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Quantum transport in a one-dimensional quantum dot array
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In this paper we study electronic transport through a quantum dot array containing an arbitrary number of
guantum dots connected in a series by tunnel coupling under dc bias. The on-site Coulomb interaction is
ignored. The retarded self-energy of any dot in the array is made up of left and right components and is of
staircase type, terminating at corresponding electron reservoirs. We calculate the dc current based on the
nonequilibrium Green’s function formalism developed by Jaehal. [A.-P. Jauho, Ned S. Wingreen, and Y.

Meir, Phys. Rev. B50, 5528(1994)]. The dc current in both finite and infinite number dots in the array is
calculated. The electronic spectrum of the system is found to fall within an interval centeegdthée dot
energy level with a width of two times the tunnel coupling amplitude between two neighboring dots. The
electronic charge in each dot is plotted for the finite number dot array.
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I. INTRODUCTION Recently, lvano¥ has studied dc transport through nonequi-
librium double quantum dots at low-temperature and shown
Quantum dots are man-made “droplets” of charge thathow the Kondo peaks in the spectral density evolve with the
contain anything from a single electron to a collection ofinterdot tunneling amplitud&,, ; Pohjolaet al.*® have inves-
several thousantThe electronic states in dots can be probedtigated the resonant tunneling through double quantum dots
by transport when a tunnel coupling is allowed between thén the presence of strong Coulomb repulsion and coupling to
dot and a nearby source and drain leads. The physics dfie metallic leads. Using a real-time diagrammatic formula-
quantum dots shows many parallels with the behavior ofion they evaluated the spectral density and the nonlinear
naturally occurring quantum systems in atomic, nuclear, andonductance and showed a novel triple-peak resonant struc-
condensed-matter physics. Indeed, quantum dots exemplifyire in the conductance.
an important trend in condensed-matter physics in which re- In this paper we study a system of one-dimensional quan-
searchers study man-made objects rather than real atoms toim dot arrays containing an arbitrary number of quantum
nuclei. As electronic confinement in quantum dots ap-dots connected in a series by tunnel coupling. Our formalism
proaches atomic dimensions, behaviors characteristic d§ based on the nonequilibrium Green’s function proposed by
atomic impurities have emerged, such as the quantization afauhoet al?® As the dot number in the array becomes very
the electronic spectrum and the electronic charge, whiclarge, even infinite, the system we are considering resembles
plays a major role in the physics of nanostructures. Withn many ways a one-dimensional lattice. This system is of
guantum dots, experimentalist can perform experiments thahuch interest as a new artificial material. When the electron
were difficult to realize even inaccessible by simply chang-density is held low in an array of very small quantum dots,
ing a voltage. One such example is the quantum dot as electron-phonon scattering is expected to be suppressed by
magnetic impurity in condensed-matter physics. gaps between subbantfsn contrast to an array of quantum
In the last decade much work has been contributed to thdots in which many electrons are confined by the depletion
system of a single quantum dot connected to two electromegions of a semiconductét.This is because a quantum dot
reservoirs. Many authors have studied the transportonfined by a heterostructure can be made so small as the
propertied1° and capacitance spectroscbpyn order to  order of 10 nm. Chert al. studied the metal to antiferro-
probe the discrete electronic spectrum of the system. Amongagnetic insulator transition of a two-dimensional quantum
the transport properties one notable feature is the Konddot lattice?* Much earlier, Ugajin investigated the nature of
effect!=* Meir et al. have shown that the on-site Coulomb the electric-field-induced Mott metal-insulator transition in a
interaction leads to the Kondo effect and hence the Kondguantum dot arrag” To the best of our knowledge, however,
peak in differential conductanteand to the Coulomb- there has so far not been a systematic calculation on the
blockade conductance oscillation$By measuring the Cou- density of states and the differential conductance of a quan-
lomb oscillations of current, Taruchet al.” have studied the tum dot array system. It is the purpose of this paper to cal-
shell filling and spin effect in a quantum dot, showing thatculate the “lesser” and retarded Green’s functions for the
the addition sequence of electrons to the dot is similar t@ne-dimensional quantum dot array containiNg-2 dots
Hund’s rule. connected by tunnel coupling, whelkecan be any positive
In recent years, research interest has extended to systenméeger, and to derive an analytical formula for the current
of multiple dots!?~2? For example, electron pumping was under the dc bias voltage.
studied in a double dot with interdot capacitaritehe In Sec. Il we calculate the dc response of the system,
Kondo effect in a double dot with on-site Coulomb interac-including the case of infinit®. We calculate in Sec. Il the
tion was studied based on the slave-boson mean-fieldlectronic charge of an arbitrary dot in the dot array for a
theory® and the dc current of a double dot without on-sitefinite N. Numerical results and analysis are presented in Sec.
Coulomb interaction was derived by Kawamura and Abho. 1V, and the main conclusions are addressed in Sec. V.
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FIG. 1. A quantum dot a_rray.dﬂ+2 dots connected in a series L=0L. 232G+ 2.GY (7)
by an interdot tunnel coupling is connected to two electron reser-
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VoIrs. Ri= 9RrERORi+ IRRERNCNi » tS)

Il. dc RESPONSE
¢ RL=ORrRERGRLT ORRERNGNL - 9
Let us consider a system of one-dimensional quantum dqg, the abovea=i L R andi=1.2. .

ted to two elect irs. Th .. N, X,4's are self-
array connecied 1o two Sectron reservoirs. 'ne array Con'energies arising from electron tunneling between the nearest-

sists ofN+2 quantum dpts connected_in a series py t”””eheighboring ath and Bth quantum dots; the free-particle
coupling, as shown in Fig. 1. For notational convenience wi reen’s functions in each dot are defined by

call the first and the last dot in the array the lefand the

right R dot, respectively. The Hamiltonig of the system is g5 (tt") =i(d!(t")d;(1)), (10)
given by
N N g7, (Lt) = —i6(t—t"){{di(1),d(t")})
- T 04t T
H_k,aze:L,R ekackacka+i:LE,R,1 i di+iz'1 Vigea(didisg (i=L12...N,R) 11
+H.c)+V (cf d+H.c) + Vr(clgdg+ H.C.) (1) and the self-energies for the left and right dot are defined by

wherec/, (cy,) is the creation(annihilation operator for

r,a,< " —\/2 ra,< ’

electrons inx reservoird! (d;) is the electron creatiotan- ) VLEk g (L), (12
nihilation) operator within thath quantum doty, (Vg) is
the tunneling coupling between the léfight) dot and the P Ay ety g2 Fa< e
left (right) reservoir, andV; ;,; is the tunneling coupling 2RMT(LE )_VREK: Okr (L,t7), (13
between theth and { + 1)th dots. The electron spin index is ] . ] }
suppressed. Whlc_h are associated with the tunneling betwee_:n the left res-

The “lesser” and retarded Green’s functions are definece"voir and the left dot and that between the right reservoir
by and the right dot, respectively. The Green’s functions

g = (t,t') andgp =(t,t") in Egs.(12) and(13) correspond
Gfi(t)=i<dfr(0)di(t)), (2)  to free electrons in the left and right reservoir, respectively.

Equation(9) can be rewritten as
Gli(H=—i6t)({di(t),d[(0)}) (i=L,12...,NR). Do
3 rRL= GRRVRNGNL » (14

0

whereG!,,, is defined by

A. General formalism
1

w— -3 ()

Using Egs.(6) and (14) by back substitution fronGy, to

By the method of equations of motion and Keldysh’s con-
tour integration, we obtain the following equations for the
retarded Green’s function:

Glo(w)=

a

(a=L,R). (15)

=90 HOL S Gl +90 3Gy, 4 ' one arrives at
; 1
Gl (w)= 5 (16)
0 r VLl
w—€ 2 (0)— >
0 V12
w—fl— 2
\%
0 23
(1)_62_ -
VZ
N—-1N
VZ
w_ea_ NR
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The result presented in E@l6) has an obvious physical of dot 1, respectively. As dot 1 is connected to dot 2 to its
interpretation. The retarded Green's function for the leftright the “right retarded self-energy” of dot 1 is modified by
guantum dot, which connects directly to the left electron resz*n: 1/[(952)—1_2*52] (herei?z is the right retarded self-

ervoir and dot 1 to its right by tunnel coupling, is of the form

[ (0)=1[(g}) *-3[, —=!,], whereg], is the unper-

turbed Green’s function of the left dot, while the retarded,[he “
self-energy of the left quantum dot is composed of two parts;

the “left self-energy” 3! () which is simply3! (w) ex-
pressed in Eq(12) and can be rewritten as

Vi
(gr) Y

and the “right self-energy” which is of the forn¥|,
=1/(g},) -3, where @},) ! andXF, are the unper-

érLL(w) = Ek

energy of dot 2) instead of [{fg5,) "1, . . . ,ending up with

the right electron reservoir étrR(w)=EkVE/[(g’k,_)‘1]. For

left self-energy” of any quantum dot, it terminates at
the left electron reservoir. When the quantum dot array re-
duces to only one dot connected to the left and right lead, a
case that has been theoretically and experimentally investi-
gated intensively, the retarded self-energy for the dot is sim-
ply 3'=3{V?/(gk, ) *+V2/(gks) "}, thus our result is
consistent with that obtained previously, see, for example,
Ref. 25. For the case di=0, i.e., the two-dot case, our
result is identical to that of Kawamuret al'® Hence, the
retarded Green'’s function for any dot site in the quantum dot

turbed Green'’s function and the “right retarded self-energy” array under dc bias can be easily worked out. If we define

ro 1 .
Gii = 2 (i=1,2,... N), (17)
w_eo_ Vi,i-%—l
| w_eo - Vi2+1,i+2
i+1
| 0 Viiaiis
W €T
Vlz\lfl,N
0 VﬁR
w— €N~ 0 _~r
w—eg—2g(w)
|
then the following relation can be obtained: Gi=0.%_1:G 1 +0i3 141G 1L, (22)
r _ r~a
(@)= Gile) G§L(w):GrROR2§ %L—FG{?ORERNGEL’ (23

= —il'(w)|G] [~ iTR(w)VE ViV - VR 1nVir

x|G[|2|GY? G52 - - |GNNI?IGRR (19)
in which the identity
S (w)—2%(w)=—iT*w) (a=L,R) (19

and Eq.(17) have been employed. From Ed§) and (14),
using the same iteration technique, we have

rU(@)=V Vi - - VN1 NVNRGL (@)

XG (@) - - Gi\(@)GRg( ).  (20)

whereG!9 andG[; have been defined by E€L5) while the
lesser self-energl > () =if ,(0/A)T*(w) (a=L,R). Here

f (w/h) is the Fermi function of the electron reservoirs
given by f (/) =1/(ef"*~rd+1), where=1/kT and
M, IS chemical potential. Again by back substitution from
Gy to G, we get

Gi(®) =Gl IPST+VE Vi - ViR
X|GLPIGY- - - |GN*IGRR* 2R - (24)

In the above derivation, the expression 8k, () in Eq.
(20) has been used. Combining Egd8) and (24) the

In the above derivations we have used interchangeablylesser” Green’s function for the left quantum dot can be

Next, we shall calculate the “lesser” Green’s function.

Similarly by contour integration we have

GL<L(w):GrL(I)_EL<GﬁL+GrL?_ELlG1<L* (21)

expressed as

GLL(@)=i(fL(@) = fr(@) ()G (o)[?

—fr(0)(G] () =G (w)). (25
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The left current], flowing from the left electron reservoir A=(w— €0)2— 4V2. (32)
into the dot array can be expressed compactf’ by

The solution forS!, in Eq. (31) has two branches. AS!

\]L:%J' de(f (e)—fr(€)T(e), (26) and>?_fulfill the same equatiori30), we can write simply
as3, =(w—e+A)/2; whenA is in the upper complex
where the transmission probabilify ) is given by plane, the solution corresponds¥g, while in lower com-
€ € plex pIanefEL. Substituting Eq(31) into Eqg. (29) directly
T(E)ZFL(%)FR(%> V2 V3, Vig one obtains
€ 2 € 2 € 2 2

<|Gr | = GrO(_) GrO(_) i G’ = 33)

LL(ﬁ) g 1225 t2lo— -3 ()] (0—e)—A (

2 2

By writing Eq. (33) we have assumed thatis in the upper
complex plane.

In the above equatiofi(e/#)=2mV2p, (&) [pL(€) is the rAlternatively, one may qlso solv@|, by relatingS| t.o
density of states of electrons in the left reseryirthe cou-  CLL and then substituting mtro E¢29). Two methods give
pling of the left dot to the left electron reservoir. We have aidentical results fo{ and G,

(27)

€ €
%) G’R°R(%)

similar definition forl'R(e/#) for the right electron reservoir. ~ The dc current of the quantum dot array with infinite
With Egs.(25) and(24) and by some simple derivations we quantum dots again can be calculated by @§), while the
obtain retarded Green’s functio®|, in this case is given by Eq.
(33).
3 = _f S If ()1 (E)]FL(—) It is worthwhile to point out that in the infinite dot case
L oa) 2wttt R 7 and without couplings of the quantum dot array with electron
reservoirs, i.e.,2| (w)=3k(w)=0, our system becomes
x12 ImGl (e)]+Tt )|G |2}_ (28  Identical to the one-dimensional lattice system. In this case
the retarded Green’s function in each dot can be shown to be

the same as that for the one-dimensional lattice system,

Equations(28) and(16) establish close formulas for the cal- g\/hich was given in the book by Economdb.

culation of the dc current. As expected, the expression for th
nonequilibrium dc response of the quantum dot array is a

Landauer-like formula, with the transmission probability lll. ELECTRONIC CHARGE IN EVERY DOT
proportional to the coupling between the quantum dot array

. In the preceding section we have worked out the retarded
and the electron reservoirs, as one can see fron{Z). b 9

Green’s functions for every quantum dot in the one-
dimensionalN+ 2 dots array. We now proceed to calculate

B. Infinite quantum dot array the electronic charge in an arbitrary dot in the array, which

We consider in this section the case of infinite quantumentails a lesser Green’s function for every dot in the dot

dots in the array We assum\yLl_vlz_ <-=Vy_1n  array. We begin with the retarded Green’s function of each
=Vyr=V and e’= ¢, for i= . N. From Eq.(16) the ~ dot in the array. For theth dot in the array, its retarded

retarded Green’s function for the left quantum dot can therf3reen’s function is given by
be rewritten as

1
;
1 G--= , (39
rl_l_ S{w)_SL (29 " w—q _V|2| 1GJ° “1i-17 Vi |+1Gir9rl,i+1
- E,_ (0]
. whereGro and G[?, respectively, are defined by
whereX! | =V2G'S andG!] is defined by Eq(17).2% As the
guantum dot array contalns infinite dots, the “right self- o 1
energy” !, can be written as Gii= V2 '
0 ii+1
V2 wT& V2
ro_ 0 i+1i+2
= (30 — €1~
LL w—eg—3!, ) W™ €ty .
which yields the solution 2
VN—lN
w— €y A 2
FLL:%, (31) 0 VNR
2 w— €y _ 60 Er (w)
R R
whereA is defined by (35
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1.0
&ro_ 1
b V2. ’ 08t (a) 1
w— e L2 V=0.1
\V
0 i—1j—-2 061 R
W€ :
04} 4
2
V21 0.2} E
% -
w— e — L1 = 0.0}
w— e =3 (o) 2 20
(36)
As it is a little lengthy to calculate the lesser Green's 9 o (B) V=1.0
function of the arbitraryth quantum dot, in the following we =
give only the final result, the detailed derivation is presented G Tor
in the Appendix. We have B
< 2 \,2 2 S o5y 1
Gji (@) =V{1Viy - Vi_yj
<10 |2[Sr0|2| 10 <r0 ] 0.0 7
X|G[AIGHIIGhI? - - 1G24 4 [2IGi 22 % 8 , . ,
2 2 2 2 o
TViivaVivir2 - V- 1nVYig 2 :'j' ©
- - &) or V=6.0
X[GHI2IGY 1 a]? - |G 1 -4l 12
1.0
X |GNNPIGRR 2k - (37) o8l
. . 06}
For expression symmetry we have rewriti®f} and GRg, o4l »
which are defined in Eq(15), asG!% andG'%, respectively. 02| [ |
Wheni=L, the above result reduces to Eg4) for the left ool ]
: 2 Ar0 2 Ar0 , , , , ,
quantum dot. Noting tha¥;; ;G{Z;_; andV;; Gl 1,1 02— P R

is, respectively, the “left” and “right” retarded self-energy

of doti, if we write
G (0)=Gf(0)2] (»)G}(w)

then the lesser self-ener@y; (w) of doti can be then writ-
ten by

2iT:2|_<|7@Tr11|2|767r22|2' : '|7(7_'iri|2

a2 s el T 2R (38)
where 7ffiri:Vi,i—léirgLi—l and 7;{i:Vi,i+1é{31,i+1 are
equal to the left and right retarded self-energy of ittredot
divided byV; ;_; andV; ;. 1, respectively.

The electronic charge in thigh quantum dot in theN
+2 quantum dot array can be calculated by

do -
Qi:J’Zlm[Gii(w)]' (39

Equationg39) and(34)—(37) form a close set of formulas to

FIG. 2. Plot of the differential conductance against the left
Fermi level forN=100, with 3= 100, e,= — 2.0 at different inter-
dot tunnel couplingsfa) V=0.1, (b) V=1.0, (c) V=6.0. All ener-
gies are expressed by units Bf

linewidth functionl'“(w) (a €L,R) are energy-independent
constants, and we assuie(w)=T"R(w)=T" in our numeri-

cal calculations, and the level shift now is zero. We assume
also Vi ;=V,=---=Vy_1ny=Vyr=V and e=¢, for i
=L,1,2 ... ,N,R. The differential conductance is calculated
num%récally by setting the right Fermi levelg fixed (ug
=0).*

In Figs. 2 and 3 we plot the differential conductance with
respect to the chemical potential of the left reservoir with dot
numberN=100 in the array for three different tunnel cou-
pling amplitudes ov=0.1, 1.0, and 6.0. The energy level of
dotseg is set to— 2.0 (all energies are measured with respect
to ug). At low temperature[Fig. 2(a)-2(c)], when V is

calculate the electronic charge in an arbitrary dot site in thémall, the differential conductance shows only a sharp peak

N+2 dot array.

IV. NUMERICAL RESULTS

pinned ate, [Fig. 2(@]. WhenV is large, the conductance
peak splits into multiple ones; the maximum number of the
peaks is equal to the total dot number whérs sufficiently
large for a given finitéN. In all cases the peaks of differential

In this section we present some numerical results of difconductance are within the interval ef+2V. When the
ferential conductance as well as the electronic charge in ewemperature is higliFig. 3), however, the differential con-
ery dot in the quantum dot array. In the wide-band limit, theductance peaks become round and show a single round peak

235323-5



SHANGGUAN, AU YEUNG, YU, AND KAM PHYSICAL REVIEW B 63 235323

0.8
0.06 |
0oo0sL (a) V=0.1 < 06 (a) Vv=0.1
0.04 |
0.03 | E 04L
0.02}
0.01F 0.2¢
Nﬁ 0.00} Ng
- ) 0.0
12p T a0
ol (b) y
8 ! V=1.0 ° (b V=1.0
S 08} ] g8 15
[5) ©
= 06} .g.
c 1.0
S 04| E ]
02} 1 © 05 ]
s 00} _ l
g 035 ;-:3 0.0
% 030f g
02s| @ V=6.0 £
fa)
0.20
0.15 |
0.10
0.05 |
0.00 -
-0.05 . . L . "
-30 -20 -10 0 10 20 30
]—lL -30 -2’0 —1l0 (') 1I0 2I0 30
. . . Ky
FIG. 3. Plot of the differential conductance against the left
Fermi level forN= 100, with3=1, e,=—2.0 at different interdot FIG. 4. Plot of the differential conductance against the left
tunnel couplingsia) V=0.1, (b) V=1.0, (c) V=6.0. All energies  Fermi level for an infinite dot array, witl8=100, e,=—2.0 at
are expressed by units of. different interdot tunnel couplingga) V=0.1, (b) V=1.0, (c) V

=6.0. All energies are expressed by unitslof
pinned again ak,, but the peaks width are broadened and
slightly exceed the range ef,+ 2V, while in all three cases fore they tunnel into the reservoirs. The energy levels of the
the heights of the peaks reduce considerably. As expected, @lectrons should be identical to those of an isoldied2
low temperature, the system is basically within the Coulombdot. That is, there should bid+2 peaks in the density of
blockade regime. As the Fermi level of the left reservoir risesstates. The couplingg- andI'® broaden theN+2 peaks.
to a higher level that equals some energy level of the quan- Next we consider the infinite quantum dot case. At low
tum dot array, the differential conductance has a peak, buemperature(Fig. 4), the differential conductance vanishes
this is restricted by the tunnel coupling strength betweeroutside the range ofy*+ 2V, while at high temperaturé-ig.
dots, which determines the electronic spectrum of the sys5), the peaks of the differential conductance are again broad-
tem. For intermediate tunnel coupliny€1.0), the differ- ened and fall quickly outside the interval ef+2V, as
ential conductance peak reaches almost 2, which means peshown in Fig. 5. Unlike the case of a finite quantum dot, the
fect transparency of the quantum dot lattice. At highdifferential conductance plot does not oscillate violently with
temperature, however, the energy levels of the system that_ ; only whenV is large is there some small fluctuations in
are otherwise at low temperature becomes blurred and evehe top.
continuous; this leads to a round conductance peak which In Fig. 6 we plot the electronic charge in every dot in the
reaches its maximum when the Fermi level of the left reserquantum dot array. The parameters ag=—2.0, u =
voir equals toey. We expect this because smalimeans —2.5, N=49. Three tunnel coupling amplitudes are consid-
most electrons supplied by the left reservoir to theldairn ~ ered. For smalV, most of the electrons that enter the right
back before they go forward to the other dots. Thus the elecdot will bounce back into the right reservoir. So there is lots
trons see only a single quantum dot in this case. The energyf charge accumulates in the dots and there is a tiny current
level that they belong to is simply,=—2.0. Clearly, the flowing through all the dots. As a result, the charge distribu-
single peak in the density of states is due to the coupling ofion over all the dots is almost 1.0, while in the dots near the
the dot array to the electron reservoirs. For lavgihe elec- left reservoir, the charge begins to decrease. From the figure
trons oscillate frequently among all the dots in the array beone can see the charge decreases significantly from about 0.8

235323-6



QUANTUM TRANSPORT IN A ONE-DIMENSIONA. . ..

(€’/h)

Conductance

Differential

-30 -20 -10 4] 10 20 30
By
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same applies to the sharp decline in the right dot for small

For the intermediaté/, most of the electrons from the
V=0.1 | reservoir can only enter the last few dots and then they will
bounce back into the right reservoir. There is a small current
passing through all the dots. Apart from the last three dots,
the electronic charge distribution declines steadily from dot
47 to dot 1. As the case of=0.1, there is also a sharp
decrease of charges between dot 1 and the left dot, but in this
case, the decrease amplitude is much less than that of
=0.1.

WhenV is very large, however, most of the electrons that
enter the right dot from the right reservoir can pass easily
through all the dots. Hence, there is a large current through
the system, as one can tell from FigcR This leads to an
almost flat charge distribution over all dots; but there are
small fluctuations between dots, this may be caused by the
variation of the electric field among different dots as the
tunnel coupling is strong.

V. CONCLUSIONS

We have studied nonequilibrium quantum transport
through a one-dimensional quantum dot lattice under dc bias
voltage. Both finite and infinite number dot cases are studied.
The electronic spectrum of the system is found to be within
the interval of two times the tunnel coupling amplitude at
low temperature. The electronic charge in the first and last
dot differs prominently from that in the dot in between when
the interdot tunnel coupling is small, and the charge distri-
bution fluctuates among dots when it is large.

The technique we have developed in this paper is simple

fbut powerful. Although we demonstrate here only a one-
Fermi level for an infinite dot array, witlB=1, e,= — 2.0 at dif- dimensional qyantum dot lattice, th_e tech_nlque should be ca-
ferent interdot tunnel couplingsta) V=0.1, (b) V=10, (¢ v  Pable of tackling two- and three-dimensional quantum dot
=6.0. All energies are expressed by unitsTof lattices to study their transport properties, electronic spec-

trum, and other properties as well.

in dot 1 to 0.3 in the left dot. This is because the left dot
connects directly to the left reservoir, and the tunnel cou-
pling between the left dot and the left reservoir in this case is
much larger than that between the intermediate dots. Thg0

popepebeprp
A
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APPENDIX A: “LESSER” GREEN’'S FUNCTION FOR AN
ARBITRARY DOT

V=0.1
- 09 * .
= - Similar to the calculation foiG[ , one begins with the
o °°r following equations:
®
£ 07} 4
o L
2 o6t . GL=G[} 3G} +G[{21,G], (A1)
=) L
5 05f i
ﬁ 04 I GrTi:g:mEn,n—lerf—l,i+g:m2n,n+1GrT+1,i
ol ; (n=1.2,...N), (A2)
0.2 I N ) R I . I N ) R I
0 10 20 30 40 50 _ 0 0
Dot Site Gri= GRrER GRiT GRRERNGN - (A3)
. . . . < .
FIG. 6. Plot of the electronic charge for a 51-dot quantum dot?’y forwarg SUbSt'.tUt'Oné we f|r<$t SUbSt'tU@_i 'Qto the.equ'a-
array with different interdot tunnel couplings=0.1, 1.0, and 6.0. tion for GJ;, relatingGg; to G, ..., until G~ ;; which is
The remaining parameters are the same as in Fig. 5. expressed as

235323-7



SHANGGUAN, AU YEUNG, YU, AND KAM

1= =GJ° 1i-1Vi-1iGi +Visgj_2 - VarVyg

XGi2y 1 GRGIGIE G
In the above equa’cioé{i0 is defined by Eq(36). And simi-
larly by back substitution fronGg; to G;; we have

(A4)

G GrOVII 1G| 1|+V||+1V|+1|+2

VN - l,NVN R

—1N-— lG GrORZR Ri»

Whereéiri0 is defined by Eq(35). Equations(A4) and (A5)
imply that

><G|+1|+1 ér (A5)

1
1- V|| lGrollf GiriO

< _
ii—

X(ViiVag Vi, GGY - Gf° ;GO
+ViitiVisgir2 - Var
><GrOG|+1|+1 GINGRRER (AB)

Now we have to calculat&?; and G&; which are in-
volved in the above equation. We begin with the following
equations:

L=GI12,GY;, (A7)

ro_Af r r r
Gni_ gnnzn,nflenfl,i + gnnzn,nJrlGnJrl,i
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(n=1,2,...N), (A8)
Ri=GRRERNGHi - (A9)
From Egs.(A7)—(A9) we obtain
[ =Vi1Vi Vi, G GHGH Grol. 1Gii
(A10)
Ri=VanVan-1- - Vii1iGRRGN G.+1|+1Giri-
(A1)

Substituting the complex conjugate of E¢810) and(A11)
into Eq. (A6) and noting that

GP
2r0
1G|71| lGii

r
i

(A12)

1-VZ

the “lesser” Green'’s function for the arbitrary dot site in the
quantum dot array is then obtained,

G (@)=V{ Vi, Vi
X|GLRIAIGHIZ - |G ;-1 [IGH 22T
+Vii Vi VRRIGHI?
X|G{%1j1l% - IGRNAIGRH SR . (AL3)
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