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Quantum transport in a one-dimensional quantum dot array
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In this paper we study electronic transport through a quantum dot array containing an arbitrary number of
quantum dots connected in a series by tunnel coupling under dc bias. The on-site Coulomb interaction is
ignored. The retarded self-energy of any dot in the array is made up of left and right components and is of
staircase type, terminating at corresponding electron reservoirs. We calculate the dc current based on the
nonequilibrium Green’s function formalism developed by Jauhoet al. @A.-P. Jauho, Ned S. Wingreen, and Y.
Meir, Phys. Rev. B50, 5528 ~1994!#. The dc current in both finite and infinite number dots in the array is
calculated. The electronic spectrum of the system is found to fall within an interval centered ate0 ~the dot
energy level! with a width of two times the tunnel coupling amplitude between two neighboring dots. The
electronic charge in each dot is plotted for the finite number dot array.

DOI: 10.1103/PhysRevB.63.235323 PACS number~s!: 73.61.2r, 05.60.Gg, 66.35.1a, 72.20.Ht
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I. INTRODUCTION

Quantum dots are man-made ‘‘droplets’’ of charge th
contain anything from a single electron to a collection
several thousand.1 The electronic states in dots can be prob
by transport when a tunnel coupling is allowed between
dot and a nearby source and drain leads. The physic
quantum dots shows many parallels with the behavior
naturally occurring quantum systems in atomic, nuclear,
condensed-matter physics. Indeed, quantum dots exem
an important trend in condensed-matter physics in which
searchers study man-made objects rather than real atom
nuclei. As electronic confinement in quantum dots a
proaches atomic dimensions, behaviors characteristic
atomic impurities have emerged, such as the quantizatio
the electronic spectrum and the electronic charge, wh
plays a major role in the physics of nanostructures. W
quantum dots, experimentalist can perform experiments
were difficult to realize even inaccessible by simply chan
ing a voltage. One such example is the quantum dot a
magnetic impurity in condensed-matter physics.1

In the last decade much work has been contributed to
system of a single quantum dot connected to two elec
reservoirs. Many authors have studied the transp
properties1–10 and capacitance spectroscopy11 in order to
probe the discrete electronic spectrum of the system. Am
the transport properties one notable feature is the Ko
effect.1–4 Meir et al. have shown that the on-site Coulom
interaction leads to the Kondo effect and hence the Ko
peak in differential conductance4 and to the Coulomb-
blockade conductance oscillations.5,6 By measuring the Cou
lomb oscillations of current, Taruchaet al.7 have studied the
shell filling and spin effect in a quantum dot, showing th
the addition sequence of electrons to the dot is similar
Hund’s rule.

In recent years, research interest has extended to sys
of multiple dots.12–22 For example, electron pumping wa
studied in a double dot with interdot capacitance;12 the
Kondo effect in a double dot with on-site Coulomb intera
tion was studied based on the slave-boson mean-
theory;18 and the dc current of a double dot without on-s
Coulomb interaction was derived by Kawamura and Aono15
0163-1829/2001/63~23!/235323~9!/$20.00 63 2353
t
f
d
e
of
f
d
ify
-
or

-
of
of
h

h
at
-
a

e
n
rt

g
o

o

t
o

ms

-
ld

Recently, Ivanov14 has studied dc transport through noneq
librium double quantum dots at low-temperature and sho
how the Kondo peaks in the spectral density evolve with
interdot tunneling amplitudeTM ; Pohjolaet al.13 have inves-
tigated the resonant tunneling through double quantum d
in the presence of strong Coulomb repulsion and coupling
the metallic leads. Using a real-time diagrammatic formu
tion they evaluated the spectral density and the nonlin
conductance and showed a novel triple-peak resonant s
ture in the conductance.

In this paper we study a system of one-dimensional qu
tum dot arrays containing an arbitrary number of quant
dots connected in a series by tunnel coupling. Our formal
is based on the nonequilibrium Green’s function proposed
Jauhoet al.25 As the dot number in the array becomes ve
large, even infinite, the system we are considering resem
in many ways a one-dimensional lattice. This system is
much interest as a new artificial material. When the elect
density is held low in an array of very small quantum do
electron-phonon scattering is expected to be suppresse
gaps between subbands,23 in contrast to an array of quantum
dots in which many electrons are confined by the deplet
regions of a semiconductor.24 This is because a quantum d
confined by a heterostructure can be made so small as
order of 10 nm. Chenet al. studied the metal to antiferro
magnetic insulator transition of a two-dimensional quant
dot lattice.21 Much earlier, Ugajin investigated the nature
the electric-field-induced Mott metal-insulator transition in
quantum dot array.22 To the best of our knowledge, howeve
there has so far not been a systematic calculation on
density of states and the differential conductance of a qu
tum dot array system. It is the purpose of this paper to c
culate the ‘‘lesser’’ and retarded Green’s functions for t
one-dimensional quantum dot array containingN12 dots
connected by tunnel coupling, whereN can be any positive
integer, and to derive an analytical formula for the curre
under the dc bias voltage.

In Sec. II we calculate the dc response of the syste
including the case of infiniteN. We calculate in Sec. III the
electronic charge of an arbitrary dot in the dot array for
finite N. Numerical results and analysis are presented in S
IV, and the main conclusions are addressed in Sec. V.
©2001 The American Physical Society23-1
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II. dc RESPONSE

Let us consider a system of one-dimensional quantum
array connected to two electron reservoirs. The array co
sists ofN12 quantum dots connected in a series by tun
coupling, as shown in Fig. 1. For notational convenience
call the first and the last dot in the array the leftL and the
right R dot, respectively. The HamiltonianH of the system is
given by

H5 (
k,aPL,R

ekacka
† cka1 (

i 5L,R,1

N

e i
0di

†di1(
i 51

N

Vi ,i 11~di
†di 11

1H.c.!1VL~ckL
† dL1H.c.!1VR~ckR

† dR1H.c.!, ~1!

where cka
† (cka) is the creation~annihilation! operator for

electrons ina reservoir,di
† (di) is the electron creation~an-

nihilation! operator within thei th quantum dot,VL (VR) is
the tunneling coupling between the left~right! dot and the
left ~right! reservoir, andVi ,i 11 is the tunneling coupling
between thei th and (i 11)th dots. The electron spin index
suppressed.

The ‘‘lesser’’ and retarded Green’s functions are defin
by

Gi ,i
, ~ t !5 i ^di

†~0!di~ t !&, ~2!

Gi ,i
r ~ t !52 iu~ t !^$di~ t !,di

†~0!%& ~ i 5L,1,2, . . . ,N,R!.
~3!

A. General formalism

By the method of equations of motion and Keldysh’s co
tour integration, we obtain the following equations for t
retarded Green’s function:

GLL
r 5gLL

r 1gLL
r SL

r GLL
r 1gLL

r SL1G1L
r , ~4!

FIG. 1. A quantum dot array ofN12 dots connected in a serie
by an interdot tunnel coupling is connected to two electron re
voirs.
23532
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GRR
r 5gRR

r 1gRR
r SR

r GRR
r 1gRR

r SRNGNR
r , ~5!

Gia
r 5gii

r S i ,i 21Gi 21,a
r 1gii

r S i ,i 11Gi 11,a
r , ~6!

GLi
r 5gLL

r SL
r GLi

r 1gLL
r SL1G1i

r ~7!

GRi
r 5gRR

r SR
r GRi

r 1gRR
r SRNGNi

r , ~8!

GRL
r 5gRR

r SR
r GRL

r 1gRR
r SRNGNL

r . ~9!

In the abovea5 i ,L,R and i 51,2, . . . ,N, Sab’s are self-
energies arising from electron tunneling between the near
neighboring ath and bth quantum dots; the free-particl
Green’s functions in each dot are defined by

gi ,i
, ~ t,t8!5 i ^di

†~ t8!di~ t !&, ~10!

gi ,i
r ~ t,t8!52 iu~ t2t8!^$di~ t !,di

†~ t8!%&

~ i 5L,1,2, . . . ,N,R! ~11!

and the self-energies for the left and right dot are defined

SL
r ,a,,~ t,t8!5VL

2(
k

gkL
r ,a,,~ t,t8!, ~12!

SR
r ,a,,~ t,t8!5VR

2(
k

gkR
r ,a,,~ t,t8!, ~13!

which are associated with the tunneling between the left
ervoir and the left dot and that between the right reserv
and the right dot, respectively. The Green’s functio
gkL

r ,a,,(t,t8) andgkR
r ,a,,(t,t8) in Eqs.~12! and~13! correspond

to free electrons in the left and right reservoir, respective
Equation~9! can be rewritten as

GRL
r 5GRR

r0 VRNGNL
r , ~14!

whereGaa
r0 is defined by

Gaa
r0 ~v![

1

v2ea
02Sa

r ~v!
~a5L,R!. ~15!

Using Eqs.~6! and ~14! by back substitution fromGNL
r to

GLL
r one arrives at

r-
GLL
r ~v!5

1

v2eL
02SL

r ~v!2
VL1

2

v2e1
02

V12
2

v2e2
02

V23
2

�

V
N21,N

2

v2eN
0 2

VNR
2

v2eR
02SR

r ~v!

. ~16!
3-2



l
ef
es
m

ed
rts

y’

its
y

at
re-
, a
sti-
im-

le,
r

dot
e
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The result presented in Eq.~16! has an obvious physica
interpretation. The retarded Green’s function for the l
quantum dot, which connects directly to the left electron r
ervoir and dot 1 to its right by tunnel coupling, is of the for
GLL

r (v)51/@(gLL
r )212SQ LL

r 2SW LL
r #, wheregLL

r is the unper-
turbed Green’s function of the left dot, while the retard
self-energy of the left quantum dot is composed of two pa
the ‘‘left self-energy’’ SQ LL

r (v) which is simplySL
r (v) ex-

pressed in Eq.~12! and can be rewritten as

SQ LL
r ~v!5(

k

VL
2

~gkL
r !21

,

and the ‘‘right self-energy’’ which is of the formSW LL
r

51/@(g11
r )212SW 11

R #, where (g11
r )21 and SW 11

R are the unper-
turbed Green’s function and the ‘‘right retarded self-energ
b

n.

23532
t
-

:

’

of dot 1, respectively. As dot 1 is connected to dot 2 to
right the ‘‘right retarded self-energy’’ of dot 1 is modified b

SW 11
R 51/@(g22

r )212SW 22
R # ~hereSW 22

R is the right retarded self-
energy of dot 2) instead of 1/@(g22

r )21#, . . . , ending up with
the right electron reservoir atSR

r (v)5(kVL
2/@(gkL

r )21#. For
the ‘‘left self-energy’’ of any quantum dot, it terminates
the left electron reservoir. When the quantum dot array
duces to only one dot connected to the left and right lead
case that has been theoretically and experimentally inve
gated intensively, the retarded self-energy for the dot is s
ply S r5(k$VL

2/(gkL
r )211VR

2/(gkR
r )21%, thus our result is

consistent with that obtained previously, see, for examp
Ref. 25. For the case ofN50, i.e., the two-dot case, ou
result is identical to that of Kawamuraet al.15 Hence, the
retarded Green’s function for any dot site in the quantum
array under dc bias can be easily worked out. If we defin
Gii
r0[

1

v2e i
02

Vi ,i 11
2

v2e i 11
0 2

Vi 11,i 12
2

v2e i 12
0 2

Vi 12,i 13
2

�

VN21,N
2

v2eN
0 2

VNR
2

v2eR
02SR

r ~v!

~ i 51,2, . . . ,N!, ~17!
rs

m

e

then the following relation can be obtained:

GLL
r ~v!2GLL

a ~v!

52 iGL~v!uGLL
r u22 iGR~v!VL1

2 V12
2 V23

2
•••VN21,N

2 VNR
2

3uGLL
r u2uG11

r0u2uG22
r0u2•••uGNN

r0 u2uGRR
r0 u2 ~18!

in which the identity

Sa
r ~v!2Sa

a~v!52 iGa~v! ~a5L,R! ~19!

and Eq.~17! have been employed. From Eqs.~6! and ~14!,
using the same iteration technique, we have

GRL
r ~v!5VL1V12•••VN21,NVNRGLL

r ~v!

3G11
r0~v!•••GNN

r0 ~v!GRR
r0 ~v!. ~20!

In the above derivations we have used interchangea
S i j (5Vi j )5S j i (5Vji ) for i , j 5L,1,2, . . .N,R.

Next, we shall calculate the ‘‘lesser’’ Green’s functio
Similarly by contour integration we have

GLL
, ~v!5GLL

r0 SL
,GLL

a 1GLL
r0 SL1G1L

, , ~21!
ly

GiL
, 5gii

r S i 21,iGi 21,L
, 1gii

r S i ,i 11Gi 11,L
, , ~22!

GRL
, ~v!5GRR

r0 SR
,GRL

a 1GRR
r0 SRNGNL

, , ~23!

whereGLL
r0 andGRR

r0 have been defined by Eq.~15! while the
lesser self-energySa

,(v)5 i f a(v/\)Ga(v) (a5L,R). Here
f a(v/\) is the Fermi function of the electron reservoi
given by f a(v/\)51/(eb(\v2ma)11), whereb51/kT and
ma is chemical potential. Again by back substitution fro
GNL

, to GLL
, , we get

GLL
, ~v!5uGLL

r u2SL
,1VL1

2 V12
2
•••VNR

2

3uGLL
r u2uG11

r0u2•••uGNN
r0 u2uGRR

r0 u2SR
, . ~24!

In the above derivation, the expression forGRL
r (v) in Eq.

~20! has been used. Combining Eqs.~18! and ~24! the
‘‘lesser’’ Green’s function for the left quantum dot can b
expressed as

GLL
, ~v!5 i „f L~v!2 f R~v!…GL~v!uGLL

r ~v!u2

2 f R~v!„GLL
r ~v!2GLL

a ~v!…. ~25!
3-3
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The left currentJL flowing from the left electron reservoi
into the dot array can be expressed compactly by20

JL5
2e

h E de„f L~e!2 f R~e!…T~e!, ~26!

where the transmission probabilityT(e) is given by

T~e!5GLS e

\ DGRS e

\ DVL1
2 V12

2
•••VNR

2

3UGLL
r S e

\ D U2UG11
r0S e

\ D U2UG22
r0S e

\ D U2

•••

UGNN
r0 S e

\ D U2UGRR
r0 S e

\ D U2

. ~27!

In the above equationGL(e/\)52pVL
2rL(e) @rL(e) is the

density of states of electrons in the left reservoir# is the cou-
pling of the left dot to the left electron reservoir. We have
similar definition forGR(e/\) for the right electron reservoir
With Eqs.~25! and ~24! and by some simple derivations w
obtain

JL52
e

\E de

2p
@ f L~e!2 f R~e!#GLS e

\ D
3H 2 Im@GLL

r ~e!#1GLS e

\ D uGLL
r ~e!u2J . ~28!

Equations~28! and~16! establish close formulas for the ca
culation of the dc current. As expected, the expression for
nonequilibrium dc response of the quantum dot array i
Landauer-like formula, with the transmission probabil
proportional to the coupling between the quantum dot ar
and the electron reservoirs, as one can see from Eq.~27!.

B. Infinite quantum dot array

We consider in this section the case of infinite quant
dots in the array. We assumeVL15V125•••5VN21,N

5VNR5V ande i
05e0 for i 51,2, . . . ,N. From Eq.~16! the

retarded Green’s function for the left quantum dot can th
be rewritten as

GLL
r 5

1

v2eL
02SL

r ~v!2SW LL
r

, ~29!

whereSW LL
r 5V2G11

r0 andG11
r0 is defined by Eq.~17!.26 As the

quantum dot array contains infinite dots, the ‘‘right se
energy’’ SW LL

r can be written as

SW LL
r 5

V2

v2e02SW LL
r

~30!

which yields the solution

SW LL
r 5

~v2e0!6D

2
, ~31!

whereD is defined by
23532
e
a

y

n

D5A~v2e0!224V2. ~32!

The solution forSW LL
r in Eq. ~31! has two branches. AsSW LL

r

andSW LL
a fulfill the same equation~30!, we can write simply

as SW LL5(v2e01D)/2; when D is in the upper complex
plane, the solution corresponds toSW LL

r while in lower com-

plex planeSW LL
a . Substituting Eq.~31! into Eq. ~29! directly

one obtains

GLL
r 5

2

2@v2eL
02SL

r ~v!#2~v2e0!2D
. ~33!

By writing Eq. ~33! we have assumed thatD is in the upper
complex plane.

Alternatively, one may also solveGLL
r by relatingSW LL

r to
GLL

r and then substituting into Eq.~29!. Two methods give

identical results forSW LL
r andGLL

r .
The dc current of the quantum dot array with infini

quantum dots again can be calculated by Eq.~28!, while the
retarded Green’s functionGLL

r in this case is given by Eq
~33!.

It is worthwhile to point out that in the infinite dot cas
and without couplings of the quantum dot array with electr
reservoirs, i.e.,SL

r (v)5SR
r (v)50, our system become

identical to the one-dimensional lattice system. In this c
the retarded Green’s function in each dot can be shown to
the same as that for the one-dimensional lattice syst
which was given in the book by Economou.27

III. ELECTRONIC CHARGE IN EVERY DOT

In the preceding section we have worked out the retar
Green’s functions for every quantum dot in the on
dimensionalN12 dots array. We now proceed to calcula
the electronic charge in an arbitrary dot in the array, wh
entails a lesser Green’s function for every dot in the d
array. We begin with the retarded Green’s function of ea
dot in the array. For thei th dot in the array, its retarded
Green’s function is given by

Gii
r 5

1

v2e i
02Vi ,i 21

2 GQ i 21,i 21
r0 2Vi ,i 11

2 GW i 11,i 11
r0

, ~34!

whereGQ i ,i
r0 andGW i ,i

r0 , respectively, are defined by

GW i ,i
r05

1

v2e i
02

Vi ,i 11
2

v2e i 11
0 2

Vi 11,i 12
2

�

VN21,N
2

v2eN
0 2

VNR
2

v2eR
02SR

r ~v!

,

~35!
3-4
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GQ i ,i
r05

1

v2e i
02

Vi ,i 21
2

v2e i 21
0 2

Vi 21,i 22
2

�

V21
2

v2eL
02

VL1
2

v2eL
02SL

r ~v!

,

~36!

As it is a little lengthy to calculate the lesser Green
function of the arbitraryi th quantum dot, in the following we
give only the final result, the detailed derivation is presen
in the Appendix. We have

Gii
,~v!5VL1

2 V12
2
•••Vi 21,i

2

3uGQ LL
r0 u2uGQ 11

r0u2uGQ 22
r0u2•••uGQ i 21,i 21

r0 u2uGii
r u2SL

,

1Vi ,i 11
2 Vi 11,i 12

2
•••VN21,N

2 VNR
2

3uGii
r u2uGW i 11,i 11

r0 u2
•••uGW N21,N21

r0 u2

3uGW NN
r0 u2uGW RR

r0 u2SR
, . ~37!

For expression symmetry we have rewrittenGLL
r0 and GRR

r0 ,

which are defined in Eq.~15!, asGQ LL
r0 andGW RR

r0 , respectively.
When i 5L, the above result reduces to Eq.~24! for the left
quantum dot. Noting thatVi ,i 21

2 GQ i 21,i 21
r0 andVi ,i 11

2 GW i 11,i 11
r0

is, respectively, the ‘‘left’’ and ‘‘right’’ retarded self-energ
of dot i, if we write

Gii
,~v!5Gii

r ~v!S i i
,~v!Gii

a ~v!

then the lesser self-energyS i i
,(v) of dot i can be then writ-

ten by

S i i
,5SL

,upQ 11
r u2upQ 22

r u2
•••upQ i i

r u2

1upW i i
r u2

•••upW N21,N21
r u2upW NN

r u2SR
, , ~38!

where pQ i i
r 5Vi ,i 21GQ i 21,i 21

r0 and pW i i
r 5Vi ,i 11GW i 11,i 11

r0 are
equal to the left and right retarded self-energy of thei th dot
divided byVi ,i 21 andVi ,i 11, respectively.

The electronic charge in thei th quantum dot in theN
12 quantum dot array can be calculated by

Qi5E dv

2p
Im@Gii

,~v!#. ~39!

Equations~39! and~34!–~37! form a close set of formulas to
calculate the electronic charge in an arbitrary dot site in
N12 dot array.

IV. NUMERICAL RESULTS

In this section we present some numerical results of
ferential conductance as well as the electronic charge in
ery dot in the quantum dot array. In the wide-band limit, t
23532
d

e

f-
v-

linewidth functionGa(v) (aPL,R) are energy-independen
constants, and we assumeGL(v)5GR(v)5G in our numeri-
cal calculations, and the level shift now is zero. We assu
also VL15V125•••5VN21,N5VNR5V and e i

05e0 for i
5L,1,2, . . . ,N,R. The differential conductance is calculate
numerically by setting the right Fermi levelmR fixed (mR
50).4,5

In Figs. 2 and 3 we plot the differential conductance w
respect to the chemical potential of the left reservoir with d
numberN5100 in the array for three different tunnel cou
pling amplitudes ofV50.1, 1.0, and 6.0. The energy level o
dotse0 is set to22.0 ~all energies are measured with respe
to mR). At low temperature@Fig. 2~a!–2~c!#, when V is
small, the differential conductance shows only a sharp p
pinned ate0 @Fig. 2~a!#. When V is large, the conductanc
peak splits into multiple ones; the maximum number of t
peaks is equal to the total dot number whenV is sufficiently
large for a given finiteN. In all cases the peaks of differentia
conductance are within the interval ofe062V. When the
temperature is high~Fig. 3!, however, the differential con
ductance peaks become round and show a single round

FIG. 2. Plot of the differential conductance against the l
Fermi level forN5100, withb5100, e0522.0 at different inter-
dot tunnel couplings:~a! V50.1, ~b! V51.0, ~c! V56.0. All ener-
gies are expressed by units ofG.
3-5
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SHANGGUAN, AU YEUNG, YU, AND KAM PHYSICAL REVIEW B 63 235323
pinned again ate0, but the peaks width are broadened a
slightly exceed the range ofe062V, while in all three cases
the heights of the peaks reduce considerably. As expecte
low temperature, the system is basically within the Coulo
blockade regime. As the Fermi level of the left reservoir ris
to a higher level that equals some energy level of the qu
tum dot array, the differential conductance has a peak,
this is restricted by the tunnel coupling strength betwe
dots, which determines the electronic spectrum of the s
tem. For intermediate tunnel coupling (V51.0), the differ-
ential conductance peak reaches almost 2, which means
fect transparency of the quantum dot lattice. At hi
temperature, however, the energy levels of the system
are otherwise at low temperature becomes blurred and e
continuous; this leads to a round conductance peak w
reaches its maximum when the Fermi level of the left res
voir equals toe0. We expect this because smallV means
most electrons supplied by the left reservoir to the dotL turn
back before they go forward to the other dots. Thus the e
trons see only a single quantum dot in this case. The en
level that they belong to is simplye0522.0. Clearly, the
single peak in the density of states is due to the coupling
the dot array to the electron reservoirs. For largeV the elec-
trons oscillate frequently among all the dots in the array

FIG. 3. Plot of the differential conductance against the l
Fermi level forN5100, withb51, e0522.0 at different interdot
tunnel couplings:~a! V50.1, ~b! V51.0, ~c! V56.0. All energies
are expressed by units ofG.
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fore they tunnel into the reservoirs. The energy levels of
electrons should be identical to those of an isolatedN12
dot. That is, there should beN12 peaks in the density o
states. The couplingsGL andGR broaden theN12 peaks.

Next we consider the infinite quantum dot case. At lo
temperature~Fig. 4!, the differential conductance vanishe
outside the range ofe062V, while at high temperature~Fig.
5!, the peaks of the differential conductance are again bro
ened and fall quickly outside the interval ofe062V, as
shown in Fig. 5. Unlike the case of a finite quantum dot, t
differential conductance plot does not oscillate violently w
mL ; only whenV is large is there some small fluctuations
the top.

In Fig. 6 we plot the electronic charge in every dot in t
quantum dot array. The parameters aree0522.0, mL5
22.5, N549. Three tunnel coupling amplitudes are cons
ered. For smallV, most of the electrons that enter the rig
dot will bounce back into the right reservoir. So there is lo
of charge accumulates in the dots and there is a tiny cur
flowing through all the dots. As a result, the charge distrib
tion over all the dots is almost 1.0, while in the dots near
left reservoir, the charge begins to decrease. From the fig
one can see the charge decreases significantly from abou

t
FIG. 4. Plot of the differential conductance against the l

Fermi level for an infinite dot array, withb5100, e0522.0 at
different interdot tunnel couplings:~a! V50.1, ~b! V51.0, ~c! V
56.0. All energies are expressed by units ofG.
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in dot 1 to 0.3 in the left dot. This is because the left d
connects directly to the left reservoir, and the tunnel c
pling between the left dot and the left reservoir in this cas
much larger than that between the intermediate dots.

FIG. 5. Plot of the differential conductance against the l
Fermi level for an infinite dot array, withb51, e0522.0 at dif-
ferent interdot tunnel couplings:~a! V50.1, ~b! V51.0, ~c! V
56.0. All energies are expressed by units ofG.

FIG. 6. Plot of the electronic charge for a 51-dot quantum
array with different interdot tunnel couplingsV50.1, 1.0, and 6.0.
The remaining parameters are the same as in Fig. 5.
23532
t
-

is
e

same applies to the sharp decline in the right dot for smalV.
For the intermediateV, most of the electrons from the

reservoir can only enter the last few dots and then they
bounce back into the right reservoir. There is a small curr
passing through all the dots. Apart from the last three d
the electronic charge distribution declines steadily from
47 to dot 1. As the case ofV50.1, there is also a shar
decrease of charges between dot 1 and the left dot, but in
case, the decrease amplitude is much less than that oV
50.1.

WhenV is very large, however, most of the electrons th
enter the right dot from the right reservoir can pass ea
through all the dots. Hence, there is a large current thro
the system, as one can tell from Fig. 2~c!. This leads to an
almost flat charge distribution over all dots; but there a
small fluctuations between dots, this may be caused by
variation of the electric field among different dots as t
tunnel coupling is strong.

V. CONCLUSIONS

We have studied nonequilibrium quantum transp
through a one-dimensional quantum dot lattice under dc b
voltage. Both finite and infinite number dot cases are stud
The electronic spectrum of the system is found to be wit
the interval of two times the tunnel coupling amplitude
low temperature. The electronic charge in the first and
dot differs prominently from that in the dot in between wh
the interdot tunnel coupling is small, and the charge dis
bution fluctuates among dots when it is large.

The technique we have developed in this paper is sim
but powerful. Although we demonstrate here only a on
dimensional quantum dot lattice, the technique should be
pable of tackling two- and three-dimensional quantum
lattices to study their transport properties, electronic sp
trum, and other properties as well.
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APPENDIX A: ‘‘LESSER’’ GREEN’S FUNCTION FOR AN
ARBITRARY DOT

Similar to the calculation forGLL
, , one begins with the

following equations:

GLi
, 5GLL

r0 SL
,GLi

a 1GLL
r0 SL1G1i

, , ~A1!

Gni
,5gnn

r Sn,n21Gn21,i
, 1gnn

r Sn,n11Gn11,i
,

~n51,2, . . . ,N!, ~A2!

GRi
, 5GRR

r0 SR
,GRi

a 1GRR
r0 SRNGNi

, . ~A3!

By forward substitution, we first substituteGLi
, into the equa-

tion for G1i
, , relatingG1i

, to G2i
, , . . . , until Gi 21,i

, which is
expressed as

t

t
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Gi 21,i
, 5GQ i 21,i 21

r0 Vi 21,iGii
,1Vi 21,i 22•••V21V1L

3GQ i 21,i 21
r0

•••GQ 22
r0GQ 11

r0GLL
r0 SL

,GLi
a . ~A4!

In the above equationGQ i i
r0 is defined by Eq.~36!. And simi-

larly by back substitution fromGRi
, to Gii

, we have

Gi ,i
, 5GW i i

r0Vi ,i 21Gi 21,i
, 1Vi ,i 11Vi 11,i 12•••VN21,NVNR

3GW i 11,i 11
r0

•••GW N21,N21
r0 GW NN

r0 GRR
r0 SR

,GRi
a , ~A5!

whereGW i i
r0 is defined by Eq.~35!. Equations~A4! and ~A5!

imply that

Gi ,i
, 5

1

12Vi ,i 21
2 GQ i 21,i 21

r0 GW i i
r0

3~VL1V12•••Vi 21,iGQ LL
r0 GQ 11

r0
•••GQ i 21,i 21

r0 GW i i
r0SL

,GLi
a

1Vi ,i 11Vi 11,i 12•••VNR

3GW i i
r0GW i 11,i 11

r0
•••GW NN

r0 GW RR
r0 SR

,GRi
a !. ~A6!

Now we have to calculateGLi
a and GRi

a which are in-
volved in the above equation. We begin with the followin
equations:

GLi
r 5GLL

r0 SL1G1i
r , ~A7!

Gni
r 5gnn

r Sn,n21Gn21,i
r 1gnn

r Sn,n11Gn11,i
r

vid

d

ys

L.

de

al

.
d,

e,
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~n51,2, . . . ,N!, ~A8!

GRi
r 5GRR

r0 SRNGNi
r . ~A9!

From Eqs.~A7!–~A9! we obtain

GLi
r 5VL1V12•••Vi 21,iGLL

r0 GQ 11
r0GQ 22

r0
•••GQ i 21,i 21

r0 Gii
r ,
~A10!

GRi
r 5VRNVN,N21•••Vi 11,iGRR

r0 GW NN
r0

•••GW i 11,i 11
r0 Gii

r .
~A11!

Substituting the complex conjugate of Eqs.~A10! and~A11!
into Eq. ~A6! and noting that

GW i i
r0

12Vi ,i 21
2 GQ i 21,i 21

r0 GW i i
r0

5Gii
r , ~A12!

the ‘‘lesser’’ Green’s function for the arbitrary dot site in th
quantum dot array is then obtained,

Gii
,~v!5VL1

2 V12
2
•••Vi 21,i

2

3uGQ LL
r0 u2uGQ 11

r0u2
•••uGQ i 21,i 21

r0 u2uGii
r u2SL

,

1Vi ,i 11
2 Vi 11,i 12

2
•••VNR

2 uGii
r u2

3uGW i 11,i 11
r0 u2

•••uGW NN
r0 u2uGW RR

r0 u2SR
, . ~A13!
s. C
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