PHYSICAL REVIEW B, VOLUME 63, 235408

Nucleation, adatom capture, and island size distributions:
Unified scaling analysis for submonolayer deposition
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We consider the irreversible nucleation and growth of two-dimensional islands during submonolayer depo-
sition in the regime of large island sizes. A quasihydrodynamic analysis of rate equations for island densities
yields an ordinary differential equatiqQ@®DE) for the scaling function describing the island size distribution.

This ODE involves the scaling function for the dependence on island size of “capture numbers” describing the
aggregation of diffusing adatoms. The latter is determined via a quasihydrodynamic analysis of rate equations
for the areas of “capture zones” surrounding islands. Alternatively, a more complicated analysis yields a
partial differential equatiofPDE) for the scaling function describing the joint probability distribution for
island sizes and capture zone areas. Then, applying a moment analysis to this PDE, we obtain refined versions
of the above ODE'’s, together with a third equation for the variance of the cell area distrikfatiaslands of

a given siz¢ The key nontrivial input to the above equations is a detailed characterization of nucleation. We
analyze these equations for a general formulation of nucleation, as well as for an idealized picture considered
previously, wherein nucleated islands have capture zones lying completely within those of existing islands.
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. INTRODUCTION plain the form ofo versuss. These include our previous

) ) __ _rate-equation formulation for mean capture zone areas versus
For decades, there has been interest in characterizing igjand sizeé'! and a more complicated analysis of the joint
land formation during the initial stages of film growtt?. Of probability distribution for island size and capture zone areas
particular interest is the nature of the island size dlstr|but|onby Mulheran and Robbi¥ However, a quantitatively pre-

gg;ﬁe tsr?h:e:a?r?itelgt p{ﬁgfﬁgggzl fg;atlh'éség'Setl?_%létr'g?stgﬁ,'[ng cise theory has yet to be developed. It is clear that the early
ySESS nucleation stage is crucial, noting, for example, that islands

mean-field rate-equation treatmeffssubsequent postulated ;

analytical forms, and also simple geometric interpretations nucleated earlier t.e nd to have larger captu.r'e z 6rfeuﬂher-

based on adatom captrédowever, each of these fails to more, recent studies reveal a strong sensitivity of the island
! size distribution to the prescription of nucleatibhThus a

recover key qualitative features observed in precise simulaz <~ = M= X ,
tion results for the size distributichKey to a resolution of sophisticated characterization of the nucleation process is

these shortcomings is recognizing that this size distributiork€y t0 & comprehensive understanding of adatom capture and
is controlled by the non-mean-fieldon-MPF) dependence on island size distributions.
island sizes (measured in atom®f the “capture numbers” To this end, we consider the simplest regime of irrevers-
05.%" These capture numbers describe the propensity of igble island formation during submonolayer deposition. Our
lands to capture diffusing adatoms. Most significantly, wediscussion will focus on the common case of compact two-
were able to obtain an explicit aneixact formula which ~ dimensional islands, further restricting attention to the pre-
relates the shape of the island size distribution to the behawgoalescence regime. We shall also consider and show results
ior of the capture numbersthus providing a much sought- for the special case of “point islands.” In the latter idealized
after theory for explaining this shape. model, islands occupy a single site on the lattice, but carry a

The remaining challenge is to understand the non-MF delabel indicating their siz& This idealized model is useful for
pendence ofr;. Some insight comes from a geometric pic- €lucidating scaling behavior at low coverages. In both cases,
ture of adatom capture in terms of “capture zones” whichthe key atomistic processes involved are as follows. Atoms
surround each islartf® The idea is that atoms deposited are deposited at random at a r&tger site, and subsequently
within such a capture zone will typically aggregate with theundergo terrace diffusion with a hop rate(per direction.
associated island. The main observation is that larger islandghis leads to the irreversible nucleation of islands when two
have larger capture zon&s’ This implies the existence of a diffusing adatoms meet. Also, existing islands grow due to
correlation between island size and separation, which is igirreversible aggregation of diffusing adatoms, and due to the
nored in MF treatments. As an aside, the problem of conincorporation of atoms deposited directly on top of islands.
structing capture zones which precisely reflect adatom cagh this analysis, we regard the latter process as instantaneous.
ture leads to an analysis of an appropriate continuun¥he fundamental quantities of interest are the densipes
diffusion equation for deposited atoms. This procedure ifdsorption sitgof islands ofs atoms, which are denoted by
central to developing continuum treatments of island growthNs (So N gives the density of diffusing atomshe average
i.e., in connecting atomistic and mesoscopic lengthisland density denoted by,,=2-;Ng, the coverage by
scale$10 =3 .,sNs, and the average island sigmeasured in atoms

To date, there have been two significant attempts to exby S,=(0—N7)/Ny~ 6/N,,. Below, we shall consider ex-
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clusively thescaling regimeof larges,, . gregation with islands of all sizes>1, and others due to

In Sec. I, we first present the standard rate equations fonucleation. Contracting this equation fidg (neglecting loss
evolution of the island densities. We then apply to these alue to nucleation and the equation foN,,, yields
qguasihydrodynamic analysis, treating the scaled island size
s/s,, as a continuous variablelenoted byx). This yields an d/dt Ny~F(1— 6) — R,y total)
ordinary differential equatiofODE) for the scaling function
describing the island size distribution in terms of that for
capture numbergr capture zone arepdVe extend our pre- d/dt Ny~ho(N;)2. 2)
vious derivation for point islandsto the case of compact ) ] ]
islands, and also present several basic relations for the scalus in the steady-state regime where adatom gain and loss
ing functions. Next, in Sec. Ill, we develop approximate ratefoughly balance, one has
equations for capture zone areas, and again perform a quasi- _
hydrodynamic analysis to obtain an ODE for the associated F(1=60)~hoaNaN;. ©)
scaling function. This extends our previous formulation inThis steady-state relation can be used to integrateNihe
Ref. 11. These equations are analyzed for an exact prescripguation yieldingN,,~ G(6)(h/F) Y2 Here, the nontrivial
tion of nucleation, and reproduce the key features of they dependence o6 (6) reflects that ofo,, and 01_3 If this
island size dependence of adatom capture. We also considgépendence is weak, then one obta@®s 0° with w=1%.
a simplified description corresponding to “nucleation insideThjs implies thats,,~ gz(h/F)lB, where w=1—w, and

a cell,” where just nucleated islands have capture zones lyfys =2, Scaling withw=2 applies for point island$,

ing completely within those of existing islands. Next, in Sec.\yhereas one tends to find effective valuessotloser to(but

IV, following ideas of Mulheran and Robbfé,we develop  pelow) unity for compact island&? This latter feature re-
equations describing the joint probability distribution for is- fiects a greater inhibition of nucleation due to the finite ex-
land sizes and capture zone areas. A quasihydrodynamignt of the compactversus pointislands. However, we be-
analysis yields a partial differential equati@RDE) for the  |ieve that for compact islands with sufficiently smal|
associated scaling function. Applying a moment analysis ®oint-island behavior wheres =2 would eventually be re-

this PDE, we recover the above ODE for the island siz&yered in the scaling reginiéor very largeh/F or's,,).
distribution, and obtain a refined version of the ODE for

capture zone areasvhere the refinement accounts for the
distribution of capture zone areas for islands of a given)size
We further obtain a third ODE for the variance of this area In this scaling regime of largs,,, we introduce the natu-
distribution. However, the formulation is still not exact, and ral variable x=s/s,,, and perform a quasihydrodynamic
requires specific input on the nucleation process. A summargnalysis treatingc as a continuous variable. We write the
and brief discussion of proposed developments in the chaisland densities in the general scaling férmNg
acterization of nucleation are presented in the concluding=Na/(Sa) ~*f(X,0)~ 6(sa) ~2f(x,6), where the constraints

B. Quasihydrodynamic scaling analysis

Sec. V. Jodx f(x,0)=[ydx xf(x,0) =1 ensure that the above nor-
malization conditions are satisfied. One could also write
Il. ISLAND SIZE DISTRIBUTION: RATE EQUATIONS O'S/O'a\ﬁCagg(X,G), where f‘g’ dx Cagg(x,ﬁ)f(x,0)=1. In
AND SCALING choosing these forms, we have allowed this staggfor the

possibility of an explicitd dependence in the scaling func-

tions. Forcompact islandswherex/ k5~ S/S,,= X, one can
In the following, the rate at which diffusing atoms aggre- show that(cf. Refs. 7 and 14

gate with islands of sizes is denoted by R,u{S)

A. Basic formulation

=hoNgN;, defining a dimensionless “capture number’, d/dtNg=F(sa) " ?[(1—2w)f —wxaf/ox+ 09f/ 6],
for islands of sizes atoms. The total aggregation rate for

diffusing  atoms  satisfies Rgtotal)=S ¢ 1Ragd(S) Ragd S) —Ragd 8= 1)~ d/ S Ragg

=hoaNaNi, where o= 10Ns/N,, is the average ~E(5.)"2(1— 09/ 9x(Co. f
capture number. The rate of direct deposition on top of is- (Sa) )91 9X(Cagg 1), @
lands of sizes is denoted byRye{S)=F xsNg. This relation R (S)—Ri(S—1)~d/dSRi~F(s.) 200/ ox(xF
defines the direct capture numbey~s for compact islands, ae )~ Raed s~ 1) Riep=F (Sa) (xt),
neglecting possible perimeter corrections of ord¥f (. Riot(S) — Rigt( )~ F (Sa) 23/ 9X(Cyy T ).

~1 for point islandg Then, ifR(S)=RagdS) + RaedS), the
rate equations for the evolution of the island densities Here Eq.(3) is used to analyze thR,y, term. We have de-

have the form“25~7 finedw =d(Ins,)/d(In 6), and ignored any-dependence of
w. We also naturally combine aggregation and on-top depo-
d/dtNs= Ragd S—1) — RagdS) + Raed S—1) —Rged S) sition terms into a single natural scaling functid®(x,6)

=0x+(1—60)Cygd X, 0). The above normalization conditions
on f andC,q4, imply the further normalization condition that
The equation foilN; involves a gain term due to deposition [§ dx Cu(X,0)f(x,§)=1. One thus obtains thindamental
(excluding on-top deposition evehtdoss terms due to ag- equation

=Rio(S—1) —Rix(s), for s>1. (1)
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(1-2w)f—wxdflox+ 09F/190=— 9l IX(Cior T ). (5) Second, suppose th@l,(X) —wXx—0+, asx—x* (<)
) ) . . from below. Then, one has thd{x)=0 for x>x*, and,
We emphasize that Ed5) is an exactrelation. Forpoint ¢4 Eq.(7), that

islands one haskg/s,~0, and naturally define<y(x)
=C,ydX), so Eq.(5) still applies(cf. Ref. . f(X)~(X* —x)”
If Cot has no explicity dependence, then it follows that a
solution of the partial differential equatid®DE) (5) subject where y=[d/dx Cy(X*)
to the normalization constraints mentioned above is selected
with f independent ofg. See Ref. 10 for a more detailed —(2w—1)]/[2w —d/dX Cp( x*)]
discussion. In this way, we recover the well-known
#-independent scaling form fdr versusx observed previ- for x<x*. (9)
ously in simulation$. Furthermore, in this casé(x) can be

determined by integrating the ODE obtained by dropping the'here are two distinct cases to consider.dfdx Ci(X*)
9196 term in Eq.(5). One thus obtains >2w—1 (so y>0), thenf(x)—0, asx—x* from below. If

d/dx C(X*)<2w—1 (so y<0), then f(x) diverges asx
X —x* from below. The latter corresponds to unphysical
f(x)=1(0) ex . dy[(2w —1)—d/dy Ge(y))/ mean-field-type behavidr*

Finally, we comment on some basic normalization issues.

Simply applying the operatiorf gx"dx- to Eq. (5) (after
[Craly) =Y}, (6) dropping thes/76 term) yields the key relatiort§
extending the result of Ref. 7. Equati¢) can be rewritten o
as(cf. Ref. 10 (1—w)fo dx f(x)=f(0)Cy(0) (=1-w) for n=0,
f(X)=£(0)Co O) [ Ciof( X) —wx] (109
X o] 0
Xexp[—(1—m)fody[0tot(>')—wy]1}- () f dxxf(X)=J dx Ce(x)f(x) (=1) for n=1,
0 0
(10b)

Heref(0) is chosen to ensure thif dx f(x)=1. Typically,
our focus will be on the regime of loww<1, whereCiy o o
~C,qg (Or on the case of point islands, wheg,=C,yy, SO (1+m)f dx x2f(x)=2f dx xC(x)f(x) for n=2.
¢-independent scaling derives from that of the scaling func- 0 0

tion, C,4{X), for the capture numbers. (109
. . . The result forn=0, thatf(0)C(0)=1—w, provides a key
C. Properties of the scaling functionf(x) constraint on the behavior 6{x) andC,.(x) for small island

¢-independent scaling\Ve shall see below that bofy,,{x) f(x), and further demonstrates the requirement #xat 1.
andC,,(X) exceedwx, for smallx. Then it is clear from Eq.  The result fom=1 ensures that normalization of the scaling
(6) or Eq. (7) that the form off(x) depends sensitively on functions is consistent with the conditions Qiy(X) stated

examine the different possible scenarios in more detail. o of the scaling function for the island size distribution:
First, suppose thaC,(X)—wx>0, for all x, and that

Cioi(X)~wx, for large x, with v>w. Then, from Eq.(6), it 2_ f“ 12

immediately follows that 7], dx(x=1)7F(x)

— —(1-w)/(v-w) oo £
) Ciot( %)~ F(0) Ci( 0)x as x—ee, =2(1+w) ! f dx XGi(X)F(X) — 1
0

so (1-w)/(v—w)>1 or v<1. (8)
The latter condition isequiredto ensure convergence of the =2(1+m)_1J' dX[X—3(1+ ) ]Ci( X)F(X)
integral [ dx f(x)Cio(X)=1. The inequalityv<1 consti- 0
tutes an important constraint on the behavior of the capture >(1-w)/(1+w). (12)
numbers. Note that the unphysical for@,(x)=x can be
associated with the complete absence of nucledfiomgi- For the last inequality, we have wused that

cating the importance of continuous nucleation in determindy dx xGu(X)f(x)>1. This quantity is the mean of the nor-
ing the form of f(x). If Ciy(X)>wX, and Ci(X)—wx  malized distributionC,,(X)f(x), which should exceed the
—const(>0), or C,(X)—wx—0+, asx—», then one can mean(of unity) of the normalized distributior, due to the
show thatf(x)C;(X)—0, asx—o, sufficiently fast to en- feature thatC,,(X) is a monotonically increasing function
sure normalization. (see below.
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: to the absence of nucleatiprThis issue will be explored in
(b 1 detail in a separate paper focusing on simulation results. We
also note that behavior for compact islands is expected to be
roughly independent of their shape. See Ref. 8 for corre-
sponding results for hexagonal islands. Finally, it should be
emphasized that the observed smaliehavior, where (0)
~0.35 andC,(0)=~0.4, is again consistent with E410a
using the observed effective~0.9.

00 05 10 15 20 25 00 05 10 15 20 25
s/s s/s

av av

IIl. CAPTURE ZONE AREAS: RATE

FIG. 1. (a) Capture number behavior, affid) island size distri- EQUATIONS AND SCALING

bution for the point-island model at 0.1 ML wittVF =10’ . .
A. Basic formulation

D. Simulation results for scaling functions Intuition suggests that most deposited atoms should ag-
Jregate with nearby islands. Thus, as indicated in Sec. |, it is
natural to construct a tessellation of the surface into cells or
“capture zones” based on the island distribution, so that
| ach cell contains a single island. Specific choices of tessel-
ations will be discussed in Sec. IlI C. In all cases, the mean

area for cells corresponding to islands of sszencluding the
area of the enclosed islanés denoted byA, (in units of
adsorption site ar@aso A, =2 1ANg/N,=1/N,,. For
compact islands, it is appropriate also to introduce the “free

(with considerable uncertainty in). It is not clear whether ~2f€aS: A;:AS? s, of the cells, which exclude the island
the true asymptotic form ofC,,{x) crosseswx=2x/3. &réa so the“o‘avf:(l_‘9+'\'1)'A‘av%(1_‘9)Aav- For point
However, if it does, its derivative certainly exceeds21  islands, one had,~A,,. _
=1 at the crossing point, so the island size distributions One might anticipate that the dependencé\obn island
shown in Fig. 1b) reveal thatf(x) exhibits no singularity. ~Sizeswould provide basic insight into the form of; versus
Results show that(0)~0.35 is nonzero, contrasting propos- S @nd thus the form o€,4(x). Bales’ suggested develop-
als in Refs. 5 and 6. Also, sin€@,(0)~0.91, the behavior is INg rate equations foAs as a way to assess their dependence
consistent with Eq(10a given thatw = 2. ons. As a first attempt to resolve this central issue in nucle-
In Fig. 2a), we show results forC,(X)~Oks/ka+ (1  &tion theory, we pr_ewously developed such rate equations
— 0) g/ aa, VS SIS, for square islandst 0.1 ML with h/F for the Ag for pomt islands in Ref. 11_, and furthermore de-
=10’. These results indicate much less of a plateaD,ixx) \{eloped the quasihydrodynamic scaling folrm _of the_se equa-
than for point islands, and a steeper increasefed. with v tons. Here we present a more general'derlvatlon, discuss the
closer to unity. The behavior o€,qfx) is similar}* The  approximations inherent in such equations, _and also analyze
island size distributions for square islands, shown in Fig!h€e behavior of the solutions of these equations.
2(b), are similar to those for point islands. These differences FOr compact islands, we consider the fractional dghds
in the form of C,,(X) for compact and point islands may to of cell_s assomate_d Wl_th islands of S|ze>_1. _Change_s in this
some extent reflect nonasymptotic behavior for compact isduantity occur primarily for two reasoné) islands increase
lands deriving from the non-negligibi and finiteh/F used ~ their size in increments ofs=1 due to aggregation or direct
in the simulations. For non-negligibke nucleation is inhib- on-top deposition, _thus shlftln_g cells to islands of larger size;
ited for compact islands compared to point islagaith the ~ @nd(ii) when new island¢of size 2 are nucleated, some of
same nominab), forcing an effectivew close to unity, and the area is removed from the cells of existing islands. See

perhaps forcing behavior closer @.(x)~x (corresponding Eig. 3 for a schematic of thgse processes. The first co_ntribu—
tions are easy to treéapproximately, but the latter requires

SE— a more detailed characterization of the nucleation process.
0.7} g .

v o5l ® For this purpose, we leA,,.cdenote theaveragecell area

| ] associated with just-nucleated islands. We als@letlenote

the typical fraction of the area,,,,that is removed from

It is appropriate here to review previous simulation result
for both point and compact islands with largéF, which
elucidate the forms of (x), and Cygfx) or C(x). These
will provide a benchmark for our subsequent analyses.
Fig. 1(a), we show results foC .y X) ~ 05/ 0y, Versuss/s,,
for point islandsat 0.1 ML with h/F=10" (a value used
throughout this work These results indicate that,(X)
=C,qdX) exhibits a plateau fox<<1 (roughly), followed by
a quasilinear increase for>1 with CoyfX)~vx, andv~3

N

0.5t

o))

1 f 2: the cells of pre-existing islands of size (per nucleation
0'2: even). Thus P, satisfies the normalization condition
ol 3 1Ps=1. Then one has tht
I . . . - 0.0 . . . .
0.0 0.5 lAOS/Sl;VS 20 25 0.0 05 1.0 S/SI;VS 20 25 d/dt(ASNS)NAsflRagg(S— 1)_ASRagg(S)

+A_1R4edS— 1) —ARyed S)
FIG. 2. (a) Capture number behavior, affid) island size distri- stt deﬁ( s dEp(
bution for the square-island model at 0.1 ML whiF =10’ — AavnudPs(dNg,/dt)
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Jo dxa(x,0)f(x,0)=1, and also writeA,ynud Aav= Qavnuc:

In Sec. IIC, it will also be useful to introduce the scaling
form a’(x)~AlA!, for free cell areas. Then, sinde~A
+s, it follows thata(x) = 6x+ (1— #)a’(x). In addition, be-
low we set

Ps~(Sa) 'P(x,0) and Qs~q(X,0),

so p(x,0) factors asp(x,0)=f(x,0)q(x,0), (13

where [§ dx p(x,0)=[g dx f(x,6)q(x,6)=1.
Using these assumed scaling forms, one can show that

d/dt(ANg) ~ — U(ts,)[walax(xaf)— 0al a6(af)],

As_ 1Rio(S—1) —AsRioi( S) =~ 9/ IS[ ARi0(S) |

FIG. 3. Schematics fofa) transfer of cells of ared from is- ~1/(tsy) dl 9x(aCyy ),
lands of sizes— 1 to s by aggregation; antb) reduction of cell area
for islands of sizes from A to A—pA,, by nucleation, where (14

indicates the fraction of the ared,,, of the nucleated cell by
which A is reduced. The notation —Ag associates the area on the and Agnuds dNg/dt=1/(tsy) (1~ @) agnudf-

left of the arrow with cells of islands of size Thus it follows that

~Ag_ 1Ri(S—1) — ARioi(S) — Agunuds(dNg,/dt) wdlax(xaf)—0dld6(af)=adlox(aCyy f)

for s>2. (12) +(1-®)agndf. (195

The equation fod/dt(AN,) for s=2 has a different form: 1€ terms on the left-hand sideHS) of (15) come from

there is a gain term due to nucleation, and loss terms due &/ 91(AsNs), the first term on the right-hand sid&kHS
aggregation and direct depositidsee Appendix A Finally, combines aggregation and deposition contributions, and the

we note that thé®, should scale with the density of islands S€¢0Nd term on the RHS comes from nucleation contribu-
of sizes, so we naturally writeP.=(Ng/N,)Q.. This fac- tions. Again, we focus on solutions of this first-order PDE
torization will be utilized below. whereC,, anda, ¢, andf areindependenof 6 (cf. Ref. 10.

There are two subtle approximations inherent in formulatn this situation, Eq(15) is simplified by using Eq(S) (with-

ing Eq. (12). First, we ignore the feature that the area of a @ut thedde term) to rewrite 7f/ox in terms off, Cy;, and
specific cell typically changes due to a growth of the com-9/X(Ciop). After some rea_lrrangern_ent, and cancellation of
pact island within the cell, and a growth of the neighboring?/ ?X(Cro) terms, one obtains the simple ODE

islands, as this can lead to slight shifts in the location of the _ _a _

cell boundarie$® However, we anticipate that the net effect [Co) ~mx]d/dx alx)= (1~ w)[a(x) a"’“’”“g(x)]('l@

is small. Secongwe ignore the correlation between the cap-
ture zone area and aggregation r@ed between the capture At this level of treatment, Eq.16) is thefundamental equa-
zone area and the direct on-top deposition)rateeplacing  tion for the scaling function describing capture zone or cell
“means of products” by “products of means” in the aggre- areas. It isnot exact and its inherent approximations will be
gation and deposition terms in E@.2). This approximation described in Sec. IV. This equation also applies for point
will be discussed further in Sec. IV. islands, whereC,(X)=Cagd x). "

Another subtle issue is the identification &f,,c. If the One consequence of E@.6), which should be noted here,
rate of growth of “dimer” islands of sizes=2 greatly ex- follows most easily from applying the operatigifdxe to
ceeds their nucleation rate, then essentially all dimers woulgq. (15). After dropping thed/96 term, one obtains the rela-
be “just-nucleated islands,” and,,,cwould correspond to tion a(0)Ci(0)f(0)=(1—w)asn Where we have used the
A,. However, from Egs(1) and (2), the rates of dimer normalization conditions om(x). Then, using Eq(103),
nucleation and growth are comparable, so we do not expethis implies thata,,,,—a(0), which follows if A A, .
this correspondence to be precise. See below for further dighs noted above, this corresponds to the scenario where most
cussion. s=2 dimer islands are “just nucleated,” a condition which

is not precisely satisfied. This problem is addressed in the
B. Quasihydrodynamic scaling analysis refined equation foa(x) obtained in Sec. IV.

To perform a quasihydrodynamic analysis of Etp) for
compact islands in the regime of largg, we again treak
=s/s,, as a continuous variable. We will assume a scaling The above formulation applies for any tessellation of the
form  a(x,0)=As/A,, for cell areas, where island distribution. The cells in such tessellations might be

C. Specific choices of capture zone tessellations
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(b) 353. 251 (a) i 1.4} (b)

1.3t

18 184 o < 1.2}
0.5}F ] 09t
158 . 266 ; - s

I 00 05 10 15 20 00 05 10 15 20
X X

FIG. 4. Examples ofa) a VC tessellation for pointislands, and  FIG. 5. Simulation resultéhick lines using VC's for the point-
(b) an EC tessellation for square islands. In both calsés=10°, island model at 0.1 ML witth/F=10’ for (&) q(x) and (b) the
6=0.1ML, the picture size is 150150 sites, and we have indi- associate@(x). Also shown are predictions obtained from Etf)
cated the sizes of all islandi atoms. (thin lines, as described in the text.

generated bygeometric Voronoi-type constructian8pply-  whereq(x) has yet to be determined, and we note again that
ing the conventional Voronoi construction, points within the Eq. (20) is not exact. Certainly, the choice of DC’s simplifies
Voronoi cells(VC's) are closer to the centers of the enclosedthe formulation of the theory, since E(L9) applies. How-
islands than to the center of other islands. For compact isever, when comparing against simulation data, it is conve-
lands at higher coverages, one inadequacy of VC’s is thatient to have thdlexibility of using VC’s or EC'’s.

islands may overlap cell boundaries. To avoid this problem |f q(x) is treated as a known quantity, then Eg0) has
and better reflect adatom capture, it is natural for the conthe form of an Abel equation of the second kitdThe same
struction to be based instead on the distance from islangiso applies for the(x) equation for VC's or EC’s obtained
edges, producing “edge cells(EC's).>"® From analysis of  from Eq.(16) after using Eq(17) or Eq.(18).] Furthermore,
EC'’s for square islands with “moderated~0.1-0.2ML,  the specific form of these equations allows conversion to an

one finds that'®*° Abel equation of the first kind in terms of the variable
) U(X) =[Cro(¥)—wx] 2! For example, from Eq(20), one
CuaX)~ 7:2(X)+ (1= 7o), With 7,~1.0 obtains
[i.e., Ci(X)~a(x)]. (17) du/dx= (2w —1)u?+ (1—©)[agnd(X) — wXx]u’,

For point islands, VC's and EC’s are equivalent, ai¢ix)
=a(x). Simulation data for point islands reveal tfstt quite

high precision It follows from Eq.(21) that unlessa,,,,g(x) decreases be-
low wx, with increasingx (see below, there is a divergence
u—co, which corresponds t€;,(X)—wX, for finite x

where u(0)=C,(0) *=a(0) >0 (21

Ciot(X) =Cpqgd X) = ypa(X) +(1—v,), with y,~0.7.
(18)

Substitution of Eq(17) or Eq. (18) for Cy(X) into Eq. (16) D. Analysis for an exact prescription of nucleation
yields a “closed” equation fom(x), assuming thag(x) is Here we use simulations to monitor a large number of
determined independently. Figure 4 shows an example of a ! . 9 , )
. L ; nucleation events. The cell of each just-nucleated island is
VC tessellation for point islands, and an EC tessellation for . L
square islands. constructed, allowing determln'a}tlon qﬂka\muc, anq thus
Alternatively, in a more sophisticated choice of tessella-2avnue: These cells are a}lso_partltloned Into sut_)reg|ons over-
tion (for either point or compact islangshe cells or capture lapping the cells of existing islands of various sizes, allowing
. e | determination ofPg and thusq(x). For the point-island
zones are constructed based on analysis of diffusion equg ode] one hasa(0)~0.88 andag,.,.~0.93 [cf. Eq. (41)].

ions for i ms, th recisely reflectin . X . .
tions for deposited atoms, thus precisely reflecting adato imulation resultgthick curves are shown forg(x) using

capture. These cells are described d#gfusion cells L . A
(DC's).8%14 By construction, the free area of the diffusion \5/(%)5 Im ;'g';g;)’ and Ifor tEe corr]respog_dlr_]géﬁ) in F'%‘

: : . . In Fig. , we also show the predictiofthin curv
cells is exactly proportional to the capture rétd,e., for a(x) obtained from Eq(16) with w =2 using Eq.(18) to
lo.=AYAL  so C.{x)=a'(X), relate Cy(X) to a(x), and using the simulategi(x) in Fig.

T/ Tav= s Rav agd X)=a(%) 5(a). Conversely, in Fig. &), we show the predictiofithin
curve for gq(x) obtained from Eq(16) using the simulated
a(x) in Fig. 5b). The predictions of Eq(16) capture the
Substituting the latter relation into E¢L4) yields, fora(x) basic features of the simulation results quite well, given that

and thusC(x)=a(x). (19

for DC’s, the basic equation there still are approximations built into this equation. It
should be noted that using E¢L6) to predicta(x) from
[a(x) —wx]d/dx a(X)=(1—®)[a(X) — aymnd(X)], specifiedq(x) can produce a singular behavior for finkeif

(20 g(x) increases “too quickly.” This does occur in our calcu-

235408-6



NUCLEATION, ADATOM CAPTURE, AND ISLAND SIZE . .. PHYSICAL REVIEW B 63 235408
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FIG. 6. Simulation resultgthick lines using EC’s for the FIG. 7. g* (x) and\ (x) =a,,{x)/a(x) (insets for (a) the point-

square-island model at 0.1 ML wiltn/F=1_07. for (& q(x) and(b)  jsjand model, andb) the square-island model, at 0.1 ML with
the associated(x). Also shown are predictions obtained from Eq. /g =1¢'.

(16) (thin lines, as described in the text.

lations, presumably again reflecting approximations in quvithin the capture zone or the cell of a single existing island.
(16), and our nonasymptotic inpui(x). For thesquare- In this caseP} is just the probability for nucleation within
island modef where a(0)~0.5 and a,,,,~0.6 [cf. Eq.  the cell of an island of size, M,=1, andA,.{s) is the
(41)], simulation resultgthick curves are shown forg(x) mean area of the cell of such a nucleated island. Specifically,
using EC’s in Fig. 6a), and for the corresponding(x) in MR assumed that each nucleation event splits an existing cell
Fig. 6(b). In Fig. 6b), we also show the predictex{x) from in two. This requires that nucleation positions be ‘“deep
Eq. (16) with an effectivew = 0.87 usingCy(X)~a(x) from within” cells of existing islands. However, we recognize that
Eq. (17), and using the simulated(x) in Fig. 6a). Con- it is somewhat unrealistic: nucleation positions tend to be
versely, in Fig. 6a), we show the predicted(x) from Eq. close to the boun_daries of capture zones, so f[hat just-
(16) using the simulate@(x) in Fig. 6b). The predictions nucleated (Z:ells typically overlap two or more existing cap-
from Eq.(16) are reasonable fax(x), but not forq(x). The  tUre zones!

latter no doubt reflects the feature that the simulagg is ~ Since nucleation inside a cell doest strictly apply, this
far from its asymptotic form, and other uncertainties with thellmits possibilities to test the above ideas. However, for any
use of effective exponents. tessellation of an island distribution, the following analyses

are instructive. We determine the probability for nucleation
within the cell of an island of sizg, and the average area of
the cells of such just-nucleated islandsiespective of
First we introduce a natural factorization of quantitieswhether these cells lie entirely within the existing cell of an
such as Ps and Qg [or p(x) and q(x)]. Let P} island of sizes. The former might be interpreted & and
=(Ns/N4)Q?% denote the probability that the cell of the the latter asA,,{S), although of course these interpretations
just-nucleated islandverlapsthe cell of some existing is- do not precisely match the above descriptions. Nonetheless,
land of sizes. Then one has the normalization condition from these quantities, we obtain estimates édrn(x) and
3 -1P¥=M,, the mean number of overlapped cells pera,,{x) [or A(X)=andX)/a(x)]. Figure 7 shows such* (x)
nucleation event. LeA,,{s) denote the mean area of the and\(x) using VC's for point islands, and EC’s for square
cell of a just-nucleated island which overlaps cells of exist-islands. Corresponding predictions fafx), using Eq.(23)
ing islands of sizes. Then we can write in Eq. (16), capture the key features of simulation results.

AavnuPs= Aavnud Ns/Nay) Qs= Anud S)( Ns/Nav)Q;c
=Anud S) P: . (22

E. Further analysis and the “nucleation-inside-a-cell” picture

IV. JOINT PROBABILITY DISTRIBUTIONS
FOR ISLAND SIZE AND CELL AREA

Introducing scaling functionsa, ,{X)~A,.{S)/A,, and

A. Basic quantities
q* (x)~Q?¥ (for larges,,), one has that

A particularly significant recent development in nucle-
Aaunud(X) = and X)g* (X), (23)  ation _theory was 'Fh.e idea of .l\_/IRiRe;f. ;2 to derive rate
equations for the joint probability distributioNg 5 for the
which can be used in E¢16). The normalization conditions gensities of islands of sizg atoms, and cell area (for a
on P{ and Ps imply that [q dx f(x)g*(x)=M, and suitable tessellation of the island distributioffhis quantity
Jo dx f(X)anudX)g* (X) =agnu respectively. is normalized so that \Ns o= Ns, with the island densities,
Next we introduce an idealized “nucleation-inside-a- N defined as above. We shall see that this approach comple-
cell” picture, providing a simpler interpretation ¢t and  ments the treatment of Sec. Ill, as the distributig, in-
AnudS). It was used in previous work by Mulheran and Rob- corporates the feature that the mean cell area for islands of
bie (MR),? and makes the formalism following in Sec. IV sizes, i.e., As=3ANg A/Ng, depends ors in a nontrivial
less complex. It involves the simplified view that capturenon-mean-field fashion. This approach also supplements or
zones or cells of just-nucleated islands always lie entirelyextends that of Sec. Il in that the distributidf  further-
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more incorporates the featupeot explicitly accounted for in

Sec. Il that islands of a given size have cells with a

distribution of cell areas. (@)
Clearly, sources of change for ti , include aggrega-

tion of diffusing atoms with islands, direct deposition on top

of islands, and nucleation. We now deal in a unified fashion

with the first two contributions. In the following, the rate at

which diffusing atoms aggregate with islands of sizend

cell areaA is denoted byR 4 S,A)=haos AN AN, defining

a dimensionless “capture numberds,. Then, one has

2205 aANsa=0¢Ng. The rate of direct deposition on top of

islands of sizes is denoted byRgedS,A)=F kNg o (Where (b)

A (8,AL)

A, (tot)

total area: A =A+A (s,A})

Ape(8,A")=A

ks~ for compact islands, oks~1 for point islands Be- A, (tot)
low, we sethot(s,A)=Rag?(s,A)+Rdep(s,A). For diffusion m nuc
cells one hasog p/a,=A"/Al,, whereA'=A— k. If the o
steady-state conditiofEq. (3)] is recast asthoa\,/A;\,
=F, then for DC’s it readily follows that

total area: A’ = +A_ (S,A",)= +A

Ragd $:A) =hNyoaf 0/ 0= AT AL NG o
FIG. 8. Schematics for the relation betwe@h A, andA, and
=FA'NgA, SO R(S,A)=FANga. (24  (b) A, andA. HereA, {tot) denotes the total area of the cell of a

. . . L just-nucleated island, of which a portidh,{s,...) overlaps the
Equation(24) applies either for compact or point islands. cell of the existing island of size. (This picture is oversimplified

~ The treatment of nHP'efition terms is more difficult. We o, pc's where introducing new cells changes boundaries of exist-
introduce the probabilityPs, that the cell of the just- ing cells external as well as internal to the new gell.

nucleated islandsverlapsthe cell of an existing island of
size s and cell areaA. Then, the typical number of cells \_ if the cell size prior to nucleatior, , is suitably larger

overlapped per nucleation event X-;3aP{a=M, (cf.  thanA In the latter case, the average value of the dea
Sec. llIB). Since this probability should scale with the den-shoyid satisfyA, = A+ A, (s,A.). See Fig. &). Given a

sity Ns,a, it is natural to decompose: specific functional form forA, this relation can be solved
. N to determine a unique functional relationship\,
Psa=(Nsa/Na)Q5a- (29) =A_(s,A). See Appendix B. In fadffor a given island size

We also letA,,(s,A) denote the averag@ortion of the 9), ther(_a will be adis_tribution of cell areasA+,. for which
area of the cell for a just-nucleated island whisrerlapsthe ~ Nucleation events will create a smaller cell with afeaand
cell of an existing island of sizeand cell area\. Note that A+ (S:A) gives only the averagdleglectingthis distribution
3 APE A ALdS,A) = AndS)PE, and that applyingSe., of A, values(i.e., ut|I|2|ng only the average valljjewe con-
givesA,,n... For small coverage@<1, or for point islands, Clude that the rate equations fi , have the form

we expect the characteristics of the nucleation process are

determined primarily by the geometry of the capture zone

tessellation(Pather tﬁany by tf?e sizesyof the smeplll islands  9/dt Ns A= Rio(s— 1A) RS A)+ 2%, Pias

within the cell3. Thus we expect aveak dependence on

island sizes of Q% ,~Q7x andA,,{s,A)~A,,{A). We em- X (dNg, /dt) = PZ A(dNg /dt),  for s>2.
phasize that cells of just-nucleated islands exhildtstribu- (26)
tion of overlap areasA,,. with cells of existing islands of

sizes and area\, and thatA,,(s,A) gives only the average. The restricted surt’, is for fixed A, and accounts for the

Our formulation does not incorporate the full distribution. featyre that the equatioh, = A+ A,,{s,A.) can have more
Finally, it is also convenient to introduce the probability,  than one solutio ., for fixed A (i.e., a cell of sizeA can be
that the just-nucleated island has a cell are®0§02Apa  created by nucleation within a larger cell sometimes with

=1 and> p\Apa=Aanuc more than one sizA, after removal of an areA,..) In the
scaling regime, this restricted sum may be replaced by a
B. Rate equations for the joint probability distribution factor dA, /dA. Perhaps the simplest scenario is that

The populatiorNs », of islands of sizeswith cells of size ~ AnudS:A+) =AndAs) = nA (where we expect thaiM,
A changes primarily for two reason@) Aggregation of dif- <1), SOA,(A)=A/(1-u), anddA, /dA:. (1= w). It. IS
fusing atoms with islands or direct deposition on-top of is-N€cessary to develop a separate equationNfgx, which
lands of sizes—1 (of size s), and cell aread, increases prowdes_ a “boundary condition” on the above coupled set
(decreasasN, . (i) Nucleation of islands with cellsver- ~ Of equations. One has that
lapping those of existing islands of sizedecreaseg , if
the cell area prior to nucleation i&. Nucleation increases d/dt Npa=—Ryo( 2,A) + pa(dN,,/dt). (27
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The above equation®6) and(27) no longer suffer from the
approximation implicit in Eq(12) of neglecting the distribu-
tion of cell areas for each island size. However, they do no
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P%A(dNg,/dt)~ 0F (sy) 3(1—-w)q*F,

account for changes in cell areas due to growth of the islan&% Py a+(dNg /dt) =~ 0F (s5) *(1-w)

within the cell and of neighboring islands, leading to slight

shifts in cell boundarie® Again, we anticipate that t
effect is small.

C. Quasihydrodynamic scaling analysis

he net

Again, our interest is in the scaling regime of lageand
A,y, SO we introduce the natural scaling variabkess/s,,
and a«=A/A,,, and the appropriate scaling functién de-

fined by
NS,A% Nav(savAav) 71F(X1 a, 0) = 02(53\,)73':()(, a, 0)1

(28)

where [{ daF(X,a,0)=f(x,0) and [{ da aF(X,a,6)

=a(x,0)f(x,6). Defining the average

()

=[5 da F)"Y(f5 da F-)=f"Y([; da F-), then these

conditions correspond td)=1 and{a)=a(x). To pro

ceed

further, we introduce a scaling function fotga/oy,y,

~Cagd X @, 0), and set
Ciot( X, @, 0) = (1= 0)Cygd X, @, 0)
+6 x for compact islands,

and

Ciot= Cagg for point islands.

(29

Then one has [o da Cio(X,a,0)F(X, @, 6)

=Caod X, 0)f(x,0) and Ciy(x,a,6)=a for DC’s. We

also

set Qi ~0*(x,a,0), so that [y dx [; daF(x,a,6)
Xq* (x,a,0)=M,, which follows from the normalization
condition onP 5. We also introduce scaling functions de-

scribing
Anud S A Ay~ anud X, @, 0),
AL (sA) Ay~ a (X a,0),

pAN(Aav)_lp(aya)y
which  satisfy the normalization conditions
fz)c dx fooc da anuc(xva’)q* (X, @) F(X, @) = @aynue

(30

that
and

[§ da p(a,6)=1. Note that if Ayds,A)=AndA)=uA,

then one hasy, {X,a,0)=pa andA (A)=A/(1—pu)

, SO

a(X,a,0)=al(1— ). Appendix C provide a discussion of _
the relationship between these scaling functions and the re- D. Moment analysis of the PDE for F:
duced functionsg* (x) anda,,{X), introduced in Sec. IIl.

Analyzing the various terms in the rate equati@®é) in

the scaling limit, one has
d/dt Ng o~ OF (Sa) *[(2—3w)F—wxdl IxF
+(1—w)adl daF+ 09 90F],
Riot( 5= LA) = Rioi(S,A)~ — 3/ ISR (S, A)
~ — OF (Sa) 29/ IX(CyoiF),

(31)

Xq*(X,a,,0)F(X,a, ,0)da, /da,

where the arguments & andg* are ,«,6), unless other-
wise indicated. Substituting these results into &) yields
the PDE

(2—3w)F(X,a,0) —wxdl IXF(X, a, 6)
+(1—w)adldaF(X,a,0)+ 00/ I0F(X,a, 0)

= — 9l X[ Cii( X, ¢, O) F(X, c, 0) ]
+(1-w)q*(X,a,0)F(X,a,,0)da, /da
—(1-©)q* (X,a,0)F(x,a,6). (32

The terms on the LHS of E¢32) come fromd/dt Ng . The
first term on the RHS describes island grovily both ag-
gregation and direct on-top depositjprand the last two
terms on the RHS describe gain and loss by nucleation, re-
spectively. We note again that X,,{s,A)=uA, then one
hasa,=a/(1—w) andda, /da=1/(1—u). Equation(32)
generalizes the PDE obtained by MRin the following
ways: (i) it is not restricted to the idealized and unphysical
“nucleation within a cell” picture(cf. Secs. lllE and IV E,
and allows for general functional forms f@* andA,,, (and
their scaling functions (ii) it applies for any tessellation
(i.e., not just DC’$; and (iii) it allows for an explicité de-
pendence. The first generalization is of fundamental impor-
tance for a physically realistic formulation, and the second is
of practical value. We also emphasize that iapproximate
as it neglects fluctuations iA, areas(cf. Sec. IV Q.

A similar analysis of Eq(27) reveals that the terms on the
RHS dominate those on the LHS by a factorsgf. Setting
the scaled form of the RHS terms to zero yields the “bound-
ary condition”

Ciot( 0,0, 0)F(0,c,0) = (1—w)p(«, 0), (33

which refines and simplifies MR’s resdft.The term on the
LHS corresponds to the loss of dimers with cells of scaled
areaa due to island growth, and the term on the RHS to gain
due to nucleation. A key constraint following from this rela-
tion will be discussed in Sec. IVE.

relation to previous ODE’s

In this section, we assume th&independent scalingp-
plies (but see Appendix & although some of the analysis
can be straightforwardly extended to the more general case
where additionabd/96 terms appear. One might analyze Eq.
(32) by either integrating with respect 10 or with respect to
a. The former analysis is presented in Appendix D. The lat-
ter is presented below. More specifically, the general strategy
is to apply the operatiorf;a"da- to Eq. (32), performing
integration of parts on thed/daF term, together with suit-
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able rearrangements of the resulting equations to obtai , . . 0.20 ‘
ODE'’s for various moments df. We will also use the iden- @ (b)
tities 0.15} 1 oasl

Nb NU

f da F=f, f da aF=af, f da a?F=a?%f + o?f, O'IO-AA—/“’“"’/ 1o
0 0 0 0.05| j o.os.fww"'"/.

Jo da a®F=a%f +3acf+ «f,... (34 s 1o 15 20 N5 o3 1o 15 20
X X

_ 20N — (o 2 _
where — a=(a), o (x)={(a—(a))*), x(X)={(a FIG. 9. Simulation results for? vs x for (a) the point-island

3 .
f<a>) ),-.., are themean, vangnqe, s'kewness'. T8SPEC-  model using VC’s, andb) the square-island model using EC's, at
tively, of the scaled cell area distributi¢for a given scaled 1 mL with h/E=10".

island sizex). Below we present an analysis for the moments

with n=0, 1, and 2. mately for point islands and VC's wherg~0.7, or for
(i) Zeroth momen¢n=0): Applying [, da-to EQ.(32),  square islands and EC’s at around 0.1 ML, where1).

one immediately recovers exactly the fundamental equatiodne can use Eq5) or (35) to reduce Eq(37) to an equation

(5) for the scaling functionf(x) describing the island size analogous to Eq(16), i.e.

distribution:

[Ciol(X) —wx]d/dx a(x)=(1—m)[a(X) = and X)q* (X)]
(1-2w)f(x)—wxd/dx f(x)=—d/dX[ Cin(X)f(X)].

(35) — yd/dx(of)/f. (38
Note that the nucleation terms exactly cancel under this prodJsing Eq.(5) or Eq. (35 again to completely eliminaté
cedure. yields
(ii) First momentn=1): First we comment on the result » 5 . )
of applying [3a da- to the nucleation terms in E¢32). If [(Crot=w@X) = ¥"0(Cior— wx) " “]da/dx+ yd/dx(o)

I . . _ - —
% Idenotes the inverse function @, =a,(X,a), ie., a =(1-®)[a—a,d*]— (2w —1)0%(Cio— wX) L.
=a. (X,a.), then one has that

(39
” _ This equation can be integrated fa(x) given information
d * (X, a)F(X, *(X,a)F(X,a)da, /d . . .
fo a ol g (X, a)F(x.a)~q" (x.a, )F(x,a.)da, /da] on o (anda,,.andqg*). An alternative strategy is to obtain

a second equation involving? (see below.

- fwda[a—a'Jr(X,a)]q*(x,a)F(x,a) (i) Second momerfh=2): Next, we apply/5a®da- to
0 Eqg. (32). For simplicity, we discuss only on the case where
- Coi(X,@)=a (e.g., tessellations based on DLC'Shen, after
=f da apd X, a)g* (X,a)F(X,a) some manipulation, one obtains
0

(1+wxadl ox)(a%f + a?f )
= X)q* (X) (%), (36)

: - | _ =gl ox(a3f + 3ac?f+ kf )+ (1— w)
using the identitye — a (X,a) = ap X, @) from Appendix

B, and the relation foa,,,{x) in AppendixC. Thus, applying f“ _
Joa da- to Eq.(32) yields X 0 da and X, @)[2a—andX,@)]
wd/dx(xaf)=d/dx(aCy, f ) Xg* (x,a@)F(X,a). (40
o To close this equation together with E88), one might set
+d/dx fo daf a—a(x)]Ci X, a)F(X, @) the third-order cumulant to zerd.e., k=~0), as well as
higher-order cumulants, of the cell area distribution. See Ap-
+(1-®)a,dX)q* (x)f(x), (37  pendix E.

refining Eq.(15) by introducing an extra term which scales _ . )

with the variances2. This leads to an important correction E. Analysis and further constraints from moment equations

of EqQ. (16) by accounting for the distribution of cell areas for [or from Eq. (33)]

each island size. The simplest strategy for an analysis of E89) is moti-
Further reduction of Eq:37) is achieved conveniently by vated by simulation results, indicating thaf is roughly

assuming thatC(x,a)=vya+(1—7), which is consistent independent ok [so d/dx(o?)~0]. This applies for either

with Co{(X)=va(x)+(1—17), so then the integral in Eq37) point islands using VC'’s, or square islands using EC’s, as

reduces toyo?(x)f(x). This relationship applies exactly for shown in Fig. 9. Our goal here is to obtain some insight into

diffusion cells, wherey=1 (and we assume it holds approxi- the effect of constant?>0, for the case of point islands
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eration [, da- recovers the key resu[tEq. (108], which
2 3 was also obtained by applying dx- to the ODE[Eq. (35)].
(X)‘-75 (@) (b) Applying to Eq.(33) the operation/ya da- recovers rela-
X 1s tion (41),% which was also obtained by applyingdx- to
12 1 the ODE[Eq. (37)].

0.75

0.5 F. Formulation for the “nucleation-inside-a-cell” picture

02505075 1 12515175 02505075 1 12515 L75 To make a closer connection with the formulation of
X X MR,*? we follow Sec. Ill E and restrict our consideration to
the somewhat artificial “nucleation-inside-a-cell” picture.
FIG. 10. (a) q(x) for point islands for various choices of fixed Again, we emphasize that this picture is somewhat unrealis-
o”>0 predicted from Eq(39) taking simulation results foa(x)  tic. Here P% ,=(Nsa/N,)Q% o simply becomes the prob-
from Fig. Sb) as input.(b) a(x) for point islands various choices of ability for nucleation within the cell of an island of sis&nd
fixed 02>0_ prec_:llcted_from Eq(39), after replaplnganu(q* wﬁh cell areaA, whereXq. ;35 PE,=M,=1. Also, A, {s,A)
aanud, taking simulation results fog(x) from Fig. a). Specifi-  ow denotes the average area of teetire cell for an island
cally, we chooser®=0.0, 0.03, 0.06, and 0.0@urves from top to \yhich js just-nucleated inside a cell of area A belonging to
bottom atx=1). Other parameters are described in the text. an existing island of size To provide some specific ex-
_ , _amples, MR(Ref. 12 suggested tha®? ,«A*, for irrevers-
wherew =2/3 andy~0.7. First, we have taken simulation jp|e jsjand formation. The idea is that the probability of find-
results fora(x) from Fig. Sb) as input to Eq.(39), and  ing a diffusing atom in a cell should scale lik&? (the
extracted corresponding(x) for various choices of fixed probability for deposition in the cel-A timesthe lifetime
o?>0. Results shown in Fig. 18 indicate some improve- —A), and two such atoms are required for nucleation. MR
ment in the match to Simulati(m(X) inCreaSingT2>0. Sec- also suggested ]:ha‘r1uc(3,,b\):)\,A7 where they regarded
ond we take simulation results fay(x) from Fig. 5a), and <1 as a fitting parametéroughly corresponding taM, in
integrated Eq.(39) for a(x), after replacinga,,g* with  Sec. IVB), and chose\~0.4. However, for a realistic de-
aanud- Results shown in Fig. 1D) indicate that the in-  scription of nucleation, we expect that at leasshould de-
crease of(x) with x is reduced with increasing?, a feature  crease with increasing (cf. Fig. 7), i.e. for increasing
which improves the agreement with simulation results showm /A, .
in Fig. 5(b). However, the singular behavior mentioned in  For the nucleation-within-a-cell picture, the derivation of
Sec. IlID due toq(x) increasing “too rapidly” becomes the rate equations foN,, and the scaling equation for
problematic for larger?, limiting the range of integrability. F(x,«) is unchanged from the more general presentation
This must reflect inadequacies in E@8), and our nonas- apove. To make a direct comparison with the analysis of
ymptotic inputg(x). MR, note that if A,,{S,A)=\A, then one hasA_(A)
Next we comment on some significant constraints follow-:A/(l_y\) and dA, /dA=1/(1-\), which implies that
ing from the moment equations in Sec. IV D. First applyingcu:a/(l_)\) andda, /da=1/(1-\). If P*,xA% then
Jo dx- to Eq.(35) readily recovers the identithEq. (108]  one also has thag* (x,)*a*. Using these results in Eq.
that Cy,(0)f(0)=1—w. Second, applying, dx-to EQ.(37),  (32) recovers the MR form.
one obtains Finally, we discuss the form of the boundary condition
[Eq. (27)], and specificallyp,, for the ‘nucleation-in-a-cell’
_ _ _[” _ picture. As shown schematically in Fig(d#, islands of size
(1= )[Baunuca(0)] fo dafa=a(0)]Ce(0.a)F(0) 2 with cell areaA are obtained by nucleation in cells of
e 2(0VF(0 41 existing islands with larger ared’ where on average
= yo (0)f(0), (41) Anuds,AL)=A,{tot)=A. This relation can be solved to
where the last equality assumes again tBaj(x,a)=ya  determine a unique functional relationshig, =A’ (s,A).
+(1—+v). To obtain Eq(41), we also use a relation far,,,,. See Appendix BNeglectingthe distribution ofA’, values, it
in Appendix C, and the identityC;(0)f(0)=1-w. Since follows that
a?>0, Eq. (41) implies thata,,,>a(0) (contrasting Sec.
[ll). The inequality is reasonable, since not all dimers are “ .
“just nucleated,” and those nucleated earlier should typi- Pa= >, At Poars - (42)
cally have smaller cell areas. However, since<1 (see Fig. 2

9), one finds thaf,,,,.iS quite close t@(0). Third, we note _ s . ,
that applying [ dx- to Eq. (40) does not yield a simple The restricted surﬁlA*+ is for fixed A, and accounts for the

constraint, unlike for the lower order equations. feature that the equatiof,,(s,A’) =A can have more than
Finally, it is instructive to note that one can perform aOne solutionA’ for fixed A. In the scaling limit, this re-
moment analysis of the boundary condit{dy. (33)], which  stricted sum may be replaced by a fact#, /dA. The MR
in fact has the advantage of clarifying the significance of thigoroposal implies thatA, ,{(A})=\A’, so A’ (A)=A/X,
somewhat obscure constraint. Applying to Eg3) the op- anddA’ /dA=1/\. Introducing a scaling function describing
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A’ (s,A)/Ay~a’i(x,a), one hasa’ =a/\ and da’,/da ~ast+b (Ref. 29 are strongly influenced by nonasymptotic
=1/\ for the MR proposal. The RHS of Eq33) can be effects, and by the inhibition of nucleation for higher cover-
rewritten to give the relation ages.(Indeed, our analyses reveal a more linear behavior for

higher coverages.Such a simple linear form foss would

o not emerge exactly from the type of theories developed here
Ctot(O,a,0)F(O,a,¢9)=(1—m)J dx g*(x,a’, ,0) or by MR.

0 Finally, we note again that our analyses use data from

XF(x,a', ,0)da’ /da, (43 simulations characterizing nucleation as input to rate equa-

tions. A self-contained analysis requires some hypotheses

which can be directly compared with MR’s “boundary con- about the functions characterizing nucleatias in the MR
dition” equationt? [after usingg* (x, a)a*], and which re- analysis of the joint probability distribution which invokes
fines and simplifies their result. various such assumptions within the framework of a simpli-
fied nucleation-inside-a-cell pictureUtilizing both experi-
mental data and simulatioR$we have characterized nucle-
ation positions, and find that these typically occur close to

In this paper, we have provided a theoretical analysis fothe boundaries of capture zones. Thus cells of just-nucleated
the non-mean-field dependence of adatom capture on islari®lands typically overlap more than one cell of an existing
Size’ noting that this dependence is of central importance d§|and We shall present details of these Observations, and of
it controls the shape of the island size distribution. We firstd corresponding refined theoretical analysis, in a separate
developed an analysis based on rate equations for the captu?épPer.
zone aread! and demonstrated the success of its predictions
for an exact prescription of nucleation. We also extend the ACKNOWLEDGMENTS
analysis by Mulheran and Robbfefor the joint probability
distribution function for island sizes and cell areas. A mo- J.W.E. was supported for this work by NSF Grant Nos.
ment analysis of equations for this joint distribution is shownEEC-0085604 and CHE-0078596. His research was per-
to recover those above from a direct analysis of capture zon@'med at Ames Laboratory, which is operated for the U.S.
areas, with some refinements accounting for the distributiofPepartment of Energ).S. DOB by lowa State University
of cell areas for each island size. The key quantities in thiginder Contract No. W-7405-Eng-82. M.C.B. was supported
formalism are scaling functions for the island size distribu-by the U.S. DOE at Lawrence Livermore National Labora-
tion, f(x), and capture zone areax), and the variance of tOry whiph is operated for the U.S. DOE by the University of
the cell area distributiong2(x), as functions of the scaled California, under Contract No. W-7405-ENG-48.
island sizex. These and many other scaling functions intro-
duced in this work, and the basic relations satisfied by and APPENDIX A: SHORT-TIME EXPANSIONS
between them, can be tested in simulations for both pointand _ _ _ _
Compact is|ands_ However, Since the main focus Of th|s paper It IS. Instructive to Use. rate equat|0ns to examine tran.SIent
was on the development of an analytical theory for nuclebehavior forvery short timedefore the steady-state regime
ation, comprehensive simulation results will be presenteds established. Since hefe<1, we can ignore direct deposi-
elsewhere. tion terms. UsingN;~Ft= 6 from Eg. (2), andd/dt Ng-,

An important success of our analysis is that it does in fact=RagdS—1) from Eq.(1) after neglecting the higher-order
produce a strong non-mean-field correlation between islanRagdS) term, we obtain
size and cell area, that was first discovered in simulations,
and later in experimental dafd.We note that visual inspec- Ne=(0105...06_1)(h/F)3 10?571/ (2s—1)!1. (A1)
tion of the form of F(x,a) in the numerical study of MR
(Ref. 12 shows that it also recovers this strong correlationAnalyses of cell or capture zone areas is more compli-
As an aside, it is appropriate to note that scatter plots fofated. Note that for short times, the above shows that
o<l o4 Versuss/s,, obtained from our previous analyses of Most islands haves=2, so thatN,~N,,, A;N,~1, and
experimental daf in fact constitute crude versions &  A2~Aa=(Na) *. Below we consider only the ‘nuclea-
plots consistent with the numerical analysis of MR. Fromtion-inside-a-cell’ picture, and adopt a MR-type choice
these scatter plots, one can even estimate the variance of tRE AnudS) =MAs, with A<1 (cf Sec. IlIB), so initially
cell area distributiong?(x), the quantity considered in Sec. Aavnuc =s>1AnudS)Ns/Nay<(Na) “*=~A,. Then, using
IV D and in Appendix E. Other recent wotkused a level set  AanudPs= =AnudS)(Ns/Na)Q% . and  (N) ~'dN,,/dt
approach to analyze adatom capture beyond the mean-field3F(Ft) %, we have, from Eq(12), that
treatment, thus providing an accurate island size distribution

V. CONCLUSIONS AND FUTURE DIRECTIONS

when incorporated into the rate equatiais the spirit of d/dt(AN2) ~ = AsRa0d 2) + Aqunud3(d N, /dt)

Refs. 7-9. However, this study considered only a “rela- . .
tively small” range ofh/F=10°-10 (and a broad range of ~—ho,(Ft)+3NF(Ft) " *(A3N3) Q3
coverages up to 0.2 ML.rather than examining the scaling (A2)

limit via a quasihydrodynamic analysis as here and in Refs.
7-9. As a result, it seems that the observed quasiliogar and
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d/dt(AsNs)~As_1Ragd S—1) = Aqunuds(dNg,/d1)
~hos 1(F1)(As-1Ns 1)

—3\F(Ft) (AN Q5 (A3)

for s>2. In the A,N, equation, there are no loss terms from

nucleation, and we have dropped the nucleation terms for
>3 which are negligible compared with tlse=3 term. To
analyze these equations, we cho@e=c,(As/A)", ex-
tending the theory of MR, where, is determined by nor-
malization, sacy=c;=1. We look for solutions to Eq$A2)
and(A3) of the form

A2N2% 1— K20'2(h/|:) 02

and ASNS%KS(O-20-3"'0-371)

X (h/IF)S2¢%5"% for s>2, (A4)

S0 Ay/A~1 and Ag/A,~5XT7X---X(2s—1)ks, for
s>2.
Then, the coefficients satisfy?®
—2k,=—1+3(5)"\cp(k3)" ",
2k3=1—3(5)"\cp(k3)" ",
4ky=Kk3—3(5XT)"\C, (k)" ... (A5)
Solving these equations fet>2 reveals that, for anp,?®

Ks—1[2X4AX6X---X(25—4)],

so AJ/AL—[(25—1)/(25s—4)](As_1/A4), as \c,—0

(A6a)
and
ks— I[EXTX9X X (25—1)]
so Aj/A,—1 asic,—1. (A6b)

Thus, for realistick, one expects thaks/A,, increases with

s in the early stages of deposition. This reflects the feature
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a—apdX,a]= aL(X,a), or apdX,a)=a— a|+(X,a).
(B2

These results can be readily checked for the choice
Ands,A)=uA, where a (a)=al(l1—u), so o'\ (a)
=(1-p)a, anda—a', (a)=pna.

The relationA=A, {s,A.) also applies for generah
and A’ (s,A). See Fig. &). Thus one can also writer
=andx,a(x,a)). If o' denotes the inverse function of
al=al (x,a), then one has
(B3)

a= a;l(x,a;) so a’'=apn.

For the choiceA,,{s,A)=uA, one hasa!, (a)=alu, so

o\ (@) = anda) = pa.

APPENDIX C: MR-TYPE FORMS OF SCALING
FUNCTIONS FOR Q* AND A .

First we consider quantities which reflect the probability
for nucleation overlapping a cell. F®®3 ,~q*(x,a), we
have that [ da g*(x,a)F(x,@)=q*(x)f(x), where
[ dx f(x)g*(x)=M,. MR (Ref. 12 suggested that the
probability of nucleation within a specific cell scales |iké,
for irreversible island formation, wherk is the area of that
cell, so we writeq* ~ca®. Then, one has

q*(x)= cf:da a*F(x, a)/f(x)=ca(x)*+ (corrections.
(C1)

The corrections reflect the finite width of the cell area distri-
bution for a specific scaled island sizécf. Sec. IV D. Our
data forg*(x) does show an increase withsignificantly
greater than that fora(x):q*(2)/q*(0)=3.5 versus
a(2)/a(0)=1.5 for point islands, and* (2)/q* (0.5)=3.6
versusa(2)/a(0.5)=2.8 for square islands. However, the
precise relation betweeg* (x) and a(x) cannot be simple
[e.g., for compact islandg)* (x) decreases, whereagx)
increases for smakk]. For the nucleation-within-a-cell pic-
ture, we estimate that~0.64 from a fit to our point island
data, and using the condition thff da g* (a)g(a)=M,

1. Here, we denote the total cell area distributioh Ap-

that larger islands were typically created earlier and withP€Ndix D asg(e) =/ dx F(x,a).

larger capture zonées.

APPENDIX B: RELATIONS INVOLVING A ¢

The relationA, =A+A,.{S,A,), shown schematically
in Fig. 8@a), applies for generah and A, =A(s,A). Thus,
upon replacingA, by A, and consistently replacing by A
— A, {S,A), one obtains the identitA ,[S,A—A,.{S,A)]
=A. Analogously, one can write

a,=atapdXar) and thusa, [X,a— ayd X, a)]=a.
(B1)

Then using our definition of the inverse functief] , it fol-
lows that

Next we consider quantities describing the area of cells of
just-nucleated islands. Foh,,{S,A)/A,~andX @), we
have [g da an,dX,a)q* (X,@)F(X, ) =amdX)q* (X) f(X),
whereagynuc= o dX audX)a* (X)F(X). If Aguds,A)=uA,

S0 a, X, @) = na; then it follows that

Ay X) = Mfowda ag* (x,a)F(x,a)lq* (x)f(x) and

aa\,nuc=,u,fo dXJ'0 da ag* (X,a)F(X,a). (C2

Thus since [, dx [§ da aF(x,a)=1, one expects that
aavnuciS Similar to(but not exactly equal jouM,, recalling
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that M,= [ dx [§ da g*(X,a)F(x,a). Also, a,,{X) can w2l o~ ] e T T T T
differ significantly from pa(x)=pufg da aF(x,a)/f(x) Lol @ 1 ol ®) ]
due to the weighting byg*. o 03] Jen 08t

For the ‘nucleation-within-a-cell’ picture, wittM,=1

0.61 1 0.6}
andA,,{s,A)=\A, the above shows that,,,,#\. None-
. 04t g 04F
theless\ and a,,,,c may still be comparable. Suppose that
andX)=Na(x)  [where  still  agneN,  since 02¢ 1 %%
Jof()a(x)g* (x)dx#1], and make the approximate identi- 0555 16 15 20 25 °00 05 10 135 20 25
fication thata,,,,=a(0) (cf. Sec. Il). Then one has ~* a a

=Jo dx f(x)q*(x)[a(x)/a(o_)]>;, s'nce_ a(x)/a(9)>1 FIG. 11. Simulation results fay(«) for (a) point islands using
and [, dx f(x)g*(x)=1. Using fitted scaling functions for vc's, and (b) square islands using EC's, at 0.1 ML with'F
point-island simulation data, this relation provides an esti-=1(¢,

mate ofA=0.7, which is close t@,,,,&0.9. We also note
that setting\ constanfe.g.,A~0.4 from MR (Ref. 12] is

notFI_lkellly to be accuratfcf. I?hg 7) 6find dent | assumptions thatr,,{X,a)=\a and g* (x,a)=ca*. Be-
inally, we comment on the ISsue eindependent scai- low, for convenience, we set’=1—\. Then Eq.(D1) re-

ing. A reasonable lowest-order approximation is that bothduces to

Q;A andA,,{s,A) should depend primarily on the free area,

A'=A-s of the cell within which nucleation occufsoting

that A,,<A"). Then ttle associated scaling functions would ~ a@d/dag(a)=(c/\)(a/N)*g(al\)+(c/N")
depend primarily orA'/A,= a— 6x, and thus carry an ex- , ,
plicit 6 dependence. “This  would preclude precise X(a/N')*g(al\") —ca’g(@) —2g(a).
#-independent scaling df (except forf<1). However, in (D2)
practice, there is a strong correlation betwsemd A, so a
dependence oAf/A,, may be reasonably approximated by a
dependence oA/A,,= a.

To proceed further, we make the simplifying MR-type

Then, applying the integratiofigda- to Eq. (D2) yields
cfs da a’g(a)=1, which is the normalization condition
used to determine (cf. Appendix Q. Dividing Eq. (D2) by
« and then integratind’y de- using the natural boundary
conditions thaig(0)=g(«)=0, implies the constraint that

APPENDIX D: SCALING OF THE TOTAL CELL
AREA DISTRIBUTION

Here we assume @&independent scalin@f. Ref. 10, and
consider the behavior of the total cell area distributibip, - -
=24-1Ng a. This distribution is characterized by the scaling c(IN+1IMN— 1)f da a3g(a)=2f dag(a)a.
function g(«) = [ dx F(x,«) which satisfies/{ da g(a) 0 0
=1. For reference, simulation results fgf«), for point
islands using VC’s, and square islands using EC’s, are
shown in Fig. 11. For simplicity, we adopt the nucleation-in-One might attempt to use E(D2) iteratively to generate a
a-cell picture of Sec. IVF. Applyingy dx- to Eq. (32  solution, so theth iterateg; is fed into the RHS, and the

(D3)

yields (i+1)st iterateg; . ; appears on the LHS. However, iteration
does not necessarily preserve HJ3). A nontrivial solution
2g9(a)+adlda g(a) to Eq. (D3) exists if the PDHEQ. (32)] with boundary con-

dition (43) has a solution. However, this is not provemd is
not obvious since the PDE equation involves approxima-
tions). It is plausible that solutions exist only for certain

=(1-w) *Ci(0,@)F(0,)

+ J dx g* (X,a)F(X,a,)da, /da
0

APPENDIX E: CLOSURE AND SOLUTION

— 9" (%, a@)F(x,a)] OF MOMENT EQUATIONS
o ) , , A complete analysis of the moment equations in Sec.
= fo dX[g* (x,@}, )F(x,a’,)de, /da IVD for f(x), a(x), and o?(x) requires some closure ap-
proximation for higher moment «"F de, with n>2. One
+9*(X,a.)F(X,ay)da, Ida—q* (X,a)F(X,a)]. strategy is to set to zero the third- and higher-ordemu-
(D1) lantsof F vs «, for each fixedk (i.e., to assume Gaussian cell

area distributions To simplify this analysis, we adopt the
In the last line, we applied boundary conditit#8) to elimi- MR from for g* (x,a)=ca®, wherec~0.64 (see Appendix
nateC.,(0,«) F(0,«), and also to achieveancellationof the  C), and writea,,{X,a) =\(X) @ (generalizing the theory of
factor (1-w), so the quantitys doesnot appear explicity MR). Then the integrands in the nucleation terms in Egs.
in Eqg. (D1). (37) and (40) reduce to the simple high-order moments
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dea a Cq*F—Acha aSF~\c(a®+ 10302 [(a==x)~o*(a—wx) Jda/dx+d/dx(o)
nu - =

0 0 =(1-w)(a—m)—c?(2w—1)(a—wx) I,

+15ac*) f=m(x)f(x), (ED) (E3
and
o ) _ _ 20 -1
Jda anuc(Za—anuc)q*F=7\(2—)\)CJ’ da o°F [2a(a—wX)—2wxo“(a—wx) ~]da/dx
0 0 +(3a—wx)d/dx(c?)
~N2-Nc(a’+ 18t — —(1-w)n— o[ 6(w—2/3)a+2(1-w)wX]
+ 453254+ 150°) X (a—wX) 1+2(1-w)a (E4)

=n(x)f(x). (E2

Note thatm(x)=a,,{xX)g* (x). After substituting Eq.(E1) Integrating Eqs(E3) and(E4) produces reasonable behavior
into Eqg.(37), and Eq.(E2) into Eq.(40), it is straightforward  for small x, but the solution becomes singular wigh- w x
to use Eq.35) to eliminatef(x), yielding a coupled closed —0, at finitex. This reflects in part the inadequacy of our

pair of first-order ODE’s: description in Eqs(E1) and (E2) of the nucleation terms.
1J. A. Venables, Philos. Ma@7, 693(1973. Epitaxial Growth and Removakdited by Z. Zhang and M. G.
2s. Stoyanov and D. Kashchiev, Curr. Top. Mater. Sti.69 Lagally (World Scientific, Singapore, 1998

(1981). 12p A. Mulheran and D. A. Robbie, Europhys. Le#t9, 617
3G. S. Bales and D. C. Chrzan, Phys. Rev5® 6057 (1994). (2000.

4M. C. Bartelt and J. W. Evans, Phys. Rev4B, 12 675(1992): 13C. Ratsch, M. F. Gyure, S. Chen, M. Kang, and D. D. Vvedensky,
Surf. Sci.298 421(1993; and inCommon Themes and Mecha- Phys. Rev. B61, R10 598(2000.
nisms of Epitaxial Growthedited by P. Fuoss, J. Tsao, D. W. 14M. C. Bartelt, J. B. Hannon, A. K. Schmid, C. R. Stoldt, and J. W.
Kisker, A. Zangwill, and T. Kuech, MRS Symposia Proceed- Evans, Colloids Surf., A65 373(2000.
ings, No 312(Materials Research Society, Pittsburgh, 1933 15See Ref. 18 of Phys. Rev. B4, R17 359(1996 (Ref. 7.
255; J. W. Evans and M. C. Bartelt, J. Vac. Sci. Technol2A  8In general, one has [1+(n—1)w][{ dx X'f(X)

1800(1994. =n[g dx X" 1Cu(¥)f(X), for n=1, assuming the integrability
5J. G. Amar and F. Family, Phys. Rev. Left4, 2066 (1995 of x"f andx""1Cy, f.
proposed thaf (x)ocx ex —2.7>7] for irreversible island for- 'G. S. BaleSunpublishedl
mation, so thaf(0)=0, in contrast to our theory. 18This complication applies for capture zones of compact islands
5p. A. Mulheran and J. A. Blackman, Philos. Mag. Létg, 55 chosen as EC’s and DC's, but not for VC'’s. See Sec Il C. It
(1995; Phys. Rev. B53, 10 261(1996. does not apply for point islands.
M. C. Bartelt and J. W. Evans, Phys. Rev58 R17 359(1996: 195ee Morphological Organization in Epitaxial Growth and Re-
and in Structure and Evolution of Surfacesdited by R. C. moval (Ref. 1) for a derivation, but note the error in the coef-

Cammarata, E. H. Chason, T. L. Einstein, and E. D. Williams, ficients of thea(x) equation.
MRS Symposia Proceedings No. 4@@aterials Research Soci- 2CAssuming that point-island-like behavior must be achieved for

ety, Pittsburgh, 1997 p. 247. EC-tessellations of compact island distributions at very lw

8M. C. Bartelt, A. K. Schmid, J. W. Evans, and R. Q. Hwang, (where VC's and EC'’s coincidgit follows that C,u(X)~ya(X)
Phys. Rev. Lett81, 1901(1998; and inMechanisms and Prin- +(1—7y), with y=0.7, for <1 (see Ref. ¥, increasing toy
ciples of Epitaxial Growth in Metal Systemadited by L. C. ~1, for higheré.

Wille, C. P. Burmester, K. Terakura, G. Comsa, and E. D. Wil-2!G. M. Murphy, Ordinary Differential Equations and their Solu-
liams, MRS Symposia Proceedings No. G®&aterials Research tions (Van Nostrand, Princeton, 196(p. 23—26.

Society, Pittsburgh, 1998p. 253. 223, W. Evans, J. B. Hannon, M. C. Bartelt, and G. L. Kellogg, Bull.
9M. C. Bartelt, C. R. Stoldt, C. J. Jenks, P. A. Thiel, and J. W.  Am. Phys. Soc45, 363(2000.
Evans, Phys. Rev. B9, 3125(1999. 230ne must use that the inverse function fef is a,,.. See Ap-

0D, D. Vvedensky, R. E. Caflisch, M. F. Gyure, B. Merriman, S.  pendix C.
Osher, C. Ratsch, and J. J. Zinck Niechanisms and Principles  2*F. G. Gibou, C. Ratsch, M. F. Gyure, S. Chen, and R. E. Caflish,

of Epitaxial Growth in Metal System&ef. 8, p. 261; R. E. Phys. Rev. B63, 115401(2007).

Caflisch, M. F. Gyure, B. Merriman, S. J. Osher, C. Ratsch, D.2°For n>2, one has (8—4)c=Cs_;—3[5X7X9X ...X(2s

D. Vvedensky, and J. J. Zinck, Appl. Math. Let2, 13(1999; —1)]"\(co)"* L.

D. D. Vvedensky, Phys. Rev. B2, 15 435(2000. ZNote that Ag/A,=[(25—1)/(2s—4+3\)](As_1/A,), for n
113. W. Evans and M. C. Bartelt, iMorphological Organization in =0.

235408-15



