
PHYSICAL REVIEW B, VOLUME 63, 235318
Fokker-Planck equations and density of states in disordered quantum wires
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We propose a general scheme to construct scaling equations for the density of states in disordered quantum
wires for all ten pure Cartan symmetry classes. The anomalous behavior of the density of states near the Fermi
level «50 for the three chiral and four Bogoliubov–de Gennes universality classes is analyzed in detail by
means of a mapping to a scaling equation for the reflection from a quantum wire in the presence of an
imaginary potential.
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I. INTRODUCTION

Statistical properties of energy levels and wave functio
in disordered electron systems are believed to be determ
by, first of all, the fundamental symmetries of the Ham
tonian. Such a connection is best established in the cas
‘‘zero dimension,’’ i.e., for finite-size systems with a larg
dimensionless conductanceg, where a description in terms o
random matrix theory is valid. Using the link to Cartan
classification of symmetric spaces,1 Zirnbauer2 and Caselle3

have pointed out that there exist only ten possible rand
matrix theories, whose form follows directly from the ge
metrical characteristics~‘‘roots’’ ! of the corresponding sym
metric space in Cartan’s table. These ten random ma
theories are divided into three standard classes,4 three chiral
classes,5 and four Bogoliubov–de Gennes~BdG! classes,6

the subdivision in each class depending on the presenc
0163-1829/2001/63~23!/235318~9!/$20.00 63 2353
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absence of time-reversal symmetry~TR! and spin-rotation
invariance~SR!,7 see Table I.

The rational for the Cartan classification is believed
transcend ‘‘zero dimension’’ and has been applied to
construction of effective theories~e.g., nonlinears models!
for higher-dimensional disordered systems. The stand
classes are thus believed to be appropriate to the proble
an electron moving in a random potential, without furth
symmetries,8 irrespective of dimensionality. The chira
classes are appropriate to the case when the disorde
purely ‘‘off-diagonal,’’9 as is the case, e.g., for the lattic
random flux model in quasi-one- and two dimensions,10,11

the random hopping model,12,13 and for randomXY spin
chains.14 The BdG classes refer to systems with superc
ducting correlations,15 and were argued to be vali
for vortices in superconductors,16,17 dirty unconventional
superconductors,18,19and~in the case of broken time-revers
es are

ta-

e ten
d chiral
TABLE I. Classification of symmetry classes according to Cartan’s table. The symmetry class
defined in terms of the presence or absence of time-reversal symmetry~TR! and spin-rotation invariance
~SR!, and in terms of the other fundamental symmetries of the system~standard, chiral, or BdG!. The table
further contains the multiplicities of the ordinary and long rootsmo and ml and the degeneracyd of the
reflection and/or transmission eigenvalues~Ref. 25!. In the seventh column we denote, using Cartan’s no
tion ~Chap. X of Ref. 1!, the symmetric spaces associated with the transfer matrix groupM of the quantum
wire; these are different from the symmetric spaces associated with the microscopic HamiltonianH of the
quantum wire, which are listed in the last column. Following the convention of Ref. 6, we refer to th
symmetry classes by Cartan’s symbol for the symmetric space of their Hamiltonians. For standard an
quantum wires without TR the degeneracyd of the reflection eigenvalues is 2~1! with ~without! SR.

Class TR SR mo ml d M H
Yes Yes 1 1 2 CI AI

Standard No Yes~No! 2 1 2~1! AIII A
Yes No 4 1 2 DIII AII

Yes Yes 1 0 2 AI BDI
Chiral No Yes~No! 2 0 2~1! A AIII

Yes No 4 0 2 AII CII

Yes Yes 2 2 4 C CI
BdG No Yes 4 3 4 CII C

Yes No 2 0 2 D DIII
No No 1 0 1 BDI D
©2001 The American Physical Society18-1
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symmetry! normal metals in proximity to a superconducto
The BdG classes have also been argued to be of some
evance to problems in statistical mechanics such as ran
bond Ising and network models.20,21

The geometric structure of the symmetric spaces not o
determines the level statistics in zero dimension, it also
termines the form of scaling equations for the tran
mission eigenvaluesTj and reflection eigenvaluesRj51
2Tj ( j 51, . . . ,N) in a wire geometry, where a disordere
sample of lengthL is connected to two ideal leads@see Fig.
1~a!#.3,22,23 Here the reflection eigenvaluesR1 , . . . ,RN are
the d-fold degenerate eigenvalues of the matrix productr †r ,
where r is the Nd-dimensional matrix of reflection ampli
tudes for backreflection into the same lead@see Fig. 1~a!# and
Nd is the number of propagating channels at the Fermi le
The degeneraciesd are listed in Table I for the ten symmetr
classes in Cartan’s classification. Parametrizing

Rj5tanh2xj , ~1!

the scaling equation for the distributionP(x1 , . . . ,xN ;L)
takes the form3,24

]P

]L
5

1

2g l (
j 51

N
]

]xj
J

]

]xj
J21P, ~2!

where l is the mean free path andL is the length of the
quantum wire. For the standard and BdG symmetry clas
thexj are positive random variables, 0,xj,`, and the Jaco-
bian J and the numerical constantg read

J5)
j 51

N

sinhml~2xj !)
k, j

)
6

sinhmo~xj6xk!, ~3a!

g5mo~N21!1ml11, ~3b!

while for the chiral classes thexj can take values on th
entire real axis,2`,xj,`, and one has

J5)
j 51

N

)
k, j

sinhmo~xj2xk!, ~4a!

g5 1
2 @mo~N21!12#. ~4b!

Here ml and mo are the multiplicities of the so-calle
long and ordinary roots for the corresponding symme
space,25 respectively, see Table I.~For the chiral classes w
only consider the case when the nonuniversality parameth
equals unity, see Ref. 26.! For the standard classes, Eq.~2!
was derived by Dorokhov,27 and Mello, Pereyra, and

FIG. 1. A quantum wire~hashed marked region! of length L
connected to ideal leads. The reflection matrix at energy«, r («), is
the matrix of reflection amplitudes for reflection into the same le
~a! A two-lead geometry is used to compute the conductance.~b! A
one-lead geometry is used to compute the DOS whereby the wi
closed by a perfectly reflecting wall on the right.
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Kumar;28 derivations for the chiral and BdG symmetr
classes can be found in Refs. 29 and 30.

In this paper we show how the same structure also de
mines scaling equations for the density of states~DOS! n(«)
in a quantum wire of infinite length (L→`) at energy«. Our
work builds on previous work for the chiral classes, whe
such a scaling equation was derived using a differ
method.31 In addition, we present an exact solution for th
DOS, something that could not be done in Ref. 31.

While n(«) is a nonsingular function of energy for th
three standard classes, singular behavior is expected ne«
50 for the remaining seven symmetry classes, as«50 is a
special point there.~The energy«50 corresponds to a poin
of particle-hole symmetry in the chiral and BdG symme
classes; it is the band center for lattice models with rand
hopping, or the Fermi energy in the case of the BdG class!
Indeed, for the chiral classes,n(«) was found to depend
sensitively on the parity of the channel numberN for « close
to zero, showing then(«)}1/u« ln3«u divergence characteris
tic of pure one-dimensional systems with chiral symme
for odd N,32 while n(«)}u«mo21ln «u for evenN.31 For the
BdG classes in the presence of spin-rotation invaria
~classes C and CI; we refer to the symmetry classes by C
tan’s symbol for the symmetric space corresponding to th
Hamiltonians, see Table I!, a suppressionn(«)}«ml21 is
expected.18,33 In both cases, the characteristic energy sc
for the DOS singularity is;\vF /N2l , vF being the Fermi
velocity. This distinguishes the singularity inn(«) for quan-
tum wires from its counterpart in zero dimension, where
characteristic energy scale is the mean level spacing w
goes to zero as the system size is increased. No exact re
are known for the multichannel quantum wires from Bd
symmetry classes in the absence of spin-rotation invaria
~classes D and DIII; see, however, Refs. 34–36
asymptotic results in one and two dimensions!. The general
scheme that we present here fills this gap, and provide
unified framework for all ten symmetry classes.37

II. MAPPING TO QUANTUM WIRES WITH ABSORPTION

Our construction of a scaling equation describing t
DOS makes use of a mapping to a quantum wire with
sorption. Absorption is described by the addition of a sp
tially uniform imaginary potentialiv, v.0, to the Hamil-
tonian. In the presence of absorption, a scaling equation
the reflection eigenvaluesRj , j 51, . . . ,N, of r ( iv)†r ( iv)
can be derived in the same way as the scaling equation~2! in
the absence of absorption,38,39 noting that upon the addition
of a thin slice of lengthdL to a disordered wire of lengthL,
the reflection eigenvaluesRj change by a small amountdRj .
The changedRj comes from twostatistically independen
contributions:~1! disorder scattering in the added slice
width dL, and ~2! absorption in the same slice. These co
tributions are statistically independent, since to linear or
in dL one can neglect processes that involve both disor
scattering and absorption. The second process gives rise
change

Rj→e24vdL/vFRj , j 51, . . . ,N, ~5!

.

is
8-2
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independent of the disorder. The first process depends on
disorder type and symmetries, and is already present in
scaling equation~2!. Combination of the two processes the
results in the replacement of Eq.~2! by

]Piv

]L
5(

j 51

N
]

]xj
S v

vF
sinh 2xj1

1

2g l
J

]

]xj
J21D Piv , ~6!

where we used the parametrization~1! for the Rj , and
Piv(x1 , . . . ,xN ;L) represents the joint distribution of th
reflection eigenvalue in the presence of the imaginary po
tial iv. Equation~6! was derived in Refs. 38 and 39 for th
standard symmetry classes. The initial condition atL50 for
Piv(x1 , . . . ,xN ;L) still needs to be specified. For our pu
poses, it is advantageous to setRj51, j 51, . . . ,N, at L
50, corresponding to a wire that is closed on one end,
Fig. 1~b!.

The scaling equation~6! has the stationary~independent
of L) solution,

Piv;st~x1 , . . . ,xN!5
1

Z~a!
uJu)

j 51

N

e2a cosh 2xj , ~7!

wherea5g lv/vF and the normalization constantZ(a) en-
sures that the stationary solutionPiv;st is normalized to one.
This solution represents the joint probability density of t
reflection coefficients for the absorbing medium. We w
demonstrate below that the DOS in an infinitely long dis
dered wire without absorption can be computed as a loga
mic derivative of the normalization constant or ‘‘partitio
function’’ Z(a) with respect to the dimensionless imagina
energya.

The main idea of our method is to make the analyti
continuation iv→«. With this analytical continuation, the
single-energy productr ( iv)†r ( iv) of reflection matrices in
the presence of absorption maps to the two-energy pro
r (2«)†r («) without absorption.40 The latter product is a
unitary matrix since the reflection matrix in the geometry
Fig. 1~b! is unitary by construction. TheN-independent ei-
genvalues ofr (2«)†r («) can thus be written as exp(2ifj),
j 51, . . . ,N. When the lengthL of the disordered wire is
increased, thef j ’s perform a Brownian motion, governed b
a Fokker-Planck equation that is the analytical continuat
of Eq. ~6!,

]P«

]L
5(

j 51

N
]

]f j
S 2

2«

vF
1

2

g l
sin2f j J

]

]f j
J21D P« , ~8a!

where

J5)
j 51

N
1

singf j
)
k, j

sinmo~f j2fk! ~8b!

for the standard and BdG classes, and

J5)
j 51

N
1

singf j
)
k, j

sinmo@~f j2fk!/2# ~8c!
23531
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for the chiral classes, whereg is defined in Eqs.~3! and~4!,
respectively. This equation was derived by different metho
in Ref. 31 for the chiral classes and in Ref. 41 for the st
dard classes. The scaling equation~8! can be considered ei
ther on the full real axis2`,f j,` or on the interval
2p<f j,p. Only in the latter case has Eq.~8! a well-
defined stationary solutionP«;st($f j%) describing the distri-
butionP«($f j%;L) in the limit L→`. However, this solution
is not of the simple form~7!.42 In fact, no representation o
P«;st in terms of elementary functions could be found oth
than for the caseN51, where explicit integration of Eq.~8!
is possible.43

The DOS is calculated via the ‘‘node-counting theorem
which states that, for the half-open quantum wire of F
1~b!, the mean number of statesN(«) in the energy interval
(2«,«) and per unit length is proportional to the sum of t
phase derivatives]f j /]L.44,45 For technical reasons, we re
place ]f j /]L by the derivative of the counting function
2Im ln sin(fj1i0), which has the same average slope asf j .
We thus find

N~«![E
2«

«

d«8n~«8!52
d

p (
j 51

N
]

]L
^Im ln sin~f j1 i0!&«,L .

~9!

Note that the positive infinitesimali0 in the argument of
sin(fj1i0), which is needed to select the correct branch
the logarithm, is compatible with the analytical continuati
iv→« used to obtain the scaling equation~8!. In Eq. ~9! the
brackets^ . . . &«,L denote an average with the probabili
densityP« that solves Eq.~8! on the full real axis2`,f j
,` at lengthL of the quantum wire. Integrating by part
with the help of Eq.~8!, we find

N~«!52
d

p(
j 51

N E df1•••dfN Im@cot~f j1 i0!#

3S 2«

vF
2

2

g l
sin2f j J

]

]f j
J21D P«

52
2d«

pvF
(
j 51

N

^Im cot~f j1 i0!&«,L . ~10!

In the thermodynamic limitL→`, the disorder average
^•••&«,L can be performed with the stationary distributio
P«;st for the interval 2p<f j,p. Denoting the average
with P«,st by ^•••&«, the DOS per unit length is thus given b

n~«!5
1

2

]N
]«

52
d

pvF
(
j 51

N
]

]«
«^Im cot~f j1 i0!&« ,

~11!

where we have used the relation

n~«!5n~2«! ~12!

that holds for each disorder configuration in the chiral a
BdG classes. In the standard classes, Eq.~12! only holds in
the thermodynamic limit and for sufficiently small« ~smaller
8-3



-
n
ta

n-

is-
ge
f

ion
ke

ut
he

t

a-

y

pe
on

en

t

p

nc-
e

to

e on
e

ks

tion
ge
d
ry

M. TITOV, P. W. BROUWER, A. FURUSAKI, AND C. MUDRY PHYSICAL REVIEW B63 235318
than the energy scalevF / l , where nonuniversal effects ap
pear and the validity of the scaling equations breaks dow!.

Instead of performing the disorder average with the s
tionary solutionP«;st of Eq. ~8!, we rely on the solution
Piv;st for the stationary distribution of the reflection eige
values in the presence of the imaginary potentialiv, see Eq.
~7!. From the relation tanh2xj5e2ifj we first observe that

Im^cot~f j1 i0!&«52Rê cosh 2xj& ivuv→2 i« , ~13!

where^•••& iv stands for averaging with the stationary d
tribution Piv;st. Second, we note that the avera
2(m^cosh 2xm&iv is given by the logarithmic derivative o
the partition functionZ(a), thus obtaining the DOS

n~«!52
d

pvF
Re

]

]a Fa
]

]a
ln Z~a!GU

a→2 ig l«/vF

. ~14!

This relation between the DOS and the partition funct
Z(a) for each of the Cartan symmetry classes is the
result of this paper.

III. CALCULATION OF THE DENSITY OF STATES

As we have seen in the preceding section, the comp
tion of the DOS in the thermodynamic limit reduces to t
computation of the ‘‘partition function’’

Z~a!5E dx1•••dxNuJ~$xj%!ue2a(
j 51

N

cosh 2xj . ~15!

For the standard and BdG classes, the integration over
coordinatesxj is restricted to the positive real axis, 0,xj
,`, j 51, . . . ,N, while for the chiral classes, the integr
tion extends over the entire real axis.

For all ten symmetry classes, a change of variablesxj
→l j can be made after whichZ(a) can be written in the
form

Z}E
L
dl1•••dlN)

j 51

N

w~l j !)
k, j

ul j2lkumo. ~16!

The relation between thel j and thexj , the weight function
w(l), and the integration intervalL depend on the symmetr
class and will be specified below.

A general method for calculation of integrals of the ty
~16! is described in Chaps. 5 and 6 of Mehta’s book
random matrix theory.4 Here we mention the results from
Ref. 4, up to a proportionality constant that does not dep
on a. For mo52 the result of integration in Eq.~16! is pro-
portional to the determinant

Z} Det@ f mn#m,n51
N , ~17a!

f mn5E
L
dlw~l!pm~l!pn~l!, ~17b!

where the polynomials$pm(l)% form a linear independen
set of polynomials up to degreeN21. For mo51 and even
N we have4
23531
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Z}ADet@ f mn#m,n51
N , ~18!

f mn5E
L
dldl8e~l2l8!w~l!w~l8!pm~l!pn~l8!,

where the sign functione(l) equals 1 for positivel and
21 for negativel. For oddN, the matrixf must be supple-
mented by an additional row and column

Z}ADet@ f mn#m,n51
N11 , ~19a!

f n,N1152 f N11,n5E
L
dlw~l!pn~l!. ~19b!

For mo54, the result is

Z}ADet@ f mn#m,n51
2N , ~20a!

f mn5E
L
dlw~l!@pm~l!pn8~l!2pn~l!pm8 ~l!#, ~20b!

where the prime stands for the derivative with respect tol
and$pn(l)% form a linear independent set of polynomials u
to degree 2N21.

A. Standard classes

For the standard universality classes, the partition fu
tion Z(a) takes the form of the normalization integral of th
Laguerre ensemble of random matrix theory38 if we set l
5sinh2 x. In this case, the integration rangeL5(0,̀ ) and
the weight functionw(l) is given by exp(22al2a). Inte-
grating over thel j , one finds that the partition function
Z(a) has a particularly simple dependence ona,

Z~a!}e2aNa2gN/2. ~21!

Using Eq.~14!, one quickly verifies that this corresponds
a constant DOS,

n~«!5n0[
Nd

pvF
. ~22!

~The DOS can acquire a nonuniversal energy dependenc
the scales« much larger then the inverse scattering tim
vF / l , where the applicability of the scaling equation brea
down.!

As a matter of fact, for largea, one obtains the result~21!
for all ten symmetry classes, as one verifies by substitu
xj→a21/2yj in Eq. ~15! and subsequent expansion for lar
a. This confirms that the DOSn(«) approaches the standar
value n0 for energies far away from zero for all symmet
classes.

B. Chiral classes

For the chiral classes, we arrive at the standard form~16!
taking l5exp(2x), L5(0,̀ ), and

w~l!5l2g/2 exp@2 1
2 a~l1l21!#. ~23!
8-4
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When TR is broken, say by a magnetic field (mo52;
class AIII!, we choose in Eq.~17! the polynomialspn(l)
5ln21 so that

Z~a!} Det@K um2nu~a!#m,n51
N , ~24!

where K j (a) is the modified Bessel function of intege
order j. For small values of the dimensionless imagina
energy a one can substituteK0(a)→2 ln a and Km(a)
→2m21a2m(m21)!, m51,2, . . . , toobtain the leading be
havior of Z ~to logarithmic accuracy!. For oddN the deter-
minant in Eq.~24! is expanded according to

Z~a!}a2(N221)/2@ ln a1O~1!#. ~25!

This gives the asymptotic DOS

n~«!5
pn0

u«t ln3~«t!u
, 0,«t!1, ~26a!

where we introduced the time scale

t5Ng l /vF . ~26b!

It is the time needed to diffuse through a wire of length;Nl,
or, equivalently, the mean DOS in a segment of the wire
length Nl. ~The length scaleNl characterizes the crossov
between the regimes of diffusive dynamics and of localiz
or critical dynamics.! For evenN the determinant in Eq.~24!
is expanded according to

Z~a!}a2N2/2@12 1
4 N2a2 ln2 a1O~a2 ln a!#. ~27!

This gives rise to a different asymptotic DOS,

n~«!5pn0u«t ln~«t!u, 0,«t!1. ~28!

Observe that the asymptotic results~26a! and ~28! do not
depend explicitly onN when the energy is measured in un
of 1/t. The leading dependence on energy in Eqs.~26a! and
~28! has been derived previously in Ref. 31 in an appro
mation that leaves the prefactorpn0 unspecified.

When TR symmetry is present but SR symmetry is b
ken by spin-orbit coupling (mo54, class CII!, we choose in
Eq. ~20! the polynomials p2n21(l)5l2N2n1ln21 and
p2n(l)5l2N2n2ln21. With such a choice the square ro
of the determinant of a 2N32N matrix in Eq.~20! reduces
to the determinant of aN3N matrix, from which we obtain

Z~a!} Det@ f nm#n,m51
N , ~29!

f nm5~2N2n2m11!K un2mu~a!1~n2m!K2N2n2m11~a!.
~30!

For oddN, the leading term in the asymptotic expansion
Z(a) for small a is of the form~25!, hence the small-« as-
ymptote of the DOS is given by Eq.~26a!, just like in the
case of broken time-reversal symmetry. For evenN the de-
terminant in Eq.~29! is expanded as

Z~a!}a2N2
@11c1a21c2a4 ln2 a1O~a4 ln a!#, ~31!
23531
f
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f

wherec25 1
48 N2(N11)2 andc1 is anotherN-dependent co-

efficient, which does not affect the asymptote of the DO
We thus obtain

n~«!5
p

3
n0S 11

1

ND 2

u~«t!3 ln~«t!u, 0,«t!1.

~32!

In the presence of both TR and SR symmetry (mo51, class
BDI! and with the choice of the polynomialspn(l)5ln21,
n51, . . . ,N, we obtain for evenN

Z~a!}ADet@ f mn#m,n51
N , ~33!

f mn5E
0

`

dxE
x

`

dy ~xy!2(1/2)(N11)e2(1/2)a(x1y1x211y21)

3~xn21ym212xm21yn21!. ~34!

For odd N, the antisymmetric matrixf has to be supple-
mented by an additional row and column with

f n,N115E
0

`

dxx2(1/2)(N11)e2(1/2)a(x1x21)xn21

52K u(N11)/22nu~a!. ~35!

The analytical continuationa→2 ig l«/vF52 i te/N can be
done directly in the integrals~34!, ~35! if accompanied by an
appropriate shift of the integration contour of the variablex
andy in the complex plane. After that, numerical evaluati
of the partition function~33! for complexa and its deriva-
tives, and hence of the DOSn(e), is straightforward.46 The
small-a asymptote of the partition functionZ(a) is given by
Eq. ~25! for odd N and by

Z~a!5a2(N/2)2@11ca ln a1O~a!# ~36!

for even N, where c5p@(N/221)!!/(N/222)!! #2 if N
54n and c54p21@(N/221)!!/(N/222)!! #2 if N54n
22, n51,2, . . . . As aresult, for small energies, the DO
has the form~26a! for odd N, while

n~«!5
n0c

N
u ln~«t!u, 0,«t!1, ~37!

for evenN, where the coefficientc is given below Eq.~36!.
In the limit N@1, this asymptote simplifies ton(«)
5n0u ln(«t)u, 0,«t!1.

The DOS is plotted for the three chiral classes and
various values ofN in Fig. 2. The parity effect and the de
pendence on symmetry class is clearly seen.

C. BdG universality classes

We now apply Eqs.~17!–~20! to the BdG universality
classes. We choosel5cosh 2x, L5(1,̀ ), and

w~l!5exp~2al!~l221!(ml21)/2, ~38!

to arrive at the standard form~16!. In all calculations below
we choose the polynomialspn(l)5ln21 to computeZ(a).
8-5
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When both TR and SR symmetries are present~class CI!,
say as is the case with a dirtyd-wave superconductor, we us
Eq. ~17! and find

Z~a!} DetF S 2
d

daD m1n22

a21K1~a!G
m,n51

N

. ~39!

With the help of the asymptotic limita→0 of the modified
Bessel functionK1, we obtain

Z~a!}a2N(N11)@11 1
4 N~N11!a2 ln a1O~a2!#. ~40!

Substitutinga→2 i t«/N and using Eq.~14! one verifies that
the DOS vanishes linearly with energy as«→0

n~«!5
p

2
n0S 11

1

ND u«tu, 0,«t!1. ~41!

FIG. 2. Density of states for the chiral classes. The energ
measured in units of 1/t5vF /(Ng l ); the DOS is measured in unit
of n05Nd/pvF . ~a! is for the case of preserved time-reversal sy
metry and spin-rotation invariance~Hamiltonian of class BDI in
Cartan’s classification!, ~b! is for the case of broken time-revers
symmetry~class AIII!, and ~c! is for the case of preserved time
reversal symmetry and broken spin-rotation invariance~class CII!.
The density of states is shown forN51, 2, 3, and 4; the values o
N are indicated in the figure.
23531
When SR symmetry is present but not TR~class C!, we find

Z~a!}ADet@ f mn#m,n51
2N , ~42a!

f mn5~n2m!S 2
d

daD n1m23 11a

a3 e2a. ~42b!

In the limit a→0, we obtain

Z~a!}a2N(2N11)@11c1a21c2a31O~a4!#, ~43!

wherec25 1
18 N(N11)(2N11) andc1 is a numerical coef-

ficient which is not important for the small energy asympto
of the DOS. From Eq.~43!, one verifies that the DOS van
ishes quadratically with energy as«→0,

n~«!5n0S 11
1

ND S 11
1

2ND ~«t!2, 0,«t!1. ~44!

The linear and quadratic energy dependencies of the DO
the thermodynamic limit and for small energies in the clas
CI and C, respectively, have been found previously by Se
hil and co-workers18,33 The same suppression of the DO
appears in the random matrix theory for finite-size syste
of classes CI and C,6 provided the size of the system is s
equal to a localization volume~corresponding to a segmen
of lengthNl of the quantum wire!.

When TR symmetry is present but not SR~class DIII!, we
find from Eq.~17!

Z~a!} DetF S 2
d

daD m1n22

K0~a!G
m,n51

N

. ~45!

Note thatN is even for the class DIII. In the limita→0,
using the asymptotic expansion of the modified Bessel fu
tion K0, we obtainZ(a)}a2N(N21)@ ln a1O(1)#, i.e., corre-
sponding to a DOS of the form~26a!. For class DIII, the case
N52 is special: The Lie algebraso(4,C) generated by the
transfer matrices of a quantum wire in class DIII withN
52 ~see Ref. 30! is not irreducible, so(4,C)'sl(2,C)
3sl(2,C) ~see Ref. 1!. As a result, in the case DIII withN
52 the scaling of the parametersxj and of the eigenphase
f j is described by two mean free paths that need not
equal; one for each copy of the noncompact Lie alge
sl(2,C). The scaling equations~2!, ~6!, and ~8!, in which
only one mean free path appears, correspond to the sp
case where these two mean free paths are equal, which
quires fine tuning of the disorder. Only in that case the D
singularity~26a! is found. In Refs. 34 and 35 it is shown th
the general case of different mean free paths has a power
dependence of the DOS for«→0 with a nonuniversal expo
nent.

Finally, when neither SR nor TR symmetries are pres
~class D!, it is enough to use only Eq.~18! because the num
ber of eigenvaluesN is a multiple of four in this case. We
then obtain

Z~a!}ADet@ f mn#m,n51
N , ~46!

is

-
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f mn5E
1

`

dxE
x

`

dy
xn21ym212xm21yn21

A~x221!~y221!
e2a(x1y).

With the help of the asymptotic limita→0 we find Eq.~26a!
for the asymptotic DOS. Numerical evaluation of the DOS
possible using Eq.~46!. The substitutiona→2 i t«/N can be
done before the integration and the convergency of the i
grals has to be provided by the appropriate shift of the in
gration contour ofx and y in the complex plane. A diver-
gence of the DOS was also predicted by Senthil and Fis
for two-dimensional systems of class D/DIII.36

The caseN52, which corresponds to a ‘‘spinless’’ clas
D and was studied in Refs. 34 and 35, is again very spe
@see the discussion of class DIII withN52 below Eq.~45!#:
The Lie algebraso(2,2) generated by the transfer matrices
a quantum wire in class D withN52 ~see Ref. 30! is not
irreducible,so(2,2)'sl(2,R)3sl(2,R) ~see Ref. 1!. There-
fore, as is explained in Refs. 34 and 35, instead of the Dy
singularity ~26a! an algebraic« dependence with a nonun
versal exponent is obtained for the DOS singularity at«
50 whenever the two independent mean free paths ass
ated with the two copies of the noncompact Lie alge
sl(2,R) are unequal.

The DOS is shown for the four BdG classes and for va
ous N in Fig. 3. Note that there is no parity effect for th
BdG classes and the DOS becomes almost independentN
beyondN'4, provided energy is measured in units of 1/t.

IV. CONCLUSION

In this paper, we have presented a unified picture for b
transport and the density of states~DOS! in a long quantum

FIG. 3. Density of states for the BdG universality classes.~a!
contains results for classes DIII~solid curve! and D~dotted curve!,
for which spin-rotation invariance is broken;~b! is for classes C
~solid! and CI~dotted!, where spin-rotation invariance is preserve
The channel numberN is indicated in the figure.
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wire, for all ten ~pure! Cartan symmetry classes.37 While it
was well known that the dependence of the conductance
the lengthL of the quantum wire could be inferred from th
theory of diffusion on symmetric spaces through t
Dorokhov-Mello-Pereyra-Kumar~DMPK! equation and its
generalizations,3,22,23we have shown that the same geome
cal framework underlies the dependence of the DOS on
energy« ~measured with respect to the band center or Fe
energy «50). Our unified picture consists of a gener
scheme that permits the construction of scaling equations
the eigenvaluese2if j of the matrix productr †(2«)r («) of
reflection matricesr at different energies for a disordere
quantum wire and for all ten pure Cartan symmetry class
@Here j 51, . . . ,N, whereN is the number of independen
eigenvalues ofr †(2«)r («).# Using the analytical continua
tion «→ iv, this scaling equation could be obtained from th
for the reflection eigenvaluesRj of the quantum wire in the
presence of absorption, which, in turn, can be obtained fr
the DMPK equation. Using the ‘‘node-counting theorem
that relates theL dependence of the eigenphasesf j and the
DOS,44,45 we were thus able to find the DOS in the therm
dynamic limitL→` from the stationary solution of the sca
ing equation.

Relatively little attention has been paid to the behavior
the density of states~DOS! in the standard problem o
Anderson localization for a system of infinite size, since t
DOS, with the exception of its tails, is rather insensitive
disorder. This is not true in the presence of symmetries
which one energy in the spectrum plays a special role, a
the case for the chiral and Bogoliubov–de Gennes~BdG!
universality classes, where a sublattice symmetry or the p
ence of a superconducting order parameter singles out
band center or the Fermi energy«50, respectively. In those
cases, the DOS is singular around zero energy, the en
scale for the singularity being\/t, where, for the case of a
long quantum wire we consider in this paper,t;N2l /vF is
the time for diffusion through a segment of the wire of leng
Nl. The precise form of the singularity depends on the sy
metry class and, for the chiral classes, on the parity ofN. The
results are summarized in Table II for the limit of a mul
channel quantum wire,N@1. It is in this limit that a univer-

.

TABLE II. Asymptotes of the DOSn(«) for small energies 0
,«t!1 and forN@1, wheret5Ng l /vF , g is given in Eqs.~3b!
and ~4b!, l is the mean free path, andvF the Fermi velocity.~Ex-
pressions for the DOS asymptotes for finiteN can be found in the
text.!

Class TR SR n(«) for 0,«t!1

Yes Yes n0u ln(«t)u
Chiral, N even No pn0u«t ln(«t)u

Yes No (pn0/3)u(«t)3ln(«t)u

Chiral, N odd pn0 /u«t ln3(«t)u

Yes Yes (pn0/2)u«tu
BdG No Yes n0u«tu2

Yes No pn0 /u«t ln3(«t)u
No No pn0 /u«t ln3(«t)u
8-7
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sal dependence of the DOS on the symmetry class is
pected.

One might be tempted to argue that, for those clas
where the quasiparticle states are localized at and near
energy, the singular behavior of the DOS in the thermo
namic limit is controlled by the~zero-dimensional! random
matrix theory for an effective finite-size system with the li
ear size of the localization lengthj5Nl. Whereas this argu
ment predicts the correct energy scale\/t for the singularity,
it fails to reproduce the extra logarithm in the function
form of the singularity for the chiral classes, see Table
The origin of the logarithm in the DOS can be found in t
presence of two competing localized modes in that case,
each have the same localization length, see Refs. 29 an
As was shown in Ref. 31, the presence of a small amoun
dimerization of the hopping amplitudes lifts the degenera
of the localization lengths and removes the logarithm fr
the functional form of the DOS singularity. On the oth
hand, for the BdG classes C and CI, there is only one lo
ized mode,30 which explains the absence of the extra log
ric

n-

a
sa

,

.

,

uc
A

23531
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rithm in the functional form of the DOS in those classes.
Note added. Upon completion of this manuscript, w

learned of a related paper by Motrunichet al. ~Ref. 34! on
single-channel quantum wires with BdG symmetry and b
ken spin-rotation invariance, where the same conclusion
reached with respect as to the DOS singularity for the p
Cartan symmetry classes D and DIII.

ACKNOWLEDGMENTS

We thank C. W. J. Beenakker, K. Damle, and I.
Gruzberg for discussions. This work was supported by
Dutch Science Foundation NWO/FOM and by INTAS Gra
No. 97-1342~M.T.!, the Sloan Foundation~P.W.B.!, and by
the Grant-in-Aid for Scientific Research on Priority Are
~A! from the Ministry of Education, Science, Sports and C
ture of Japan No. 12046238~A.F.!. P.W.B. gratefully ac-
knowledges the hospitality of the Instituut Lorentz of Leid
University where part of this work was done.
uer,

ev.

sor-
ng,

-

s.

d

er
see

B

1S. Helgason,Differential Geometry, Lie Groups, and Symmet
Spaces~Academic Press, San Diego, 1978!.

2M. Zirnbauer, J. Math. Phys.37, 4986~1996!.
3M. Caselle, cond-mat/9610017~unpublished!.
4M.L. Mehta, Random Matrices and the Statistical Theory of E

ergy Levels~Academic Press, New York, 1967!.
5J. Verbaarschot and I. Zahed, Phys. Rev. Lett.70, 3852~1993!; T.

Nagao and S. Slevin, J. Math. Phys.34, 2075, 2317~1993!; S.
Hikami and A. Zee, Nucl. Phys. B408, 415 ~1993!.

6A. Altland and M.R. Zirnbauer, Phys. Rev. B55, 1142~1997!.
7In the standard and chiral classes, the symmetry classes with

without spin-rotation invariance coincide once time-rever
symmetry is broken.

8P.W. Anderson, Phys. Rev.109, 1492~1958!.
9R. Gade, Nucl. Phys. B398, 499~1993!; R. Gade and F. Wegner

ibid. 360, 213 ~1991!.
10A. Furusaki, Phys. Rev. Lett.82, 604~1999!; A. Altland and B.D.

Simons, Nucl. Phys. B562, 445 ~1999!, and references therein
11C. Mudry, P.W. Brouwer, and A. Furusaki, Phys. Rev. B59,

13 221~1999!; 62, 8249~2000!.
12Y. Hatsugai, X.-G. Wen, and M. Kohmoto, Phys. Rev. B56,

1061 ~1997!; T. Fukui, Nucl. Phys. B562, 477 ~1999!; S. Gu-
ruswamy, A. LeClair, and A.W.W. Ludwig,ibid. 583, 475
~2000!.

13A. Eilmes, R.A. Ro¨mer, and M. Schreiber, Eur. Phys. J. B1, 29
~1998!; M. Fabrizio and C. Castellani, Nucl. Phys. B583, 542
~2000!, and references therein.

14E.R. Smith, J. Phys. C3, 1419~1970!; R. Shankar and G. Murthy
Phys. Rev. B36, 536~1987!; D.S. Fisher,ibid. 50, 3799~1994!;
51, 6411~1995!.

15Depending on the type of disorder, unconventional supercond
ors are sometimes described by the chiral classes; see A.
land, B.D. Simons, and M.R. Zirnbauer, cond-mat/0006362~un-
published!.
nd
l

t-
lt-

16M.A. Skvortsov and M.V. Feigel’man, Phys. Rev. Lett.78, 2640
~1997!.

17R. Bundschuh, C. Cassanello, D. Serban, and M.R. Zirnba
Nucl. Phys. B532, 689 ~1998!.

18T. Senthil, M.P.A. Fisher, L. Balents, and C. Nayak, Phys. R
Lett. 81, 4704~1998!.

19The BdG symmtetry classes are only appropriate when the di
der is weak. In the opposite case of unitary impurity scatteri
different behavior is found. See C. Pe´pin and P.A. Lee, Phys.
Rev. Lett.81, 2779 ~1998!; Phys. Rev. B63, 054502~2001!;
W.A. Atkinson, P.J. Hirschfeld, A.H. MacDonald, and K. Zie
gler, Phys. Rev. Lett.85, 3922 ~2000!; 85, 3926 ~2000!; J.-X.
Zhu, D.N. Sheng, and C.S. Ting,ibid. 85, 4944~2000!; C. Cha-
mon and C. Mudry, Phys. Rev. B63, 100503~R! ~2001!.

20S. Cho and M.P.A. Fisher, Phys. Rev. B55, 1025 ~1997!; N.
Read and D. Green,ibid. 61, 10 267 ~2000!; M. Bocquet, D.
Serban, and M.R. Zirnbauer, Nucl. Phys. B578, 628 ~2000!;
I.A. Gruzberg, N. Read, and A.W.W. Ludwig, Phys. Rev. B63,
104422~2001!; N. Read and A.W.W. Ludwig, Phys. Rev. B63,
024404~2001!.

21V. Kagalovsky, B. Horovitz, Y. Avishai, and J.T. Chalker, Phy
Rev. Lett. 82, 3516 ~1999!; I.A. Gruzberg, N. Read, and
A.W.W. Ludwig, ibid. 82, 4524 ~1999!; T. Senthil, J.B. Mar-
ston, and M.P.A. Fisher, Phys. Rev. B60, 4245 ~1999!; J.T.
Chalker, N. Read, V. Kagalovsky, B. Horovitz, Y. Avishai, an
A.W.W. Ludwig, cond-mat/0009463~unpublished!.
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