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We propose a general scheme to construct scaling equations for the density of states in disordered quantum
wires for all ten pure Cartan symmetry classes. The anomalous behavior of the density of states near the Fermi
level e=0 for the three chiral and four Bogoliubov—de Gennes universality classes is analyzed in detail by
means of a mapping to a scaling equation for the reflection from a quantum wire in the presence of an
imaginary potential.
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[. INTRODUCTION absence of time-reversal symmet{JR) and spin-rotation
invariance(SR),” see Table .

Statistical properties of energy levels and wave functions The rational for the Cartan classification is believed to
in disordered electron systems are believed to be determindthnscend “zero dimension” and has been applied to the
by, first of all, the fundamental symmetries of the Hamil- construction of effective theorigg.g., nonlineaw models
tonian. Such a connection is best established in the case @r higher-dimensional disordered systems. The standard
“zero dimension,” i.e., for finite-size systems with a large classes are thus believed to be appropriate to the problem of
dimensionless conductangewhere a description in terms of an electron moving in a random potential, without further
random matrix theory is valid. Using the link to Cartan’s symmetried irrespective of dimensionality. The chiral
classification of symmetric spackgirnbauef and Caselld  classes are appropriate to the case when the disorder is
have pointed out that there exist only ten possible randorpurely “off-diagonal,” as is the case, e.g., for the lattice
matrix theories, whose form follows directly from the geo- random flux model in quasi-one- and two dimensighs,
metrical characteristic€'roots” ) of the corresponding sym- the random hopping modét!® and for randomXY spin
metric space in Cartan’s table. These ten random matrichains!* The BdG classes refer to systems with supercon-
theories are divided into three standard cladslsee chiral  ducting correlations® and were argued to be valid
classes, and four Bogoliubov—de Gennd8dG) classe$, for vortices in superconductot§l’ dirty unconventional
the subdivision in each class depending on the presence superconductor®°and(in the case of broken time-reversal

TABLE |. Classification of symmetry classes according to Cartan’s table. The symmetry classes are
defined in terms of the presence or absence of time-reversal sym(&jfyand spin-rotation invariance
(SR), and in terms of the other fundamental symmetries of the sy&&mdard, chiral, or BdiG The table
further contains the multiplicities of the ordinary and long roots and m; and the degeneraay of the
reflection and/or transmission eigenvalBef. 25. In the seventh column we denote, using Cartan’s nota-
tion (Chap. X of Ref. }, the symmetric spaces associated with the transfer matrix gkdugf the quantum
wire; these are different from the symmetric spaces associated with the microscopic Hamikoofaihe
quantum wire, which are listed in the last column. Following the convention of Ref. 6, we refer to the ten
symmetry classes by Cartan’s symbol for the symmetric space of their Hamiltonians. For standard and chiral
quantum wires without TR the degeneratyf the reflection eigenvalues is(2) with (without) SR.

Class TR SR m, m, d M H
Yes Yes 1 1 2 Cl Al
Standard No Ye¢No) 2 1 21) Alll A
Yes No 4 1 2 DIl All
Yes Yes 1 0 2 Al BDI
Chiral No Yes(No) 2 0 21) A Alll
Yes No 4 0 2 All Cll
Yes Yes 2 2 4 C Cl
BdG No Yes 4 3 4 Cll C
Yes No 2 0 2 D Dill
No No 1 0 1 BDI D
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(a) (b) Kumar?® derivations for the chiral and BdG symmetry

O ey classes can be found in Refs. 29 and 30.

In this paper we show how the same structure also deter-
FIG. 1. A quantum wire(hashed marked regiorof length L~ Mines scaling equations for the density of std2OS) v(¢)

connected to ideal leads. The reflection matrix at energy(¢), is  in a quantum wire of infinite lengthL(— ) at energys. Our

the matrix of reflection amplitudes for reflection into the same leadwork builds on previous work for the chiral classes, where

(a) A two-lead geometry is used to compute the conductaiiose such a scaling equation was derived using a different

one-lead geometry is used to compute the DOS whereby the wire imethod®! In addition, we present an exact solution for the

closed by a perfectly reflecting wall on the right. DOS, something that could not be done in Ref. 31.

While v(g) is a nonsingular function of energy for the
symmetry normal metals in proximity to a superconductor. three standard classes, singular behavior is expectedenear
The BdG classes have also been argued to be of some rel-Q for the remaining seven symmetry classess a® is a
evance to problems in statistical mechanics such as randospecial point there(The energys =0 corresponds to a point
bond Ising and network modet§?* of particle-hole symmetry in the chiral and BdG symmetry

The geometric structure of the symmetric spaces not onlg|asses: it is the band center for lattice models with random
determines the level statistics in zero dimension, it also dehopping, or the Fermi energy in the case of the BdG classes.
termines the form of scaling equations for the trans-indeed, for the chiral classes(e) was found to depend
mission eigenvalues; and reflection eigenvalueR;=1  sensitively on the parity of the channel numbéfor & close

—T; (j=1,....N) in a wire geometry, where a disordered to zero, showing the(s)1//¢ In%]| divergence characteris-
Sam%'gzgg length is connected to two ideal leadisee Fig.  tic of pure one-dimensional systems with chiral symmetry
1(@)].>**" Here the reflection eigenvalud®,, ... Ry are  for odd N, while v(&)e|e™ tn¢| for evenN.3! For the

the d-fold degenerate eigenvalues of the matrix prodict  BdG classes in the presence of spin-rotation invariance
wherer is the Nd-dimensional matrix of reflection ampli- (classes C and CI; we refer to the symmetry classes by Car-
tudes for backreflection into the same I¢ade Fig. 1a)]and  tan’s symbol for the symmetric space corresponding to their
Nd is the number of propagating channels at the Fermi levelHamiltonians, see Table),la suppression/(g)xe™ 1 is

The degeneraciabare listed in Table | for the ten symmetry expected®® In both cases, the characteristic energy scale
classes in Cartan’s classification. Parametrizing for the DOS singularity is~%vg/N?l, v being the Fermi
velocity. This distinguishes the singularity ir{e) for quan-

Rjztanh’-xj ' (1) tum wires from its counterpart in zero dimension, where the
the scaling equation for the distributio®(x, ... Xy;L) characteristic energy scale is the mean level spacing which
takes the form?* goes to zero as the system size is increased. No exact results

are known for the multichannel quantum wires from BdG
P 1 N5 o symmetry classes in the absence of spin-rotation invariance
> —J-—J'P, (2 (classes D and DIIl; see, however, Refs. 34-36 for

gL~ 291 &4 9x Vax . : .
Yii=1 % ! asymptotic results in one and two dimensipnghe general

wherel is the mean free path and is the length of the scheme that we present here fills this gap, and provides a
quantum wire. For the standard and BdG symmetry classesnified framework for all ten symmetry class¥s.
thex; are positive random variabless(x; <o, and the Jaco-

bianJ and the numerical constantread Il. MAPPING TO QUANTUM WIRES WITH ABSORPTION

N Our construction of a scaling equation describing the
I=TT sintm(2x) [T IT sint™(x;=x,), (38  DOS makes use of a mapping to a quantum wire with ab-

=1 k<l = sorption. Absorption is described by the addition of a spa-
tially uniform imaginary potential w, >0, to the Hamil-

Y=Mo(N=1)+m+1, (3b) tonian. In the presence of absorption, a scaling equation for
while for the chiral classes the; can take values on the the reflection eigenvalue;, j=1,... N, of r(io)'r(iw)
entire real axis,—e<x;<, and one has can be derived in the same way as the scaling equézion

the absence of absorptiéhi®® noting that upon the addition
N of a thin slice of lengthSL to a disordered wire of length,

J= H H sini™(x; —Xxy), (43 the reflection eigenvaluds; change by a small amousR; .
=k The changesR; comes from twostatistically independent
(4b) contributions: (1) disorder scattering in the added slice of

width 8L, and(2) absorption in the same slice. These con-
Here m; and m, are the multiplicities of the so-called tributions are statistically independent, since to linear order
long and ordinary roots for the corresponding symmetricin L one can neglect processes that involve both disorder
space?® respectively, see Table (For the chiral classes we scattering and absorption. The second process gives rise to a
only consider the case when the nonuniversality paramgter change
equals unity, see Ref. 96For the standard classes, E8)

was derived by Dorokho¥, and Mello, Pereyra, and Rj—e #tlrR,  j=1,... N, (5)

y=3[my(N-1)+2].
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independent of the disorder. The first process depends on tlier the chiral classes, whergis defined in Eqs(3) and(4),
disorder type and symmetries, and is already present in thespectively. This equation was derived by different methods
scaling equatiorf2). Combination of the two processes thenin Ref. 31 for the chiral classes and in Ref. 41 for the stan-
results in the replacement of E@) by dard classes. The scaling equati@y can be considered ei-
ther on the full real axis—*<¢;<e or on the interval
JP Jlw 1 .9 —m<¢;<m. Only in the latter case has E¢) a well-
FTR e sinh 2Xj+2—y|3(9—xj3 Pio, (6  defined stationary solutioR,.({#;}) describing the distri-
butionP({¢;};L) in the limit L— . However, this solution
where we used the parametrizati¢h) for the R;, and is not of the simple forn{(7).%? In fact, no representation of
Pi.(X1, ... Xy;L) represents the joint distribution of the Ps;stin terms of elementary functions could be found other
reflection eigenvalue in the presence of the imaginary poterthan for the cas&l=1, where explicit integration of Ed8)
tial i . Equation(6) was derived in Refs. 38 and 39 for the IS possible’®

N

1%}

standard symmetry classes. The initial conditiot. at0 for The DOS is calculated via the “node-counting theorem,”
Pio(X1, ... Xn:L) still needs to be specified. For our pur- Which states that, for the half-open quantum wire of Fig.
poses, it is advantageous to $t=1, j=1,... N, atL 1(b), the mean number of statd§¢) in the energy interval
=0, corresponding to a wire that is closed on one end, see~¢.¢) and per unit length is proportional to the sum of the
Fig. 1(b). phase derivatives¢; /dL.**** For technical reasons, we re-

The scaling equatiof6) has the stationaryindependent place d¢;/JL by the derivative of the counting function
of L) solution, —ImInsin(¢;+i0), which has the same average slopeas

We thus find
1 N
Pios(X1s - - Xn)=5—|J|]] e acosh, 7) e alN . _
lw;S Z(a) j:1 /\/‘(S)Evf7 dS’V(S’):—;;l I(ImmSIn((j)J-I—IO))s'L

wherea= ylw/vg and the normalization constad(a) en- 9

sures that the stationary soluti®h,,..; is normalized to one. Note that th itive infinitesimal in th t of
This solution represents the joint probability density of the ote that the positive infinitesimal in the argument 0
reflection coefficients for the absorbing medium. We will sin(¢; +i0), which is needed to select the correct branch of

demonstrate below that the DOS in an infinitely long disor-f[he logarithm, is compatible With the apalytical continuation
' w— ¢ used to obtain the scaling equati@). In Eqg. (9) the

dered wire without absorption can be computed as a logarit X -
mic derivative of the normalization constant or “partition Prackets(...),  denote an average with the probability
density P, that solves Eq(8) on the full real axis— < ¢;

function” Z(a) with respect to the dimensionless imaginary - X
< at lengthL of the quantum wire. Integrating by parts,

energya. _ \
The main idea of our method is to make the analyticalVith the help of Eq(8), we find

continuationi w—¢e. With tbis analytical continuation, the g

single-energy produat(iw) 'r (i w) of reflection matrices in _ 4 L
the presence of absorption maps to the two-energy product Me)= 77;21 A --deby Imlcot(d; +10)]
r(—e&)'r(e) without absorptiorf® The latter product is a

unitary matrix since the reflection matrix in the geometry of % (2_8_ 3 Sinz(b‘]i‘]—l) )

Fig. 1(b) is unitary by construction. Thal-independent ei- ve A To¢; €
genvalues of (—&)'r(¢) can thus be written as expe),

N
j=1,... N. When the length_ of the disordered wire is _2de .
increased, the;’s perform a Brownian motion, governed by TUE 12‘1 (Imcot(¢;+i0)). . (10
a Fokker-Planck equation that is the analytical continuation
of Eq. (6), In the thermodynamic limitL—c, the disorder average

(- -)eL can be performed with the stationary distribution

P, % 9 2¢ 2 253 9 -1l o P?;ﬁtpfor tttle intervaﬂ —J§S¢j<w. _Dlenotirl]wg tEe a\{erags
= _) = — 4+ — P EE— e
TRy 3 Ry Sint ¢; od, s (88 with P, by (:--),, the per unit length is thus given by
1N d & 4
where - - — i
e)=3 55 = " mon 12‘1 s e(Imcot(¢;+i0))..,
J ﬁ ! [T sinm 8b )
= Sl 0 . —_
=1 sin’¢p; k< (45~ (@) where we have used the relation
for the standard and BdG classes, and v(e)=v(—¢) (12
N 1 that holds for each disorder configuration in the chiral and
=11 - 11 sin™[ (¢ — ¢)/2] (8c)  BdG classes. In the standard classes, (Eg). only holds in
=1 sin”¢j k<] the thermodynamic limit and for sufficiently small(smaller
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than the energy scale:/l, where nonuniversal effects ap- Zo\Def frnlN ., (18)
pear and the validity of the scaling equations breaks down mn=

Instead of performing the disorder average with the sta-
tionary solutionP,.s of Eq. (8), we rely on the solution fmn=f dNdN e N =N)W(N)W(N ) PN pr(N'),
Pi.:st for the stationary distribution of the reflection eigen- £
values in the presence of the imaginary poteritalsee Eq.  \yhere the sign functiors(\) equals 1 for positiven and
(7). From the relation tarfix=€”% we first observe that —1 for negative\. For oddN, the matrixf must be supple-

Im(cot( ¢ +10)), = —Re(cosh ) o] i, (13) mented by an additional row and column

where(- - -);,, stands for averaging with the stationary dis- Zo/Def f mil, (194
tribution P;,.. Second, we note that the average

-3 (cosh X, is given by the logarithmic derivative of
the partition functionZ(a), thus obtaining the DOS fone1=—fnr1n= Ld)\w()\)pn()\). (19b
_ a|_d For m,=4, the result is
v(e)= p— Re a aﬁaln Z(a) (149

aa—i’y'E/UF ZOC De[fmn]?n’?ln=1’ (20@

This relation between the DOS and the partition function

Z(a) for each of the Cartan symmetry classes is the key , ,
result of this paper. fnn= Ld?\W()\)[Dm(?\)pn(?\)—pn()\)pm()\)], (20b)
Ill. CALCULATION OF THE DENSITY OF STATES where the prime stands for the derivative with respeck to

. . ) and{p,(\)} form a linear independent set of polynomials up
As we have seen in the preceding section, the computgg, degree A—1.

tion of the DOS in the thermodynamic limit reduces to the
computation of the “partition function A Standard classes
: For the standard universality classes, the partition func-
Z(a)=f dx,-- -dx,\,|J({xi})|e’aj§::1 coshZj (15  tjon Z(a) takes the form of the normalization integral of the
Laguerre ensemble of random matrix the8rif we set\
For the standard and BdG classes, the integration over the sint? x. In this case, the integration range=(0,¢) and
coordinatesx; is restricted to the positive real axis;<(; the weight functionw(\) is given by exp{-2ax—a). Inte-

<o, j=1,... N, while for the chiral classes, the integra- grating over the\;, one finds that the partition function
tion extends over the entire real axis. Z(a) has a particularly simple dependencean

For all ten symmetry classes, a change of variables
—\; can be made after whicA(a) can be written in the Z(a)xe Na~ M2, (21)
form

Using Eq.(14), one quickly verifies that this corresponds to
N a constant DOS,
ZocJ dhy- A LT wOp) TT [ =nd™. (16)
L j=1 k<j Nd
v(e)=rvo=——-0. (22
The relation between the; and thex; , the weight function TUF
w(A), and the integration intervdl depend on the symmetry (The DOS can acquire a nonuniversal energy dependence on
class and will be specified below. the scaless much larger then the inverse scattering time

A general method for calculation of integrals of the type,, ;| where the applicability of the scaling equation breaks
(16) is described in Chaps. 5 and 6 of Mehta's book ONgdown)

random matrix theor§).Here we mention the results from As a matter of fact, for larga, one obtains the resu21)
Ref. 4, up to a proportionality constant that does not depengh g| ten symmetry classes, as one verifies by substitution
ona. Form,=2 the result of integration in Eq16) is pro- x—a Y2 in Eq. (15) and subsequent expansion for large
portional to the determinant Vo
a. This confirms that the DOS(e) approaches the standard
value v, for energies far away from zero for all symmetr
22 De{ flfy a1 (178 ecnl J Y ymmety

fon= | AWOOPROVBA), b B. Chiral classes
L

For the chiral classes, we arrive at the standard fdr@
where the polynomialgp,(\)} form a linear independent taking A =exp(), £=(0,<), and
set of polynomials up to degré¢—1. Form,=1 and even
N we havé w(N)=A""2exg—3a(A+N"Y)]. (23
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When TR is broken, say by a magnetic fielhf=2;  wherec,=%N?(N+1)? andc, is anotheN-dependent co-
class Alll), we choose in Eq(17) the polynomialsp,(\) efficient, which does not affect the asymptote of the DOS.
=\""1 s0 that We thus obtain

Z(a)= DefKm_n /(@)1 (24)

T 1\2
V(S):§VO(1+N) [(er)®In(eT)|, O<er<l.

where K;(a) is the modified Bessel function of integer
! ' . . i (32

order j. For small values of the dimensionless imaginary

energy a one can substitutKy(a)— —Ina and K,,(a) In the presence of both TR and SR symmeimy, €1, class

—2M 13 "™(m—1)!, m=1,2, ..., toobtain the leading be- BDI) and with the choice of the polynomiafs,(A) =A""1,

havior of Z (to logarithmic accuragy For oddN the deter- n=1,... N, we obtain for everN

minant in Eq.(24) is expanded according to .
Z(a)x \/Del[fmn]m,nzli (33

Z(a)xa- NV Ina+O(1)]. (25)
This gives the asymptotic DOS fmn=f dxf dy (xy) ~(MAN+Dg=(U2akxty+x Ty
0 X
av X n-1,m-1__ ., m-1,n—1 .
v(s)= ————, 0<sr<l, (26 Oy XY 349
|e7In*(e7)] For odd N, the antisymmetric matriX has to be supple-
where we introduced the time scale mented by an additional row and column with
7=Nyllve. (26b) fan+1= JdeX—(1/2)(N+1)e—(1/2)a(x+x*1)xn—1
0
It is the time needed to diffuse through a wire of lengthll,
or, equivalently, the mean DOS in a segment of the wire of = 2K (n+1)2-n|(Q)- (35

lengthNI. (The length scalN| characterizes the crossover
between the regimes of diffusive dynamics and of localize
or critical dynamics. For evenN the determinant in Eq24)

is expanded according to

dThe analytical continuatioa— —iyle/vg=—i7e/N can be
done directly in the integral@4), (35) if accompanied by an
appropriate shift of the integration contour of the varial{es
andy in the complex plane. After that, numerical evaluation

N2 1N12.2 1.2 2 of the partition function(33) for complexa and its deriva-
Z(a)xa " 1-3N%a% In" a+O(a” Ina)].  (27) tives, and hence of the DO&¢), is straightforward® The
This gives rise to a different asymptotic DOS, smalla asymptote of the partition functiafi(a) is given by

Eq. (25) for odd N and by
v(e)=myoletIn(er)|, O<er<l. (28

Z(a)=a- M2 [1+calna+O(a 36
Observe that the asymptotic resu({®&6g and (28) do not @ [ @] (36)

depend explicitly orN when the energy is measured in units for even N, where c= o[ (N/2—1)!1/(N/2—2)!1]? if N
of 1/7. The leading dependence on energy in Eg§6a and  =4n and c=47 [(N/2—1)!1/(N/2—2)!1]? if N=4n
(28) has been derived previously in Ref. 31 in an approxi-—2, n=1,2,... . As aresult, for small energies, the DOS
mation that leaves the prefactet, unspecified. has the form(26@ for odd N, while

When TR symmetry is present but SR symmetry is bro-
ken by spin-orbit couplingrg,=4, class CIJ, we choose in
Eq. (20) the polynomials pyn_1(A)=A2N""+A\""1 and
Pon(N)=A2N""—\""1 With such a choice the square root
of the determinant of al®x 2N matrix in Eq.(20) reduces
to the determinant of & X N matrix, from which we obtain

Voc
V(8)=W||n(s7')|, 0<er<l, (37

for evenN, where the coefficient is given below Eq(36).

In the limit N>1, this asymptote simplifies tov(e)

=yg|In(e7)|, 0<er<1.

Z(a)= Def Ny, (29) '!'he DOS is plofcted_for the three_chiral classes and for
' various values ofN in Fig. 2. The parity effect and the de-

endence on symmetry class is clearly seen.
fom=(2N=n=m+1)K|p_ (@) +(N—MKon_n-msr(d). P ymmetry y

(30

For oddN, the leading term in the asymptotic expansion of
Z(a) for smalla is of the form(25), hence the smak- as-
ymptote of the DOS is given by Ed263), just like in the
case of broken time-reversal symmetry. For exethe de-
terminant in Eq.(29) is expanded as

C. BdG universality classes

We now apply Eqs(17)—(20) to the BdG universality
classes. We choose=cosh %, £L=(1~), and

w(N)=exp(—an)(\2—1)(Mm~172 (39

5 to arrive at the standard forii6). In all calculations below
Z(a)xa NT1+cia%+ca* In? a+O(a* Ina)], (31)  we choose the polynomiajs,(\)=\""1 to computeZ(a).

235318-5



M. TITOV, P. W. BROUWER, A. FURUSAKI, AND C. MUDRY

@)

TTrT
N A=W

vg)/ v

T T T
0 0.005 0.01 0.015

ET

(b)

v(g) /v
; &
T

€7

PHYSICAL REVIEW B63 235318

When SR symmetry is present but not Té&ass G, we find

z(a)= \Del funlan=1; (423
d\"m31+a
fmn=(n—m)< ~da ?e‘a. (42b
In the limit a—0, we obtain
Z(a)xa NCNTU[14+ca+ca+0(a?)], (43

wherec,=5N(N+1)(2N+1) andc; is a numerical coef-
ficient which is not important for the small energy asymptote
of the DOS. From Eq(43), one verifies that the DOS van-
ishes quadratically with energy as-0,

v(e)=vq (e7)?, 0<er<l. (44

( 1
1+ 5N
The linear and quadratic energy dependencies of the DOS in
the thermodynamic limit and for small energies in the classes
Cl and C, respectively, have been found previously by Sent-
hil and co-worker®3 The same suppression of the DOS
appears in the random matrix theory for finite-size systems
of classes Cl and € provided the size of the system is set
equal to a localization volumé&orresponding to a segment
of lengthNI of the quantum wirg

When TR symmetry is present but not &fass DII)), we
find from Eq.(17)

1+1
N

N

Ko(a)

d m+n—2
) (45

Z(a)x DG‘H_E

mn=1

FIG. 2. Density of states for the chiral classes. The energy is ) o
measured in units of 2=uvg/(Nyl); the DOS is measured in units Note thatN is even for the class DIIl. In the limia—0,
of vo=Nd/7vr . (a) is for the case of preserved time-reversal sym- Using the asymptotic expansion of the modified Bessel func-

metry and spin-rotation invariandglamiltonian of class BDI in

Cartan’s classification (b) is for the case of broken time-reversal
symmetry(class Alll), and(c) is for the case of preserved time-

reversal symmetry and broken spin-rotation invariat@ass Cl).

The density of states is shown fir=1, 2, 3, and 4; the values of

N are indicated in the figure.

When both TR and SR symmetries are preselass CJ,

say as is the case with a dilywave superconductor, we use

Eqg. (17) and find

N

a”'Ky(a)

m+n—2
) (39

Z(a)o Det{(—d—a

m,n=1

With the help of the asymptotic limia—0 of the modified
Bessel functiorK,, we obtain

Z(a)xa NNFTU[14+ IN(N+1)a? Ina+O(a?)]. (40)
Substitutinga— —i7e/N and using Eq(14) one verifies that
the DOS vanishes linearly with energy as»0

o

1
vie)=3 v0(1+ N)|sr|, 0<er<l. (41)

tion Ko, we obtainZ(a)ca NN"Y[Ina+©(1)], i.e., corre-
sponding to a DOS of the forii264. For class DIII, the case
N=2 is special: The Lie algebrao(4,C) generated by the
transfer matrices of a quantum wire in class DIl with

=2 (see Ref. 3D is not irreducible, so(4,C)~sl(2,C)
Xsl(2,C) (see Ref. L As a result, in the case DIl witiN

=2 the scaling of the parametexs and of the eigenphases

¢; is described by two mean free paths that need not be
equal; one for each copy of the noncompact Lie algebra
sl(2,C). The scaling equation§&), (6), and (8), in which

only one mean free path appears, correspond to the special
case where these two mean free paths are equal, which re-
quires fine tuning of the disorder. Only in that case the DOS
singularity (263 is found. In Refs. 34 and 35 it is shown that
the general case of different mean free paths has a power law
dependence of the DOS fer—0 with a nonuniversal expo-
nent.

Finally, when neither SR nor TR symmetries are present
(class D, it is enough to use only E@18) because the num-
ber of eigenvalued is a multiple of four in this case. We
then obtain

Z(a)oc \/Del[fmn]r,\r‘],nzl'

(46)
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TABLE Il. Asymptotes of the DOS/(¢) for small energies 0O

<er<1 and forN>1, wherer=Nyl/vg, y is given in Eqs(3b)
and (4b), | is the mean free path, ang the Fermi velocity.(Ex-
pressions for the DOS asymptotes for finNecan be found in the
text.
Class TR SR v(e) for 0<er<1

Yes Yes vo|In(e7)|
Chiral, N even No mveleTIn(eT)|

Yes No (vol3)| (e 7)3In(eT)]
Chiral, N odd o l|eTInd(eq)]

Yes Yes Tvyl2)|e 7|
BdG No Yes vole7|?

Yes No wvgl|eTIn3(eD)|

No No wvgl|eTIn3(eD)|
wire, for all ten(pure Cartan symmetry classésWhile it
was well known that the dependence of the conductance on

the lengthL of the quantum wire could be inferred from the
theory of diffusion on symmetric spaces through the
FIG. 3. Density of states for the BdG universality classes.  Dorokhov-Mello-Pereyra-KumafDMPK) equation and its
contains results for classes D(Bolid curve and D(dotted curvg, generalizationg;?>%we have shown that the same geometri-
for which spin-rotation invariance is broketh) is for classes C 3| framework underlies the dependence of the DOS on the
(solid) and Cl(dotted, \_/vh_ereT spin-rptation_invariance is preserved. energye (measured with respect to the band center or Fermi
The channel numbeh is indicated in the figure. energy e=0). Our unified picture consists of a general

B o xN-lym-l_ym-lyn-1 scher_ne that permits the constru_ction of scaling equations for
fmn:f dxf dy e—alx+y) the eigenvalueg® ¢i of the matrix product'(—&)r(e) of
1 X VX2—1)(y?—1) reflection matrices at different energies for a disordered
quantum wire and for all ten pure Cartan symmetry classes.

With the help of the asymptotic lima— 0 we find Eq.(269
for the asymptotic DOS. Numerical evaluation of the DOS is

possible using Eq46). The substitutiom— —ire/N can be tion e —iw, this scaling equation could be obtained from that

done before the integration and the convergency of the inte-

grals has to be provided by the appropriate shift of the intelcor the reflection eigenvaluds; of the quantum wire in the

gration contour ofx andy in the complex plane. A diver- presence of absorption, which, in turn, can be obtained from

: ; : e DMPK equation. Using the “node-counting theorem”
?ointi;/eo?gimgngigr?a;’v;;sgfnz [:())rfegl;:;ith/))[/ﬁ%enthll and I:IShettEat relates thé. dependence of the eigenphaggsand the
The caseN—2, which corresponds to a “spinless” class DOS;**°we were thus able to find the DOS in the thermo-

D and was studied in Refs. 34 and 35, is again very Spec:i‘,ﬂc‘|ynamic limitL— o from the stationary solution of the scal-
[see the discussion of class DIII with=2 below Eq.(45)]: Ing equation.

: . Relatively little attention has been paid to the behavior of
The Lie algebrao(2,2) generated by the transfer matrices of : :
a quantum wire in class D withi=2 (see Ref. 3Dis not the density of stategDOS) in the standard problem of

irreducible, s0(2,2)~sI(2,R) X sI(2,R) (see Ref. L There- Anderson localization for a system of infinite size, since this

fore, as is explained in Refs. 34 and 35, instead of the DysoDOS’ with the exception of its tails, is rather insensitive to

X . . . SOlisorder. This is not true in the presence of symmetries for
singularity (26@ an algebraics dependence with a nonuni- hich in th | ial ol .
versal exponent is obtained for the DOS singularitysat which one energy in the spectrum plays a special role, as s

tIJ]e case for the chiral and Bogoliubov—de Gen(BdG)
ated with the two copies of the noncompact Lie al ebr{;imiversality classes, where a sublattice symmetry or the pres-
sI(2R) are unequal P P 9 ence of a superconducting order parameter singles out the
THe DOS is ghoWn for the four BAG classes and for vari-band center or the Fermi energy=0, respectively. In those
o . ; cases, the DOS is singular around zero energy, the energy
ous N in Fig. 3. Note that there is no parity effect for the . . .
. scale for the singularity beinfy/ =, where, for the case of a
BdG classes and the DOS becomes almost independént ofI . ider in thi Mo |
beyondN~4, provided energy is measured in units of.1/ ong'quantum wire we consider in this papeﬁl\! VE IS
' ' the time for diffusion through a segment of the wire of length
NI. The precise form of the singularity depends on the sym-
metry class and, for the chiral classes, on the parity.afhe
In this paper, we have presented a unified picture for bothiesults are summarized in Table Il for the limit of a multi-
transport and the density of statd309) in a long quantum  channel quantum wird\>1. It is in this limit that a univer-

[Herej=1,... N, whereN is the number of independent
eigenvalues of '(—&)r(¢).] Using the analytical continua-

IV. CONCLUSION
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sal dependence of the DOS on the symmetry class is exithm in the functional form of the DOS in those classes.

pected. Note added Upon completion of this manuscript, we
One might be tempted to argue that, for those classelearned of a related paper by Motruniehal. (Ref. 34 on

where the quasiparticle states are localized at and near zeghgle-channel quantum wires with BAG symmetry and bro-

energy, the singular behavior of the DOS in the thermodyken spin-rotation invariance, where the same conclusion was

namic limit is controlled by thezero-dimensionalrandom  reached with respect as to the DOS singularity for the pure

matrix theory for an effective finite-size system with the lin- Cartan symmetry classes D and DIl

ear size of the localization length=NI. Whereas this argu-

ment predicts the correct energy scile for the singularity,

it fails to reproduce the extra logarithm in the functional ACKNOWLEDGMENTS
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46\ /i H H —_ 3y 2N—n n—-1
symmetry classes has been the subject of recent controversy inWlth the Cth'(ie of th?lpolynomygmn,l(x)—x +A ) and
Pon(N)=N"""—\""" the partition function can be written as a

the literature(see Refs. 34, 20, and references theraiie do q . . A/ / d4d h
not want to add to this debate here. Instead, in this paper, our eterminant of a matrix of sizd/2 [(N+1)/2 for oddN]. Then,

starting point is the assumption that the physical system at hand the integration can be done analytically =2 andN=3
has a Hamiltonian belonging to one of the pure Cartan symmetry -

- - - Z(@)|y=2*Z | Kobdt,
classes from Table I, for which the scaling equation for the a Joa
transmission eigenvalues is given by E®), and our goal is to
study the DOS singularity near zero energy under that assump-

1
tion. With “pure” Cartan classes, we refer to those quantum Z(a)|N:3oce—l[Ko(a)Kl(Za)—Kl(a)Ko(Za)].
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