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Quantum manifestations of chaos in elastic atom-surface scattering
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Quantum manifestations of chaos in the diffraction of atoms from corrugated surfaces, for a range of initial
conditions easily attainable in scattering experiments, are presented and discussed. The appearance of strong
oscillations in diffraction patterns is shown to be directly related to the presence of classical chaos and
threshold effects. We also show that the autocorrelation function for some of the coffisiatrix elements
over incident angles is sensitive to the character, hyperbolic or nonhyperbolic, of the underlying chaotic
dynamics, in agreement with general semiclassical arguments for unbound chaotic systems.
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The identification of universal features that permit one toobservable features associated with resonaneegular
distinguish between chaotic and regular scattering at theidths greater than 5° versus typical angular experimental
quantum(observablglevel is a key issue in recent research resolutions of about 0.5°) and thresholds. In parallel work,
in many branches of physics. For instance, there has recenttfe classical scattering for these systems has been shown to
been much interest in the investigation of mesoscopic sysdisplay chaos as a function of the incident angle and
tems, which are ideal laboratories where quantum manifesenergy-° As these parameters are varied, the onset of classi-
tations of irregular dynamics can be theoretically studied angal chaos occurs when one surface raindawnaximum or
experimentally checketi? Further recent examples can be minimum of the final scattering angle as a function of the
found in low-energy electron diffraction experimefitsho-  impact parameter on the surfaaeaches the value /2.
todissociation cross sections of molecUlas, cold atoms in ~ This condition implies that the particle leaves the interaction
accelerated optical lattic8tp mention just a few cases. region traveling parallel to the surface. Past this value, the

Two main approaches have been used to investigate thearticle experiences more than one collis{temporary clas-
signature of chaos in quantum systems: one is based on rapical trapping, losing memory of the initial conditions,
dom matrix theorﬁ and the other on semiclassical Which is the origin of chaos in this problem. We have also
argument&® expressing observables such as cross sectiong)vestigated how the bound component of the dynartpes
transition probabilities, and density of states in terms of clastiodic orbits influences the scattering trajectories and be-
sical trajectories. It is now well established that a statisticaFomes more chaotic as the incident enedggreases' the
description based on the first formalism, in analogy withnumber of open(or energetically accessiblediffraction
bounded systems, is also applicable to scattering prob|erﬁ.‘é’1&nn6|s being smaller. This result is in sharp contrast to
by using ensembles appropriate to the scatteSnmatrix,  What usually happens in bounded systems.
which is non-Hermitian and unitafyin this work and within When elastic diffraction patterns at fixed beam energies
the second approach, we present some evidence for differefit€ calculated, several features are clearly vis{ated ob-
manifestations of classical chaos in elastic atom-surface difservablg due mainly to two pure quantal effects: the so-
fraction intensities within a range of initial conditiofimci- ~ called threshold resonanc€BR’s) and selective adsorption
dent energies between 7 and 100 meV, and polar angleEesonancesSAR'’s). Threshold resonances appear when a
measured from the normalaxis to the surface taken to be diffraction channel or beam jUSt becomes visible or evanes-

placed in the X,y) plane, between 0° and 9pthat are cent, and correspond to very general features of any scatter

easily attainable in experiment. ing system. In constrast, SAR’s occur when the scattering
As a working example, we choose to study the scatteringarticle is traveling parallel to the surface in free motion but
of He atoms from nearly one-dimensior(ahy in thex di-  its perpendicular motion is bounded and equal to a bound

rection, perpendicular to the step etigerrugated C(11a) level of the laterally or surface averaged interaction
surfaces, withe=0,3,5,7, which has been extensively stud-Potential” The denomination “TR" is somewhat mislead-
ied both experimentalfyand theoretically within a quantal iNg since we are not dealing with true resonances or quasi-
and semiclassicHl framework. From experimental diffrac- Pound states as in SAR's. The corresponding resonance po-
tion patterns at different incident conditions, a two degree§itions in both cases can be easily extracted from kinematic
of freedom §,z), periodic, and corrugated Morse poteritial @rguments. Thus, for any in-plane, ) scattering event, the
was fitted, and it has been widely used in all of the calcula£nergy and parallel momentum conservation rules can be
tions mentioned above. It essentially consists of a Fourieglobally expressed in terms of the incident wave ve&jaas
series with a Morse potential in thedirection and three K2 =K%~ (K, +G)? 1)
more terms describing the corrugati@r roughnessof the Gz M : '

surface in thex direction as well as the couplings. In particu- Throughout this work, square wave vectors are given in en-
lar, for @=5,7, the coupling is strong enough to produceergy units ¢:%/2u=1, u being the mass of the projectiles
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0.9 nel associated with thE=(1,0) reciprocal lattice vector is
(@) the one exchanged in the resonance process, the oscillations
0.7 1 being due to the existence of four bound states supported by
= 1 the Morse potential. At that low energy, however, theer-
'z 0.5 1 1 lapping of SAR’s coming from different closé& channels
£ T such as thé&=(1,0) and~=(2,0) vectors takes place. More-
= 0.3 1 l 2 over, resonances corresponding to higher bound states accu-
mulate at the TR feature and their angular widths decrease
0.1 1 4 gradually. With decreasing; , the successive channels asso-
— ciated with (2,0), (3,0), and (4,0) play the role of ex-
084 (b changed reciprocal lattice vectors in the resonance process
T until each one becomes a TR, which has been labeled by
2 061 1 =2,3,4, respectively. A similar pattern is reproduced around
'z 1 all the different threshold angles. Analogously, for 75 meV
£ 0.4 [Fig. 1(b)], we observe the same structure of TR and SAR
= T l 2 series but with two important differences: the angular widths
0.2 1 are smaller here and SAR’s coming from different close
1 4 channelsdo not overlap However, in both cases, a clear
0.0 . . . . transition in the intensity of the oscillations occurs very near
0 20 40 60 80 to the onset of classical chaos, which is marked with arrows
Incident Angle(deg) in Fig. 1. The global intensity behavior, except for the onset

of large fluctuations, can be qualitatively interpreted in a
multichannel scattering framewaork. The relative arrangement
15 meV andb) 75 meV. The onset of classical chaos with increas-Of the diffraction channels in energy as well as their effective

ing incident angle is marked with arrows. Numbers indicate theCouplings to the entrance channel are responsible for the' in-
threshold resonancdsee text terference between the background and resonant contribu-

tions to theS matrix. In particular, the coupling of the specu-
vectors parallel to the surface having only theomponent lar channel to the rest of the channels decreases with
are written in capital letters, and vectors in two dimensiondncreasing diffraction order and therefore the intensity gradu-
in small letters, according to the standard notatiqy; is the ~ ally increases witty; . As has been previously done in other
z component of the final wave vectdg is a general recip- contexts, the underlying chaotic dynamics found in this scat-
rocal lattice vector, antk;=k; sing is the parallel incident tering will be invoked to provide an alternative and more
wave vector ¢ being the incident angle The following ~ fundamental interpretation. _
kinematic conditions have to be fulfilled for the two kinds of _In order to explain the features described above, we start
resonance: with the semiclassical expression for tSematrix elements

(i) The TR condition, deduced by Miller*

FIG. 1. Speculaf0=(0,0)] intensity versus the incident angle
for the “He-Cu(117) system, at two different incident enerdims

k% ,=k? cog6;=0, 2)

whereNe G is the reciprocal lattice vector associated with
an emerging or evanescent diffraction chanrggk * /2 o : ) . .
being a Bragg(and therefore observabldinal scattering WherePog is the classical probability for a trajectosyo end
angle. Threshold angles are those incident angles leading #P With a final momentum in the parallel directipn = p,,

i T
Soc(E,0)=2 |P§)Se)|llzexll(g3(s)—'§/is), (4)

such Bragg final scattering angles. +27hm/a, with G=(m,0) (Bragg diffractin condition
(ii) The SAR condition, and S® is the corresponding reduced classical action de-
pending only on the variablgs, andp,.. The general inten-
kE ;= k? = (Ki+F)?= = ey, ) attertt

sity behavior of a diffraction patterfthe envelope of the
whereF e G is the reciprocal lattice vector exchanged in thediffraction intensities can be extracted from the classical
resonance procesm this case a closed, or not energetically transition probabilities, including interferences. In this re-
accessible, channehnd ¢, is the nth bound state of the Spect, an analysis of the classical singularities will provide
attractive, surface averaged Morse potential resulting irzthe the main qualitative features of the intensity envelope. These
direction. singularities occur when the amplitude in Ed) goes to

In Fig. 1, quantal close-coupling specu[d=(0,0)] in- infinity. In the semiclassical theoryP§)2=|aG(b)/ab|‘1
tensities versus incident angle for the HefClr) system at evaluated at b=bg, where G(b)=ay2uE;[siné(b)
two incident energies of 15 and 75 meV are plotted. After a—siné]/2xh, is the so-called classical diffraction order
TR (labeled by an integer numbera series of oscillations function andb is the impact parameter normalized to the unit
attributed to SAR’s displaying Lorentzian or Fano-type linecell lengtha. Therefore one finds that, apart from the well
shapes are clearly visible. Thus, for example, at 15 meV anénown rainbow singularity occurring wheaé;(b)/db=0,
between 60° and 90Fig. 1(a)], the closed diffraction chan- another singularity (the so-called skipping singularity
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FIG. 2. Onset of chaos as a function of incident conditions in
energy and angle for thHe-Cu(117) systentdashed ling The
solid lines are the threshold resonance conditions for the channels
N=(1,0),...,(4,0). In the inset two typical scattering trajectories
at 15 meV are plotted: with a solid line, a direct trajectory in the
regular regime ¢;=29°), and with a dashed line, a chaotic trajec-
tory above the onset of chaos;E48°). The equipotential line at
that energy is also plotted.

p,(au.)

appears’ whenever the classical deflection functien(b)
reaches* 7/2 (this angle being not necessarily a Bragg z(a.u.)
angle, which implies a condition for trapping of trajectories
or classical chaos as noted above. Wig(b) = = 7/2 coin-
cides with a Bragg angle, this classical singularity also
matches the TR condition as defined by Ef), and one
would expect a change in the intensity pattern.

FIG. 3. Poincaresurface of section at=na of the homoclinic
tangle generated from the parallel free asymptotic He atom motion
at two different energies(a) 75 meV, where a period 2table
periodic orbit(fixed points with diamondsexists, causing sticking
n?f nearby trajectories; antb) 47 meV, where the last homoclinic
o . o angency between the entrance and exit lofibgk solid line
dltlons_, Eq.(2), as a function of t_he incident energy and takgs plzce and is marked with arrows in theﬁfigure. °
angle in the ranges usually accessible by experiment are plot-
ted. As an illustration, in the inset of the figure, at an incident

energy of 15 meV, two typical trajectories contributing to theWhered’ Is the '”?"?‘?”t angle @fference an.d the_average IS
semiclassical specular intensities according to &.are over a range of initial angles in the chaotic region greater

s - 17

also shown: one in the regular region &t=29°, and the thang. A S|mélar approach was followed by Lat al** and
other in the chaotic regior{trapped trajectorigs at 6, other authors who showed that Spetha' and transport prop-
—48°. Due to the nonlinear dynamical analysis, two typles ofties behave quite differently depending on the nature of the
threshold can be distinguished depending on relative positio&ass'cal dynamics. The incident energies of 15 and 75 meV

with respect to the onset of classical chaos: TR’s appearin ave been chosen be_cause t_hey are representative of wo dif-
rent types of classical regime: hyperbolic and nonhyper-

in the reqular regimeN=4) and those in the chaotic regime ; ; "
9 gimeN=4) 9 bolic, respectively. The transition between them can be ob-

(N=1,2). Interestingly enough, the threshdld-=3 appears Fined by calculating the homoclinic tangle generated from

around the onset of chaos and also changes the intensi% . 4 .
behavior as shown in Fig. 1. In the first case, the TR channe e parallel free asymptotic He atom motion at different en-

N s cnergtcally allwed b ynamicall ocdehere OS2, 1, S 0 Soresponcing Poncance
are no real classical trajectories fulfilling the conditién= gles. 9 gtes, P

. : . - . orbits and cantori existing in the interaction regifRig.
+/2). From a semiclassical point of view, only direct tra- 3(a)] cause long term trapping of the trajectories close to
jectories would contribute to the specular intensity. In the 9 ppIng J

: . . them. This causes the escape rate to decay algebraically for
second case, tH¢ channel is both dynamically and energeti- T .
) . Co ._long time:~ At an energy of approximately 47 meV, a cha-

cally allowed, chaos will set in, and an infinity of real chaotic _,. o .

. o ; S ) : . . otic transition takes place when the stable and unstable mani-
trajectories interfering with direct trajectories will contribute L .
to the specular intensit folds of the parallel He motion intersect with each other for

P y- . . the last time[the last homoclinic tangendy, marked with

The influence of the nonlinear underlying dynamics can

be studied through the correlation functions of some2 TOWs I Fig. 80)]. Below this energy, no islands of stabil-

. ity survive and the fingerprint of this hyperbolic regime is an
S-matrix element such as, for example, the specular Ongxponential decay in the escape fate

written as Using again the semiclassical approximation to the
S-matrix elements Eq4), we expand the classical action to
B first order in¢. The chain rule can be used to express the
CEi(¢)_<SSO(Ei +01)Sool Ei "9i+¢)>"i' (5) derivative with respect td, in terms of derivatives with
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1.0

Fig. 4 with solid linegnormalized to unity f0|CEi(0)]. The

decay rule is slowefand different in the hyperbolic regime
[Fig. 4(a), 15 meV] than in the nonhyperbolic ori&ig. 4(b),
75 meV]. The corresponding distribution probabilitiegn)
are shown in the inset of each figure. At 15 meV no trace of
regularity in the interaction region is left are(n)~e™ ",
n with y~0.3. An analytical estimation for the shape of the
e autocorrelation function can be obtained by expanding the
exponential dependence ¢f, in Eq. (6), in a series of inte-
ger order Bessel functions up to the second ofstalid for
small ¢). If we replace the discrete sum by an integral in the
n variable, this integral is solved analytically and the squared
modulus of the correlation function gives a Lorentzian func-
tion with the width depending or, in agreement with pre-
T 3 vious results found for other systerh. In Fig. 4(a), the
: semiclassical result coming from E(6) is depicted with
dashed lines; it is calculated numerically with the estimation
for y taken from the exponential fitting t8(n), showing a
fairly good agreement with the quantum result. On the other
hand, at 75 meV, two small stability islands coming from a
period 2 periodic orbit in the interaction regi¢fig. 3a)]
are still found. Atlong n(for n>8), we observe an algebraic
distribution P(n)~n~% with a~2.5 [inset of Fig. 4b)].
This exponent is greater than the usual ones reported for
and (6), at energiega) 15 meV and(b) 75 meV. The insets repre- Other systems but it is in agreement with a recent analysis of
sent the classical unit cell distribution functiofaveraged in angle ~ the asymptotic statistics of Poincarurrence’§ whose dis-
at the energies indicated, together with the analytical fittingstribution decays at very long times @&(7)~1/7%. In our
(dashed lines case, we note that the quantum correlation function follows
the semiclassical prediction for a slightly lower exponent,
respect t,, andp,.. In the asymptotic region, these deriva- @~ 2.1[dashed line in Fig. @)]. This discrepancy could be
tives give the net distance intraveled without interaction, attributed to several factors. Among them we want to stress
so that SO(6,+ ¢) =S (6,) + dp(x;—x;)cosh, p being the pOSSIbIIIty th_at,. for large, it is numerically difficult tq
the modulus of the momentum. Finally, the exponent can b b”tam %ﬁc’d IStat!St"l:S fog(?), or th‘f"thl];'am%m trr;.echanlcls
; ; ollows the classical predictions mainly for short time scales
cast in terms ok and the number of unlt_celli traveled by (shortn). 29
the trajectorys in the interaction regionn=(x;—x;)/a. In .
doing so, we can label the trajectoriesn Eq. (4) by the !N conclusion, we have presented a study on quantum
number of unit cells(or Poincaferecurrences taking as a diffraction intensities for the He-Qi17) system at incident
surface of section=x, +na) traveledduring the interaction ~conditions for which classical chaos is dominant. The main
time. Substituting this into the expression 1Ok (¢) and re_sult of our resea_rch is that the quantum manl_festat_lons of
. L A this chaotic behavior can be explained by semiclassical ar-
neglecting cross term contributions, one obtains guments and experimentally detected because the strong os-
cillations exhibited by the specular peak should be easily
observable with the actual angular resolution. The surface
temperature should be below 100 K in order to reduce in-
elastic effects. A complete, comparative stughassical,

where P(n) is the classical probability for a trajectory to gemiclassical, and quantaif the elastic atom-surface scat-
jumpn unit cells in the interaction regiofindependent of the tering dynamics has been carried out.

incident angl¢ and 8= ak;cosé . The behavior of the unit

N (a)

log[P(m)]

05 1 -8 T -

ICI**2

o

log[P(n)]

0.5 A

ICI**2

0.0 : I SEPELE oRLEEN

FIG. 4. Quantum(solid lineg and semiclassicdldashed lines
correlation functions of the specul@matrix elements, Eqs5)

Ce,(¢)~ 2 P(n)(e?M),, (6)

cell distribution probabilityP(n) is identical to that of the
escape raté.
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