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Energy levels of an anisotropic three-dimensional polaron in a magnetic field
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In the context of the improved Wigner-Brillouin theory, the energy levels are found oftdi€golaron in
a uniaxial anisotropic polar semiconductor with complex structure, placed in a magnetic field directed either
along the optical axis or orthogonal to it. All sources of anisotropy that are contained in the shape of constant-
energy surfaces of the bare electron, the electron—optical-phonon interaction, and the frequency spectrum of
the extraordinary phonon modes are considered. Analytical results for the electron-phonon interaction correc-
tion to the Landau levels below the optical-phonon continuum are given and, numerical results for the
magnetic-field dependence of the cyclotron resonance frequency at low temperature are presented for the
particular case of the layered semiconductors InSe and GaSe. Although the interaction between the bare
electron and quasitransverse optical-phonon modes is weak, these modes play an important role in the pinning
of Landau levels. The results given by Das Sarma for a two-dimensional isotropic magnetopolaron are gener-
alized to the anisotropic uniaxial case by taking formatiy— in the expression of the perturbed Landau
levels found when the magnetic field is directed along the optical amjsbeing the component of the
bare-electron effective-mass tensor along the optical axis.
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I. INTRODUCTION ropy to the energy spectrum of the optical polaron.
Studies of the cyclotron resonance in the layered crystals
The interaction between optical phonons and an electrofigl (Refs. 8 and Pand InSe(Ref. 10 deal with the aniso-
moving in the presence of a magnetic field in a polar semiiropic properties of the system in a simplified manner, either
conductor or an ionic crystal leads to modifications of theconsidering the corresponding fiich Hamiltonian re-
unperturbed Landau levels, known as magnetopolaron e{s_trlcted to the one-oscillator mod€lpr introducing two an-

fects. Of particular interest are the so-called resonant polaro'ﬁOtroplc polaron coupling constafftsr, anda for motions

effectd which characterize the magnetopolaron Spec,[runperpendicular and parallel, respectively, to the optical axis

H [ 1 12
when the cyclotron frequency of the bare electron ap_lnstead of the polaron coupling “constantgir,(6))™ (x

proaches the frequency of longitudinal-optical phonons. andde denc(j)t?h the blrarll)cr; indexthof “;]rue” optical-photnon q
Although the majority of the studies dedicated to the po—mo es an € angle between {ne phonon wave vector an

laron problem deal with an isotropic system, there are somIahe direction of the optical axis, the symbol meaning an
papers devoted to investigation of the polaron spectrum jngular averagen Ref. 10 the polaron Soupl!ng _con”stants
anisotropic systems. Thus, theoretical methods, developed fb- @1d @ . as well as the frequency of "longitudinal” op-
study the polaron problem in an isotropic system have bee cal phonons, seem to be merely fiiting parameters rather

adapted to analyze the polaron spectrum in anisotropic sy§- an quantities entirely determined by the anisotropic prop-

tems even in the presence of the external fiéftlallowing erties of the system. . .

the discussion of both cases, that of the piezoelectric. antrary to the case of Isotropic crystals where only_lon-

polaror¥* and that of the optical ,polarozng gitudinal phonon modes interact with the electron, in a
For the particular case of small magnetic fields and takin niaxial crystal quasitransverse pho_n0|_1 modes also havg this

into consideration only the anisotropy determined by th roperty. Although at weak magnetic fields the contribution

bare-electron spectrum, Hattbabtained an effective Hamil- of the electron—quasitransverse-mode interaction is not sig-
tonian, similar to that of an anisotropic bare electron place _|f:gant,h|t becomes tnott_]eworth);fln tthe range of magnetic
in a magnetic field, but with the components of the bare-'eI St\r']v. ere resotrrl]an P to_go? € e?tsh occiur.t h .
electron mass tensor replaced by those of the polaron mass h this paper, the contribution of the electron-phonon in-
tensor. In Ref. 6 Larson analyzed the cyclotron resonance {fzractlon in a uniaxial polar semiconductor to the different

polarons in ellipsoidal bands, a system suitable for discus-andau Igvels IS given In th? framework of second-Ofder
aperturbatlon theory, considering all the sources of anisot-

sion of the cyclotron resonance of holes in some cubic pol Both i | ¢ f lot
insulators with a multivalley valence band. However, the reJOPY. BOI _geometries relevant for cyciolron resonance
xperiment$ i.e., with the magnetic field parallel or perpen-

sults obtained by Hattori and Larsen do not apply to the casg:

of a uniaxial crystal with complex structure due to the pres- icular to the optical axis, are considered. In order to avoid
- tWe real phonon emission phenomenon, the discussion is re-

the frequencies of the extraordinary phonon modes and th%trICtGd to th_e domain of energy below the quasitransverse
phonon continuum.

electron—optical-mode interaction. For a uniaxial crystal
with complex structure, placed in a weak dc magnetic field
directed along to the optical axis, the cyclotron resonance is

presentedin the framework of intermediate-coupling theory,  In the effective-mass approximation the constant-energy
taking into account the contributions of all sources of anisotsurfaces of a conduction electron moving in a uniaxial polar

II. HAMILTONIAN AND ENERGY CORRECTIONS
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where the correspondence is straightforward. In the above
expressionV is the volume and);# andb, , are, respec-
tively, creation and annihilation operators for a phonon with
wave vectorg, branch indexu, and frequencyw ,(q); the
form of the coupling constan¥,(q) was obtained by
Toyozawa:®*®

Following Ref. 14 we perform the canonical transforms

P=0"40®)p;, x=g YAO)(X'+%0), (3

py=0 YA0)p,, y=g"40)y’, (3b)
with

g(0)=(cog @+ ysit®)Y2, y=m, /m,, (43

2(1-y) .
Xo=— ———=——=—=p,SinO cosO, (4b)
m, w\g(0)

where byo=eByg(®)/m, we have denoted the cyclotron
frequency of the bare electron. This procedure reduces the
/ : form of the Hamiltonian that describes the dynamics of the
bare electron in a plane orthogonal to the magnetic-field di-
Section to that of an electron having spherical energy sur-
faces with an effective masa=m, /g(®), so that one ob-

FIG. 1. The relative position of a constant-energy surface of th
bare electron and the magnetic field.

semiconductor are ellipsoids of revolution having their axes:[ams

coincident with the optical axis. In the presence of a dc mag- 1 e 2 e 2 p2
netic field B, making an anglé® with the optical axis, as in He:%[( Py — EBoy’) + ( Py + EBOX' + 2mg%(e"
Fig. 1, the Hamiltonian of the bare electron written in the 19 s

symmetrical Coulomb gauge is
Introducing instead of the coordinates and components of

- © ’ the momentum the operatord,A*) and B,B"),*°
HEZE(DX—EBOSJ L o
2m, | ¢ yT 5Po o
1 e 2 1/ Mo\ 12 e
+2—mH p,cos® + py+§Box)sin® , @ B=§(% (X" +iy")+i m) (Pxr tipyr)

(6b)
wherex, y, z are the coordinateq, ,py,p, the components o+ satisfy the commutation relatiopd,A*]=[B,B*]=1
of the electron momentum, amd, ,m; the components of and[A,B]=[A,B*]=0, expressior(5) becomes
the diagonal effective-mass tensor, the symboknd| cor-
responding to a direction that is either orthogonal or parallel p2
to the optical axis. He=hw(A*A+3)+ a0

In order to discuss the magnetopolaron problem we shall mg=(e)
consider the interaction of the conduction electron with theHaving introduced the operator#\(A*) and B,B"), we
optical phonons in an anisotropioniaxial) polar semicon- can now represent the Landau level as
ductor so that the Hamiltonian of the system of interest has

)

the form In,m,p)=[Ma®|m)e®|p,), 8
where|p,) describes the movement of the electron along the
H=He+HepntHpn z direction, and (!) “Y2(A*)"0), and (m!) “Y(B*)™0)g
are two independent one-dimensional harmonic oscillator
—H A4S V(@) b. e Hec. statesi® with |0) 5 ,|0) the vacuum states of the operatés
Can v B. However, we have to stress that here, in contradiction to

the situation encountered in the case of isotropic systems, the
+ + ;
+3 5 bl by . 2 operatori(A™A—B™ B) is not thezcomponent of the angu-
% ©u(@)Bg,Pq @ lar momentum.
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Working at zero temperature with the initial unperturbed 1 o
state |n,m,p,)®|0),, where |0),, is the phonon vacuum AEN(Pn)=— 7> |V (q)lzf drexp —| w,(q)—A,/%
p : p ; AVgn " 0
state, the energy correction of the electron-phonon interac-
tion to the bare-electron Landau level in the context of %2 q,p
second-order perturbation theory is given bt + z 22 } ]
2mg%(@®) mg%(®)]”
2
1o IVu@l? __PQ o eer
AEN(P)=y 2~ (9) *OH " 2meg(e)
n',q,u nn
nop 2
ch| 24Q wT7|P
X — | ————sint— 13
where pgo ol | meg(®) 5 (13
1 with
Doy =(N=N"fio+ 5 [p;— (p,~#0,)°]
2mg=(©) Q?=03+0%(0)q;. (14)

—hw,(Q)+A,, (10 This expression will be discussed in the following in the

context of the particular geometry considered, and will allow
A, being determined by the actual type of perturbationus to obtain some explicit analytical results in limiting cases.
theory usedA,=0 for the Rayleigh-Schiinger perturba-
tion theory (RSPT), A,=AE,(p,) for the Wigner-Brillouin
perturbation theory(WBPT), and finally A,=AE,(p,) ) o
—AERSPT for the improved Wigner-Brillouin theory In this geometryg=1, w=eBy/m, , and, limiting our-
(WBPT)]. At low magnetic fields the Rayleigh-Scldiager selves to the cas?/ of an elect_ron with low valuespgf
perturbation theory gives appropriate results for the magnetPz<[2imjw,,(6)] %, where ¢ is the angle between the
topolaron spectrum. Although the magnetopolaron Sp"ttingohonon.wave vector and the direction of the optical axis,
is obtained in the framework of Wigner-Brillouin perturba- €XPressior(13) reduces to
tion theory, the calculated energy levels are not accurate, L
especially in the pinning region. The correct behavior of the m .
energy levels of the excited states is obtained only for the AE, /= - m%" fo dosing w,(0)
improved Wigner-Brillouin theory.

Considering the behavior of the different Landau levels w,(0)
below the optical-phonon continuum and following the N\
method described in Ref. 19, the energy shift of tita
Landau level can be put in the form

A. Magnetic field parallel to the optical axis

1/2
) SY40)a,(0)

=d
xf e llon®-daltliobrG (7.0), (15)
07

IV.(9)]?
AEn(py)=— % v where
n
» (2p—1)!!
XJ dre [x@=4n/t7(n m p,| Gn(7,0)= 2, Ch———
0 p=0 p:
xeld e 1ar0)n mp.), (1) 2sifo (7) Pl
X| ———sin| 5 || —
yTP(7,6) 2] P(r,0)
where 5
L 2pi) p2coff } 16
X1+ (2p+1) —— =,
(7)=gHerlfipg—Herlt, (12) 2mhw P(7,6)
with
Using the canonical transforif8) and the expression®),
the argumeng-r of the exponential appearing He.p, can B l1-e 7
be written in terms of,, appropriate combinations of the P(7,0)=cos 6+ vT sirt 6, (73
phonon wave-vector components, and the operaipis*,
B, andB". s(6)=cog 6+ y Lsir? 6, (17b

The evaluation of the effect of the matrix element that
appears in Eq11) on the electron stat@,m,p,) is straight-  the explicit expression of the polaron coupling function
forward, so that one obtains for the energy sfiiftlependent  «,(6) appropriate for this uniaxial crystal being given in
of m) the expression Ref. 12.
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In the small-magnetic-field limifw<w,(#)] and in the In the limit of large magnetic fields only a numerical so-
context of RSPT, which is appropriate for this case, the exiution of Eq. (15 can be found, every Landau levi}, ob-
pression(15) for the energy shift becomes tained in the context of IWBPT being pinned fowg

+hol2+AEG" T, where bywro, we have denoted the low-
AE. /7= _2 (a(8)w,(6))— 2n+1 © est transverse-optical frequency in the phonon spectrum. As
n m m u 8y a by-product of the above calculations, the expression for the
energy shift for a two-dimension&2D) electron interacting
3 a,(60)sin(6) N w? with a 3D anisotropic phonon system is obtained by formally
m s(6) 16y takingm;— in Eq. (15).

In terms of a polaronic coupling function defined through
< a,(0)sir? 6 cos 0> 8n(n+1)+1 the relation

x2

S(0)w,(6 1282 ¢
. (Oeuld o %,(6)=sing lim a,(6), (22)
s <aM( 6)sin* 0> - p_§ <aﬂ( 6)cos a> my—oe
z \S(Ow,(0)) mh| % s(0) the 2D energy shift can be expressed as
9(2n+1) a,(0)sirf 6 cos ¢ 1 . ()12
+—167 wEﬂ) < 0, (0)5(0) , (19 AEﬁfD)/ﬁ:—E% J'Odﬁ'&u(ﬁ)wﬂ(ﬁ)( ”w )
where the symbo{) means the angular average n (2p—1)1 21
pj— &~ T
do)== [T1osinod (19 ngocn{ i }p!
(6 =—f (6)sin6de. 19
2Jo I'((@,(0)—AZ2/H) w—p) 3
>< L
Taking p,=0 in Eq. (18), for the particular case of an iso- F(O)M(a)—AﬁD)/ﬁ/w-F%)

tropic crystal with simple structure, the magnetic-field cor- ] ]
rection to the electron-phonon self-energy reduces to that result that generalizes the expressib) of Ref. 19 to this
presented in Ref. 19. anisotropic case. o '

Defining the cyclotron resonance frequerﬁ& (the sym- In the limit of small magnetic fields and in the framework
bol || referring to the direction of the magnetic field parallel ©F RSPT, the 2D energy shift becomes
to the optical axisas the energy difference betweEr(p,

; 1 T
=0) and Ey(p,=0), one obtains for the cyclotron mass (2D)yp — _ f ~
Mg=eBO/QOﬂ; 2 AEZP/h 2% L 40%,(0)0,(0)
Mg 71_1 1 3 a#(a)sinza x[1+—2n+1 e )
m /T 4y5 s(6) 8 o0
. 8(n+)+1| o \?
9w a,(0)sir’ 6 + ( +eol, (29
e <s2< Dl e)> @ 128 w0

an expression that agrees for an isotropic system with that

an expression that results by imposing the condition of smalptained by Das Sarrfhand by Larser! For large mag-
electron-phonon coupling in the relatid83) of Ref. 7. By  patic fields. and fonw= o (9) one obtains
considering weak electron—optical-phonon coupling in the ' ”

expression37) of Ref. 7, the expressions for both the cyclo- Jo (2n—1)1! =
tron mass and the effective mass of the motion alongzthe AEP = — — ' >, | de
direction reduce, in the limiv— 0, to the forms of the com- \/; 27 n!
ponentsM, andM of the polaron effective-mass tensor: a.(0)w,(6)]
-1 \/ £ (l;D) ’ (25)
0, (0)—A " h—nw

1 (0)sir 6
M’é—»MJ_ZmJ_ 1—4—7% <%W> )

21 leading to the same pinning level for the corresponding Lan-
(218 gay level as in the 3D caséwro, +hw/2+ AES, but
1 with a different coupling constant.

(21b

1 a,(6)cos 6
Mu:m[l_ig <—M (0) >

B. Magnetic field orthogonal to the optical axis

Relations(21) could also be obtained by performing the cal-  In this geometryg= 2 w=eB,/(m, m)¥? and the
culations in expressio(6) of Ref. 5 and taking into account optical axis can be chosen as the polar d@xiaxis according
the anisotropy of the components of the dielectric tensor. to Fig. 1) based on the axial symmetry of both the optical-
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phonon spectrum and the electron-phonon interaction. In this case the expression for the enefdy,dhiftomes

wﬂ(a))m “du [ w,(0)= A/ )
» fo\/aex -, v

112 -
AE(pIfi=— 2D f dGSinﬁaﬂ(ﬁ)sllz(G)wﬂ(ﬁ)(
21 M 0

2m oc 2u \*2 i 1[4z u
on dgoJO dzexr{—zzl“(a,cp,uﬂ— z w) zp,sinf#sing ngo Cﬁp Tsmhz(z)
P
X (sir? 0 cog ¢+ 7y cog 0)} , (26)
where
I'(6,¢,u)=sir? @sir? ¢+ (sirt 6 cos ¢+ ycos §)F(u) 27)
with
F(uy=(1—-e Y/u, (28)

0 and ¢ being the polar and the azimuthal angle of the phonon wave-vector direction, respectively.
In the domain of small magnetic fields and for low valuepof by keeping all the terms up to second ordefdn w ,(6)]
and fourth order iq{p,/[ 2% mle(e)]l’z} respectively, the above expression for the energy shift can be reduced to the form

)1 a,(0)sirt e\ 9 (0)sin* @
AEn<pz>/f»=—§<aﬂ<o>wu<e>>—(p )4M2< 09 > (zml)hzyzz< )si >

2m, m s(6) 64 ,(0)s*(0)
(2n+1) E <aﬂ(9)(ycosz9+%sin26)> w1 <aM(6)(yCO§ 0+%sin29)>
s(0) 16 y & w,(0)s(0)
w a,(0)(ycos 6+ 3 sir? 0)sirn
(2”+1) 2ml ﬁ_% 0, (0)s2(6)

9 w?
2
~ Toaa(2n+2n+1) —2 Eﬂ', < (29

.(0)(8y? cod 6+8ysir? g cos 6+ 3 sirf 6)
®,(0)s%(0)

From the expression of the cyclotron resonance frequency, imtermediate-coupling theory for an arbitrary direction of the
the limit of very small magnetic fields, denoted 8y: in this ~ magnetic field more general expressions than E2fs and
geometry, one obtains for the corresponding cyclotron mas&1) presented in our paper.

Mé the form Combining Egs(17b), (213, and(30), one obtains
1 _m _ ympm
M&=(m;m, )Y 1_8_y 2 (1 rl+t2|1 M ” Z (a,(0)), (32
a,(0)(2y cog f+sirf 9)\ |71 which reduces, in the case of an isotropic system, to the
x> (0) . (30 classical resuff
Y73
In the same framework of a small electron—optical-phonon Mp=m/(1-al6), (33

interaction, the expressid80) becomes where byM, andm we have denoted the polaron mass and

the bare-electron mass, respectivedy being the Fralich
Me=(M M) (3D  dimensionless coupling constant.

Since we are interested here in discussing the cyclotron
where the components of the polaron mass tenggr,and  resonance phenomenon, we shall simplify the expression
M,, are given by the relation@1). (26), disregarding thep, dependence. We evaluate the ex-

Neglecting the anisotropy determined by both sourcespression obtained by integration ow&Egind ¢ variables in Eq.
namely, the spectrum of the optical phonons and their interé26) for large values of the argument!® in the domain of
action with the conduction electron, Hatforobtained in  magnetic fields where resonant magnetopolaron effects are
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important [nw=w,(6)]. The result is Jme"/(nsind), (.40
which finally gives the energy shift,

o
,yl/Z - 025
AEn/ﬁz—m% Jodﬂaa(ﬂ)w#(ﬂ) .
S(B)w,(0) |V
0.30 -
(wM(G)—An/ﬁ—nw) ' (34

This form reduces to the expressi@@b) of Ref. 19 in the
case of an isotropic polaron. 0.25
The integration over and ¢ variables in Eq(26) can be
performed exactly for the first Landau levels so that the cor-
responding energy shift can be put in the form 0.20 -

1/2 -
AE0/h=—%,§Z f df e, (6)s"(0)w,(6)
i 0

0.15
12 o T
% w#(0)> J' %e—[wﬂ(ﬁ)/w]u\]o(g,u),
15) 0 \/a 0.10 1
(359 t
1/2 12 0.05 4
_Y & 12 @u( 0))
AEllh— FQ% fo daaM(Q)S (9)(0#(0)( ®
- du 0.00
XJ — e {louO=A/hlol 306 u)+3,(6,u)], 0 /2 n
0 Vu 6(rad)
(35b)

FIG. 2. The angular dependence of the polaron coupling func-
where tions «,(6) for the two branches of the extraordinary phonon
modes for InSesolid curve$ and GaSddashed curves

Jo(0,u) K(a), (36a

T [1-F(u)]*2 £, (©)=7.44, w:,=2135 cm?, wlo=2455 cm?,

E(a)
F(a)

g)(®)=5.76, }x=237 cm!, w{;=254.7 cm?,

2a (sinhz(u/2)
‘]1( G,U) ==

[1-FWl ™

—K(a)}
368 where g,(), 0wy, and oy (a=L1,l) are the high-
(36D frequency dielectric constants, the frequencies of the
—r1_ V2 GirR g+ —1/2; transverse-phonon modes, and the frequencies of the
a=[1-F(u)}*qsir* 6+ yF(u)cos’ 6] *siné, (37) longitudinal-phonon modes along the principal directions, re-
K(a) andE(a) being the complete elliptic integrals of the spectively. Together with the values of the mass-tensor com-

first and second kind, respectively. ponents of the bare electrgm, =0.131Imy, m;=0.081m)
for InSe (Ref. 26 (m;=0.17m,, m,=0.3m,) for GaSe?"*®

I1l. NUMERICAL RESULTS AND CONCLUDING the above parameters allow us to obtain the angular depen-
REMARKS dence of the polaron coupling functions,(#) for the two

branches £ =1,2) of the phonon modes involved.

In the following we shall use the express_|o(1_l§) and The components of the effective-mass tensor of the bare
(35 for the energy shift to obtain the magnetic-field depen'eIectron are generally obtained either by extracting them
dence of the cyclotron resonance frequency at zero tempergo cyclotron resonance measurements at low magnetic
ture, in the case of the layered materials InSe and GaSe. Fq
both materials the appropriate form of the dielectric function
can be described in the context of a two-oscillator mode

determined by the values of the parameters. For fig,

Elds (Refs. 26 or by analyzing, additionally to the study of

he electronic transport properties, the exciton optical prop-
rties(Ref. 27. Sometimes, a combination of the aforemen-

tioned approaches is used. Thus, for InSe, the components of

£,(©)=7.8, wio=180 cn?, w!y=200 cm?, the effect.ive—mass tensor of the bare glectron, optgined by a
self-consistent procedure, can be considered as fitting param-
£(%)=8.9, wlo=190 cm!, wi,=220 cnit eters only for the results of the cyclotron resonance measure-
! » 1o © Lo ’ ments performed at low magnetic fields. However, in the
and for GaSé® domain of high magnetic fields, which is of interest for us
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FIG. 3. The cyclotron resonance frequency vs magnetic field in
InSe. The solid curves marke8DL ), (3DIl), and(2D), correspond- FIG. 4. The cyclotron resonance frequency vs magnetic field in

ing to the direction of the magnetic field orthogonal to the opticalgage. The symbol8DL) and(3DIl) and the meaning of the curves

axis L or parallel to itl for a 3D and to a 2D electron, respectively, gre explained in the caption of Fig. 3. The curves are obtained by
are obtainedin the framework of IWBPT by taking into account using the improved Wigner-Brillouin perturbation theory.
the contribution of the whole extraordinary optical-phonon spec-

trum. The cyclotron resonance frequency as a function of the mag-
netic field obtained in the mentioned geometry, and without the€presenting, respectively, the cases of the magnetic field di-
contribution of the quasitransverse phonon modes, is presented wifiected along the optical axi#) or orthogonal to it(L), for a
dotted lines. The experimental results obtained in Ref. 10 are plot3D or a 2D electron interacting with all the extraordinary
ted by triangles. optical phonon modes. Customarily, the behavior of the cy-
clotron resonance frequency determined by E8), (24),
regarding the behavior of the cyclotron resonance frequencygnd(29) for the energy shift in the domain of small magnetic
the aforementioned quantities are not freely chosen paraniields is used to obtain the components of the effective-mass
eters. tensor for the bare electron. In the case of the magnetic field
The polaron coupling functions corresponding to theorthogonal to the optical axis, expressi@d) for the cyclo-
electron—optical-phonon interaction with quasitransverse extron mass justifies the analysis of cyclotron resonance data in
traordinary phonon modesu=1) and with quasilongitudi- the perturbational approach developed in Ref. 8. When the
nal extraordinary phonon modeg.£2) are presented in cyclotron resonance frequency of the bare electron is in the
Fig. 2, with sold lines for InSe and dashed lines for GaSedomain of quasitransverse mode frequencies, the curves that
Although the polaron coupling function for quasitransversegive the magnetic-field dependence of the cyclotron reso-
phonon modes is small compared to that for quasilongitudinance frequency present an important contribution of the
nal phonon modes, the presence of the continuum frequendpagnetopolaron splitting effect, and are pinned to the lowest
distribution of the quasitransverse modes in the domaivalue (w7o) of the frequency phonon spectrum for higher
[w#o,w%] situated at lower frequencies than the corre-values of the magnetic field. The curves of the cyclotron
sponding domain of quasilongitudinal phonon modes playgesonance frequency versus magnetic field in the geometries
an important role in the cyclotron resonance phenomenon ifiscussed above, without the contribution of the quasitrans-
the range of magnetic fields for which the cyclotron reso-verse phonon modes, are presented with dotted lines in Fig.
nance frequency of the bare electron is in the domain oB. These curves are pinned to théo frequency.
guasitransverse mode frequencies. Consistent with the theoretical method used here to obtain
The cyclotron resonance frequency versus magnetic fielthe energy shift for the magnetopolaron below the phonon
in InSe(in the context of IWBPT is presented in Fig. 3, the continuum, we discuss only the lower branch of the magne-
solid lines marked with the symbo(8DIl), (3DL), and(2D) topolaron spectrum, which contributes to the experimental
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results obtained in Ref. 1see Fig. 2a) of that referenck  Becausey,,se>1 andygas<1 the curveg3DIl) and (3DL)
and is plotted by triangles in Fig. 3. Compared to our theoin GaSe are in the reverse order compared with the same
retical curve(3Dl)), which presents the magnetic-field depen-curves obtained in InSe.
dence of the cyclotron resonance frequency, we have to ad- |n the framework of the IWBT, we took into consider-
mit that the corresponding theoretical curve marked with theytion all the sources of anisotropy in the energy shift of the
symbol(3D) in Fig. 2@ of Ref. 10 better fits the experimen- Landau level situated below the quasitransverse phonon con-
tal points. However, we have to stress that, contrary to théinuum. We believe that for this type of materiahisotropic,
mentioned work, where the polaron coupling constants  uniaxial, and with the dielectric function described by a two-
and «; for motions perpendicular and parallel to the optical oscillator model the extension of such an analysis to other
axis, as well as the frequenay o of the “longitudinal”-  domains of energy(using the so-called memory function
optical phonons are fitting parameters, we have no such papproacf”) will show the possibility of existence of an in-
rameters here. Of course, taking into account the quasi-twadermediate magnetopolaron branch situated in the domain
dimensional behavior of the electron gas formed in the
vicinity of stacking faults in InS&° which is manifest at very
low temperatures, we can improve the fit by considering a
finite z extent? of the electron wave function. This approach,
which reformulates the whole problem considered here, alwtoj,, andw, o being the highest transverse optical phonon
lowing us to choose a curve situated between(&®) and frequency and the lowest longitudinal optical phonon fre-
(3DIl) curves of Fig. 3, by considering the finikeextent of  quency, respectively.
the electron wave function as a fitting parameter and which For anisotropic polar crystals with complex structure it
realizes the best fitting of the experimental points, will bewould be thus possible to find additional intermediate
discussed in the future. branches of the magnetopolaron spectrum, which have to
Similar results obtained for the magnetic-field dependencelay an important role in the cyclotron resonance phenom-
of the cyclotron resonance in GaSe are presented in Fig. €non in such materials.

(hwronthol2+ AERPT o o+ hw/2+ AESSPY,
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