d/dt~AsNs!'As21Ragg~s21!2AavnucPs~dNav/dt!

'hss21~Ft !~As21Ns21!

23lF~Ft !21~AsNs!Qs* ~A3!

for s.2. In theA2N2 equation, there are no loss terms fro
nucleation, and we have dropped the nucleation terms fs
.3 which are negligible compared with thes53 term. To
analyze these equations, we chooseQs* 5cn(As /Aav)

n, ex-
tending the theory of MR, wherecn is determined by nor-
malization, soc05c151. We look for solutions to Eqs.~A2!
and ~A3! of the form

A2N2'12k2s2~h/F !u2

and AsNs'ks~s2s3 ...ss21!

3~h/F !s22u2s24 for s.2, ~A4!

so A2 /Aav'1 and As /Aav'5373¯3~2s21!ks , for

s.2.

Then, the coefficientscs satisfy25

22k252113~5!nlcn~k3!n11,

2k35123~5!nlcn~k3!n11,

4k45k323~537!nlcn~k4!n11,... . ~A5!

Solving these equations fors.2 reveals that, for anyn,26

ks→1/@234363¯3~2s24!#,

so As /Aav→@~2s21!/~2s24!#~As21 /Aav!, as lcn→0
~A6a!

and

ks→1/@537393¯3~2s21!#

so As /Aav→1 as lcn→1. ~A6b!

Thus, for realisticl, one expects thatAs /Aav increases with
s in the early stages of deposition. This reflects the feat
that larger islands were typically created earlier and w
larger capture zones.7

APPENDIX B: RELATIONS INVOLVING Anuc

The relationA15A1Anuc(s,A1), shown schematically
in Fig. 8~a!, applies for generalA and A15A(s,A). Thus,
upon replacingA1 by A, and consistently replacingA by A
2Anuc(s,A), one obtains the identityA1@s,A2Anuc(s,A)#
5A. Analogously, one can write

a15a1anuc~x,a1! and thusa1@x,a2anuc~x,a!#5a.
~B1!

Then using our definition of the inverse functiona1
I , it fol-

lows that
23540
re
h

a2anuc@x,a#5a1
I ~x,a!, or anuc~x,a!5a2a1

I ~x,a!.
~B2!

These results can be readily checked for the cho
Anuc(s,A)5mA, where a1(a)5a/(12m), so a1

I (a)
5(12m)a, anda2a1

I (a)5ma.
The relationA5Anuc(s,A18 ) also applies for generalA

and A18 (s,A). See Fig. 8~b!. Thus one can also writea
5anuc(x,a18 (x,a)). If a18

I denotes the inverse function o
a18 5a18 (x,a), then one has

a5a18
I~x,a18 ! so a18

I5anuc. ~B3!

For the choiceAnuc(s,A)5mA, one hasa18 (a)5a/m, so
a18

I(a)5anuc(a)5ma.

APPENDIX C: MR-TYPE FORMS OF SCALING
FUNCTIONS FOR Q* AND Anuc

First we consider quantities which reflect the probabil
for nucleation overlapping a cell. ForQs,A* 'q* (x,a), we
have that *0

` da q* (x,a)F(x,a)5q* (x) f (x), where
*0

` dx f(x)q* (x)5Mo . MR ~Ref. 12! suggested that the
probability of nucleation within a specific cell scales likeA4,
for irreversible island formation, whereA is the area of that
cell, so we writeq* 'ca4. Then, one has

q* ~x!5cE
0

`

da a4F~x,a!/ f ~x!5ca~x!41~corrections!.

~C1!

The corrections reflect the finite width of the cell area dis
bution for a specific scaled island sizex ~cf. Sec. IV D!. Our
data for q* (x) does show an increase withx significantly
greater than that for a(x):q* (2)/q* (0)53.5 versus
a(2)/a(0)51.5 for point islands, andq* (2)/q* (0.5)53.6
versusa(2)/a(0.5)52.8 for square islands. However, th
precise relation betweenq* (x) and a(x) cannot be simple
@e.g., for compact islands,q* (x) decreases, whereasa(x)
increases for smallx#. For the nucleation-within-a-cell pic
ture, we estimate thatc'0.64 from a fit to our point island
data, and using the condition that*0

` da q* (a)g(a)5Mo

51. Here, we denote the total cell area distribution~cf. Ap-
pendix D! asg(a)5*0

` dx F(x,a).
Next we consider quantities describing the area of cells

just-nucleated islands. ForAnuc(s,A)/Aav'anuc(x,a), we
have *0

` da anuc(x,a)q* (x,a)F(x,a)5anuc(x)q* (x) f (x),
whereaavnuc5*0

` dx anuc(x)q* (x) f (x). If Anuc(s,A)5mA,
so anuc(x,a)5ma; then it follows that

anuc~x!5mE
0

`

da aq* ~x,a!F~x,a!/q* ~x! f ~x! and

aavnuc5mE
0

`

dxE
0

`

da aq* ~x,a!F~x,a!. ~C2!

Thus since *0
` dx *0

` da aF(x,a)51, one expects tha
aavnuc is similar to~but not exactly equal to! mMo , recalling
8-13
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that Mo5*0
` dx *0

` da q* (x,a)F(x,a). Also, anuc(x) can
differ significantly from ma(x)5m*0

` da aF(x,a)/ f (x)
due to the weighting byq* .

For the ‘nucleation-within-a-cell’ picture, withMo51
andAnuc(s,A)5lA, the above shows thataavnucÞl. None-
theless,l and aavnuc may still be comparable. Suppose th
anuc(x)5la(x) @where still aavnucÞl, since
*0

` f (x)a(x)q* (x)dxÞ1#, and make the approximate ident
fication thataavnuc5a(0) ~cf. Sec. III!. Then one hasl21

5*0
` dx f(x)q* (x)@a(x)/a(0)#.1, since a(x)/a(0).1

and*0
` dx f(x)q* (x)51. Using fitted scaling functions fo

point-island simulation data, this relation provides an e
mate ofl'0.7, which is close toaavnuc'0.9. We also note
that settingl constant@e.g.,l'0.4 from MR ~Ref. 12!# is
not likely to be accurate~cf. Fig. 7!.

Finally, we comment on the issue ofu-independent scal
ing. A reasonable lowest-order approximation is that b
Qs,A* andAnuc(s,A) should depend primarily on the free are
Af5A2s of the cell within which nucleation occurs~noting
that Anuc,Af!. Then the associated scaling functions wou
depend primarily onAf /Aav5a2ux, and thus carry an ex
plicit u dependence. This would preclude prec
u-independent scaling ofF ~except foru!1!. However, in
practice, there is a strong correlation betweens andA, so a
dependence onAf /Aav may be reasonably approximated by
dependence onA/Aav5a.

APPENDIX D: SCALING OF THE TOTAL CELL
AREA DISTRIBUTION

Here we assume au-independent scaling~cf. Ref. 10!, and
consider the behavior of the total cell area distribution,NA
5Ss.1Ns,A . This distribution is characterized by the scalin
function g(a)5*0

` dx F(x,a) which satisfies*0
` da g(a)

51. For reference, simulation results forg(a), for point
islands using VC’s, and square islands using EC’s,
shown in Fig. 11. For simplicity, we adopt the nucleation-
a-cell picture of Sec. IV F. Applying*0

` dx• to Eq. ~32!
yields

2g~a!1a]/]a g~a!

5~12Ã!21Ctot~0,a!F~0,a!

1E
0

`

dx@q* ~x,a1!F~x,a1!da1 /da

2q* ~x,a!F~x,a!]

5E
0

`

dx@q* ~x,a18 !F~x,a18 !da18 /da

1q* ~x,a1!F~x,a1!da1 /da2q* ~x,a!F~x,a!#.

~D1!

In the last line, we applied boundary condition~43! to elimi-
nateCtot(0,a)F(0,a), and also to achievecancellationof the
factor (12Ã), so the quantityÃ doesnot appear explicitly
in Eq. ~D1!.
23540
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To proceed further, we make the simplifying MR-typ
assumptions thatanuc(x,a)5la and q* (x,a)5ca4. Be-
low, for convenience, we setl8512l. Then Eq.~D1! re-
duces to

a]/]ag~a!5~c/l!~a/l!4g~a/l!1~c/l8!

3~a/l8!4g~a/l8!2ca4g~a!22g~a!.

~D2!

Then, applying the integration*0
`da• to Eq. ~D2! yields

c*0
` da a4g(a)51, which is the normalization condition

used to determinec ~cf. Appendix C!. Dividing Eq. ~D2! by
a and then integrating*0

` da• using the natural boundar
conditions thatg(0)5g(`)50, implies the constraint that

c~1/l11/l821!E
0

`

da a3g~a!52E
0

`

da g~a!/a.

~D3!

One might attempt to use Eq.~D2! iteratively to generate a
solution, so thei th iterategi is fed into the RHS, and the
( i 11)st iterategi 11 appears on the LHS. However, iteratio
does not necessarily preserve Eq.~D3!. A nontrivial solution
to Eq. ~D3! exists if the PDE@Eq. ~32!# with boundary con-
dition ~43! has a solution. However, this is not proven~and is
not obvious since the PDE equation involves approxim
tions!. It is plausible that solutions exist only for certainl.

APPENDIX E: CLOSURE AND SOLUTION
OF MOMENT EQUATIONS

A complete analysis of the moment equations in S
IV D for f (x), a(x), and s2(x) requires some closure ap
proximation for higher moments*0

`anF da, with n.2. One
strategy is to set to zero the third- and higher-ordercumu-
lantsof F vs a, for each fixedx ~i.e., to assume Gaussian ce
area distributions!. To simplify this analysis, we adopt th
MR from for q* (x,a)5ca4, wherec'0.64 ~see Appendix
C!, and writeanuc(x,a)5l(x)a ~generalizing the theory o
MR!. Then the integrands in the nucleation terms in E
~37! and ~40! reduce to the simple high-order moments

FIG. 11. Simulation results forg(a) for ~a! point islands using
VC’s, and ~b! square islands using EC’s, at 0.1 ML withh/F
5107.
8-14
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E
0

`

da anucq* F5lcE
0

`

da a5F'lc~a5110a3s2

115as4! f [m~x! f ~x!, ~E1!

and

E
0

`

da anuc~2a2anuc!q* F5l~22l!cE
0

`

da a6F

'l~22l!c~a6115a4s2

145a2s4115s6! f

[n~x! f ~x!. ~E2!

Note thatm(x)[anuc(x)q* (x). After substituting Eq.~E1!
into Eq.~37!, and Eq.~E2! into Eq.~40!, it is straightforward
to use Eq.~35! to eliminatef (x), yielding a coupled closed
pair of first-order ODE’s:
a-
.
d-

s
-

g,

il

W

S.

D

23540
@~a2Ãx!2s2~a2Ãx!21#da/dx1d/dx~s2!

5~12Ã!~a2m!2s2~2Ã21!~a2Ãx!21,

~E3!

@2a~a2Ãx!22Ãxs2~a2Ãx!21#da/dx

1~3a2Ãx!d/dx~s2!

52~12Ã!n2s2@6~Ã22/3!a12~12Ã!Ãx#

3~a2Ãx!2112~12Ã!a2. ~E4!

Integrating Eqs.~E3! and~E4! produces reasonable behavi
for small x, but the solution becomes singular witha2Ãx
→0, at finite x. This reflects in part the inadequacy of o
description in Eqs.~E1! and ~E2! of the nucleation terms.
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