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Semirelativistic technique for k"p calculations: Optical properties of Pd and Pt

E. E. Krasovskii and W. Schattke
Institut für Theoretische Physik, Christian-Albrechts-Universita¨t, Leibnizstrasse 15, D-24098 Kiel, Germany

~Received 9 February 2001; published 24 May 2001!

A semirelativistic two-component extended linear augmented plane-wavek•p method is described. In order
to ensure a high accuracy of thek•p method, it is necessary to include into the radial-basis set, which is used
for the augmentation of the plane waves, functions that are neither solutions of the Schro¨dinger equation nor
their energy derivatives. The usual scalar relativistic procedure, which is nonlinear in energy, is not applicable
to such basis sets. As an alternative, we suggest an approximation to the Foldy-Wouthuysen Hamiltonian that
produces an explicitly Hermitean matrix in the augmented plane wave representation. The technique is applied
to the calculation of the full dielectric matrix and optical properties of palladium and platinum metals over the
photon energy region up to 100 eV. Special attention is paid to the far ultraviolet absorption by the excitations
of semicore Pd 4p and Pt 5p and 4f states. A strong effect of local fields is observed in the far UV region.

DOI: 10.1103/PhysRevB.63.235112 PACS number~s!: 71.15.Ap, 78.40.2q, 71.15.Rf
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I. INTRODUCTION

Optical properties of metals in the far UV frequen
range have been extensively studied experimentally.1 How-
ever, theoreticalab initio studies for photon energies abov
20 eV are still very rare. It is no straightforward task
generate the band structure in a wide energy range with
ficient accuracy of eigenenergies and wave functions wit
reasonable computer time. The problem is complicated
the need to compute a full dielectric matrix«GG8(v): the
microscopic fields generated by the optical excitations
semicore electrons may dramatically change the inten
and shape of the far-UV absorption spectrum.2 The calcula-
tion of the«GG8 matrix is very time consuming because it
necessary to evaluate the matrix elements of the exp@iGr #
operator for severalG shells. A way to facilitate such calcu
lations is provided by thek•p band-structure approach.

Thek•p formalism reduces thek-point dependence of th
basis set to a multiplication of the basis functions with
reference Bloch vectork0 by the function exp@i„kÀk0…r #.
The k•p formulation is convenient when the functions ha
sophisticated numerical representation, as, e.g., in the
tended linear augmented plane wave~ELAPW! method,3 be-
cause the time-consuming operations of setting up
Hamiltonian, overlap, and momentum matrices are p
formed only once for a given crystal potential. In calculati
the dielectric matrix, we take advantage of the fact that
transfer matrix between the augmented plane wave~APW!
and pure plane wave~PW! representation is alsok indepen-
dent. Having obtained the all-electron eigenfunctionscn

k , we
change to a PW expansion ofcn

k to evaluate the matrix ele
ments^kmuexp@iGr #ukn&.2

That the basis set of ak•p method is not Bloch-vecto
adjusted causes the accuracy of the method to deterio
with the distanceDk5uk2k0u from the reference point. The
problem is especially severe in the case of localized sta
such as semicore states ord states of noble metals. For ex
ample, to reproduce an orbitalF lm(r )5F l(r )Ylm( r̂ ) the
trial function has to take the formF lm(r )exp@2i„k2k0…r #,
0163-1829/2001/63~23!/235112~9!/$20.00 63 2351
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which is an infinite angular momentum series. For a giv
lm, the number of orbitals is finite, but their radial parts a
not solutions of the radial Schro¨dinger equation. Such orbit
als do not cause any inconveniences in nonrelativistic ca
lations, where the properties of the Hamiltonian2D1V(r )
are simple and the energy variation principle is clearly f
mulated, but in the relativistic case the inclusion of su
orbitals is not straightforward.

In band structure calculations, relativistic effects can
taken into account either within the fully-relativistic fou
component procedure,4–6 in which no approximations to the
Hamiltonian are introduced, or by a semirelativistic tw
component technique.7–9 The latter approach has the adva
tage that the basis functions can be chosen to be pure
functions, which may be useful in magnetic calculations;
addition, in many cases the spin-orbit coupling can
omitted—this leads to one-component~scalar! functions and
strongly reduces the computer time.

In the linear methods of band theory,10 the scalar relativ-
istic corrections are routinely included using the technique
Koelling and Harmon~KH!.7 The radial functionsf l(r ) are
the solutions of the equation

~Ĥr2E!f l~r !50, ~1!

Ĥr52
1

r

d2

dr2
r 1

l ~ l 11!

r 2
1V~r !2HR~E!, ~2!

where the relativistic termHR(E) depends explicitly on the
energyE chosen in advance:

HR~E!5
1

2c2M ~r ;E!

dV

dr

d

dr
1

@E2V~r !#2

c2
, ~3!

M ~r ;E!5m1
E2V~r !

2c2
. ~4!

With the functionsf one has a simple rule for energy inte
grals:^juĤuf&5E^juf&. What values should be ascribed
©2001 The American Physical Society12-1
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integrals^juĤuh& with arbitrary orbitalsj andh? This prob-
lem arises in any variational method that employs a fix
basis set. One aim of this paper is to develop a semirela
istic band structure technique that is based on an exp
expression for the Hamiltonian and can thereby be used
k•p method.

An approximate Hamiltonian that operates on tw
component wave functions can be obtained by a unit
Foldy-Wouthuysen~FW! transformation11 on the relativistic
Hamiltonian. The~scalar! FW Hamiltonian reads

p̂21V~r !2
a2

4
p̂41

a2

8
@DV~r !#, ~5!

wherep̂52 i“ is the momentum operator anda52/c is the
fine structure constant. This expression cannot be imm
ately used in a direct variational method because the ex
tation values of the mass-velocity term2a2p̂4/4 are not
bounded from below. An additional problem arises from t
nucleus contribution to the Darwin terma2DV(r )/8: for a
point nucleus it is ad-function.

Douglas and Kroll12 suggested an alternative transform
tion, which leads to a Hamiltonian that is bounded from b
low and does not contain singular operators. The Ham
tonian has a relatively simple momentum-spa
representation, and when an orbital basis set is employed
matrix elements can be evaluated by switching to a new
resentation that diagonalizes the kinetic-energy matrix. T
approach was proposed by Hess,13 who implemented it in the
Gaussian-type-orbitals~GTO! method and applied it to
atomic calculations. Recently Boettger9 extended the proce
dure to band structure calculations.

An attempt to use a Foldy-Wouthuysen-type Hamilton
in a band structure calculation has been made by Fehren
and Schmidt,8 who developed a semirelativistic procedu
for the spline APW~SAPW! method.14 The SAPW basis se
includes both plane waves and potential-independent o
als, whose radial parts are spline functions. To avoid
unbounded matrix elements of the mass-velocity term,
authors replaced the combinationp̂22a2p̂4/4 with the posi-
tive definite operator

2

a2
~A11a2p̂221!. ~6!

A direct application of the operator would require a conv
gent expansion of the basis functions in terms of eigenfu
tions of the kinetic-energy operator. Similarly to the meth
of Hess,13 the authors change to a new radial-basis set
diagonalizes the operatorp̂2 in the subspace of spline-radia
functions.

In contrast to GTO or SAPW methods, the strategy in
linear methods is to include only a small number
potential-adjusted radial basis functions, namely, the s
tions of Eq.~1! and their energy derivatives. Routine calc
lations are performed with 2–4 functions per angular m
mentum channel—compare with 33–65 spline functions
the SAPW. With their modest radial basis sets the lin
23511
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methods cannot provide a decent approximation to the
netic energy eigenfunctions~i.e., Bessel functions!, which
calls for a technique that does not involve ap̂2 diagonaliza-
tion scheme. At the same time, in view of the limited var
tional freedom inside the atomic sphere, one can avoid
problem of the unboundedp̂2 operator by restricting the rela
tivistic corrections to the interior of the atomic spheres.

In Sec. II, our approximation to the Foldy-Wouthuyse
Hamiltonian is presented and compared to the method
Fehrenbach and Schmidt. We describe the radial basis s
the ELAPWk•p method in Sec. III. The computational pa
rameters of the band structure and dielectric matrix calcu
tions are presented in Sec. IV. Optical properties of Pd
Pt in a wide photon energy region are discussed in Sec.

II. SEMIRELATIVISTIC HAMILTONIAN

In order to restrict the effect of the mass-velocity term
the interior of the atomic spheres and at the same time k
the Hamiltonian matrix Hermitean, we replace the opera
p̂4 with a ‘‘screened’’ operator

p̂4→x~r !p̂4x~r !. ~7!

Herex(r ) is a smooth function that equals unity atr 50 and
vanishes with its derivative at the sphere radiusS. In actual
calculations, the screening functionx(r ) was equal to unity
within a sphere of radiusR050.7S, which is about 1 Å ,
and, forr .R0, it was

x~r !512
1

4 FcosS r 2R0

S2R0
p D21G2

.

We would like to use the solutions of Eq.~1! as radial
basis functions also forl 50, in which case the functions
diverge asr 2Z2a2/2 with r→0 ~hereZ is the atomic number!.
This causes a problem in treating the singular nucleus c
tribution to the Darwin term. We circumvent the difficulty b
introducing a finite radius of the nucleus. The radius is d
termined by the condition that for a given energyE the ex-
pectation value of our Hamiltonian for the solution of Eq.~1!
coincide with this energy. Then we use the same radius
all functions. The results are practically independent of
choice of the energyE; usually we choose it in the valence
band energy region.

To appraise the quality of the modified FW Hamiltonia
we have calculated the scalar relativistic energies of the c
states of Ag using the traditional radial basis set of
LAPW method10 so that the deviations from the energi
obtained with the Koelling-Harmon technique7 stem solely
from the inaccuracy of the Hamiltonian. In Table I we com
pare our results to those of Fehrenbach and Schmidt8 ob-
tained with the SAPW method. To understand the diff
ences between LAPW and SAPW we compare also
nonrelativistic energies~the first two columns!. Here the
Hamiltonian is just p̂21V(r ), and the energy deviation
~from the exact scalar relativistic energies! in SAPW are
overestimated by 2 –10% in comparison to the LAPW
sults. This is apparently due to the variational character
2-2
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TABLE I. Semirelativistic and nonrelativistic energies of some core states of Ag by the SAPW~Ref. 8!
and LAPW methods. Presented are the differences~in Ryd! between the exact scalar relativistic~Koelling-
Harmon! energies and those obtained with the nonrelativistic Hamiltonian~subscript N) or a Foldy-
Wouthuysen-like Hamiltonian~subscript FW!. In the latter case, SAPW employs the expression~6! for the
mass-velocity term, and LAPW the approximation~7!. In LAPW, for a given Hamiltonian, one can choos
radial basis functions in two different ways: the FW results are shown for both the nonrelativistic fun

~superscript N! and the scalar relativistic ones~superscript R!. The columnsDĖFW
R and DĖFW

N show the

expectation values of the energy derivative functionsḟn l , see Eq.~9!.

SAPW LAPW SAPW LAPW LAPW LAPW LAPW
DEN DEN DEFW DEFW

R DEFW
N

DĖFW
R DĖFW

N

2p 7.248 6.798 0.495 -0.146 0.183 0.357 6.499
3s 3.581 3.510 -4.650 0.000a 0.348 0.024 3.503
3p 1.675 1.570 -0.089 -0.044 0.046 0.013 1.563
3d 0.392 0.378 -0.079 -0.006 0.001 0.001 0.371
4s 0.710 0.689 -0.903 0.000a 0.072 0.000 0.676
4p 0.305 0.273 -0.014 -0.008 0.009 -0.001 0.257

aThe nucleus radius was determined for that energy.
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the SAPW radial functions: with only 33–65 spline bas
functions the asymptotics atr→0 seems to be not accura
enough.

The next two columns compare two versions of the se
relativistic Hamiltonian, namely, the LAPW results based
the approximation~7! and their SAPW counterparts obtaine
with the operator~6!. The errors by the two methods are
the same order of magnitude—except fors states, for which
the method of Fehrenbach and Schmidt is not applica
The problem withs states is caused by the failure of th
variational procedure to correctly treat thed function coming
from the Darwin term. It should be noted, that thed function
can be straightforwardly included into the Hamiltonian if t
basis set is composed of nonrelativistic radial solutio
which are finite at the nucleus. This approximation giv
much better results than the SAPW, as one can see from
fifth column,DEFW

N .
At first glance, using nonrelativistic radial solutions i

stead of scalar relativistic ones, does not actually lower
quality of results: the errorsDEFW

N and DEFW
R are close in

magnitude, but have opposite sign. However, it is import
to have relativistic solutions for the energy derivative fun
tions ḟ. The functionḟ l satisfies the equations

~Ĥr2E!ḟ l~r !5f l~r !, ^f l uḟ l&50, ~8!

and its energy expectation value is equal toE

E2
^ḟ l uĤr uḟ l&

^ḟ l uḟ l&
5DĖ50. ~9!

The last two columns demonstrate that when the operatoĤr
is taken to be the FW Hamiltonian this equation is fulfille
with a good accuracy for relativisticḟ, but not for the
nonrelativistic ones. Indeed, the atomiclike states decay
exp(2rA2E)/r for large r, and the functionḟn l , which
asymptotically obeys the equation (Ĥr2E)ḟn l50, grows as
exp(rA2E)/r . Thus, far from the nucleus the nonrelativist
23511
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ḟn l function differs from the relativistic one just because t
energyE is different, and it is the large radii that give th
dominant contribution to the energy integral~see Fig. 1!. The
DĖFW

N values are seen to be very close to those in theDEN

column, which reflects the ‘‘short-range’’ character of th
relativistic corrections.

Owing to the neglect of the terms of higher order ina in
the FW Hamiltonian~5!, the error grows with increasing th
atomic number. Apart from that, an error is introduced
treating the spin-orbit coupling when the dependence of
radial functions upon the quantum numberk is neglected,15

i.e., the so-called second-variational treatment is adop
We include the spin-orbit interaction only inside the atom
spheres in the form derived by Koelling and Harmon7

1

@2cM~r ;E!#2

1

r

dV~r !

dr
ŝ•L̂ , ~10!

FIG. 1. Scalar relativistic and nonrelativistic 3p radial functions
of Ag.
2-3
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E. E. KRASOVSKII AND W. SCHATTKE PHYSICAL REVIEW B63 235112
the relativistic massM (r ;E) @see Eq.~4!# being energy in-
dependent in our calculations and taken atE50.

In Fig. 2 we compare band energies of the fcc Pb cal
lated with our version of the FW Hamiltonian to our K
results and to the LAPW-KH and relativistic APW~RAPW!
energies of MacDonaldet al.15 The errors due to our sem
relativistic approximation do not exceed 15 mRy; they a
smaller than the discrepancies between the KH results o
present work and of MacDonaldet al., which are apparently
caused by the differences in crystal potential and in basis
The p1/2 states are known to suffer stronger than thep3/2
states from the neglect of thek dependence of the radia
function,15 compare, e.g.,G6

2 andG8
2 energies in LAPW and

RAPW. Again, this error is seen to be larger than the in
curacy of the FW approximation. Ford states of 5d metals,
the errors are smaller~within 10 mRy!, which is to be ex-
pected as thed electrons do not approach the nucleus
closely as thep electrons do.

We infer from the above discussion that the approxim
tion to the Foldy-Wouthuysen Hamiltonian that involves t
‘‘screening’’ of the mass-velocity term, Eq.~7!, and the fi-
nite nucleus radius for the divergents radial functions is
sufficiently accurate to be used in spectroscopic calculatio

III. RADIAL SET OF THE ELAPW-k "p METHOD

The k•p representation of the orbitalF lm(r ) is
F lm(r )exp@2i„kÀk0…r #. Let us perform the angular momen

FIG. 2. Comparison of the band energies for fcc Pb obtai
with the FW-type Hamiltonian~full triangles left! to those by the
KH technique with the same basis set~full triangles right! and to the
results of MacDonaldet al. ~Ref. 15! by the KH technique~open
triangles left! and by the relativistic APW~open triangles right!.
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tum decomposition of the factor exp@iDkr #, expand the
Bessel functions into the Taylor series of the argumentDkr,
and keep only the radial functions proportional to the fi
and second power ofDk. This brings five new types of or
bitals to be included in constructing the trial functio
namely two orbitals of the first order inDk, F l(r )rYl 61

m ( r̂ ),

and three orbitals of the second order,F l(r )r 2Yl
m( r̂ ) and

F l(r )r 2Yl 62
m ( r̂ ). The orbitals we intend to reproduce a

close to linear combinations offn l and ḟn l , so we include
both F l5fn l andF l5ḟn l orbitals.

Figure 3 illustrates the effect of the functions of the fir
and the second order inDk on the quality of the semicore 3p
states of Cu. The inclusion of the functions up to the seco
order provides an acceptable accuracy within theDk radius
of 0.7(2p/a) ~dotted curves!, i.e., the entire irreducible Bril-

d FIG. 3. Scalar relativistic 3p bands of Cu. Solid lines show th
exact ELAPWE(k) curves. In thek•p calculations the reference
point k0 is at G. In the lower panel the dot-dashed lines show

attempt to solve thek•p problem with onlyf and ḟ functions,
namely the radial solutions with the number of nodes from 1 to
for s, from 0 to 6 forp and ford, and from 0 to 4 forf functions.

One ḟ function per l channel was included. The dashed lin
present the ELAPW-k•p results with only the functions of the

first order in Dk, F l 51(r )rYl 61
m ( r̂ ), added to the minimal basis

set ~i.e., to the traditionalf and ḟ pairs, see Ref. 10!. Extending

the set by the second-order functions,F l 51(r )r 2Yl
m( r̂ ) and

F l 51(r )r 2Yl 62
m ( r̂ ), results in the dotted lines. The two bars in th

lower panel show the distance from the center of gravity of the
IBZ to its most remote point~point G). In the upper panel, the
dotted curves result from a calculation in which the radial basis
was further extended byf functions to take into account correc
tions of order higher than second inDk.
2-4
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TABLE II. Energy parameters and radial basis set of the ELAPW-k•p method for Pt. The radial functions
are arranged in pairs; each one~except for the seconds pair! comprises a solutionf and its energy derivative

ḟ, which describe one logarithmic derivative branch.10 The Pt 6s branch is rather narrow, so we had
include also the 7s one in order to describe the required energy region. Energies are given in Ryd
relative to the muffin-tin zero.

l 50 l 51 l 52 l 53 l 54

En
I E5s526.59 E5p523.24 E5d50.45 E4 f524.26 E5g53.47

En
II E6s50.30 E6p51.71 E6d54.25 E5 f53.47

En
III E7s56.52

1st pair f5s ,ḟ5s f5p ,ḟ5p f5d ,ḟ5d f4 f ,ḟ4 f f5g ,ḟ5g

2nd pair f6s ,f7s f6p ,ḟ6p f6d ,ḟ6d f5 f ,ḟ5 f f5 f ,ḟ5 f•r
3rd pair f5p ,ḟ5p•r f5d ,ḟ5d•r f5 f ,ḟ5 f•r f5d ,ḟ5d•r
4th pair f5p ,ḟ5p•r 2
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louin zone~IBZ! is covered if the reference point is placed
its center of gravity.

In the original formulation of the ELAPW-k•p method,3

the idea was to take advantage of the fact that the funct
F l r

N can be expanded in a convergent series of the ra
solutionsfn l 8 for a givenl 8. ~Indeed, the functionsfn l 8 with
the same logarithmic derivativeDl 8 are eigenfunctions of a
Hermitean operator, and a function with a different logari
mic derivative, e.g.,ḟn l 8 must be added to the set to brin
the functionF l r

N to that Hilbert space.! With a small num-
ber of functionsfn l 8 and ḟn l 8 the quality was satisfactory
for the extended states of the conduction band,3 however, for
semicore states or thed states of noble metals the seri
converges very slowly. In practice, the accuracy cannot
further increased by merely extending the radial basis
with more fn l 8 , which is demonstrated by the dot-dash
curves in Fig. 3.

Our experience shows that for valence-band states—e
in transition and noble metals—it is necessary to inclu
only the functions of the first order inDk, and the higher-
order corrections can be performed by extraf and ḟ func-
tions. Extra radial solutions are anyway present in wide
ergy range calculations because several logarith
derivative branches10 are to be described.

IV. COMPUTATIONAL METHODOLOGY

The self-consistent potential of Pd and Pt metals was c
structed within the local density approximation~LDA ! of the
density functional theory with the full-potential augment
Fourier components technique described in Ref. 16.
Kohn-Sham equations were solved with the ELAPW-k•p
method. The basis set included 89 energy-independ
APW’s ~energy cutoff 13.7 Ry!, and the extension of the
radial basis set contributed another 98 basis functions.
extension was introduced following the prescriptions of
preceding section; an example of the radial basis set for P
presented in Table II. The Brillouin zone~BZ! integrations
were performed by the tetrahedron method with a mesh
413k points that divides the BZ into 82 944 tetrahedra, 18
of which are inequivalent.
23511
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The dielectric matrix was calculated in the framework
the random phase approximation~RPA!,17,18 the effects of
exchange and correlation~XC! in the induced fields were
taken into account within the time-dependent adiabatic LD
~TDLDA !.19 The matrix elements of the exp@iGr # operator
were calculated using a decomposition of the all-elect
wave functions into 11 935 plane waves. A detailed desc
tion of the methodology can be found in Ref. 2. Th
«GG8(v) matrix was computed for five coordination she
~51 G vectors!. The real parts of the matrix elements we
determined out of their imaginary parts by the Krame
Kronig integration with the energy cutoff\vmax5150 eV
~60 bands in the unoccupied part of the energy spectrum
to be considered!.

As expected, owing to the neglect of thek dependence of
the radial functions, the spin-orbit splitting of semicorep
bands was considerably underestimated: it was 4.3 eV fo
4p and 13.5 eV for Pt 5p states, whereas the fully relativisti
atomic calculations give 4.5 and 15.0 eV, respectively. T
splitting of Pt 4f states was reproduced with a better acc
racy: 3.40 eV instead of 3.46 eV in the atomic calculatio
We considered the Pd 4p and Pt 4f errors tolerable, but in
the case of Pt 5p, we had to interfere: at the stage of calc
lating the spectral functions we shifted the 5p1/2 band by 1.2
eV to lower energies and the 5p3/2 by 0.3 eV to higher en-
ergies in order to bring their positions relative to the 4f 5/2
and 4f 7/2 bands in agreement with the fully relativistic ca
culation for a free atom.

V. OPTICAL PROPERTIES OF Pd AND Pt

Let us first consider the photon energy range below
absorption edges of the semicorep states. Theab initio mac-
roscopic dielectric function«(v) as well as the normal inci-
dence reflectivity and the electron-energy-loss spe
~EELS! for Pd and Pt are shown in Figs. 4 and 5, resp
tively. The optical spectra are compared to the results
rived by Weaveret al.1 from different measurements; th
dots in both figures are taken from the tabulation in Ref.

As in our previous calculation2 for Nb we do not observe
a strong effect of local fields below the semicore excitat
energies. Only in the EELS spectrum, which is very sensit
2-5
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to small variations of the dielectric function, the effect
visible. In the lowermost panel of Fig. 4 we show also t
spectrum without the local field effects, i.e., the I
@2«00(v)21# curve ~dashed line!. The peak positions are
seen to remain unchanged, but the difference in inten
steadily grows with increasing the energy.

We did not observe any tangible effect of the spin-or
coupling on the spectra of both Pd and Pt below 40 eV. O
calculations are in excellent agreement with available opt
data,20–23and they do not reveal any inadequacy of the o
electron approach—the discrepancies between theory an
periment seem to be within the experimental uncertain
The positions of the theoretical EELS maxima agree sa
factory with the energy-loss measurements discussed in
24, but above 10 eV the intensity and overall shapes of
spectra rather disagree: calculated EELS of Pd and Pt
similar, whereas their measured counterparts are very di
ent.

It should be kept in mind that apart from the approxima
RPA-TDLDA treatment of the exchange and correlation, o
calculation, as well as the majority of the state-of-the-
calculations, suffer from the neglect of many-body effects

FIG. 4. Reflectivity R(v), macroscopic dielectric function
«(v), and loss function Im@2«(v)21# of Pd. Solid lines: theory,
dashed line: theoretical loss function with local field effects n
glected, dots: experiment of Ref. 1.
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the band structure itself. A correct~quasiparticle! band struc-
ture would have resulted from a one-particle equation t
includes the many-body effects through the exact self-ene

operatorŜ,25

@Ĥ11Ŝ~E!#uc&5Euc&, ~11!

whereĤ1 describes the kinetic energy and Coulomb inter

tion, and the operatorŜ is, in general, energy dependen

nonlocal, and not Hermitian. In our calculations,Ŝ is re-
placed with a local exchange-correlation potentialvxc(r ) ob-
tained within the LDA. At the present-day level of the man
body theory it is not possible toa priori estimate the error of
the simplified one-electron calculations, and the compari
with the experiment remains the main argument in judg
on the adequacy of approximations. It is therefore import
that theab initio results be produced with numerical acc
racy high enough to reveal the limitations of the theory a
that the parameters affecting the peak positions and inte
ties be clearly understood.

In this respect, a recent study of the EELS of Pd
Fehrenbach26 needs to be commented on. The spectrum
\v,30 eV was obtained with the SAPW method and
mixed basis representation of the inverse dielectric ma

-

FIG. 5. Reflectivity R(v), macroscopic dielectric function
«(v), and loss function Im@2«(v)21# of Pt. Solid lines: theory,
dots: experiment of Ref. 1.
2-6
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was used. It is claimed in Ref. 26 that ‘‘even at low freque
cies it is necessary to include a large part of the spectrum
in order to describe the structure of EELS correctly.’’ In th
work 500 conduction bands were included~energy cutoff of
several hundred Rydbergs! and the work by Mazinet al.27

was criticized for using only 16 valence and conducti
bands. Our experience does not support that conclusion.
energy cutoff corresponding to the 16 band is about 45
so the contribution from the omitted part of the spectrum
the Kramers-Kronig integrals for\v,30 eV is a slowly
varying function and it does not strongly affect the pe
positions. Moreover, in our 16-band calculation for Pd a
the intensity of the Im@2«00(v)21# spectrum changed onl
slightly, so that the ‘‘underconverged’’ curve lied betwe
the solid and the dashed lines in the lowermost pane
Fig. 4.

The majority of the measurements locate the low-ene
plasmon peak in Pd near 7.6 eV~Refs. 1,20,21,24!—in per-
fect agreement with our calculations. The nonrelativistic c
culations by Fehrenbach26 and by Maksimov and
co-workers27,28 @with the linear muffin-tin orbitals method
~LMTO!# give the plasmon energy at 8.2 and 8.4 eV, resp
tively. The theoretical EELS curves of Refs. 26 and 28 are
poor agreement with available experiments.29 In Ref. 26
many-body effects or relativistic corrections not included
the calculations were suggested as a possible source o
disagreement. According to our calculations, a complete
clusion of relativistic effects does not strongly change
EELS curve: the plasmon moves from 7.6 to 7.9 eV and
maximum at 17 eV becomes less pronounced. We conc

FIG. 6. Absorption coefficient of Pd. Solid lines: theory, dott
line: experiment of Weaver and Olson~Ref. 23!.
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that both of the previous calculations suffered from a lack
numerical accuracy. In LMTO the main problem is known
come from the small basis set, which is especially ineffici
in the interstitial region, and in SAPW it apparently com
from the variational character of the radial functions~see the
discussion in Sec. II!.

Optical data for far-UV frequency range—the absorpti
coefficientm(v)—are shown in Figs. 6 and 7 for Pd and P
respectively. The figures illustrate the strong effect of t
nondiagonal dielectric response18 on the optical absorption
by semicore excitations. In Pd, the local fields redistrib
the absorption intensity of the transitions from the 4p1/2
~binding energy 52.7 eV! and 4p3/2 states~48.4 eV! into two
maxima at 55.5 and 69 eV—in a satisfactory agreement w
the measurements by Weaver and Olson.23 For Pd, the rela-
tivistic splitting of the 4p band has proved unimportant: ow
ing to the absence of narrow final-state bands, the width
the 4p1/2 and 4p3/2 partial contributions to the«GG8(v)
curves are much larger than their spin-orbit splitting.

In both Pd and Pt, the shape of them(v) curves on a large
energy scale is determined by thep3/2 excitations. The Pt
5p3/2 binding energy in our calculation was 48.7 eV—ve
close to the Pd 4p3/2 energy of 48.4 eV. Because of that, th
spectra between 40 and 100 eV are rather similar. In cont
to the measurements on Pd,23 the experimentalm(v)
data30,31 on Pt resolve an interesting double structure arou
72 eV. The shape of the structure is determined by the o
lapping contributions from 5p1/2, 4f 5/2, and 4f 7/2 bands~the

FIG. 7. Absorption coefficient of Pt with~solid line! and without
~dashed line! local field effects. Dots are the experiment of Die
et al. ~Ref. 31!. Triangles show the positions and relative magnitu
of maxima ~triangles up! and minima~triangles down! in the ex-
periment of Haenselet al. ~Ref. 30!. ~The triangles are shifted
downwards by 53105 cm21 to avoid the overlap with the othe
curves in the picture.! Longer bars show the LDA-derived energie
of the semicore bands, and shorter bars the XPS results of W
theim and Walker~Ref. 32! and Wertheim~Ref. 33!.
2-7
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energy location of the bands in our calculation is shown
longer bars in Fig. 7!. Although the energy location and th
separation of the two peaks around 72 eV in the meas
ments by Haenselet al.30 ~triangles in Fig. 7! and by Dietz
et al.31 ~dots! disagree by 0.5–1 eV, they both agree in th
the experimental structures—especially the minima—
much more pronounced than in our calculations.

Presumably, we are here confronted with the many-b
effects not included in our calculations. It should be no
that our calculated binding energies are in disagreement
the values derived from x-ray photoelectron spectrosc
~XPS! measurements by Wertheim and Walker32 for Pt 4f 7/2
and 4f 5/2 bands, 71.2 and 74.6 eV, and by Wertheim33 for
5p3/2 and 5p1/2 bands, 51.9 and 66.9 eV. The XPS data
displayed in Fig. 7 by shorter bars. Although the experim
tal binding energies cannot be directly associated with
one-particle energies entering the RPA expression18 for the
dielectric matrix, the deviations of the LDA energies fro
the XPS data give the order of magnitude of the theoret
uncertainty. It is interesting to study the effect of such c
rections on the absorption spectra. We have recalculated
m(v) curve with the energies of the semicore states chan
so as to coincide with the XPS data. As can be expected
result is that the minimum at 49 eV moves to higher energ
away from its measured position. On the other hand,
situation around 72 eV considerably improves: the mini
acquire the experimentally observed sharpness and the s
and energy location of the double structure now perfec
accord with the experiment of Dietzet al.31 ~see Fig. 8!.

One can see that by manipulating the band energies o
localized states one can bring the theoretical spectrum
rather close agreement with experiment over the entire h
energy spectral range. Most important is that cannot
achieved without taking into account the local field effec

FIG. 8. Absorption coefficient of Pt calculated with the energ
of the semicore bands changed so as to agree with the XPS da
Refs. 32 and 33~shown by vertical bars!. Solid line is theory with
and dashed line without local fields. Circles are the experimen
Dietz et al. ~Ref. 31!.
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compare the solid and the dashed curves in Fig. 8. The
crepancies between theab initio theory ~ Fig. 7! and the
experiment can be ascribed to the LDA potential being e
ployed as a self-energy operator, Eq.~11!. However, since it
only causes rigid band shifts, the XC potential of the LD
appears to be a plausible first guess for the self-energy.
possible that a more accurate prescription for the XC ope
tor, which would exclude the electron self-interaction34

would lead to a semicore band structure more appropr
also for optical properties. Indeed, the more localized
states the stronger the self-interaction corrections, and in
case one can expect the 4f states to be more strongly shifte
from their LDA positions than the 5p states—that sort of
correction might be needed to reproduce the experiment

VI. CONCLUSIONS

The inclusion of radial functions coming from the produ
F lm(r )exp@2i„kÀk0…r # into the basis set of the ELPAW
k•p method considerably increases the accuracy of
method and makes it possible to treat localized semic
states within thek•p formalism.

We have developed an approximation to the semirela
istic Foldy-Wouthuysen Hamiltonian that is applicable
such basis sets and showed its accuracy to be acceptab
testing the technique on Ag and Pb metals. The two meth
ological developments make it possible to perform accur
relativistic calculations of the dielectric matrix and optic
properties of crystals in a wide photon-energy range incl
ing the excitations of deeply lying semicore electrons.

We have calculatedab initio the dielectric matrices for Pd
and Pt metals within the RPA-TDLDA approach in the ph
ton energy range up to 100 eV. We have not observe
strong effect of the microscopic fields on the optical co
stants of the metals below the excitation energies of
semicore states. For the semicore excitations, the nondi
nal dielectric response is essential: both in Pd and Pt
local fields cause a decrease of the absorption intensity
about 50% and dramatically change the shape of the spe
on a large energy scale to bring the theoretical curves in
good agreement with the experiment both in the peak p
tions and in intensity.

The absorption minima at;49 eV in both metals mark
the onset of the transitions from the semicorep3/2 states. The
fine structure of them(v) spectrum of Pt between 68 and 7
eV is caused by the overlapping contributions from t
5p1/2, 4f 7/2, and 4f 5/2 excitations. Our calculations have no
revealed an inadequacy of the LDA-derived Pt 5p or Pd 4p
bands to optical properties, whereas for the Pt 4f bands the
self-energy effects not included in the calculation have b
found important. The deficiency of the Pt 4f energies can be
corrected by shifting the 4f band by;6 eV to lower ener-
gies, the manipulations of one-electron energies being n
essarily accompanied by the recalculation of the full diel
tric matrix. Thereby the entire energy range up to 100
turns out to be well described by the one-electron theory

s
of

f

2-8



lo
nt

ein-

ce

SEMIRELATIVISTIC TECHNIQUE FORk•p . . . PHYSICAL REVIEW B 63 235112
ACKNOWLEDGMENTS

The authors benefited from discussions with A. Per
and F. Starrost and are very grateful for their comme
ti

.
lid

C

B

23511
v
s.

Work was supported by the Deutsche Forschungsgem
schaft, Forschergruppe DE 412/21. One of us~E.E.K.! ac-
knowledges the support of the Austrian Ministry of Scien
under Grant No. GZ 45.446.
, in

n-

n-

8 is
hed
ers

.
ate

s

1J. H. Weaver, C. Krafka, D. W. Lynch, and E. E. Koch,Physics
Data, Optical Properties of Metals18-1 ~H. Behrens and G.
Ebel, Fachinformationszentrum Energie-Physik-Mathema
GmbH, Karlsruhe, 1981!.

2E. E. Krasovskii and W. Schattke, Phys. Rev. B60, 16 251
~1999!.

3E. E. Krasovskii and W. Schattke, Phys. Rev. B56, 12 874
~1997!.

4T. L. Loucks, Phys. Rev.139, A1333 ~1965!.
5V. V. Nemoshkalenko, A. E. Krasovskii, V. N. Antonov, Vl. N

Antonov, U. Fleck, H. Wonn, and P. Ziesche, Phys. Status So
B 120, 283 ~1983!.

6V. Theileis and H. Bross, Phys. Rev. B62, 13 338~2000!.
7D. D. Koelling and B. N. Harmon, J. Phys. C10, 3107~1977!.
8G. M. Fehrenbach and G. Schmidt, Phys. Rev. B55, 6666~1997!.
9J. C. Boettger, Phys. Rev. B57, 8743~1998!; J. C. Boettger,ibid.

62, 7809~2000!.
10O. K. Andersen, Phys. Rev. B12, 3060~1975!.
11L. L. Foldy and S. A. Wouthuysen, Phys. Rev.78, 29 ~1950!.
12M. Douglas and N. M. Kroll, Ann. Phys.~N.Y.! 82, 89 ~1974!.
13B. A. Hess, Phys. Rev. A33, 3742~1986!.
14H. Bross and G. M. Fehrenbach, Z. Phys. B: Condens. Matter81,

233 ~1990!.
15A. H. MacDonald, W. E. Pickett, and D. D. Koelling, J. Phys.

13, 2675~1980!.
16E. E. Krasovskii, F. Starrost, and W. Schattke, Phys. Rev. B59,

10 504~1999!.
17H. Ehrenreich and M. A. Cohen, Phys. Rev.115, 786 ~1959!.
18 S. L. Adler, Phys. Rev.126, 413 ~1962!; N. Wiser, ibid. 129, 62

~1962!.
19S. P. Singhal and J. Callaway, Phys. Rev. B14, 2347~1976!; E.

K. U. Gross and W. Kohn, Phys. Rev. Lett.55, 2850~1985!.
20R. C. Vehse, E. T. Arakawa, and M. W. Williams, Phys. Rev.
k

i

1, 517 ~1970!.
21J. H. Weaver, Phys. Rev. B11, 1416~1975!.
22J. H. Weaver and R. L. Benbow, Phys. Rev. B12, 3509~1975!.
23J. H. Weaver and C. G. Olson, Phys. Rev. B14, 3251~1976!.
24J. Daniels, C. v. Festenberg, H. Raether, and K. Zeppenfeld

Optical Constants of Solids by Electron Spectroscopy, edited by
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