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Energy levels of an anisotropic three-dimensional polaron in a magnetic field
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In the context of the improved Wigner-Brillouin theory, the energy levels are found of a Fro¨hlich polaron in
a uniaxial anisotropic polar semiconductor with complex structure, placed in a magnetic field directed either
along the optical axis or orthogonal to it. All sources of anisotropy that are contained in the shape of constant-
energy surfaces of the bare electron, the electron–optical-phonon interaction, and the frequency spectrum of
the extraordinary phonon modes are considered. Analytical results for the electron-phonon interaction correc-
tion to the Landau levels below the optical-phonon continuum are given and, numerical results for the
magnetic-field dependence of the cyclotron resonance frequency at low temperature are presented for the
particular case of the layered semiconductors InSe and GaSe. Although the interaction between the bare
electron and quasitransverse optical-phonon modes is weak, these modes play an important role in the pinning
of Landau levels. The results given by Das Sarma for a two-dimensional isotropic magnetopolaron are gener-
alized to the anisotropic uniaxial case by taking formallymi→` in the expression of the perturbed Landau
levels found when the magnetic field is directed along the optical axis,mi being the component of the
bare-electron effective-mass tensor along the optical axis.
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I. INTRODUCTION

The interaction between optical phonons and an elec
moving in the presence of a magnetic field in a polar se
conductor or an ionic crystal leads to modifications of t
unperturbed Landau levels, known as magnetopolaron
fects. Of particular interest are the so-called resonant pola
effects1 which characterize the magnetopolaron spectr
when the cyclotron frequency of the bare electron
proaches the frequency of longitudinal-optical phonons.

Although the majority of the studies dedicated to the p
laron problem deal with an isotropic system, there are so
papers devoted to investigation of the polaron spectrum
anisotropic systems. Thus, theoretical methods, develope
study the polaron problem in an isotropic system have b
adapted to analyze the polaron spectrum in anisotropic
tems even in the presence of the external fields,2,3 allowing
the discussion of both cases, that of the piezoelec
polaron3,4 and that of the optical polaron.2,5

For the particular case of small magnetic fields and tak
into consideration only the anisotropy determined by
bare-electron spectrum, Hattori2 obtained an effective Hamil
tonian, similar to that of an anisotropic bare electron plac
in a magnetic field, but with the components of the ba
electron mass tensor replaced by those of the polaron m
tensor. In Ref. 6 Larson analyzed the cyclotron resonanc
polarons in ellipsoidal bands, a system suitable for disc
sion of the cyclotron resonance of holes in some cubic p
insulators with a multivalley valence band. However, the
sults obtained by Hattori and Larsen do not apply to the c
of a uniaxial crystal with complex structure due to the pr
ence of other sources of anisotropy that are contained in
the frequencies of the extraordinary phonon modes and
electron–optical-mode interaction. For a uniaxial crys
with complex structure, placed in a weak dc magnetic fi
directed along to the optical axis, the cyclotron resonanc
presented7 in the framework of intermediate-coupling theor
taking into account the contributions of all sources of anis
0163-1829/2001/63~23!/235203~8!/$20.00 63 2352
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ropy to the energy spectrum of the optical polaron.
Studies of the cyclotron resonance in the layered crys

HgI2 ~Refs. 8 and 9! and InSe~Ref. 10! deal with the aniso-
tropic properties of the system in a simplified manner, eit
considering the corresponding Fro¨hlich Hamiltonian re-
stricted to the one-oscillator model,11 or introducing two an-
isotropic polaron coupling constants10 a' anda i for motions
perpendicular and parallel, respectively, to the optical a
instead of the polaron coupling ‘‘constants’’^am(u)&12 ~m
and u denote the branch index of ‘‘true’’ optical-phono
modes and the angle between the phonon wave vector
the direction of the optical axis, the symbol^ & meaning an
angular average!. In Ref. 10 the polaron coupling constan
a' anda i , as well as the frequency of ‘‘longitudinal’’ op
tical phonons, seem to be merely fitting parameters ra
than quantities entirely determined by the anisotropic pr
erties of the system.

Contrary to the case of isotropic crystals where only lo
gitudinal phonon modes interact with the electron, in
uniaxial crystal quasitransverse phonon modes also have
property. Although at weak magnetic fields the contributi
of the electron–quasitransverse-mode interaction is not
nificant, it becomes noteworthy in the range of magne
fields where resonant phonon effects occur.

In this paper, the contribution of the electron-phonon
teraction in a uniaxial polar semiconductor to the differe
Landau levels is given in the framework of second-ord
perturbation theory, considering all the sources of anis
ropy. Both geometries relevant for cyclotron resonan
experiments,8 i.e., with the magnetic field parallel or perpen
dicular to the optical axis, are considered. In order to av
the real phonon emission phenomenon, the discussion is
stricted to the domain of energy below the quasitransve
phonon continuum.

II. HAMILTONIAN AND ENERGY CORRECTIONS

In the effective-mass approximation the constant-ene
surfaces of a conduction electron moving in a uniaxial po
©2001 The American Physical Society03-1
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semiconductor are ellipsoids of revolution having their ax
coincident with the optical axis. In the presence of a dc m
netic fieldB0 making an angleQ with the optical axis, as in
Fig. 1, the Hamiltonian of the bare electron written in t
symmetrical Coulomb gauge is

He5
1

2m'
S px2

e

2
B0yD 2

1
1

2m'
Fpz sinQ2S py1

e

2
B0xD cosQG2

1
1

2mi
Fpz cosQ1S py1

e

2
B0xD sinQG2

, ~1!

wherex, y, z are the coordinates,px ,py ,pz the components
of the electron momentum, andm' ,mi the components o
the diagonal effective-mass tensor, the symbols' andi cor-
responding to a direction that is either orthogonal or para
to the optical axis.

In order to discuss the magnetopolaron problem we s
consider the interaction of the conduction electron with
optical phonons in an anisotropic~uniaxial! polar semicon-
ductor so that the Hamiltonian of the system of interest
the form

H5He1He-ph1Hph

5He1(
q,m

S Vm~q!

AV
bq,meiq•r1H.c.D

1(
q,m

\vm~q!bq,m
† bq,m , ~2!

FIG. 1. The relative position of a constant-energy surface of
bare electron and the magnetic field.
23520
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where the correspondence is straightforward. In the ab
expressionV is the volume andbq,m

† and bq,m are, respec-
tively, creation and annihilation operators for a phonon w
wave vectorq, branch indexm, and frequencyvm(q); the
form of the coupling constantVm(q) was obtained by
Toyozawa.12,13

Following Ref. 14 we perform the canonical transform

px5g1/2~Q!px8 , x5g21/2~Q!~x81x0!, ~3a!

py5g21/2~Q!py8 , y5g1/2~Q!y8, ~3b!

with

g~Q!5~cos2 Q1g sin2 Q!1/2, g5m' /mi , ~4a!

x052
2~12g!

m'vAg~Q!
pz sinQ cosQ, ~4b!

where byv5eB0g(Q)/m' we have denoted the cyclotro
frequency of the bare electron. This procedure reduces
form of the Hamiltonian that describes the dynamics of
bare electron in a plane orthogonal to the magnetic-field
rection to that of an electron having spherical energy s
faces with an effective massm5m' /g(Q), so that one ob-
tains

He5
1

2m F S px82
e

2
B0y8D 2

1S py81
e

2
B0x8D 2G1

pz
2

2mig2~Q
.

~5!

Introducing instead of the coordinates and component
the momentum the operators (A,A1) and (B,B1),15

A5S 1

2\mv D 1/2

~px82 ipy8!2
i

2 S mv

2\ D 1/2

~x82 iy8!,

~6a!

B5
1

2 S mv

2\ D 1/2

~x81 iy8!1 i S 1

2\mv D 1/2

~px81 ipy8!

~6b!

that satisfy the commutation relations@A,A1#5@B,B1#51
and @A,B#5@A,B1#50, expression~5! becomes

He5\v~A1A1 1
2 !1

pz
2

2mig2~Q!
. ~7!

Having introduced the operators (A,A1) and (B,B1), we
can now represent the Landau level as

un,m,pz&5un&A^ um&B^ upz&, ~8!

whereupz& describes the movement of the electron along
z direction, and (n!) 21/2(A1)nu0&A and (m!) 21/2(B1)mu0&B
are two independent one-dimensional harmonic oscilla
states,16 with u0&A ,u0&B the vacuum states of the operatorsA,
B. However, we have to stress that here, in contradiction
the situation encountered in the case of isotropic systems
operator\(A1A2B1B) is not thez component of the angu
lar momentum.

e
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Working at zero temperature with the initial unperturb
state un,m,pz& ^ u0&ph where u0&ph is the phonon vacuum
state, the energy correction of the electron-phonon inte
tion to the bare-electron Landau level in the context
second-order perturbation theory is given by17,18

DEn~pz!5
1

V (
n8,q,m

uVm~q!u2

Dnn8
, ~9!

where

Dnn85~n2n8!\v1
1

2mig2~Q!
@pz

22~pz2\qz!
2#

2\vm~q!1Dn , ~10!

Dn being determined by the actual type of perturbat
theory used@Dn50 for the Rayleigh-Schro¨dinger perturba-
tion theory~RSPT!, Dn5DEn(pz) for the Wigner-Brillouin
perturbation theory~WBPT!, and finally Dn5DEn(pz)
2DE0

RSPT for the improved Wigner-Brillouin theory
~WBPT!#. At low magnetic fields the Rayleigh-Schro¨dinger
perturbation theory gives appropriate results for the mag
topolaron spectrum. Although the magnetopolaron splitt
is obtained in the framework of Wigner-Brillouin perturb
tion theory, the calculated energy levels are not accur
especially in the pinning region. The correct behavior of
energy levels of the excited states is obtained only for
improved Wigner-Brillouin theory.

Considering the behavior of the different Landau lev
below the optical-phonon continuum and following th
method described in Ref. 19, the energy shift of thenth
Landau level can be put in the form

DEn~pz!52(
q,m

uVm~q!u2

\V

3E
0

`

dt e2@vm~q!2Dn /\#t^n,m,pzu

3eiq•r ~t!e2 iq•r ~0!un,m,pz&, ~11!

where

r ~t!5eHet/\re2Het/\. ~12!

Using the canonical transform~3! and the expressions~6!,
the argumentq•r of the exponential appearing inHe-ph can
be written in terms ofx0 , appropriate combinations of th
phonon wave-vector components, and the operatorsA, A1,
B, andB1.

The evaluation of the effect of the matrix element th
appears in Eq.~11! on the electron stateun,m,pz& is straight-
forward, so that one obtains for the energy shift~independent
of m! the expression
23520
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DEn~pn!52
1

\V (
q,m

uVm~q!u2E
0

`

dt expH 2Fvn~q!2Dn /\

1
\qz

2

2mig2~Q!
2

qzpz

mig2~Q!
GtJ

3expF2
\Q2

2mvg~Q!
~12evt!G

3 (
p50

n cn
p

p! F 2\Q2

mvg~Q!
sinh2

vt

2 G p

~13!

with

Q25qx
21g2~Q!qy

2. ~14!

This expression will be discussed in the following in th
context of the particular geometry considered, and will allo
us to obtain some explicit analytical results in limiting cas

A. Magnetic field parallel to the optical axis

In this geometryg51, v5eB0 /m' , and, limiting our-
selves to the case of an electron with low values ofpz ,
$pz!@2\mivm(u)#1/2%, where u is the angle between th
phonon wave vector and the direction of the optical ax
expression~13! reduces to

DEn /\52
1

2Ap
(
m

E
0

p

du sinu vm~u!

3S vm~u!

v D 1/2

S1/2~u!am~u!

3E
0

` dt

At
e2$@vm~u!2Dn /\#/v%tGn~t,u!, ~15!

where

Gn~t,u!5 (
p50

n

Cn
p ~2p21!!!

p!

3F 2 sin2 u

gtP~t,u!
sinh2S t

2D G p 1

AP~t,u!

3H 11~2p11!
pz

2 cos2 u

2mi\v

t

P~t,u!J , ~16!

with

P~t,u!5cos2 u1
12e2t

gt
sin2 u, ~17a!

s~u!5cos2 u1g21 sin2 u, ~17b!

the explicit expression of the polaron coupling functio
am(u) appropriate for this uniaxial crystal being given
Ref. 12.
3-3
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In the small-magnetic-field limit@v!vm(u)# and in the
context of RSPT, which is appropriate for this case, the
pression~15! for the energy shift becomes

DEn /\52(
m

^am~u!vm~u!&2
2n11

8g
v

3(
m

K am~u!sin2~u!

s~u! L 1
v2

16g

3(
m

K am~u!sin2 u cos2 u

s2~u!vm~u! L 2
18n~n11!11

128g2 v2

3(
m

K am~u!sin4 u

s2~u!vm~u!L 2
pz

2

mi\
F(

m
K am~u!cos2 u

s~u! L
1

9~2n11!

16g
v(

m
K am~u!sin2 u cos2 u

vm~u!s~u! L G , ~18!

where the symbol̂ & means the angular average

^ f ~u!&5
1

2 E0

p

f ~u!sinu du. ~19!

Taking pz50 in Eq. ~18!, for the particular case of an iso
tropic crystal with simple structure, the magnetic-field co
rection to the electron-phonon self-energy reduces to
presented in Ref. 19.

Defining the cyclotron resonance frequencyVC
i ~the sym-

bol i referring to the direction of the magnetic field paral
to the optical axis! as the energy difference betweenE1(pz
50) and E0(pz50), one obtains for the cyclotron mas
MC

i
5eB0 /VC

i

S MC*

m'
D 21

512
1

4g (
m

K am~u!sin2 u

s~u! L
2

9v

32g2 (
m

K am~u!sin4 u

s2~u!vm~u!L , ~20!

an expression that results by imposing the condition of sm
electron-phonon coupling in the relation~33! of Ref. 7. By
considering weak electron–optical-phonon coupling in
expression~37! of Ref. 7, the expressions for both the cycl
tron mass and the effective mass of the motion along thz
direction reduce, in the limitv→0, to the forms of the com-
ponentsM' andM i of the polaron effective-mass tensor:

MC* →M'5m'F12
1

4g (
m

K am~u!sin2 u

s~u! L G21

,

~21a!

M i5miF12
1

2 (
m

K am~u!cos2 u

s~u! L G21

. ~21b!

Relations~21! could also be obtained by performing the ca
culations in expression~6! of Ref. 5 and taking into accoun
the anisotropy of the components of the dielectric tensor
23520
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In the limit of large magnetic fields only a numerical s
lution of Eq. ~15! can be found, every Landau levelEn ob-
tained in the context of IWBPT being pinned to\vTO,l

1\v/21DE0
RSPT, where byvTO,l we have denoted the low

est transverse-optical frequency in the phonon spectrum
a by-product of the above calculations, the expression for
energy shift for a two-dimensional~2D! electron interacting
with a 3D anisotropic phonon system is obtained by forma
taking mi→` in Eq. ~15!.

In terms of a polaronic coupling function defined throu
the relation

ãm~u!5sinu lim
mi→`

am~u!, ~22!

the 2D energy shift can be expressed as

DEn
~2D!/\52

1

2 (
m

E
0

p

du ãm~u!vm~u!S vm~u!

v D 1/2

3 (
p50

n

cn
pF ~2p21!!!

2p G2 1

p!

3
G~„vm~u!2Dn

~2D!/\!/v2p…

G„vm~u!2Dn
2D)/\/v1 1

2 …

, ~23!

a result that generalizes the expression~15! of Ref. 19 to this
anisotropic case.

In the limit of small magnetic fields and in the framewo
of RSPT, the 2D energy shift becomes

DEn
~2D!/\52

1

2 (
m

E
0

p

du ãm~u!vm~u!

3F11
2n11

8 S v

vm~u! D
1

18n~n11!11

128 S v

vm~u! D
2

1¯G , ~24!

an expression that agrees for an isotropic system with
obtained by Das Sarma20 and by Larsen.21 For large mag-
netic fields, and fornv>vm(u) one obtains

DEn
~2D!/\52

Av

Ap

~2n21!!!

2n11n! (m E
0

p

du

3
ãm~u!@vm~u!#3/2

Avm~u!2Dn
~2D!/\2nv

, ~25!

leading to the same pinning level for the corresponding L
dau level as in the 3D case,\vTO,l1\v/21DE0

RSPT, but
with a different coupling constant.

B. Magnetic field orthogonal to the optical axis

In this geometryg5g1/2, v5eB0 /(m'mi)1/2, and the
optical axis can be chosen as the polar axis~y axis according
to Fig. 1! based on the axial symmetry of both the optic
3-4
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phonon spectrum and the electron-phonon interaction. In this case the expression for the energy shiftDEn becomes

DEn~pz!/\52
g1/2

2p2 (
m

E
0

p

du sinu am~u!s1/2~u!vm~u!S vm~u!

v D 1/2E
0

` du

Au
expS 2

vm~u!2Dn /\

v
uD

3E
0

2p

dwE
0

`

dzexpF2z2G~u,w,u!1S 2u

\m'v D 1/2

zpz sinu sinwG3 (
p50

n

Cn
p 1

p! F4z2

u
sinh2S u

2D
3~sin2 u cos2 w1g cos2 u!G p

, ~26!

where

G~u,w,u!5sin2 u sin2 w1~sin2 u cos2 w1g cos2 u!F~u! ~27!
with

F~u!5~12e2u!/u, ~28!

u andw being the polar and the azimuthal angle of the phonon wave-vector direction, respectively.
In the domain of small magnetic fields and for low values ofpz , by keeping all the terms up to second order in@v/vm(u)#

and fourth order in$pz /@2\m'vm(u)#1/2%, respectively, the above expression for the energy shift can be reduced to the

DEn~pz!/\52(
m

^am~u!vm~u!&2S pz
2

2m'
D 1

4\g (
m

K am~u!sin2 u

s~u! L 2
9

64S pz
2

2m'
D 1

\2g2 (
m

K am~u!sin4 u

vm~u!s2~u!L
2

~2n11!

8

v

g (
m

K am~u!~g cos2 u1 1
2 sin2 u!

s~u!
L 1

v2

16

1

g (
m

K am~u!~g cos2 u1 1
2 sin2 u!

vm~u!s~u!
L

2
9

32
~2n11!

pz
2

2m'

v

\g2 (
m

K am~u!~g cos2 u1 1
4 sin2 u!sin2 u

vm~u!s2~u!
L

2
9

1024
~2n212n11!

v2

g2 (
m

K am~u!~8g2 cos4 u18g sin2 u cos2 u13 sin4 u!

vm~u!s2~u! L . ~29!
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From the expression of the cyclotron resonance frequenc
the limit of very small magnetic fields, denoted byVC

' in this
geometry, one obtains for the corresponding cyclotron m
MC

' the form

MC
'5~mim'!1/2F12

1

8g

3(
m

K am~u!~2g cos2 u1sin2 u!

s~u! L G21

. ~30!

In the same framework of a small electron–optical-phon
interaction, the expression~30! becomes

MC
'5~M'M i!

1/2, ~31!

where the components of the polaron mass tensor,M' and
M i , are given by the relations~21!.

Neglecting the anisotropy determined by both sourc
namely, the spectrum of the optical phonons and their in
action with the conduction electron, Hattori2 obtained in
23520
in

ss

n

s,
r-

intermediate-coupling theory for an arbitrary direction of t
magnetic field more general expressions than Eqs.~21a! and
~31! presented in our paper.

Combining Eqs.~17b!, ~21a!, and~30!, one obtains

2F S 12
m'

MC
i D 12S 12

Am'mi

MC
' D G5(

m
^am~u!&, ~32!

which reduces, in the case of an isotropic system, to
classical result22

M P5m/~12a/6!, ~33!

where byM P andm we have denoted the polaron mass a
the bare-electron mass, respectively,a being the Fro¨hlich
dimensionless coupling constant.

Since we are interested here in discussing the cyclo
resonance phenomenon, we shall simplify the express
~26!, disregarding thepz dependence. We evaluate the e
pression obtained by integration overz andw variables in Eq.
~26! for large values of the argumentu,19 in the domain of
magnetic fields where resonant magnetopolaron effects
3-5



o

e

n
e

. F
ion
de

the
the

re-
om-

pen-

are
em
etic
f
op-
n-
ts of
y a

ram-
ure-
he
us

nc-
on
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important @nv>vm(u)#. The result is Apenu/(n sinu),
which finally gives the energy shift,

DEn /\52
g1/2

2np (
m

E
0

p

du aa~u!vm~u!

3S s~u!vm~u!

vm~u!2Dn /\2nv D 1/2

. ~34!

This form reduces to the expression~25! of Ref. 19 in the
case of an isotropic polaron.

The integration overz andw variables in Eq.~26! can be
performed exactly for the first Landau levels so that the c
responding energy shift can be put in the form

DE0 /\52
g1/2

p3/2(
m

E
0

p

du am~u!s1/2~u!vm~u!

3S vm~u!

v D 1/2E
0

` du

Au
e2@vm~u!/v#uJ0~u,u!,

~35a!

DE1 /\52
g1/2

p3/2(
m

E
0

p

du am~u!s1/2~u!vm~u!S vm~u!

v D 1/2

3E
0

` du

Au
e2$@vm~u!2D1 /\#/v%u@J0~u,u!1J1~u,u!#,

~35b!

where

J0~u,u!5
a

@12F~u!#1/2
K~a!, ~36a!

J1~u,u!5
2a

@12F~u!#3/2 S sinh2~u/2!

u D FE~a!

F~a!
2K~a!G ,

~36b!

a5@12F~u!#1/2@sin2 u1gF~u!cos2 u#21/2sinu, ~37!

K(a) and E(a) being the complete elliptic integrals of th
first and second kind, respectively.

III. NUMERICAL RESULTS AND CONCLUDING
REMARKS

In the following we shall use the expressions~15! and
~35! for the energy shift to obtain the magnetic-field depe
dence of the cyclotron resonance frequency at zero temp
ture, in the case of the layered materials InSe and GaSe
both materials the appropriate form of the dielectric funct
can be described in the context of a two-oscillator mo
determined by the values of the parameters. For InSe,23,24

«'~`!57.8, vTO
' 5180 cm21, vLO

i
5200 cm21,

« i~`!58.9, vTO
i

5190 cm21, vLO
' 5220 cm21,

and for GaSe,25
23520
r-

-
ra-
or

l

«'~`!57.44, vTO
' 5213.5 cm21, vLO

i
5245.5 cm21,

« i~`!55.76, vTO
i

5237 cm21, vLO
' 5254.7 cm21,

where «a(`), vTO
a , and vLO

a (a5',i) are the high-
frequency dielectric constants, the frequencies of
transverse-phonon modes, and the frequencies of
longitudinal-phonon modes along the principal directions,
spectively. Together with the values of the mass-tensor c
ponents of the bare electron~m'50.131m0 , mi50.081m0!
for InSe ~Ref. 26! ~mi50.17m0 , mi50.3m0! for GaSe,27,28

the above parameters allow us to obtain the angular de
dence of the polaron coupling functionsam(u) for the two
branches (m51,2) of the phonon modes involved.

The components of the effective-mass tensor of the b
electron are generally obtained either by extracting th
from cyclotron resonance measurements at low magn
fields ~Refs. 26! or by analyzing, additionally to the study o
the electronic transport properties, the exciton optical pr
erties~Ref. 27!. Sometimes, a combination of the aforeme
tioned approaches is used. Thus, for InSe, the componen
the effective-mass tensor of the bare electron, obtained b
self-consistent procedure, can be considered as fitting pa
eters only for the results of the cyclotron resonance meas
ments performed at low magnetic fields. However, in t
domain of high magnetic fields, which is of interest for

FIG. 2. The angular dependence of the polaron coupling fu
tions am(u) for the two branches of the extraordinary phon
modes for InSe~solid curves! and GaSe~dashed curves!.
3-6
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regarding the behavior of the cyclotron resonance freque
the aforementioned quantities are not freely chosen par
eters.

The polaron coupling functions corresponding to t
electron–optical-phonon interaction with quasitransverse
traordinary phonon modes (m51) and with quasilongitudi-
nal extraordinary phonon modes (m52) are presented in
Fig. 2, with sold lines for InSe and dashed lines for Ga
Although the polaron coupling function for quasitransve
phonon modes is small compared to that for quasilongitu
nal phonon modes, the presence of the continuum freque
distribution of the quasitransverse modes in the dom
@vTO

' ,vTO
i

# situated at lower frequencies than the cor
sponding domain of quasilongitudinal phonon modes pl
an important role in the cyclotron resonance phenomeno
the range of magnetic fields for which the cyclotron res
nance frequency of the bare electron is in the domain
quasitransverse mode frequencies.

The cyclotron resonance frequency versus magnetic fi
in InSe~in the context of IWBPT! is presented in Fig. 3, the
solid lines marked with the symbols~3Di!, ~3D'!, and~2D!

FIG. 3. The cyclotron resonance frequency vs magnetic field
InSe. The solid curves marked~3D'!, ~3Di!, and~2D!, correspond-
ing to the direction of the magnetic field orthogonal to the opti
axis' or parallel to iti for a 3D and to a 2D electron, respectivel
are obtained~in the framework of IWBPT! by taking into account
the contribution of the whole extraordinary optical-phonon sp
trum. The cyclotron resonance frequency as a function of the m
netic field obtained in the mentioned geometry, and without
contribution of the quasitransverse phonon modes, is presented
dotted lines. The experimental results obtained in Ref. 10 are p
ted by triangles.
23520
y,
m-

x-

.
e
i-
cy
in
-
s
in
-
f

ld

representing, respectively, the cases of the magnetic field
rected along the optical axis~i! or orthogonal to it~'!, for a
3D or a 2D electron interacting with all the extraordina
optical phonon modes. Customarily, the behavior of the
clotron resonance frequency determined by Eqs.~18!, ~24!,
and~29! for the energy shift in the domain of small magne
fields is used to obtain the components of the effective-m
tensor for the bare electron. In the case of the magnetic fi
orthogonal to the optical axis, expression~30! for the cyclo-
tron mass justifies the analysis of cyclotron resonance da
the perturbational approach developed in Ref. 8. When
cyclotron resonance frequency of the bare electron is in
domain of quasitransverse mode frequencies, the curves
give the magnetic-field dependence of the cyclotron re
nance frequency present an important contribution of
magnetopolaron splitting effect, and are pinned to the low
value (vTO

' ) of the frequency phonon spectrum for high
values of the magnetic field. The curves of the cyclotr
resonance frequency versus magnetic field in the geome
discussed above, without the contribution of the quasitra
verse phonon modes, are presented with dotted lines in
3. These curves are pinned to thevLO

i frequency.
Consistent with the theoretical method used here to ob

the energy shift for the magnetopolaron below the phon
continuum, we discuss only the lower branch of the mag
topolaron spectrum, which contributes to the experimen

FIG. 4. The cyclotron resonance frequency vs magnetic field
GaSe. The symbols~3D'! and~3Di! and the meaning of the curve
are explained in the caption of Fig. 3. The curves are obtained
using the improved Wigner-Brillouin perturbation theory.
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results obtained in Ref. 10@see Fig. 2~a! of that reference#
and is plotted by triangles in Fig. 3. Compared to our th
retical curve~3Di!, which presents the magnetic-field depe
dence of the cyclotron resonance frequency, we have to
mit that the corresponding theoretical curve marked with
symbol~3D! in Fig. 2~a! of Ref. 10 better fits the experimen
tal points. However, we have to stress that, contrary to
mentioned work, where the polaron coupling constantsa'

anda i for motions perpendicular and parallel to the optic
axis, as well as the frequencyvLO of the ‘‘longitudinal’’-
optical phonons are fitting parameters, we have no such
rameters here. Of course, taking into account the quasi-t
dimensional behavior of the electron gas formed in
vicinity of stacking faults in InSe,29 which is manifest at very
low temperatures, we can improve the fit by considerin
finite z extent10 of the electron wave function. This approac
which reformulates the whole problem considered here,
lowing us to choose a curve situated between the~2D! and
~3Di! curves of Fig. 3, by considering the finitez extent of
the electron wave function as a fitting parameter and wh
realizes the best fitting of the experimental points, will
discussed in the future.

Similar results obtained for the magnetic-field depende
of the cyclotron resonance in GaSe are presented in Fig
-

y

u
M

-

23520
-
-
d-
e

e

l

a-
o-
e

a

l-

h

e
4.

Becauseg InSe.1 andgGaSe,1 the curves~3Di! and ~3D'!
in GaSe are in the reverse order compared with the s
curves obtained in InSe.

In the framework of the IWBT, we took into conside
ation all the sources of anisotropy in the energy shift of
Landau level situated below the quasitransverse phonon
tinuum. We believe that for this type of material~anisotropic,
uniaxial, and with the dielectric function described by a tw
oscillator model! the extension of such an analysis to oth
domains of energy~using the so-called memory functio
approach30! will show the possibility of existence of an in
termediate magnetopolaron branch situated in the doma

~\vTO,h1\v/21DE0
RSPT,\vLO,l1\v/21DE0

RSPT!,

vTO,h , andvLO,l being the highest transverse optical phon
frequency and the lowest longitudinal optical phonon f
quency, respectively.

For anisotropic polar crystals with complex structure
would be thus possible to find additional intermedia
branches of the magnetopolaron spectrum, which have
play an important role in the cyclotron resonance pheno
enon in such materials.
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