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Quantum Monte Carlo study of the one-dimensional ionic Hubbard model
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Quantum Monte Carlo methods are used to study a quantum phase transition in a one-dimensional Hubbard
model with on-site interactiob) and a staggered ionic potential . Using recently formulated methods, the
electronic polarization and localization are determined directly from the correlated ground state wave function
and compared to results of previous work using exact diagonalization and Hartree-Fock. We find a transition
from a symmetric band insulator to a broken-symmetry bond ordé8€) phase as the ratio dfi/A is
increased, with a metallic point at the transition. Since it is known that=af the usual Hubbard model is a
Mott insulator (MI) with no long-range order, we have searched for a second transition to this stéje by
increasingU at fixed A and(ii) decreasing\ at fixedU. We find no transition from the BO to MI state, and
we propose that the symmetric Ml state exists onl&t0.
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. INTRODUCTION Generalized Hubbard mod&i$* are well suited for stud-
ies of fundamental issues regarding metals and insulators be-
Strongly correlated systems of interacting electrons leadause they are simple models that exhibit a wide range of
to many of the most interesting phenomena observed in solidehaviors depending upon the parameters in the models. The
state physic$.As a function of the interaction strength, there simplest of all, the original Hubbard model with an on-site
can be quantum phase transitibefaracterized by an order interactionU and nearest neighbor hoppingn one dimen-
parameter with the possible development of long-range ordesion (1D), was solved exactly by Lieb and W Their paper
and a transition to a broken symmetry state. Interactions caeonveys the point that there is no change of spatial symmetry
also lead to “Mott insulators”(MI) and to metal-insulator and no phase transition at any positive At half-filling the
transitions? An important question is whether or not in the model is metallic at) =0, whereas fotJ>0 a gap exists to
thermodynamic limit a Mott insulator must be associatedcharge excitations but no gap exists to spin excitations. This
with a phase transition that is accompanied by a broken synis commonly referred to as the MI state, but in this case there
metry and a corresponding order parameter. In his originals no “Mott transition.” At any other filling, the model is
work, Mott® argued that the insulating character did not de-always metallic. There is never a state that would be called
pend upon an order parameter. On the other hand, $latean ordinary band insulatingBl) state. However, in systems
emphasized the relation of the insulating behavior to the longf higher dimensionality ¢=2), a Ml state is always ac-
range order, and in many cases it is known that the Ml stateompanied by a broken symmefty.
must be accompanied by a broken symmétry. Many new possibilities emerge for generalized Hubbard
To address such issues theoretically we must have metimodels in 1D. In this paper we study the half-filled ionic 1D
ods that can clearly distinguish metals from insulators, i.e.Hubbard model with two inequivalent sites, proposed by
the ability to transport char§e® vs localization of the Nagaos® and later by Egarif as a model ferroelectric.
electron€ Insulators at absolute zero cannot transport arbiSince there are two electrons per cell, one expects a transi-
trary amounts of charge macroscopic distances across thdion to occur from an ionic band insulator to a strongly cor-
bulk; however, the center of electronic charge can shift inrelated Mott insulator abl is increased. Evidence for such a
response to external fields, which is described in terms ofransition was found in exact-diagonalization calcula-
changes in polarizatioh’ The polarizability is characterized tions*!° where the electronic polarization was found to
by the degree of electronic delocalizaffomhich increases jump abruptly between two discrete values fixed by the ex-
with the proximity to the metallic state. Recently, there haveistence of two centers of inversion at the two sites. Such
been new developments defining macroscopic polarizatiobehavior has been termed a “topological transitidfi.”
and localization in terms of the insulating ground state waveThese calculations find that the model has a metallic point
function®*° These theories formulate the polarization andseparating two symmetric insulating phases and that a ferro-
localization in terms of Berry’s phaséswhich can be cal- electric polarization results only if the atomic sites are dis-
culated using “twisted boundary conditions” or in terms of placed from the centers of inversion.
the expectation value of an exponentiated operator. Such However, recently Fabriziet al?® have proposed that
twisted boundary conditions have been applied in the past tthis model will instead exhibit two quantum phase transi-
study metals and approach metal-insulator transitions fronions: one from a Bl state to a long range bond orde€Bd)
the metallic sidé’~*°®With the recently developed methods state, predicted to be in the Ising universality class, and a
for insulators, there are now complementary tbbts pro-  second from the BO to the MI state, predicted to be a
vide quantitative information on the divergence of the local-Kosterlitz-Thouless transition. Such transitions to BO states
ization length as one approaches the metal-insulator transivave recently been found in 1D Hubbard models with ex-
tion from the insulating side. tended interactionsl{— V) by Nakamur&®?’ The BO state
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is a broken symmetry state in which the system becomeand the consequences of our new findings.
ferroelectric due strictly to electron-electron interactions
even if all the atoms are at centers of inversion. II. THE MODEL

During the course of the present work, two preprints have ) o _ ) _
reported calculations of charge and spin gaps in the The generalized ionic Hubbard Hamiltonfdns defined
model?®2° Even though each work uses the density matrix®Y
renormalization grougDRMG) that allows studies of very
large 1D systems, each group reports great difficulty in ex-
trapolating to large si_ze the Sm‘?‘” spin 9aps and th_e tW‘?/\/herelilO is the Hamiltonian of the usual Hubbard model
papers come to opposite conclusions regarding the existence
of the BO state. L

The purpose of this paper is to study the half-filled ionic {2 - f _ e NN
Hubbard model using a method th@} will treat electron Ho(to,U) ;r tO(C'H"TC"‘TJFC"‘TC'H”HUizl Mo, —o
correlation exactly andii) scale to large systems needed 2
near second-order phase transitions. For these reasons we use o of (c,.) creates(destroys an electron of spirnr on
quantum Monte Carf(QMC) which in principle is exact Lot=ho + . Y ) P
since there is no “fermion sign problem” because electronssite s while n; ,=¢; ,¢; , is the density operator of electrons
of the same spin never exchange in this model. This is due t8f spin o on sitei. The ionic term
the fact that there is only nearest-neighbor hopping and there
cannot be two electrons of the same spin on any site. The ) _ _1\in
only qualifications to this statement in our methods are that Hion(2) A% (=DNio, &
there must be nonzero overlap between our trial function and )
the true ground state, and the simulation must be capable &°nsists of an on-site energy-Q) that alternates between
reaching the ground state in practice. nelghborlng sites, Wh_lch is mtended to mod_el t_he elect_ro-

To our knowledge this is the first QMC study of polariza- Static potenual .of cations and anions in an ionic r_naterlal.
tion and localization in any system. Of course, Monte CarloAlthough dimerizationper seis not a primary objective of
simulations have been widely employed in studying metalihe present'work,' it is crucial to mclyde a dlmer.term that
insulator transitions and localizatidsee, for example, Refs. Preaks the inversion symmetry and is defined with the Su-
23,31-33. The application here is to stupth polarization ~ Schrieffer-Heeger forfi
and localization In particular, the present work is the first . .
study of the ionic Hubbard model with systems large enough Haim(X) =to0 B. (4)
to determine quantitatively the nature of the transitions anjp

A=Ho(to,U)+Hion(A) + Ham(X), @

ere 6= ax denotes a dimerization term in the Hamiltonian

whether or not there exists the spontaneously bond-order . .
P y ti=to[1+(—1)'s]} that incorporates the effect of alter-

phase proposed by Fabrizéb al® Furthermore, if there are

indeed quantum phase transitions in the ionic model—nately displacing the atomsx from their equilibrium posi-
whereas it is known that there are none in the usual nonionil®"S[R(i)o=ia] and a is the linear electron phonon cou-
Hubbard model—then it follows that one must address thdling constant. The operat@ is the “bond order” operator
issue: Is a critical degree of ionicity required, or is the usual
Hubbard model unstable to infinitesimal ionic perturbations? 5 in . B + +

. . B=> (-1)iB,; B= T CiotCl Ciit),
It is knowr?*~37-33that the usual Hubbard model is unstable 2. (V'8 ! ; (Cis16Ciot CioCivao)

to dimerization at alU. Thus a second question is does this (5)
instability play a fundamental role in stabilizing the bond- = . )
ordered state? which is a sum of staggered hopping operators. We can de-

The organization of the paper is as follows. In Sec. II, wefine average values per cell, e.g.,

introduce the model studied in this paper. In certain cases,

depending upon the parameters of the Hamiltonian, this B=E(I§>, (6)
model is exactly soluble. We discuss the relevance of these N

solutions to the more general case studied in this paper. In : .
Sec. lll formulas for evaluating the electronic polarizationwereN.IS the number of sites arN‘{Z., the. nu_mbyt’ar of ceIIs..
and localization are presented. In Sec. IV, we introduce th Fabrizio et al. r_efer to this as f"} dmenzaﬁt:gq opgrator,
qguantum Monte Carl6QMC) methods employed to evaluate owever, we will use the term bond order,"since it de-
expectation values and we describe their respective Iimitar-mtes a property _Of the electronic state anAd there _may be a
tions. These are variational and Green’s function Montg'onzero expectation value of the bond ordey even if the
Carlo algorithms and the “forward walking” method for lattice is not dimerized. o o
computing expectation values of operators that do not com- EXact analytic solutions for Ed1) exist in several limit-
mute with the Hamiltonian. Our results are presented in SedNd cases. In the noninteracting case¢=0), the electrons
V and comparisons are made with previous studies usinfll the lowest energy banfiE(k)]

exact diagonalization and Hartree-Fock. In Sec. VI, we dis- 5 ) 5 . -

cuss the differences between our results and previous studies ~ E(K)=*{A%+4tg[cos(k) +446°sir’(k)]} 7
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from k = 0 to = 7/2a. In the casel =x=0 there is no gap in terms of the expectation value of a complex operator
at the Fermi surface and the system is metallic, but for any
finite A or x a gap is opened at the Fermi surface and the SN RICEEY AN i(2m/L)x:
system is a band insulator. ¥=0 and we perturb the sys- <Z)—<e( )Ei '> _<H el '>’ ®)
tem by adjusting<# 0 the lattice is known to suffer the fa-
mous Peierls instabilif*° and energetically favors dimer- Where the average is taken with respect to a truly correlated
ization. many body wave function utilizing periodic boundary condi-
Exact solutions in the presence of correlatith#0) are  tions (PBC) sampled using one of the quantum Monte Carlo
restricted to cases in whioff) there is no intersite coupling techniques discussed in Sec. IV.
(t=0), (ii) there is a large displacement such that1 and In terms of(Z) the polarization of the many body ground
the lattice is completely deformed into an array of indepen-state can be expressed as
dent dimers, ofii) the case of the usual Hubbard model
where there is no ionic potential or lattice deformatiakn (
= 5=0) for which there are exact analytic solutiéhfor all
U. In the last case, the exact solution predicts that at half-
filling the system becomes a Mott insulator for any nonzercand a measure of the electronic delocalization is given by
U. There is no change of symmetry from the caséJefO
and in the limit of largeU/t, the system reduces to the
Heisenberg spin model, with nearest-neighbor exchahge
=4t?U/(U%—4A?), which also has no long range order or
spin gap in one dimension. The MI and Bl regimes are comThese expressions are exact only in the limit of an infinitely
monly distinguished from one another in literature on thelarge system, and in practice one measures each for increas-
basis of spin-charge separatitrin both cases there is a gap ingly larger supercells until convergence is met. Recently
to charge excitations but in the Ml state the spin gap is zer&ouzaet al® have shown that Eq$9) and (10) are in fact
while in the BI state both spin and charge gaps are nonzerwalid in a correlated many-body system and related this for-
The limiting casesgi) and (ii) are also instructive for our mulation to that using twisted boundary conditions. They
purposes. In the formert{=0) there is a transition aA also demonstrated that the formulas relate directly to mea-
=U from a singlet state with two electrons on the site withsurable fluctuations of the polarization, thus validating the
on site energy- A, which is similar to a band insulator, to a two formulas as direct measures of electronic polarization
state with one electron per site which has a spin on each si@nd delocalization.
and is similar to a Mott insulator. Thus one might expect a For our work we use quantum Monte Carlo techniques to
transition from the Bl state to some other phaselUass evaluate Eqs(9) and(10) which involve expectation values
increased even ify# 0. The second cad@) with §=1 and of quantities using wavefunctions that satisfy periodic
to#0 always leads to a singlet ground state for the isolatedboundary conditions. This is a great advantage in QMC since
dimers*® which relates to the known result that one has awve can use the same methods developed for other
singlet state with a gap for both spin and charge excitationproblems® The alternative approach using twisted boundary
for any degree of dimerization. Thus one can ask: does aonditions would require a change in the algorithms to use a
transition occur from the BI to MI regime a8—0 for U “fixed phase™*®*  rather than a fixed node method. Such an
+07? Is there a spontanedtidond-ordered phase? We shall approach would have important advantages, in particular, it
test these ideas with our QMC simulations applied to thewvould allow calculations to be done on smaller supercélls.
general case where there are no exact analytic solutions. In the present study, however, we need to work with large
systems because of long correlation lengths near the phase
transitions and thus it is convenient to use the standard meth-
ods.

e

(APe)=lim o

L—oo

Imin(Z), 9)

(AX?)= lim —(%)2|n|<2>|2. (10)

L—o

[II. ELECTRONIC POLARIZATION AND
LOCALIZATION

The issues associated with calculating the electric polar- IV. QUANTUM MONTE CARLO
ization in an extended system have a long, torturous 830 )
history %244 Only recently have formulas been devised that Quantum Monte CarléQMC) methodS®*® make it pos-
express the polarization and localization of electrons directiyible to evaluate expectation values of operators in many-
in terms of the ground state wave functidtf:**One type of  ody systems by stochastically sampling a probability distri-
formulation measures the change in polarization as a Berry’8ution. In this paper we focus on two methods, variational
phase obtained by integrating over twisted boundary condiMonte Carlo (VMC) and Greens function Monte Carlo
tions and an adiabatic parameter that characterizes the evid>FMOC), that can be used to determine properties at tem-
lution of the system as it moves from one state to andther. Perature equal zero. The space of integration is the set of all
This approach has also been extended to localization in atfie electronic coordinatesR={r,, ... ry}, which is
independent particle formulatiéhand recently in a many- sampled by “walkers” which denote a set of configurations
body formalism> An alternative approach has been devel-{R}. A random walk is generated by starting from an initial
oped by Resta and Soreitd?and others*®who expressed configurationR,, from which new configurations are gener-
the electronic polarization and localization in one dimensionated by successively stepping to new random configurations,
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e.g., using a generalized Metropolis metiddhis is done . .

by accepting or rejecting new configurations at each step e M By —e " B> C¥,—Co¥, (13
based upon a chosen acceptance funciiB(R)]. After a '

period of time the walk will stabilize such that the set of provided thatr is taken to be large. The following is a sum-
configurations visited R} will be distributed according to mary of the method developed by Haaf al>* some of
P(R). which is used in the next section. For lattices this projection

scheme takes advantage of the fact the spectrurﬁl a$

A Variational Monte Carlo bounded so that one can use a Green’s function projection

In VMC the expectation values are found for an arbitrary e T(P'*Eo)—{l— AT(H—E) I mar . (14)

operator O ~with a variational trial wave function the propagator acting upon the trial wavefunction now gen-
[V+({a},R)], where{a} denotes a set of parameters thatg ates a series of functions

can be optimized. The expectation value can be written as a
high-dimensional integral over coordinate positidhs |[WMy=[1—-A7(H—Eg) M| ¥7). (15)

In this algorithm there is no time step ertorso long as
[[1—AT(Ea—Eo <1, whereE,, . is the maximum eigen-

v ,R)O¥ ,R)dR X o T )
f r{a},R)O¥r({a}.R) value of theH which is finite on a lattice. The exact ground

(O)vme= ) stateW, is generated in the limiM —o so long as there is
f |¥r({a},R)|dR nonzero overlap betweefy and V.
By inserting the identity operatd|R){R| between suc-
24 cessive applications of the projection operator, the wave-
B f [¥r({a}, R)"OL(R)AR 1) function at stepgM can be expressed s
[ Wr({a},R)|?dR . -
f YMRw=_ 2 Y7RwII G(R,R_)WERy).
RM—1r - Ro i=1
(16)

whereO, (R)= 0¥ {(R)/¥+(R). The integral may be found _ _ ,
by sampling a set of point{R}) distributed according to the The matrix elements of the Greens function between neigh-
modulus of the wave function, generated by the Metropolid?0ring points in configuration space is

algorithm with | ¥ |2 as the acceptance function. VMC is

easy to implement but is limited in accuracy by the form of G(Rr. R,_,)= w“?i“:l_AT(H_EO):”RFl%
the adopted wave function. In our worl; has the Vr(Ri-1)
Gutzwiller fornt® 7
W (g, A", 8" )=g%1 ﬁi,T';i,LDT(A’,5’)DL(A’,5’), where the factoV+(R;)/¥+(R;_,) introduces importance
e ——?

sampling*® Since theG(R;,R;_;) are not normalized to
one, they cannot be interpreted directly as a probability dis-
which is a product of Slater determinants for each gfiins  tribution. This is remedied by expressi®R;,R;_1) as
guaranteeing that the wave function is antisymmgtiad a

two body Jastrow correlation function that reduces the am- G(Ri,Ri-1)=m(R;,Ri-1)p(R;,Ri-1), (18)
plitude of configurations with doubly occupied sites for O \,nere m(R,Ri_;) is a weight defined so thap is
<g=<1, thus lowering the interaction energy. The Singlenormalizeo‘?l Sep(Ri,R_1)=1.

body portion of Eq(1) is parametrized b’ and §’, which In th il 5bm(R R. . ¢ simol iaht
means the orbitals used to construct the Slater determinangs " - 9eneral ca m(R; ,R;—,) is not simply a weig

: . - : : but also includes the sign &(R;,R;_4). This is the symp-
are _obtamed by d|ag.ona_l|zmgA the noninteracting=0) tom of the sign problem that causes difficulties in Monte
portion of the Hamiltonian[H(A’,d’

tior ; A',6")] and adjusting  cario sampling since the weight of a walker must be positive
(A’,4") to optimal values Eha} minimize the energy in EQ. gefinite if it is to be interpreted in a probabilistic manner. In
(11) with respect to¥(g,A",5"). general, one must make some approximation to remedy this
problem, by fixing the sign o, e.g., the “fixed node ap-
proximation,” which has been described for lattice problems
by ten Haffet al>® This is not a problem in the model con-
sidered here and is the reason why this model can be solved
GFMC starts with the optimized VMC wave function exactly by GFMC. In the present model tbely nodeof the
W¥+(g,A",5") upon which a projection is applied to obtain ground state wave function are the points where two elec-
an improved ground state. To illustrate the principles uportrons of the same spin cross, which are the same nodes as
which this method depends, one can expdhgin terms of  those of the trial wave function. The GFMC sampling is
the eigenstate¥; of H. Then the imaginary time propagator restricted to a region in whicks(R; ,R;_1) never changes
acting upon¥ ; has the form sign because each step moves only one electron by one site,

Jastrow Term (12)

B. Green’s function Monte Carlo (GFMC) for discrete
systems
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with the move allowed only if the target site is not occupiederator between each projection and using importance sam-
by an electron of the same spin. pling Eqg. (22) can be rewritten as
Implementation of the above method is as follows. A

VMC calculation is performed which supplies a number of MM -1

walkers{R} initially distributed according t¢¥|2. Each of > Il G(Ri;:1.R) (O

these are then randomly walked along a path in configuration Ruemr Rl =M

space using(R,R’) as the Metropolis acceptance function M-1

of moving fromR to R’. Each step is weighted bm(R,R") X H G(Ri:1,R) \If%( Ro). (23
such that theth walker's accumulated weight is =1

TheG(R,R’) are sampled as before in terms of a probability
function [p(R,R")] and weightfm(R,R")]. A series ofi
walkers, initially distributed according to the VMC trial
. function, are stepped along path§R(}) in configuration
Expectation values for an arbitrary operarafter M pro-  space by Metropolis sampling. Afté&f projections the accu-
jections of the green’s function are measured by averagingiulated weight of eacHR;} is the product of all steps

M
wi'=T1 m(Ri.Ri-p). (19

the weighted local form 00O, (R) of each walker weights, as defined in Eq19). The walkers weights are
distributed according to the mixed probability distribution
i S O (Ry)wWM V(Ry)¥o(Ry). The local form of® [O;(Ry)] is mea-
(U OpwMy 4 THTMI sured for each walker but not averaged as it is in GFMC. The

(O)ermc= (20 walkers are moved an additionsll’ steps in imaginary time
over which they accumulate post measurement weights
(wi'\"'). Averages are computed using each walkers accumu-
Averages in GFMC equal the ground state expectatior@ted weight before and after measuriog(Ry)

value only for those operators which commute withbe-

<‘I’T|‘I’N> 2 WiM

cause the inner product EQR0) is a “mixed estimator” E Wi""'[wi""oi(RM)]
between(¥;| and |¥,). Operators that commute witf ' _ (24)
share the same eigenstates and the operator ii2Bgcan 2 wM' WM

7 I I

be considered to act to right oh, thus returning the ground
state and cancelling the normalization of the denominato

Conversely operators that do not commute ithhave dif-
ferent eigenstates and thus do not cancel the normalization

the denominﬁtor in Eq20). Ehere_ are s?veral vr\]/ays 10 iM- inution grows with the number of forward walking steps
prove upon the GFMC mixed estimator for suc expectanorM,, thereby increasing the fluctuation of the forward walk-

values. One is an approximation that is valid so long as th?ng estimates. To achieve the same statistical error as that in
VMC and GFMC averages are close to one another. Expres&FMC’ forward walking may require many times more esti-
ing | Vo) as|¥1)+|5V¥) and taking the inner product, the mates in Eq(24).

ground state expectation value can be express€d as We have tested our algorithms using forward walking by

IO N~ 2B o O 52 " calculating expectation values of operators that do not com-
(Wo|O[¥0)~2(O)gruc(O)yme+O(8¥7).  (21) mute with the Hamiltonian, such as the bond ord&)

However, this approximation breaks down whenever theneeded later. If we start from very poor trial functions,
VMC trial wavefunction is not a good approximation 4. GFMC leads to energies that are independent of the trial
function, but the approximate mixed estimator or the im-

C. Expectation values and forward walking proved extrapolation do not. However, the forward walking

] expressions are exact within the numerical error estimates.
The exact ground state expectation value of any operatqtor example, in a case where there is no broken symmetry

(O) can be found if the mixed expression HQO) is re-  the forward walking leads to the correct resi) =0 within
placed by one involving the exact wave function in both thethe error estimates, even when the trial function is chosen to

bra and ket have large(B).

r . - . .

Although this method is in principle exact, assuming the
nodal structure off o is known, it also has its disadvantages.
particular, the width of the post-measurement weight dis-

(U1|[1-A7(H—Eo) ™ O[1— A7(H—Eg) M| ¥+)
(Uo|[1-Ar(A—E M [1-A7(H—E) M Wy)

D. Test of GFMC on ordinary Hubbard model

( The accuracy with which the energy can be measured in
GFMC and the magnitude of the finite size effects can be

This can be accomplished by “forward walkind®which  addressed by comparing with exact results for the usual Hub-

can be simply expressed in terms of the GFMC method prebard model at 1/2 filling, which have been evaluated by

viously discussed. The same methods and terminology usddashimotd* for finite systems of #/+ 2 sites using periodic

in GFMC are also applicable here. Inserting the identity op-boundary conditions. In Fig. 1 the differences in energy be-
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FIG. 2. Ground state energy and bond order vs lattice distortion
S for U=2.4 in the usual Hubbard model. The energy was fit to the

FIG. 1. In the lower figureE(4N+2)—E(«) is plotted where . » y . .
N=2,3,...,11 andnfinite system estimates are those of Lieb and f_unctlon E(4=0)+A&"/In(3) using a nonlinear least squares rou-

Wu. The lines are exact results from Hashim@Ref. 549 and the
symbols are the QMC estimates foy U=5 (diamond$ and (i)
U=1.25(squares In the top figure the energy difference between
the QMC and exact results is plotted ks

and bond order are plotted ¥an Fig. 2 for an 82 site lattice.
The GFMC energy was fit to Eg. 25 using a nonlinear least
squares routine. The parameters of the fit B(&=0)=

tween lattices of sizé and the thermodynamic limit is plot- —0.-777589(24) A=1.48(17), andy=1.29(3) and give a
ted for two casedJ/t,=1.25,5.0. The finite size effects at reduced chi square of 1.58. This data agrees quite will with
typical U~2.4 are of order 0.000% for a supercell of 82 that of Black and EmeRj who observedy=4/3 in the 1D
sites. Thus we do not anticipate any difficulty in calculatingHeisenberg model. The energy of the symmetric lattice is
the energy except in cases where there is a much |0ngé¥|th|n error barS Of the exact thermodynam|c ||m|t Of
correlation length than in the usual Hubbard Model, e.g.,~0-77762. The divergence of the lattice’s susceptibility to
near a phase transition where correlation lengths diverge. Pond ordering can be observed in Fig. 2; as the level of
For comparison to our work later it is useful also to studydistortion approaches zero the bond order approaches the ori-
the dimerized Hubbard model with#0. Work on related ~9in With infinite slope.
issues in the past two decades has verified early theoretical
predictions” that electron correlation enhances the Peierls
instability of the noninteracting Hubbard model &s-0.

Using the Hellman-Feynman theorem the bond or¢fRy
can be identified as the first derivative of the energy with
respect to the lattice distortiorx or §. The bond order
susceptibility or the second derivative of the energy with
respect to has a logarithmic divergence ds-0,*° which is
referred to as the Peierls instability. The energy n&al0
varies a®’

V. RESULTS FOR IONIC HUBBARD MODEL

The unit cell for the ionic Hubbard model is composed of
two sites and the Hamiltonian is given in E@). In order to
understand the meaning of the polarization and bond order in
this system, it is helpful to consider first the noninteracting
case withU =0, where one can visualize the electronic prop-
erties in terms of Wannier functions. At zero dimerization
(6=0) the Wannier functions are centered on the sites
whose energy is shifted by A and —A. Two electrons of
opposite spin occupy the lowest energy Wannier function
centered on the lower energy site in each unit cell. In the
where the amplitudeA and y are dependent upon the dimerized lattice §#0), the symmetry is broken and the
strength of electron correlation. Faf=0 A is proportional  centers of the Wannier functions are displaced from the sites
toty andy=2, and forU/ty<<1 variational methods suggest creating a polarization. A8 increases the electrons find it
the same results. In the strongly correlated regime the latticenergetically undesirable to occupy the same site, and in the
can be mapped onto a 1D Heisenberg lattice wheris  dimerized state the center of the distribution shifts further
proportional to 45/U andy=4/3. Although the instability is away from the low energy site. The limit of this displace-
enhanced at largd, the effect is more difficult to observe ment (i.e., polarization is P=1/2 since one would never
since the electronic energy is much smaller. favor having more than one electron on the higher energy

In our studies we consider small ionic deviationsA0) site. Similarly, the limit of the bond order iB=2 corre-
from the usual Hubbard model far=2.4. The QMC energy sponding to isolated dimers.

E(5=0)+AsYIn(3), (25)
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As 6—0 there are only three possibilities. If there is a ' I ' I ' I '
spontaneous breaking of the inversion symmetry the polar- ’
ization can assume any fractional value between 0 and 1/2. Ia 04
there is no breaking of symmetry, there are still two possi-&
bilities since there are two centers of symmetry: the polar-¢,
ization can be 0 or 1/2. If the reference point defined to be= 0.2
zero is the usual band insulator where both electrons occup:

P RTI ATR R LY |

. ! o 0.1

the Wannier function centered on the lower energy site, it ¢ =

has been propos&tf’*8that P=1/2 corresponds to a Mott of - ! : , : I : I
0.5 .

insulator with no long range order. A
We first report results of our study of the ionic Hubbard % 0.4
model with parameters fixed at the values used in previous
work, 13578 5o that direct comparisons can be made. TheT
energy scale is set by defining=1, A/t;=0.5714, and Q o2
aalty=40/7. The previous conclusions with which we will g
compare are based upon exact diagonalization of the many§ 0%
body Hamiltonian in small supercelfs’® and Hartree-Fock o
calculations’’ The study® using exact diagonalization of 8
site lattices with twisted boundary conditions found a jump U/to
of 1/2 in the electronic polarization fat=0, i.e., an electron o )
in each unit cell being transported 1/2 lattice constant, at a FIG. 3. QMC measurements of polarizatieupper figurg ex-
critical value of U (U,=2.26). This was interpreted as a trapolated to large sizes compared to previous exact diagonalization
transition between Bl and MI phases, which was supporte@‘nOI ']:": r.esuns{l(l)W? f'guie' Resuilts are 'lIUStrate_d for itaggerEd
by Hartree FockHF) calculations that showed similar be- ransfer  integra Sti=1p(1=0.02) (_square}‘, and t‘*t‘)(l_.o'os.)
. . . (circles. The HF results are depicted by the dashed line in the
havior atU.=2.46. Extrapolations using larger cells of 12 lower figure
sites® find U,=2.86, presumably a more converged value. '
The key points aré) the transition point. is found to be a
metallic point with divergent delocalizatioriji) effective
charges diverge and change sign at the transition, (aind
t_he_)re IS n% sign of the bond-ordered state predicted by I:ab-A. Comparison with exact diagonalization and Hartree-Fock
rizio et al~> This new state would have long range order and
break the inversion symmetry of the lattice, thus allowing the Figure 3 shows the comparison of our results for the po-
polarization to take any fractional value. larization P with those of the previous calculations of Refs.
The present work is based upon the QMC algorithms ded3 and 57 for finite values of the distortio< 0.08 andd
scribed earlier and the formulas for polarization and localiza= 0.02). The present results are for periodic boundary con-
tion in Sec. lll. The first step in applying the QMC methods ditions and extrapolated to the thermodynamic limit ib &5
is to find a trial wavefunction that has as much overlap withdescribed in the following section. The results of Ref. 13
the true ground state as possible. This is achieved by optiwere obtained with 8 site rings and integrating over twisted
mizing the parametekgy,A’, 5’} to minimize the energy. To boundary conditions(The jump inP found in HF calcula-
determine the optimal value @f we have used a newly de- tions for nonzeros is an unphysical consequence of the
vised technique that significantly reduces the amount ofmean field approximation that leads to an antiferromagnetic
computational effort requiref. Using the optimal ground state that cannot occur in 1[The previous exact
Gutzwiller parameter the energy 8f(g,A’, ") for differ-  diagonalization results agree well with those of QMC for
entA’ andé’ is sampled using VMC. We adjuét’ and &’ 6=0.08. This is in agreement with previous studies using
to lower the VMC energy and measure it at several points irexact diagonalizatiofi®on the usual Hubbard model which
the neighborhood of its minimum. A curve fit is then per- found that small cells of this size were sufficient to reach
formed using these points to determine the optihaland  thermodynamic convergence in the 005<0.1 regime,
&' [Except where indicated all results for polarization, bondwhereas convergence with cell size is worse for smafler
order and localization are determined by forward walking. The critical difference of our results from the previous
This is not needed for some cases where the same results caxact diagonalization calculatiofiss illustrated by the be-
be obtained using Eq21), but is essential in other casps. havior as the magnitude of the distortion decreases to
The number of configurations over which expectation values=0.02. As shown in the lower panel the two curves for po-
are made varies withi) the number of electrons and) the  larizationP vs U cross. This is the basic result of Ref. 13: the
proximity in the phase space defined Hy,Q) to a critical  crossing indicates that the effective chaige, which is a
point. On average for a lattice of 100 electrons we havealerivative of the polarization with respect to lattice distortion
sampled between 110 million statistically independent (Z* =dP/dé) changes sign. This indicates an anomalous re-
configurations in many-body space. Near critical points theversal of the roles of the anion and cation, and in the limit of
correlation between measurements of the local form of a®—0 leads taZ* —« and a discontinuous jump in polariza-
operator increases. This necessitates running the simulatiotien P at a critical valueJ =U_. In contrast, no such behav-

[=)
Ny
[\*]
w
&~

longer so as to obtain unbiased estimates of the statistical
error in our measurements.
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FIG. 4. The points represent the QMCobtained using forward 0 1 2 8 4 5 6 7
walking for system sizes of 80, 100, 140, and 200 sites for different U/to
levels of dimerization$={0.0028,0.0056,0.0085,0.01}14n as- ) ) ) o
cending order. FIG. 5. P(L==) and(A“X) for various levels of dimerization

(). The extrapolated centrosymmetric polarization and localization
ior occurs in the present calculations: our results indicate thas represented by the points with error bars.
the effective charg&€* =dP/dé increases ag—0 but that
it never changes sign. We attribute this difference to the fac9.0085,0.0114 we have performed a linear least squares fit
that the correlation lengths increase near the transition poireind extrapolated to the centrosymmetric limi=0). This
whereZ* — o« so that the previous calculations on small cellsmethod makes the assumption that the response of the lattice
are not sufficient. Even though the method of integratingto dimerization is linear. However, near the phase transition
over boundary conditions used in Refs. 13 and 57 allows onsonlinearity will cause this to break down. In Fig. 5 we have
to use smaller cells than is required with periodic conditionsplotted the polarization and localization of the ionic model
nevertheless, the size of the cell must exceed the correlatidior different magnitudes of dimerization.
length. If it is smaller than the correlation length then artifi-  The phase transition we find using QMC differs from the
cial correlations are introduced thaaximizethe error*® In-  topological transition found using exact diagonalization and
deed, it is agreéd that the localization length diverges, and HF. As previously mentioned, in the Bl and MI phases the
a key point of the present work is that we are able to use cellpolarization is restricted to 0O or 1/2. Resta and Sorella iden-
of sufficient size to more correctly determine the behaviottified the shift from 0 to 1/2 as the signature of a-BMI

near the transition point. transition. However, we find th& takes a continuous range
of values in the centrosymmetric limit which can only occur
B. Phase transition to bond-ordered(BO) state only if the global inversion symmetry of the lattice is broken

by a long range bond orderg@O) state. Such a broken

We have measured the forward walking estimatorsPor symmetry BO state was predicted by Fabrieical2® on the

B, and(A?2X) and taken the limit 06— 0 to study the nature asis of field theorv arquments in which he mapped the
of the quantum phase transition. The formulas used to obtaiE| y arg PP

) o o amiltonian onto two Ising spin models. The order param-
expectation values for polarization and localization are onlyeter of this phase transition is the average bond wen
accurate in the limitL—o. This limit is taken by fitting P 9 b

measurements at finiteto a linear least squares fit in (/" in Eq. (6). In Fig. 6 is given the spontaneous bond order
and extrapolating to 0. We have found-1 to accurately for the centrosymmetric lattice obtained by extrapolating to

account for the finite size effects & and y=2 for (A2X). 0=0 using the same values 6fas in Fig. 5. Here we fixed

This scaling has onlv been found aporopriate uoon increas:[-he supercell size to 142 sites and found the consequent size
9 y pprop b effects are within order of the error estimate &r

ing the supercell size above a critical threshold which de- We have attempted to classify the quantum phase transi-
pends on the proximity of the metallic state. The accuracy Ogion by fitting the polarization and bond order of the cen-

the finite size corrections tB are illustrated in Fig. 4 at) : . .

=2.7 for different magnitudes of. The data in Fig. 4 was trosymmetric lattice to a function of the form

collected near the critical point of the phase transition, where A[U—-U.J¢, (26)

size effects are large and must be treated accurately. If the

system is sufficiently far from such a critical point, size ef-where¢ is the critical exponent and determines the univer-

fects are less pronounced, and there is a more rapid convesality class of the transition. A nonlinear least squares rou-

gence to the thermodynamic limit. tine was used to fit the data, with fitted parametds A,
Using the infiniteL estimates for the polarization and lo- andé listed in Table I. In Fig. 7 the data fé? andB and the

calization on lattices dimerized by={0.0028,0.0056, corresponding fits are plotted. Both quantities behave simi-
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FIG. 6. QMC bond order of centrosymmetric lattice f'to FIG. 7. Extrapolated polarization and bond order for the cen-

=0.5714 and. = 142. Results obtained by extrapolating bond orderosymmetric §=0) lattice near the critical point and their fits to
on distorted lattices 06={0.0028,0.0056,0.0085,0.011tb §=0. Eq. (26).

larly near the critical point and the). of each is nearly _change sign. This provides an alternative method of detect-
identical. We findé for P and B are near 1/2, the expected ing the existence of the BO state. . _
mean field exponent. On the other hand, Fabrigial?® At large U one might expect that there is a second tzré:msr
predicted that the transition is of the Ising universality clas/on t0 & symmetric Mott Insulator. Indeed, Fabrizbal:

and thus¢ should be 1/8. We do not know whether the dif- predict the existence of a Kosterlitz-Thouless transition for
ference is real or it is simply due to the possibility that the!@rg& U/A at which the bond order vanishes and the polar-
range ofU— U, over which the scaling belongs to the uni-

ization is exactly 1/2. However, we do not observe such a
versality class is too small for us to observe in the presenffansition for anyU considered which included values up to
work.

U=10. The bond order does diminish but appears to asymp-
Alternatively, the existence of the BO state can be oplotically approach 0 and the polarization appears.to converge
served by directly studying the symmetric lattice without any!© 1/2 only in the limit ofU—ce. It should be pointed out
lattice distortion. Quantum phase transitid@PT) are char- that working with such strongly correlated systems has the
acterized by a symmetry breaking that occurs in the thermodisadvantages that) fluctuations of the local estimators in-
dynamic limit. BelowU, the lattice is a band insulator with Cr€ase due to greater inaccuracies in the trial wa_tvefunchon
no bond order but abovéd,. the electrons will spontaneously &nd (i) forward walking works so long as the trial wave
choose to bond order witf| #0. There are two such states
characterized by the same magnitude but opposite sign of th. ¢4
bond order. For any finite system the ground state remains i
linear combination of both. However, in the linit—% one
of these is arbitrarily chosen as the ground state. Ever
though the QMC simulations of the symmetric lattice r
>U, measure zero bond order and polarization for long-
simulations, the imaginary time evolution of the simulations r T
clearly depicts the projected ground state moving from one ’ , | , | ! | ,
of these bond ordered states to the other. This phase separ g4 -
tion gives rise to large autocorrelation times. The evolution .

r

e
[

o

Bond Orde

of the bond order and polarization in imaginary time are § 0.2 N
illustrated in Fig. 8 forU=3.45 andL=60 sites. As the ‘t;g' 0 i
ground state moves between BO states of opposite symmetrg L _

both the polarization and dimerization are observed tog

TABLE |. Fitting parameters for polarization and bond order. ! I ! I L I L | |
The quantities in parenthesis are the error in the last decimal place. 0 100 200 300 400 500

Imaginary Time

A u 3
: FIG. 8. lllustration of the phase separation in the symmetric case
P 0.441) 2.605) 0.6010) (6=0, A=0.5714,U=3.45, and sizé = 60 site$ of the polariza-
B 0.491) 2.652) 0.394) tion and bond order. The lines depict the measurements over which

averages are obtained in QMC.
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m 01l FIG. 10. Bond order correlation functions for the symmetric
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A =0.1432,U=2.4, L=122, (iii) A=0, U=2.5, L=122, and(iv)
A=0.5714,U=3.45,L=60.

FIG. 9. Polarization and bond order vs ionic potentiafor &
={0.0028,0.0057,0.0114,0.0]}7Jar1d U.=2..4. The extrapolated B=0 and polarization equal 1/2 as they must be for a MI
bond order of the centrosymmetric lattice is denoted by the dOttegtate with no long range order. However, our QMC simula-
line. tions of the symmetric cas&¥& 0 andU =2.4) at the small-

, ) est value of the ionic potential studiéd=0.0716 reveal two
function has some overlap with the exact ground state and 4§ states phase separating in imaginary time qualitatively
U increases overlap with the exact ground state diminishesiye same as shown in Fig. 9. Thus from our studies, there is
no sign of a second transition to a Ml state as proposed by
Fabrizioet al?® and the long range bond ordered state in Fig.
10 appears to exist for any finite#0.

Our results imply that the MI state in 1D exists only
within the usual Hubbard model and in ionic Hubbard lat-
tices only in the limitU=o. At large U the usual Hubbard
model has been mapped onto the Heisenberg spin model.
: SR . : The present finding suggests that such a mapping may be
trosymmetric lattice is inferred using two approacligsx- insufficient for ionic Hubbard models and that terms ignored

trapglatmg regults obtained on Iatt|ces_ W";#O and (i) . or considered small possibly play a fundamental role.
looking for evidence of phase separation in the symmetric

case. Figure 9 shows the results of the first approach for a
fixed supercell length of 142 sites. In the first we have ne-
glected size effects and fixed the supercell length to 142 It is interesting to study the bond-order correlation func-
sites. At largeA the single body contribution to the Hamil- tion which reveals both the form of the short range order and
tonian is the dominant term and the lattice is a band insulathe existencéor absenceof long range order. We define the
tor. Consequently the bond order and polarization are Obond order correlation functiofgg(r)] as

However, asA—0 a transition occurs to a BO state where
the bond order is nonzero and the polarization assumes val-
ues between 0 and 1/2 as befof€he transition is rounded

at this fixed cell length.The bond order in thé— 0 limit is .
shown by the dotted line in Fig. 9. These results were obwhereB; is defined in Eq(5) and is the strength of thigh
tained by linearly extrapolating the bond order at findte  bond of the lattice. Correlations of strong and weak bonds
(No extrapolation was performed for the polarization since itstagger this correlation function and are a signature of a bond
is sensitive to size effects that were addressed in the previousdered state. If we defindgg(r)=[gg(r)—gg(r+1)]

C. Phase transition as a function of ionicityA

An alternative approach to study the phase trangi$jos
to diminish the ionic potentiah while keepingU fixed, so
that the ratioU/A increases. We have fixed the strength of
electron correlation tdJ=2.4 and studied the bond order
and polarization for A <0.5714. The behavior of the cen-

D. Bond order correlation function and long range order

1 A A
gB(r>=[<Z BiBi+,>, (27)

section) (—1)", it is straightforward to show that
Our results indicate the bond-order state exists at all val-
X .. > corr
ues of A#0 studied. The finite value of the bond order for 2 Agg(1)=B(r) B, 28)

6—0 shown in Fig. 9 contrasts sharply with the vanishing of
the bond order a$s—0 for the nonionic Hubbard model wherer,, is a correlation length anB is the average bond
(A=0) asv shown in Fig. 2. Ah=5=0, we always find order.

235108-10



QUANTUM MONTE CARLO STUDY OF THE ONE. .. PHYSICAL REVIEW B 63 235108

& A from distorted lattices (0.45). The weakly bond ordered case
s G O Strongly Bond Ordered 7 appears to converge to a value near 0.18 which is in reason-
EE gg‘n'n\':;ﬁlx:jg;gfrdered . able agreement with the extrapolated value of 0.2263(46).
08y % Band Insulator - However, the(B)(r) of the Mott insulator withA=0 and
\ § the weakly bond ordered case wittw=0 differ very little.
— osk §\\ i No conclusion can be drawn as to whether or not a Mott state
5 '\.\&*e | exists at smallA. On the other hand, Figs. 10 and 11 clearly
N - oo | depict a bond ordered state for ionic lattices wharés of
o4 * % e-0-C0-0-0" ©-e-0-0.9 sufficient magnitude. As the ionicity is lowered, we do not
** 'b.hb"bﬁ% 7 know whethergg(r) decays according to a power law or it
0.2 o -'w-»-»-%&;&__s_\p___g,o - approaches a constant. Thellong ranged decays@f) re- 3
ek . g flects the absence of a gap in the spectrum ?nd exemplifies
S T S R B S | the unstable nature of the Mott State and it's tendency to

bond ordering. Only highly accurate measurements of the

bond order correlation function far>r.,, can determine
FIG. 11. Bond correlatiol(r) vsr [see Eq(28)] for (i) band ~ Whether this instability to bond ordering exists at minuscule

insulating,(ii) weakly bond orderedjii) Mott insulating, and(iv) A.

strongly bond ordered regimes. The specific parametersiare

=0.5714,U=1.2, L=60, (i) A=0.1432,U=2.4, L=122, (iii)

A=0,U=25,L=122, and(iv) A=0.5714,U=3.45, L=60. VI. DISCUSSION

One of the primary results of the present work is the

In Fig. 10gg(r) is plotted for four separate cases, all with quantitative demonstration of the stability of the bond-
a symmetric Hamiltonian §=0): (i) A=0.5714,U=1.2,  ordered phase for interactidhabove a critical valué&,(A)
L=60; (i) A=0.1432, U=2.4, L=122; (iii) A=0, U for any nonzerd\. Most of our work was carried out through
=25, L=122; and(iv) A=0.5714,U=3.45, L=60. The dimerizing the lattice bys and examining the5—0 limit.
first case corresponds to the band insulating regime in whicihere were two reasons for thig this is an aid in the actual
gg(r) exponentially approaches a constant, confirming thecalculations which are stabilized by the applied bias @nd
lack of any long range ordered phase. Conversely in the lashe variation with dimerizatiod is important in and of itself.
case, which corresponds to the system in Fig. 8 that exhibRegarding the second point, it is well known that the ordi-
ited phase separation, it is clearly visible tiga(r) is stag- nary nonionic Hubbard model is unstable to dimerization,
gered, signifying the presence of a long range bond orderedith a logarithmic Peierls instability 41 =0 that becomes a
(BO) state. Finite size effects in each of these cases werstronger fractional power law instability at large
determined to be minuscule and small systems were deemeg®>>~3733555¢yr work shows that as a function bf/A the
sufficient to measurgg(r). The second case corresponds toionic Hubbard model undergoes a phase transition from a
diminishing A so as to move the system towards the estabstable nondimerized Bl phase to a correlated phase in which
lished Mott State of the usual Hubbard model. At this pointthe instability ismore severghan in the nonionic Hubbard
in the phase diagram the wells of the bimodal distribution arenodel. This is evident in comparison of Fig. 2 with Figs. 5
weakly defined; thus making it extremely difficult to observeand 7. In the nonionic cag€ig. 2), the decrease of the bond
the phase separation of the bond order parameter directly. lorder with & is clearly observed and is consistent with pre-
contrast, the bond order correlation function is clearly stagvious theoretical predictions of the power law form. How-
gered, though to a lesser degree than that of the later casever, in all the calculations for the ionic model fal/A
Casefiii) is the Mott state of the usual Hubbard model. Theghgye the critical value, the average bond okd@r is found
staggered behavior @fg(r) does not approach a finite limit {5 extrapolate to a nonzero value. This is observed eved for
at larger, but rather tends to 0 in a fashion that appears to benych smaller than previous studies. From this evidence
a power law, contrary to the exponential convergence obg|one there are two possibilitie&t) the BO phase with bro-
served in the Bl regime. Comparison of casgsand (i)  ken symmetry is stable at zero dimerization (@ there is
shows that in each case the differencgypfr) fromits long  npopanalytic behavior as—0 which is even stronger than
range limit extends further than in the band insulating andnat for the nonionic Hubbard model.
strongly bond ordered cases. This shows that the fluctuations This result is sufficient to draw conclusions about real 1D
in the bond order are long ranged and leads to difficulties insystems in which the sites are allowed to dimerize if this
the numerical calculations as the ionic potential tends tQeads to lower energy. In either of the two scenarios de-
Zero. _ scribed above, dimerization would always occexcept in

This estimate is exact wher>r o, wherer, is the  the Bl phasg In the first scenario the BO phase would occur
correlation length. Figure 11 show8)(r) plotted vs r for  spontaneously and by symmetry there would always be an
the same cases as in Fig. 11. The band insulating estimat&companying lattice distortion. In the second scenario,
rapidly approaches O as a function ofThe strongly bond dimerization would occur due to the nonanalytic energyvs
ordered system converges to an estimate of the bond orderich would lead to bond order. The symmetric Mott insu-
that is remarkably close to that obtained by extrapolatindator would never occur and the only transition would be
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from a Bl phase to a dimerized BO phase. This is in agreebut A;=0 in the MI phase. It was found to be very difficult
ment with previous results that electronic correlation en-and to require extremely large cells to determine spin gaps in
hances the instability to bond orderifiy>":33:5556 the BO/MI phases, and the two reports came to opposite

At this point we can compare with experiment on 1D conclusions on the existence of the BO phase.
materials. Experimental works by Torraneeal ©° observed In our QMC calculations we have also determined the
a second order transitions between neutll) and ionic  charge and spin gaps. Our estimates of the charge gap are in
(BO) states in organic charge transfer solids. The transitiomualitative agreement with other works; however, the spin
occurs upon applying pressure over a wide range of tempergap is very small in all cases except in the Bl regime and
tures and was attributed to the rise in Madelung energy of thetatistical noise does not permit an accurate determination of
crystal. No state synonymous to the Mott state was observeduch small gaps in QMC.

Among the interesting consequences of the stability of the Both DMRG calculations find the spin gap to vanish, i.e.,
BO state is the existence of fractional charge®. For the  the MI phase to be the ground state for latgeWe have no
case of a dimerized or bond-ordered state, the charge is afirect explanation of this difference: it may be that our pro-
irrational fraction the value of which depends upon the valuecedure is not sufficiently accurate to determine the BO-MI
of A 5125 transition, which is the most difficult part of the present

Other work on related systems also has identified BOwork. On the other hand, it may be that the DMRG calcula-
phases. Recent work by Nakamtfrin the extended Hub- tions on finite cells with open boundary conditions may have
bard model has found a rich phase diagram in which therelifficulties: the surface effects break the symmetry of the
are two transitions from a B+BO and BO-MI regime.  problem which may lead to extremely problematic size ef-
The extended Hubbard model differs from the ionic modelfects and potential errors. The BO-MI transition was pre-
studied here in that there is an additional next nearest neiglticted using a weak-coupling effective field theory and the
bor coulomb potential/ and no ionic potentiah. Nakamura ~ charge gap of the Plain Hubbard moéelt is possible that
identifies the first transition as belonging to the Gaussiarat largeU this theory is not applicable and cannot accurately
universality class and the later as a Kosterlitz-Thouless tranpredict whether the MI state actually exists. In any case, we
sition. The BO phase observed by Nakamura exists af all are very confident that our work establishes that the BO state
down to the usual Hubbard modeV£0); where both the is either the ground state or very close to the ground state in
Gaussian and the KT transitions coexist. We can imagine thenergy; this is clear from our tests on the ordinary Hubbard
U. at which the BBO transition takes place increasing model shown in Fig. 1.
concurrently as the ionic potential is increased from zero.

Let us now consider why the BO phase was not found in

previous studies that used exact-diagonalization Lanczos VII. CONCLUSIONS

teChniqueS to treat small finite SyStePﬁ§7|f the BO state is We have studied the phase diagram of an idealized dielec-
the ground state then, of course, it is degenerate and one C@it, the 1D ionic Hubbard model proposed by Nagdsad
form linear combination of the states Egami?* This model undergoes a phase transition as a func-
tion of the on-site interactiokb), which has been a source of
Wo=cog )W, +sin(6)W_, (29 controversy. The only previous quantitative stutfiécon-

cluded that at a criticdl . there is an abrupt “topological”

each of which has no net bond order. For finite systemsransition from a band insulator to a Mott insulator with no
existence of the BO state can be inferred from correlatiorbroken symmetry or long range order in either phase. The
functions; however, to our knowledge this has not been doneignature of the transition was found to be an abrupt change
in other work. A second reason that the BO states have na@jf 1/2 in the polarization at which the effective charge di-
been observed may be that there is no bimodal distributionerged signifying the delocalization of the electron
for the small cells studied by exact diagonalization. We havestates:®” Recently, however, there has been a prediéfion
addressed this issue by using QMC to determine averag@at this model would exhibit two quantum phase transitions:
bond order on distorted lattices of $4 <62 sites and ex- the first signifying a change of state from a band insulator to
trapolating to the centrosymmetric limit. At a point in the a broken symmetry phase with long range alternating bond
phase diagramX=0.0716,U=2.4) where the correlation order, and the second a transition to the Mott insulator.
lengths are large, we find that lattices with less than 50 sites We have studied this model using quantum Monte Carlo
do not exhibit the BO phase; only for larger supercells do wemethods which allow the simulation of much larger systems
find the phase separation of the two BO states. As we havihan studied by exact diagonalizatibit’ To our knowledge,
pointed out, this is the key difference in our approaches: ifthis is the first application of QMC to determine both the
we want to determine the behavior near the critical point, wepolarization and localization of an electronic system. For this
expect to need large cells for which exact diagonalizatiormodel our QMC methods are in principle exact, since there
methods are not currently feasible. is no sign problem, so long as our trial function has nonzero

Recent work using the density matrix renormalizationoverlap with the true ground state. We evaluate the expecta-
group (DMRG) method has reported results for charye  tion values of the bondorder, polarization, and localization
and spinAg gaps in these models. This approach should enusing the expressions Ed%), (9), and(10). It is found that
able one to distinguish the phases sifige\(=As#0 inthe  upon crossing a critical valug, a change of phase occurs
Bl phase,(ii) A;#As#0 in the BO phase, andii) Ac#0  from a band insulating to bond-ordered state. The bond order
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develops continuouslysee Fig. 8 as a function ofU—U,  model®®*=3"33555¢rthermore, for the centrosymmetric lat-
and since the inversion symmetry is broken, the polarizatiortice (6=0), calculations of correlation functions and obser-
also varies continuously, unlike the results of the small cellvations of “flip-flop” between left and right bond-ordered
exact-diagonalization calculatioh$The existence of bond states in the QMC simulations provides further evidence for
order is also demonstrated in the QMC simulations by thehe stability of the bond-ordered state.
“flip-flop” between left and right BO states. Finally, these results imply that if dimerization is allowed
The critical behavior is uniquely determined by fitting the (which is always the case in real materials since the atoms
bond order and polarization to a scaling function near thecan always dimerize if it lowers the enejgihen the sym-
critical regime. We find an exponent near 1/2, which differsmetric Mott state is never stable and the only phase transition
from that for the Ising class proposed in Ref. 25; however, itis from the symmetric Bl to the dimerized BO state. This is
may be that we are outside of the regime in which the scalingxperimentally confirmed by Torrana al®°, where upon
belongs to the appropriate universality class. In addition, wéncreasing the electronic interaction a-BBO transition
found that there is a metallic point &, where the system is takes place.
metallic. At this point the charge gap must vanish which we
have found in pure ground state calculations by determining
the fluctuations of the polarization. The calculations deter-
mine quantitatively the localization lengtf;*® which di- We gratefully acknowledge Erik Koch for his help imple-
verges at the transition. menting lattice quantum Monte Carlo methods and David
We have searched for the proposed transition to a Mot€Campbell, Michele Fabrizio, Eduardo Fradkin, Erik Koch,
insulating state, but we have not observed such a transitioGerardo Ortiz, Rafaelle Resta, Anders Sandvik, Pinaki Sen-
from the bond ordered regime even for very latdg@r very  gupta, Ivo Souza, and David Vanderbilt for invaluable dis-
small A. Even the smallest value af considered in this cussions. This work would not have been feasible without
study (A/to=1/14<U/ty=2.4) is sufficient to cause the the computational resources of the National Supercomputing
ionic Hubbard model to be unstable to bond ordering, al-Center at the University of lllinois and the Materials Re-
though there is no broken symmetry in the usual Hubbarcgearch Laboratory. We are especially grateful to the NT su-
model (A=0), neither in the exact solutiéhnor in our  percluster, managed by Rob Pennington and Michael Show-
results. Thus our results show that the instability toerman, which provided the majority of the computational
dimerization is even stronger in the ionic model thanresources for this study. This work was supported by the
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