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Quantum Monte Carlo study of the one-dimensional ionic Hubbard model
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Quantum Monte Carlo methods are used to study a quantum phase transition in a one-dimensional Hubbard
model with on-site interactionU and a staggered ionic potential (D). Using recently formulated methods, the
electronic polarization and localization are determined directly from the correlated ground state wave function
and compared to results of previous work using exact diagonalization and Hartree-Fock. We find a transition
from a symmetric band insulator to a broken-symmetry bond ordered~BO! phase as the ratio ofU/D is
increased, with a metallic point at the transition. Since it is known that atD50 the usual Hubbard model is a
Mott insulator ~MI ! with no long-range order, we have searched for a second transition to this state by~i!
increasingU at fixedD and ~ii ! decreasingD at fixedU. We find no transition from the BO to MI state, and
we propose that the symmetric MI state exists only atD[0.
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I. INTRODUCTION

Strongly correlated systems of interacting electrons l
to many of the most interesting phenomena observed in s
state physics.1 As a function of the interaction strength, the
can be quantum phase transitions1 characterized by an orde
parameter with the possible development of long-range o
and a transition to a broken symmetry state. Interactions
also lead to ‘‘Mott insulators’’~MI ! and to metal-insulator
transitions.2 An important question is whether or not in th
thermodynamic limit a Mott insulator must be associa
with a phase transition that is accompanied by a broken s
metry and a corresponding order parameter. In his orig
work, Mott3 argued that the insulating character did not d
pend upon an order parameter. On the other hand, Sl4

emphasized the relation of the insulating behavior to the l
range order, and in many cases it is known that the MI s
must be accompanied by a broken symmetry.5

To address such issues theoretically we must have m
ods that can clearly distinguish metals from insulators, i
the ability to transport charge6–8 vs localization of the
electrons.8 Insulators at absolute zero cannot transport a
trary amounts of charge macroscopic distances across
bulk; however, the center of electronic charge can shift
response to external fields, which is described in terms
changes in polarization.6,7 The polarizability is characterize
by the degree of electronic delocalization8 which increases
with the proximity to the metallic state. Recently, there ha
been new developments defining macroscopic polariza
and localization in terms of the insulating ground state wa
function.9–15 These theories formulate the polarization a
localization in terms of Berry’s phases16 which can be cal-
culated using ‘‘twisted boundary conditions’’ or in terms
the expectation value of an exponentiated operator. S
twisted boundary conditions have been applied in the pas
study metals and approach metal-insulator transitions f
the metallic side.17–19,8With the recently developed method
for insulators, there are now complementary tools15 to pro-
vide quantitative information on the divergence of the loc
ization length as one approaches the metal-insulator tra
tion from the insulating side.
0163-1829/2001/63~23!/235108~14!/$20.00 63 2351
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Generalized Hubbard models20,21 are well suited for stud-
ies of fundamental issues regarding metals and insulators
cause they are simple models that exhibit a wide range
behaviors depending upon the parameters in the models.
simplest of all, the original Hubbard model with an on-s
interactionU and nearest neighbor hoppingt in one dimen-
sion ~1D!, was solved exactly by Lieb and Wu.22 Their paper
conveys the point that there is no change of spatial symm
and no phase transition at any positiveU. At half-filling the
model is metallic atU50, whereas forU.0 a gap exists to
charge excitations but no gap exists to spin excitations. T
is commonly referred to as the MI state, but in this case th
is no ‘‘Mott transition.’’ At any other filling, the model is
always metallic. There is never a state that would be ca
an ordinary band insulating~BI! state. However, in system
of higher dimensionality (d>2), a MI state is always ac
companied by a broken symmetry.5

Many new possibilities emerge for generalized Hubba
models in 1D. In this paper we study the half-filled ionic 1
Hubbard model with two inequivalent sites, proposed
Nagaosa23 and later by Egami24 as a model ferroelectric
Since there are two electrons per cell, one expects a tra
tion to occur from an ionic band insulator to a strongly co
related Mott insulator asU is increased. Evidence for such
transition was found in exact-diagonalization calcu
tions,13,10 where the electronic polarization was found
jump abruptly between two discrete values fixed by the
istence of two centers of inversion at the two sites. Su
behavior has been termed a ‘‘topological transition.’14

These calculations find that the model has a metallic po
separating two symmetric insulating phases and that a fe
electric polarization results only if the atomic sites are d
placed from the centers of inversion.

However, recently Fabrizioet al.25 have proposed tha
this model will instead exhibit two quantum phase tran
tions: one from a BI state to a long range bond ordered~BO!
state, predicted to be in the Ising universality class, an
second from the BO to the MI state, predicted to be
Kosterlitz-Thouless transition. Such transitions to BO sta
have recently been found in 1D Hubbard models with e
tended interactions (U2V) by Nakamura.26,27 The BO state
©2001 The American Physical Society08-1
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is a broken symmetry state in which the system becom
ferroelectric due strictly to electron-electron interactio
even if all the atoms are at centers of inversion.

During the course of the present work, two preprints ha
reported calculations of charge and spin gaps in
model.28,29 Even though each work uses the density ma
renormalization group~DRMG! that allows studies of very
large 1D systems, each group reports great difficulty in
trapolating to large size the small spin gaps and the
papers come to opposite conclusions regarding the exist
of the BO state.

The purpose of this paper is to study the half-filled ion
Hubbard model using a method that~i! will treat electron
correlation exactly and~ii ! scale to large systems need
near second-order phase transitions. For these reasons w
quantum Monte Carlo30~QMC! which in principle is exact
since there is no ‘‘fermion sign problem’’ because electro
of the same spin never exchange in this model. This is du
the fact that there is only nearest-neighbor hopping and th
cannot be two electrons of the same spin on any site.
only qualifications to this statement in our methods are t
there must be nonzero overlap between our trial function
the true ground state, and the simulation must be capab
reaching the ground state in practice.

To our knowledge this is the first QMC study of polariz
tion and localization in any system. Of course, Monte Ca
simulations have been widely employed in studying me
insulator transitions and localization~see, for example, Refs
23,31–33!. The application here is to studyboth polarization
and localization. In particular, the present work is the fir
study of the ionic Hubbard model with systems large enou
to determine quantitatively the nature of the transitions a
whether or not there exists the spontaneously bond-ord
phase proposed by Fabrizioet al.25 Furthermore, if there are
indeed quantum phase transitions in the ionic mode
whereas it is known that there are none in the usual nonio
Hubbard model—then it follows that one must address
issue: Is a critical degree of ionicity required, or is the us
Hubbard model unstable to infinitesimal ionic perturbation
It is known34–37,33that the usual Hubbard model is unstab
to dimerization at allU. Thus a second question is does th
instability play a fundamental role in stabilizing the bon
ordered state?

The organization of the paper is as follows. In Sec. II,
introduce the model studied in this paper. In certain ca
depending upon the parameters of the Hamiltonian,
model is exactly soluble. We discuss the relevance of th
solutions to the more general case studied in this pape
Sec. III formulas for evaluating the electronic polarizati
and localization are presented. In Sec. IV, we introduce
quantum Monte Carlo~QMC! methods employed to evalua
expectation values and we describe their respective lim
tions. These are variational and Green’s function Mo
Carlo algorithms and the ‘‘forward walking’’ method fo
computing expectation values of operators that do not c
mute with the Hamiltonian. Our results are presented in S
V and comparisons are made with previous studies us
exact diagonalization and Hartree-Fock. In Sec. VI, we d
cuss the differences between our results and previous stu
23510
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and the consequences of our new findings.

II. THE MODEL

The generalized ionic Hubbard Hamiltonian23 is defined
by

Ĥ5Ĥ0~ t0 ,U !1Ĥ ion~D!1Ĥdim~x!, ~1!

whereĤ0 is the Hamiltonian of the usual Hubbard model

Ĥ0~ t0 ,U !5(
i ,s

t0~ci 11,s
† ci ,s1ci ,s

† ci 11,s!1U(
i 51

L

n̂i ,sn̂i ,2s .

~2!

Here ci ,s
† (ci ,s) creates~destroys! an electron of spins on

sites while n̂i ,s5ci ,s
† ci ,s is the density operator of electron

of spin s on sitei. The ionic term

Ĥ ion~D!5D(
i ,s

~21! i n̂i ,s , ~3!

consists of an on-site energy (6D) that alternates betwee
neighboring sites, which is intended to model the elect
static potential of cations and anions in an ionic mater
Although dimerization,per seis not a primary objective of
the present work, it is crucial to include a dimer term th
breaks the inversion symmetry and is defined with the
Schrieffer-Heeger form38

Ĥdim~x!5t0d B̂. ~4!

Hered5ax denotes a dimerization term in the Hamiltonia
$t i5t0@11(21)id#% that incorporates the effect of alte
nately displacing the atoms6x from their equilibrium posi-
tions @R( i )05 ia# and a is the linear electron phonon cou
pling constant. The operatorB̂ is the ‘‘bond order’’ operator

B̂5(
i

~21! i B̂i ; B̂i5(
s

~ci 11,s
† ci ,s1ci ,s

† ci 11,s!,

~5!

which is a sum of staggered hopping operators. We can
fine average values per cell, e.g.,

B5
2

N
^B̂&, ~6!

wereN is the number of sites andN/2, the number of cells.
~Fabrizio et al. refer to this as a ‘‘dimerization’’ operator
however, we will use the term ‘‘bond order,’’26 since it de-
notes a property of the electronic state and there may b
nonzero expectation value of the bond order^B̂& even if the
lattice is not dimerized.!

Exact analytic solutions for Eq.~1! exist in several limit-
ing cases. In the noninteracting case (U50), the electrons
fill the lowest energy band@E(k)#

E~k!56$D214t0
2@cos2~k!14d2 sin2~k!#%1/2 ~7!
8-2
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from k 5 0 to 6p/2a. In the caseD5x50 there is no gap
at the Fermi surface and the system is metallic, but for
finite D or x a gap is opened at the Fermi surface and
system is a band insulator. IfD50 and we perturb the sys
tem by adjustingxÞ0 the lattice is known to suffer the fa
mous Peierls instability39,40 and energetically favors dimer
ization.

Exact solutions in the presence of correlation (UÞ0) are
restricted to cases in which~i! there is no intersite coupling
(t50), ~ii ! there is a large displacement such thatd51 and
the lattice is completely deformed into an array of indep
dent dimers, or~iii ! the case of the usual Hubbard mod
where there is no ionic potential or lattice deformationD
5d50) for which there are exact analytic solutions22 for all
U. In the last case, the exact solution predicts that at h
filling the system becomes a Mott insulator for any nonz
U. There is no change of symmetry from the case ofU50
and in the limit of largeU/t0 the system reduces to th
Heisenberg spin model, with nearest-neighbor exchangJ
54t2U/(U224D2), which also has no long range order
spin gap in one dimension. The MI and BI regimes are co
monly distinguished from one another in literature on t
basis of spin-charge separation.41 In both cases there is a ga
to charge excitations but in the MI state the spin gap is z
while in the BI state both spin and charge gaps are nonz

The limiting cases~i! and ~ii ! are also instructive for ou
purposes. In the former (t050) there is a transition atD
5U from a singlet state with two electrons on the site w
on site energy2D, which is similar to a band insulator, to
state with one electron per site which has a spin on each
and is similar to a Mott insulator. Thus one might expec
transition from the BI state to some other phase asU is
increased even ift0Þ0. The second case~ii ! with d51 and
t0Þ0 always leads to a singlet ground state for the isola
dimers,43 which relates to the known result that one has
singlet state with a gap for both spin and charge excitati
for any degree of dimerization. Thus one can ask: doe
transition occur from the BI to MI regime asd→0 for U
Þ0? Is there a spontaneous25 bond-ordered phase? We sha
test these ideas with our QMC simulations applied to
general case where there are no exact analytic solutions

III. ELECTRONIC POLARIZATION AND
LOCALIZATION

The issues associated with calculating the electric po
ization in an extended system have a long, torturo
history.42,44 Only recently have formulas been devised th
express the polarization and localization of electrons dire
in terms of the ground state wave function.9,10,44One type of
formulation measures the change in polarization as a Ber
phase obtained by integrating over twisted boundary co
tions and an adiabatic parameter that characterizes the
lution of the system as it moves from one state to another9,10

This approach has also been extended to localization in
independent particle formulation45 and recently in a many
body formalism.15 An alternative approach has been dev
oped by Resta and Sorella11,12and others,14,15who expressed
the electronic polarization and localization in one dimens
23510
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in terms of the expectation value of a complex operator

^Ẑ&5 Kei (2p/L)(
i

xi L5K)
j

ei (2p/L)xj L , ~8!

where the average is taken with respect to a truly correla
many body wave function utilizing periodic boundary cond
tions ~PBC! sampled using one of the quantum Monte Ca
techniques discussed in Sec. IV.

In terms of^Ẑ& the polarization of the many body groun
state can be expressed as

^nPel&5 lim
L→`

e

2p
Im ln ^Ẑ&, ~9!

and a measure of the electronic delocalization is given b

^nX̂2&5 lim
L→`

2S L

2p D 2

lnu^Ẑ&u2. ~10!

These expressions are exact only in the limit of an infinit
large system, and in practice one measures each for incr
ingly larger supercells until convergence is met. Recen
Souzaet al.15 have shown that Eqs.~9! and ~10! are in fact
valid in a correlated many-body system and related this
mulation to that using twisted boundary conditions. Th
also demonstrated that the formulas relate directly to m
surable fluctuations of the polarization, thus validating t
two formulas as direct measures of electronic polarizat
and delocalization.

For our work we use quantum Monte Carlo techniques
evaluate Eqs.~9! and ~10! which involve expectation value
of quantities using wavefunctions that satisfy period
boundary conditions. This is a great advantage in QMC si
we can use the same methods developed for o
problems.30 The alternative approach using twisted bounda
conditions would require a change in the algorithms to us
‘‘fixed phase’’46,47 rather than a fixed node method. Such
approach would have important advantages, in particula
would allow calculations to be done on smaller supercell15

In the present study, however, we need to work with la
systems because of long correlation lengths near the p
transitions and thus it is convenient to use the standard m
ods.

IV. QUANTUM MONTE CARLO

Quantum Monte Carlo~QMC! methods48,30 make it pos-
sible to evaluate expectation values of operators in ma
body systems by stochastically sampling a probability dis
bution. In this paper we focus on two methods, variatio
Monte Carlo ~VMC! and Greens function Monte Carl
~GFMC!, that can be used to determine properties at te
perature equal zero. The space of integration is the set o
the electronic coordinatesR[$rW1 , . . . ,rWN%, which is
sampled by ‘‘walkers’’ which denote a set of configuratio
$R%. A random walk is generated by starting from an initi
configurationR0, from which new configurations are gene
ated by successively stepping to new random configuratio
8-3
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TIM WILKENS AND RICHARD M. MARTIN PHYSICAL REVIEW B 63 235108
e.g., using a generalized Metropolis method.49 This is done
by accepting or rejecting new configurations at each s
based upon a chosen acceptance function@P(R)#. After a
period of time the walk will stabilize such that the set
configurations visited$R% will be distributed according to
P(R).

A. Variational Monte Carlo

In VMC the expectation values are found for an arbitra
operator Ô with a variational trial wave function
@CT($a%,R)#, where $a% denotes a set of parameters th
can be optimized. The expectation value can be written
high-dimensional integral over coordinate positionsR

^Ô&VMC5

E CT~$a%,R!ÔCT~$a%,R!dR

E uCT~$a%,R!u2dR

5

E uCT~$a%,R!u2ÔL~R!dR

E uCT~$a%,R!u2dR
, ~11!

whereÔL(R)5ÔCT(R)/CT(R). The integral may be found
by sampling a set of points ($R%) distributed according to the
modulus of the wave function, generated by the Metropo
algorithm with uCTu2 as the acceptance function. VMC
easy to implement but is limited in accuracy by the form
the adopted wave function. In our workCT has the
Gutzwiller form50

~12!

which is a product of Slater determinants for each spin~thus
guaranteeing that the wave function is antisymmetric! and a
two body Jastrow correlation function that reduces the a
plitude of configurations with doubly occupied sites for
,g<1, thus lowering the interaction energy. The sing
body portion of Eq.~1! is parametrized byD8 andd8, which
means the orbitals used to construct the Slater determin
are obtained by diagonalizing the noninteracting (U50)
portion of the Hamiltonian @Ĥ(D8,d8)# and adjusting
(D8,d8) to optimal values that minimize the energy in E
~11! with respect toCT(g,D8,d8).

B. Green’s function Monte Carlo „GFMC … for discrete
systems

GFMC starts with the optimized VMC wave functio
CT(g,D8,d8) upon which a projection is applied to obta
an improved ground state. To illustrate the principles up
which this method depends, one can expandCT in terms of
the eigenstatesC i of Ĥ. Then the imaginary time propagato
acting uponCT has the form
23510
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e2t(Ĥ2E0)CT5e2t(Ĥ2E0)(
i

CiC i→C0C0 ~13!

provided thatt is taken to be large. The following is a sum
mary of the method developed by Haafet al.51 some of
which is used in the next section. For lattices this project
scheme takes advantage of the fact the spectrum ofĤ is
bounded so that one can use a Green’s function projecti

e2t(Ĥ2E0)→@12Dt~Ĥ2E0!#MuMDt5t . ~14!

The propagator acting upon the trial wavefunction now g
erates a series of functions

uCM&5@12Dt~Ĥ2E0!#MuCT&. ~15!

In this algorithm there is no time step error52 so long as
u@12Dt(Emax2E0)#u,1, whereEmax is the maximum eigen-
value of theĤ which is finite on a lattice. The exact groun
stateC0 is generated in the limitM→` so long as there is
nonzero overlap betweenC0 andCT .

By inserting the identity operator(RuR&^Ru between suc-
cessive applications of the projection operator, the wa
function at stepM can be expressed as51

CM~RM !5 (
RM21 , . . . ,R0

CT
21~RM !)

i 51

M

G~Ri ,Ri 21!CT
2~R0!.

~16!

The matrix elements of the Greens function between ne
boring points in configuration space is

G~Ri ,Ri 21!5
CT~Ri !

CT~Ri 21!
^Ri u@12Dt~Ĥ2E0!#uRi 21&,

~17!

where the factorCT(Ri)/CT(Ri 21) introduces importance
sampling.48 Since theG(Ri ,Ri 21) are not normalized to
one, they cannot be interpreted directly as a probability d
tribution. This is remedied by expressingG(Ri ,Ri 21) as

G~Ri ,Ri 21!5m~Ri ,Ri 21!p~Ri ,Ri 21!, ~18!

where m(Ri ,Ri 21) is a weight defined so thatp is
normalized,51 (Ri

p(Ri ,Ri 21)51.

In the general case51 m(Ri ,Ri 21) is not simply a weight
but also includes the sign ofG(Ri ,Ri 21). This is the symp-
tom of the sign problem that causes difficulties in Mon
Carlo sampling since the weight of a walker must be posit
definite if it is to be interpreted in a probabilistic manner.
general, one must make some approximation to remedy
problem, by fixing the sign ofG, e.g., the ‘‘fixed node ap-
proximation,’’ which has been described for lattice problem
by ten Haffet al.53 This is not a problem in the model con
sidered here and is the reason why this model can be so
exactly by GFMC. In the present model theonly nodesof the
ground state wave function are the points where two e
trons of the same spin cross, which are the same node
those of the trial wave function. The GFMC sampling
restricted to a region in whichG(Ri ,Ri 21) never changes
sign because each step moves only one electron by one
8-4
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with the move allowed only if the target site is not occupi
by an electron of the same spin.

Implementation of the above method is as follows.
VMC calculation is performed which supplies a number
walkers$R% initially distributed according touCTu2. Each of
these are then randomly walked along a path in configura
space usingp(R,R8) as the Metropolis acceptance functio
of moving fromR to R8. Each step is weighted bym(R,R8)
such that thei th walker’s accumulated weight is

wi
M5)

i 51

M

m~Ri ,Ri 21!. ~19!

Expectation values for an arbitrary operatorÔ after M pro-
jections of the green’s function are measured by averag
the weighted local form ofOL(R) of each walker

^Ô&GFMC5
^CTuÔuCM&

^CTuCN&
5

(
i

OL~RM !wi
M

(
i

wi
M

. ~20!

Averages in GFMC equal the ground state expecta
value only for those operators which commute withĤ be-
cause the inner product Eq.~20! is a ‘‘mixed estimator’’
between^CTu and uC0&. Operators that commute withĤ
share the same eigenstates and the operator in Eq.~20! can
be considered to act to right onC0, thus returning the ground
state and cancelling the normalization of the denomina
Conversely operators that do not commute withĤ have dif-
ferent eigenstates and thus do not cancel the normalizatio
the denominator in Eq.~20!. There are several ways to im
prove upon the GFMC mixed estimator for such expectat
values. One is an approximation that is valid so long as
VMC and GFMC averages are close to one another. Expr
ing uC0& as uCT&1udC& and taking the inner product, th
ground state expectation value can be expressed as48

^C0uÔuC0&'2^Ô&GFMC2^Ô&VMC1O~dC2!. ~21!

However, this approximation breaks down whenever
VMC trial wavefunction is not a good approximation toC0.

C. Expectation values and forward walking

The exact ground state expectation value of any oper
(Ô) can be found if the mixed expression Eq.~20! is re-
placed by one involving the exact wave function in both t
bra and ket

^CTu@12Dt~Ĥ2E0!#M8Ô@12Dt~Ĥ2E0!#MuCT&

^CTu@12Dt~Ĥ2E0!#M8@12Dt~Ĥ2E0!#MuCT&
.

~22!

This can be accomplished by ‘‘forward walking,’’48 which
can be simply expressed in terms of the GFMC method p
viously discussed. The same methods and terminology u
in GFMC are also applicable here. Inserting the identity o
23510
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erator between each projection and using importance s
pling Eq. ~22! can be rewritten as

(
RM1M8 , . . . ,R1

F )
i 5M

M1M821

G~Ri 11 ,Ri !GOL

3F )
i 51

M21

G~Ri 11 ,Ri !GCT
2~R0!. ~23!

TheG(R,R8) are sampled as before in terms of a probabil
function @p(R,R8)# and weight@m(R,R8)#. A series of i
walkers, initially distributed according to the VMC tria
function, are stepped along paths ($Ri%) in configuration
space by Metropolis sampling. AfterN projections the accu-
mulated weight of each$Ri% is the product of all steps
weights, as defined in Eq.~19!. The walkers weights are
distributed according to the mixed probability distributio
CT(RM)C0(RM). The local form ofÔ @Oi(RM)# is mea-
sured for each walker but not averaged as it is in GFMC. T
walkers are moved an additionalM 8 steps in imaginary time
over which they accumulate post measurement weig

(wi
M8). Averages are computed using each walkers accu

lated weight before and after measuringOi(RM)

(
i

wi
M8@wi

MOi~RM !#

(
i

wi
M8wi

M
. ~24!

Although this method is in principle exact, assuming t
nodal structure ofC0 is known, it also has its disadvantage
In particular, the width of the post-measurement weight d
tribution grows with the number of forward walking step
M 8, thereby increasing the fluctuation of the forward wa
ing estimates. To achieve the same statistical error as th
GFMC, forward walking may require many times more es
mates in Eq.~24!.

We have tested our algorithms using forward walking
calculating expectation values of operators that do not co
mute with the Hamiltonian, such as the bond order^B̂&
needed later. If we start from very poor trial function
GFMC leads to energies that are independent of the
function, but the approximate mixed estimator or the i
proved extrapolation do not. However, the forward walki
expressions are exact within the numerical error estima
For example, in a case where there is no broken symm
the forward walking leads to the correct result^B̂&50 within
the error estimates, even when the trial function is chose
have largê B̂&.

D. Test of GFMC on ordinary Hubbard model

The accuracy with which the energy can be measured
GFMC and the magnitude of the finite size effects can
addressed by comparing with exact results for the usual H
bard model at 1/2 filling, which have been evaluated
Hashimoto54 for finite systems of 4N12 sites using periodic
boundary conditions. In Fig. 1 the differences in energy
8-5
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tween lattices of sizeL and the thermodynamic limit is plot
ted for two casesU/t051.25,5.0. The finite size effects a
typical U'2.4 are of order 0.0001t0 for a supercell of 82
sites. Thus we do not anticipate any difficulty in calculati
the energy except in cases where there is a much lo
correlation length than in the usual Hubbard Model, e
near a phase transition where correlation lengths diverge

For comparison to our work later it is useful also to stu
the dimerized Hubbard model withdÞ0. Work on related
issues in the past two decades has verified early theore
predictions34 that electron correlation enhances the Peie
instability of the noninteracting Hubbard model asd→0.
Using the Hellman-Feynman theorem the bond order^B̂&
can be identified as the first derivative of the energy w
respect to the lattice distortionax or d. The bond order
susceptibility or the second derivative of the energy w
respect tod has a logarithmic divergence asd→0,40 which is
referred to as the Peierls instability. The energy neard50
varies as55

E~d50!1Adg/ ln~d!, ~25!

where the amplitudeA and g are dependent upon th
strength of electron correlation. ForU50 A is proportional
to t0 andg52, and forU/t0!1 variational methods sugge
the same results. In the strongly correlated regime the la
can be mapped onto a 1D Heisenberg lattice whereA is
proportional to 4t0

2/U andg54/3. Although the instability is
enhanced at largeU, the effect is more difficult to observ
since the electronic energy is much smaller.

In our studies we consider small ionic deviations (dÞ0)
from the usual Hubbard model forU52.4. The QMC energy

FIG. 1. In the lower figureE(4N12)2E(`) is plotted where
N52,3, . . . ,11 andinfinite system estimates are those of Lieb a
Wu. The lines are exact results from Hashimoto~Ref. 54! and the
symbols are the QMC estimates for~i! U55 ~diamonds! and ~ii !
U51.25 ~squares!. In the top figure the energy difference betwe
the QMC and exact results is plotted vsL.
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and bond order are plotted vsd in Fig. 2 for an 82 site lattice.
The GFMC energy was fit to Eq. 25 using a nonlinear le
squares routine. The parameters of the fit areE(d50)5
20.777589(24),A51.48(17), andg51.29(3) and give a
reduced chi square of 1.58. This data agrees quite will w
that of Black and Emery56 who observedg54/3 in the 1D
Heisenberg model. The energy of the symmetric lattice
within error bars of the exact thermodynamic limit of
20.77762. The divergence of the lattice’s susceptibility
bond ordering can be observed in Fig. 2; as the level
distortion approaches zero the bond order approaches the
gin with infinite slope.

V. RESULTS FOR IONIC HUBBARD MODEL

The unit cell for the ionic Hubbard model is composed
two sites and the Hamiltonian is given in Eq.~1!. In order to
understand the meaning of the polarization and bond orde
this system, it is helpful to consider first the noninteracti
case withU50, where one can visualize the electronic pro
erties in terms of Wannier functions. At zero dimerizatio
(d50) the Wannier functions are centered on the si
whose energy is shifted by1D and 2D. Two electrons of
opposite spin occupy the lowest energy Wannier funct
centered on the lower energy site in each unit cell. In
dimerized lattice (dÞ0), the symmetry is broken and th
centers of the Wannier functions are displaced from the s
creating a polarization. AsU increases the electrons find
energetically undesirable to occupy the same site, and in
dimerized state the center of the distribution shifts furth
away from the low energy site. The limit of this displac
ment ~i.e., polarization! is P51/2 since one would neve
favor having more than one electron on the higher ene
site. Similarly, the limit of the bond order isB52 corre-
sponding to isolated dimers.

FIG. 2. Ground state energy and bond order vs lattice distor
d for U52.4 in the usual Hubbard model. The energy was fit to
function E(d50)1Adg/ ln(d) using a nonlinear least squares ro
tine.
8-6
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As d→0 there are only three possibilities. If there is
spontaneous breaking of the inversion symmetry the po
ization can assume any fractional value between 0 and 1/
there is no breaking of symmetry, there are still two pos
bilities since there are two centers of symmetry: the po
ization can be 0 or 1/2. If the reference point defined to
zero is the usual band insulator where both electrons occ
the Wannier function centered on the lower energy site
has been proposed13,57,58that P51/2 corresponds to a Mot
insulator with no long range order.

We first report results of our study of the ionic Hubba
model with parameters fixed at the values used in previ
work,13,57,58 so that direct comparisons can be made. T
energy scale is set by definingt051, D/t050.5714, and
aa/t0540/7. The previous conclusions with which we w
compare are based upon exact diagonalization of the m
body Hamiltonian in small supercells13,58 and Hartree-Fock
calculations.57 The study13 using exact diagonalization of 8
site lattices with twisted boundary conditions found a jum
of 1/2 in the electronic polarization ford50, i.e., an electron
in each unit cell being transported 1/2 lattice constant, a
critical value of U (Uc52.26). This was interpreted as
transition between BI and MI phases, which was suppor
by Hartree Fock~HF! calculations that showed similar be
havior atUc52.46. Extrapolations using larger cells of 1
sites58 find Uc52.86, presumably a more converged valu
The key points are~i! the transition pointUc is found to be a
metallic point with divergent delocalization,~ii ! effective
charges diverge and change sign at the transition, and~iii !
there is no sign of the bond-ordered state predicted by F
rizio et al.25 This new state would have long range order a
break the inversion symmetry of the lattice, thus allowing
polarization to take any fractional value.

The present work is based upon the QMC algorithms
scribed earlier and the formulas for polarization and locali
tion in Sec. III. The first step in applying the QMC metho
is to find a trial wavefunction that has as much overlap w
the true ground state as possible. This is achieved by o
mizing the parameters$g,D8,d8% to minimize the energy. To
determine the optimal value ofg we have used a newly de
vised technique that significantly reduces the amount
computational effort required.59 Using the optimal
Gutzwiller parameter the energy ofCT(g,D8,d8) for differ-
ent D8 andd8 is sampled using VMC. We adjustD8 andd8
to lower the VMC energy and measure it at several point
the neighborhood of its minimum. A curve fit is then pe
formed using these points to determine the optimalD8 and
d8. @Except where indicated all results for polarization, bo
order and localization are determined by forward walkin
This is not needed for some cases where the same result
be obtained using Eq.~21!, but is essential in other cases#
The number of configurations over which expectation val
are made varies with~i! the number of electrons and~ii ! the
proximity in the phase space defined by (U,D) to a critical
point. On average for a lattice of 100 electrons we ha
sampled between 1210 million statistically independen
configurations in many-body space. Near critical points
correlation between measurements of the local form of
operator increases. This necessitates running the simula
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longer so as to obtain unbiased estimates of the statis
error in our measurements.

A. Comparison with exact diagonalization and Hartree-Fock

Figure 3 shows the comparison of our results for the
larizationP with those of the previous calculations of Ref
13 and 57 for finite values of the distortion (d50.08 andd
50.02). The present results are for periodic boundary c
ditions and extrapolated to the thermodynamic limit in 1/L as
described in the following section. The results of Ref.
were obtained with 8 site rings and integrating over twis
boundary conditions.~The jump inP found in HF calcula-
tions for nonzerod is an unphysical consequence of th
mean field approximation that leads to an antiferromagn
ground state that cannot occur in 1D.! The previous exact
diagonalization results13 agree well with those of QMC for
d50.08. This is in agreement with previous studies us
exact diagonalization36,55on the usual Hubbard model whic
found that small cells of this size were sufficient to rea
thermodynamic convergence in the 0.05<d<0.1 regime,
whereas convergence with cell size is worse for smallerd.

The critical difference of our results from the previou
exact diagonalization calculations13 is illustrated by the be-
havior as the magnitude of the distortion decreases td
50.02. As shown in the lower panel the two curves for p
larizationP vs U cross. This is the basic result of Ref. 13: th
crossing indicates that the effective chargeZ* , which is a
derivative of the polarization with respect to lattice distorti
(Z* 5dP/dd) changes sign. This indicates an anomalous
versal of the roles of the anion and cation, and in the limit
d→0 leads toZ* →` and a discontinuous jump in polariza
tion P at a critical valueU5Uc . In contrast, no such behav

FIG. 3. QMC measurements of polarization~upper figure! ex-
trapolated to large sizes compared to previous exact diagonaliza
and HF results~lower figure!. Results are illustrated for staggere
transfer integralst i5t0(160.02) ~squares! and t i5t0(160.08)
~circles!. The HF results are depicted by the dashed line in
lower figure.
8-7
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ior occurs in the present calculations: our results indicate
the effective chargeZ* 5dP/dd increases asd→0 but that
it never changes sign. We attribute this difference to the
that the correlation lengths increase near the transition p
whereZ* →` so that the previous calculations on small ce
are not sufficient. Even though the method of integrat
over boundary conditions used in Refs. 13 and 57 allows
to use smaller cells than is required with periodic conditio
nevertheless, the size of the cell must exceed the correla
length. If it is smaller than the correlation length then art
cial correlations are introduced thatmaximizethe error.15 In-
deed, it is agreed12 that the localization length diverges, an
a key point of the present work is that we are able to use c
of sufficient size to more correctly determine the behav
near the transition point.

B. Phase transition to bond-ordered„BO… state

We have measured the forward walking estimators forP,
B, and^D2X& and taken the limit ofd→0 to study the nature
of the quantum phase transition. The formulas used to ob
expectation values for polarization and localization are o
accurate in the limitL→`. This limit is taken by fitting
measurements at finiteL to a linear least squares fit in (1/L)g

and extrapolating to 0. We have foundg51 to accurately
account for the finite size effects ofP andg52 for ^D2X&.
This scaling has only been found appropriate upon incre
ing the supercell size above a critical threshold which
pends on the proximity of the metallic state. The accuracy
the finite size corrections toP are illustrated in Fig. 4 atU
52.7 for different magnitudes ofd. The data in Fig. 4 was
collected near the critical point of the phase transition, wh
size effects are large and must be treated accurately. If
system is sufficiently far from such a critical point, size e
fects are less pronounced, and there is a more rapid con
gence to the thermodynamic limit.

Using the infiniteL estimates for the polarization and lo
calization on lattices dimerized byd5$0.0028,0.0056,

FIG. 4. The points represent the QMCP obtained using forward
walking for system sizes of 80, 100, 140, and 200 sites for differ
levels of dimerizationd5$0.0028,0.0056,0.0085,0.0114% in as-
cending order.
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0.0085,0.0114% we have performed a linear least squares
and extrapolated to the centrosymmetric limit (d50). This
method makes the assumption that the response of the la
to dimerization is linear. However, near the phase transit
nonlinearity will cause this to break down. In Fig. 5 we ha
plotted the polarization and localization of the ionic mod
for different magnitudes of dimerization.

The phase transition we find using QMC differs from t
topological transition found using exact diagonalization a
HF. As previously mentioned, in the BI and MI phases t
polarization is restricted to 0 or 1/2. Resta and Sorella id
tified the shift from 0 to 1/2 as the signature of a BI→MI
transition. However, we find thatP takes a continuous rang
of values in the centrosymmetric limit which can only occ
only if the global inversion symmetry of the lattice is broke
by a long range bond ordered~BO! state. Such a broken
symmetry BO state was predicted by Fabrizioet al.25 on the
basis of field theory arguments in which he mapped
Hamiltonian onto two Ising spin models. The order para
eter of this phase transition is the average bond orderB given
in Eq. ~6!. In Fig. 6 is given the spontaneous bond orderB
for the centrosymmetric lattice obtained by extrapolating
d50 using the same values ofd as in Fig. 5. Here we fixed
the supercell size to 142 sites and found the consequent
effects are within order of the error estimate forB.

We have attempted to classify the quantum phase tra
tion by fitting the polarization and bond order of the ce
trosymmetric lattice to a function of the form

A@U2Uc#
j, ~26!

wherej is the critical exponent and determines the univ
sality class of the transition. A nonlinear least squares r
tine was used to fit the data, with fitted parametersUc , A,
andj listed in Table I. In Fig. 7 the data forP andB and the
corresponding fits are plotted. Both quantities behave si

t

FIG. 5. P(L5`) and ^D2X& for various levels of dimerization
(d). The extrapolated centrosymmetric polarization and localizat
is represented by the points with error bars.
8-8
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larly near the critical point and theUc of each is nearly
identical. We findj for P andB are near 1/2, the expecte
mean field exponent. On the other hand, Fabrizioet al.25

predicted that the transition is of the Ising universality cla
and thusj should be 1/8. We do not know whether the d
ference is real or it is simply due to the possibility that t
range ofU2Uc over which the scaling belongs to the un
versality class is too small for us to observe in the pres
work.

Alternatively, the existence of the BO state can be o
served by directly studying the symmetric lattice without a
lattice distortion. Quantum phase transitions~QPT! are char-
acterized by a symmetry breaking that occurs in the ther
dynamic limit. BelowUc the lattice is a band insulator wit
no bond order but aboveUc the electrons will spontaneousl
choose to bond order withuBuÞ0. There are two such state
characterized by the same magnitude but opposite sign o
bond order. For any finite system the ground state remai
linear combination of both. However, in the limitL→` one
of these is arbitrarily chosen as the ground state. E
though the QMC simulations of the symmetric lattice forU
.Uc measure zero bond order and polarization for lon
simulations, the imaginary time evolution of the simulatio
clearly depicts the projected ground state moving from o
of these bond ordered states to the other. This phase se
tion gives rise to large autocorrelation times. The evolut
of the bond order and polarization in imaginary time a
illustrated in Fig. 8 forU53.45 andL560 sites. As the
ground state moves between BO states of opposite symm
both the polarization and dimerization are observed

TABLE I. Fitting parameters for polarization and bond orde
The quantities in parenthesis are the error in the last decimal p

A Uc j

P 0.44~1! 2.60~5! 0.60~10!

B̂ 0.49~1! 2.65~2! 0.39~4!

FIG. 6. QMC bond order of centrosymmetric lattice forD/t0

50.5714 andL5142. Results obtained by extrapolating bond ord
on distorted lattices ofd5$0.0028,0.0056,0.0085,0.0114% to d50.
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change sign. This provides an alternative method of det
ing the existence of the BO state.

At largeU one might expect that there is a second tran
tion to a symmetric Mott Insulator. Indeed, Fabrizioet al.25

predict the existence of a Kosterlitz-Thouless transition
large U/D at which the bond order vanishes and the pol
ization is exactly 1/2. However, we do not observe such
transition for anyU considered which included values up
U510. The bond order does diminish but appears to asy
totically approach 0 and the polarization appears to conve
to 1/2 only in the limit ofU→`. It should be pointed out
that working with such strongly correlated systems has
disadvantages that~i! fluctuations of the local estimators in
crease due to greater inaccuracies in the trial wavefunc
and ~ii ! forward walking works so long as the trial wav

FIG. 7. Extrapolated polarization and bond order for the c
trosymmetric (d50) lattice near the critical point and their fits t
Eq. ~26!.

FIG. 8. Illustration of the phase separation in the symmetric c
(d50, D50.5714,U53.45, and sizeL560 sites! of the polariza-
tion and bond order. The lines depict the measurements over w
averages are obtained in QMC.
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function has some overlap with the exact ground state an
U increases overlap with the exact ground state diminish

C. Phase transition as a function of ionicityD

An alternative approach to study the phase transition~s! is
to diminish the ionic potentialD while keepingU fixed, so
that the ratioU/D increases. We have fixed the strength
electron correlation toU52.4 and studied the bond orde
and polarization for 0,D <0.5714. The behavior of the cen
trosymmetric lattice is inferred using two approaches~i! ex-
trapolating results obtained on lattices withdÞ0 and ~ii !
looking for evidence of phase separation in the symme
case. Figure 9 shows the results of the first approach f
fixed supercell length of 142 sites. In the first we have
glected size effects and fixed the supercell length to
sites. At largeD the single body contribution to the Hami
tonian is the dominant term and the lattice is a band ins
tor. Consequently the bond order and polarization are
However, asD→0 a transition occurs to a BO state whe
the bond order is nonzero and the polarization assumes
ues between 0 and 1/2 as before.~The transition is rounded
at this fixed cell length.! The bond order in thed→0 limit is
shown by the dotted line in Fig. 9. These results were
tained by linearly extrapolating the bond order at finited.
~No extrapolation was performed for the polarization sinc
is sensitive to size effects that were addressed in the prev
section.!

Our results indicate the bond-order state exists at all
ues ofDÞ0 studied. The finite value of the bond order f
d→0 shown in Fig. 9 contrasts sharply with the vanishing
the bond order asd→0 for the nonionic Hubbard mode
(D50) asv shown in Fig. 2. AtD5d50, we always find

FIG. 9. Polarization and bond order vs ionic potentialD for d
5$0.0028,0.0057,0.0114,0.0171% and U52.4. The extrapolated
bond order of the centrosymmetric lattice is denoted by the do
line.
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B50 and polarization equal 1/2 as they must be for a
state with no long range order. However, our QMC simu
tions of the symmetric case (d50 andU52.4) at the small-
est value of the ionic potential studiedD50.0716 reveal two
BO states phase separating in imaginary time qualitativ
the same as shown in Fig. 9. Thus from our studies, ther
no sign of a second transition to a MI state as proposed
Fabrizioet al.25 and the long range bond ordered state in F
10 appears to exist for any finiteDÞ0.

Our results imply that the MI state in 1D exists on
within the usual Hubbard model and in ionic Hubbard la
tices only in the limitU5`. At large U the usual Hubbard
model has been mapped onto the Heisenberg spin mo
The present finding suggests that such a mapping may
insufficient for ionic Hubbard models and that terms ignor
or considered small possibly play a fundamental role.

D. Bond order correlation function and long range order

It is interesting to study the bond-order correlation fun
tion which reveals both the form of the short range order a
the existence~or absence! of long range order. We define th
bond order correlation function@gB(r )# as

gB~r !5
1

L K (
i

B̂i B̂i 1r L , ~27!

whereB̂i is defined in Eq.~5! and is the strength of thei th
bond of the lattice. Correlations of strong and weak bon
stagger this correlation function and are a signature of a b
ordered state. If we defineDgB(r )5@gB(r )2gB(r 11)#
(21)r , it is straightforward to show that

A2 DgB~r ![B~r ! ——→
r @r corr

B, ~28!

wherer corr is a correlation length andB is the average bond
order.

d

FIG. 10. Bond order correlation functions for the symmet
lattice (d50) for the ~i! band insulating,~ii ! weakly bond ordered
~iii ! Mott insulating, and~iv! strongly bond ordered regimes. Th
specific parameters are~i! D50.5714, U51.2, L560, ~ii ! D
50.1432, U52.4, L5122, ~iii ! D50, U52.5, L5122, and~iv!
D50.5714,U53.45, L560.
8-10
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In Fig. 10gB(r ) is plotted for four separate cases, all wi
a symmetric Hamiltonian (d50): ~i! D50.5714, U51.2,
L560; ~ii ! D50.1432, U52.4, L5122; ~iii ! D50, U
52.5, L5122; and~iv! D50.5714, U53.45, L560. The
first case corresponds to the band insulating regime in wh
gB(r ) exponentially approaches a constant, confirming
lack of any long range ordered phase. Conversely in the
case, which corresponds to the system in Fig. 8 that ex
ited phase separation, it is clearly visible thatgB(r ) is stag-
gered, signifying the presence of a long range bond orde
~BO! state. Finite size effects in each of these cases w
determined to be minuscule and small systems were dee
sufficient to measuregB(r ). The second case corresponds
diminishingD so as to move the system towards the est
lished Mott State of the usual Hubbard model. At this po
in the phase diagram the wells of the bimodal distribution
weakly defined; thus making it extremely difficult to obser
the phase separation of the bond order parameter directl
contrast, the bond order correlation function is clearly st
gered, though to a lesser degree than that of the later c
Case~iii ! is the Mott state of the usual Hubbard model. T
staggered behavior ofgB(r ) does not approach a finite lim
at larger, but rather tends to 0 in a fashion that appears to
a power law, contrary to the exponential convergence
served in the BI regime. Comparison of cases~ii ! and ~iii !
shows that in each case the difference ofgB(r ) from its long
range limit extends further than in the band insulating a
strongly bond ordered cases. This shows that the fluctuat
in the bond order are long ranged and leads to difficulties
the numerical calculations as the ionic potential tends
zero.

This estimate is exact whenr @r corr where r corr is the
correlation length. Figure 11 shows^B̂&(r ) plotted vs r for
the same cases as in Fig. 11. The band insulating estim
rapidly approaches 0 as a function ofr. The strongly bond
ordered system converges to an estimate of the bond o
that is remarkably close to that obtained by extrapolat

FIG. 11. Bond correlationB(r ) vs r @see Eq.~28!# for ~i! band
insulating,~ii ! weakly bond ordered,~iii ! Mott insulating, and~iv!
strongly bond ordered regimes. The specific parameters are~i! D
50.5714, U51.2, L560, ~ii ! D50.1432, U52.4, L5122, ~iii !
D50, U52.5, L5122, and~iv! D50.5714,U53.45, L560.
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from distorted lattices (0.45). The weakly bond ordered c
appears to converge to a value near 0.18 which is in rea
able agreement with the extrapolated value of 0.2263(4
However, the^B̂&(r ) of the Mott insulator withD[0 and
the weakly bond ordered case withDÞ0 differ very little.
No conclusion can be drawn as to whether or not a Mott s
exists at smallD. On the other hand, Figs. 10 and 11 clea
depict a bond ordered state for ionic lattices whereD is of
sufficient magnitude. As the ionicity is lowered, we do n
know whethergB(r ) decays according to a power law or
approaches a constant. The long ranged decay ofgB(r ) re-
flects the absence of a gap in the spectrum and exemp
the unstable nature of the Mott State and it’s tendency
bond ordering. Only highly accurate measurements of
bond order correlation function forr @r corr can determine
whether this instability to bond ordering exists at minusc
D.

VI. DISCUSSION

One of the primary results of the present work is t
quantitative demonstration of the stability of the bon
ordered phase for interactionU above a critical valueUc(D)
for any nonzeroD. Most of our work was carried out throug
dimerizing the lattice byd and examining thed→0 limit.
There were two reasons for this~i! this is an aid in the actua
calculations which are stabilized by the applied bias and~ii !
the variation with dimerizationd is important in and of itself.
Regarding the second point, it is well known that the or
nary nonionic Hubbard model is unstable to dimerizatio
with a logarithmic Peierls instability atU50 that becomes a
stronger fractional power law instability at larg
U.35–37,33,55,56Our work shows that as a function ofU/D the
ionic Hubbard model undergoes a phase transition from
stable nondimerized BI phase to a correlated phase in w
the instability ismore severethan in the nonionic Hubbard
model. This is evident in comparison of Fig. 2 with Figs.
and 7. In the nonionic case~Fig. 2!, the decrease of the bon
order withd is clearly observed and is consistent with pr
vious theoretical predictions of the power law form. How
ever, in all the calculations for the ionic model forU/D
above the critical value, the average bond order^B̂& is found
to extrapolate to a nonzero value. This is observed even fd
much smaller than previous studies. From this evide
alone there are two possibilities:~1! the BO phase with bro-
ken symmetry is stable at zero dimerization or~2! there is
nonanalytic behavior asd→0 which is even stronger tha
that for the nonionic Hubbard model.

This result is sufficient to draw conclusions about real
systems in which the sites are allowed to dimerize if t
leads to lower energy. In either of the two scenarios
scribed above, dimerization would always occur~except in
the BI phase!. In the first scenario the BO phase would occ
spontaneously and by symmetry there would always be
accompanying lattice distortion. In the second scena
dimerization would occur due to the nonanalytic energy vd
which would lead to bond order. The symmetric Mott ins
lator would never occur and the only transition would
8-11
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from a BI phase to a dimerized BO phase. This is in agr
ment with previous results that electronic correlation e
hances the instability to bond ordering.35–37,33,55,56

At this point we can compare with experiment on 1
materials. Experimental works by Torranceet al.60 observed
a second order transitions between neutral~BI! and ionic
~BO! states in organic charge transfer solids. The transi
occurs upon applying pressure over a wide range of temp
tures and was attributed to the rise in Madelung energy of
crystal. No state synonymous to the Mott state was obser

Among the interesting consequences of the stability of
BO state is the existence of fractional charges.61,25 For the
case of a dimerized or bond-ordered state, the charge i
irrational fraction the value of which depends upon the va
of D.61,25

Other work on related systems also has identified
phases. Recent work by Nakamura26 in the extended Hub-
bard model has found a rich phase diagram in which th
are two transitions from a BI→BO and BO→MI regime.
The extended Hubbard model differs from the ionic mo
studied here in that there is an additional next nearest ne
bor coulomb potentialV and no ionic potentialD. Nakamura
identifies the first transition as belonging to the Gauss
universality class and the later as a Kosterlitz-Thouless t
sition. The BO phase observed by Nakamura exists at aV
down to the usual Hubbard model (V50); where both the
Gaussian and the KT transitions coexist. We can imagine
Uc at which the BI→BO transition takes place increasin
concurrently as the ionic potential is increased from zero

Let us now consider why the BO phase was not found
previous studies that used exact-diagonalization Lanc
techniques to treat small finite systems.13,57 If the BO state is
the ground state then, of course, it is degenerate and one
form linear combination of the states

C05cos~u!C11sin~u!C2 , ~29!

each of which has no net bond order. For finite syste
existence of the BO state can be inferred from correlat
functions; however, to our knowledge this has not been d
in other work. A second reason that the BO states have
been observed may be that there is no bimodal distribu
for the small cells studied by exact diagonalization. We ha
addressed this issue by using QMC to determine ave
bond order on distorted lattices of 14<L<62 sites and ex-
trapolating to the centrosymmetric limit. At a point in th
phase diagram (D50.0716, U52.4) where the correlation
lengths are large, we find that lattices with less than 50 s
do not exhibit the BO phase; only for larger supercells do
find the phase separation of the two BO states. As we h
pointed out, this is the key difference in our approaches
we want to determine the behavior near the critical point,
expect to need large cells for which exact diagonalizat
methods are not currently feasible.

Recent work using the density matrix renormalizati
group ~DMRG! method has reported results for chargeDc
and spinDs gaps in these models. This approach should
able one to distinguish the phases since~i! Dc5DsÞ0 in the
BI phase,~ii ! DcÞDsÞ0 in the BO phase, and~iii ! DcÞ0
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but Ds50 in the MI phase. It was found to be very difficu
and to require extremely large cells to determine spin gap
the BO/MI phases, and the two reports came to oppo
conclusions on the existence of the BO phase.

In our QMC calculations we have also determined t
charge and spin gaps. Our estimates of the charge gap a
qualitative agreement with other works; however, the s
gap is very small in all cases except in the BI regime a
statistical noise does not permit an accurate determinatio
such small gaps in QMC.

Both DMRG calculations find the spin gap to vanish, i.
the MI phase to be the ground state for largeU. We have no
direct explanation of this difference: it may be that our pr
cedure is not sufficiently accurate to determine the BO-
transition, which is the most difficult part of the prese
work. On the other hand, it may be that the DMRG calcu
tions on finite cells with open boundary conditions may ha
difficulties: the surface effects break the symmetry of t
problem which may lead to extremely problematic size
fects and potential errors. The BO-MI transition was p
dicted using a weak-coupling effective field theory and t
charge gap of the Plain Hubbard model.25 It is possible that
at largeU this theory is not applicable and cannot accurat
predict whether the MI state actually exists. In any case,
are very confident that our work establishes that the BO s
is either the ground state or very close to the ground stat
energy; this is clear from our tests on the ordinary Hubb
model shown in Fig. 1.

VII. CONCLUSIONS

We have studied the phase diagram of an idealized die
tric, the 1D ionic Hubbard model proposed by Nagosa23 and
Egami.24 This model undergoes a phase transition as a fu
tion of the on-site interactionU, which has been a source o
controversy. The only previous quantitative studies13,57 con-
cluded that at a criticalUc there is an abrupt ‘‘topological’’
transition from a band insulator to a Mott insulator with n
broken symmetry or long range order in either phase. T
signature of the transition was found to be an abrupt cha
of 1/2 in the polarization at which the effective charge d
verged signifying the delocalization of the electro
states.13,57 Recently, however, there has been a predictio25

that this model would exhibit two quantum phase transitio
the first signifying a change of state from a band insulato
a broken symmetry phase with long range alternating b
order, and the second a transition to the Mott insulator.

We have studied this model using quantum Monte Ca
methods which allow the simulation of much larger syste
than studied by exact diagonalization.13,57To our knowledge,
this is the first application of QMC to determine both th
polarization and localization of an electronic system. For t
model our QMC methods are in principle exact, since th
is no sign problem, so long as our trial function has nonz
overlap with the true ground state. We evaluate the expe
tion values of the bondorder, polarization, and localizat
using the expressions Eqs.~5!, ~9!, and~10!. It is found that
upon crossing a critical valueUc a change of phase occur
from a band insulating to bond-ordered state. The bond o
8-12
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develops continuously~see Fig. 8! as a function ofU2Uc
and since the inversion symmetry is broken, the polariza
also varies continuously, unlike the results of the small c
exact-diagonalization calculations.13 The existence of bond
order is also demonstrated in the QMC simulations by
‘‘flip-flop’’ between left and right BO states.

The critical behavior is uniquely determined by fitting th
bond order and polarization to a scaling function near
critical regime. We find an exponent near 1/2, which diffe
from that for the Ising class proposed in Ref. 25; howeve
may be that we are outside of the regime in which the sca
belongs to the appropriate universality class. In addition,
found that there is a metallic point atUc where the system is
metallic. At this point the charge gap must vanish which
have found in pure ground state calculations by determin
the fluctuations of the polarization. The calculations det
mine quantitatively the localization length,13–15 which di-
verges at the transition.

We have searched for the proposed transition to a M
insulating state, but we have not observed such a trans
from the bond ordered regime even for very largeU or very
small D. Even the smallest value ofD considered in this
study (D/t051/14!U/t052.4) is sufficient to cause th
ionic Hubbard model to be unstable to bond ordering,
though there is no broken symmetry in the usual Hubb
model (D[0), neither in the exact solution22 nor in our
results. Thus our results show that the instability
dimerization is even stronger in the ionic model th
that known previously for the ordinary nonionic Hubba
-
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model.35–37,33,55,56Furthermore, for the centrosymmetric la
tice (d50), calculations of correlation functions and obse
vations of ‘‘flip-flop’’ between left and right bond-ordere
states in the QMC simulations provides further evidence
the stability of the bond-ordered state.

Finally, these results imply that if dimerization is allowe
~which is always the case in real materials since the ato
can always dimerize if it lowers the energy! then the sym-
metric Mott state is never stable and the only phase transi
is from the symmetric BI to the dimerized BO state. This
experimentally confirmed by Torranceet al.60, where upon
increasing the electronic interaction a BI→BO transition
takes place.
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