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Recursive analytical formula for the Green’s function of a Hamiltonian having a sum
of one-dimensional arbitrary delta-function potentials

J. Besprosvany
Instituto de Fı´sica, Universidad Nacional Auto´noma de Me´xico, Apartado Postal 20-364, Me´xico 01000, D. F., Mexico

~Received 24 March 2000; published 30 May 2001!

The Green’s functions of one-dimensional Hamiltonians containing, respectively, one and two delta-function
potentials are derived by analytically summing over the corresponding Lippmann-Schwinger series. A gener-
alization of this procedure leads to an explicit recursive formula for the Green’s functionG(n11) corresponding
to a Hamiltonian containing a sum ofn11 delta-function potentials of arbitrary positions and strengths in
terms ofG(n) and the additionaln11 delta-function potential parameters.
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I. INTRODUCTION

Delta-function potentials serve both as feasible repres
tations of physical potentials in various contexts and as u
ful paradigms for the solution of quantum-mechanical pro
lems. Given the solvability feature of these potentials
many cases, relevant information can be obtained1 about
other potentials that are approximated by these but other
unsolvable. Delta-function potentials are also helpful in ar
as varied as condensed-matter physics to simulate, for
ample, scatterers in electronic transport, to describe peri
potentials as in the Kronig-Penney model,2 and in nuclear
physics, for example, to model short-range potentials3 or op-
tical potentials.4 Many of these problems can be usefu
reduced to one-dimensional problems. In particular,
delta-function potential

U~x!5(
i

Vi5(
i

Uid~x2ai !, ~1!

formed of a series ofVi representing delta-potentials o
strengthUi and located atai , has the advantage that it ca
be solved analytically, albeit with rather complicate
expressions.5,6 Thus, one possible application of the potent
U(x) lies in modeling other potentials. Indeed, a local pote
tial can be expressed as a sum of delta-function contribut

V~x!5E dx8d~x2x8!V~x8!. ~2!

By making an adequate approximation

V~x!'(
i

Uid~x2ai !, ~3!

we find that this could serve as an approximative method
the calculation of the wave function or the Green’s functi
for any potential, using the solvability property of the pote
tial in Eq. ~1!, and provided the method is relatively simpl

In this report we find a recursive formula for the Green
function G of the Hamiltonian

H85
p2

2m
1U, ~4!
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with U given Eq.~1!, which can serve the purpose of sim
plifying the calculation ofG. We shall arrive at it in the nex
section by first analyzing the Green’s function forU terms
with one- and two-delta potentials, and for which we obta
explicit expressions. In the last section we shall discuss so
implications of this formula, with regard to physical prob
lems.

II. GREEN’S FUNCTION FOR ONE-, TWO-
AND MANY-DELTA POTENTIALS

The Green’s functionG(E) for a given HamiltonianH,
with argumentE satisfies

~E2H !G51 and G~E2H !51, ~5!

and it contains information on the solutions of the Sch¨-
dinger equation. In particular, by choosingG with the ad-
equate boundary conditions, one can obtain from it the s
tering wave function, and the on-shell and off-sh
scattering matrix; theT matrix, proportional to the latter, ca
be obtained from

T5V1VGV. ~6!

In the task of calculatingG we start by considering the
Green’s function for a free particle with HamiltonianH0
5p2/2m

G06~E!5
1

E2H06 i e
, ~7!

where the energy argument isE5k2/2m and the1 or 2
indexes refer, respectively, to advanced or retarded Gre
functions.G06 is diagonal in momentum space and is inte
preted as a free particle propagator. From here on we s
concentrate on the advanced Green’s functionsG0[G01,
while similar manipulations can be carried out for the oth
type of resolvent.

The representation of the matrix elements of the Gree
function forH8 in Eq. ~4! in configuration space shall prov
useful. The corresponding expression forG0(E) is given by

^x8uG0ux&5
2 im

k
eikux82xu, ~8!
©2001 The American Physical Society08-1
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where we use plane wave functions with normalization ta
to be

c5eikx. ~9!

The presence of an interaction modifies the function in
~8! and the Green’s function with an interacting Hamiltoni
H5H01V

G~E!5
1

E2H1 i e
, ~10!

now satisfies the Lippmann-Schwinger equation

G5G01G0VG. ~11!

Eq. ~11! is an integral equation for which a perturbative s
ries expression can be arrived at by substituting the in
approximationG'G0 on the right-hand side term ofG, and
successively repeating this process for the obtainedG on the
left-hand side. This gives rise to the series

G5G01G0VG01G0VG0VG01 . . . . ~12!

A. One-delta potential

The analysis of the first terms of the series in Eq.~12! can
lead to interesting information on its general form as in ot
applications.7 In the case of the HamiltonianH15p2/2m
1V1 with V15U1d(x2a1) the series for the correspondin
Green’s function

G(1)5G01G0V1G01G0V1G0V1G01, . . . , ~13!

gives rise to a geometric series that can be summed int
exact expression. The origin of this simplification is in t
fact that the delta potentials separate the internal terms in
~13! and convert them into numbers. For example, by ca
ing out the integration over the internal coordinates, the fi
order term inV1 becomes

^x8uG0V1G0ux&5U1S 2 im

k D 2E dx9eikux82x9u

3d~x92a1!eikux92xu, ~14!

5U1S 2 im

k D 2

eikux82a1ueikua12xu,

while the second-order term inV1 can be similarly obtained
and is

^x8uG0V1G0V1G0ux&5U1
2S 2 im

k D 3

eikux82a1ueikua12xu.

~15!

In general, by performing the integral over the internal co
dinates of terms in the series~13! of the form
. . . V1G0V1 . . . , they lose their coordinate dependence a
become constants. The series obtained for^x8uG(1)ux& trans-
forms into a geometric series 1/(12c)511c1c21c3

1 . . . , whose sum gives
23310
n

.

-
l

r

an

q.
-
t-

-

d

^x8uG(1)ux&5S 2 im

k Deikux82xu

1

S 2 im

k D 2

U1eikux82a1ueikua12xu

11
im

k
U1

. ~16!

Similar sums can be obtained for the scattering matrix,8 us-
ing Eq. ~6!.

B. Two-delta potential

Modified Lippmann-Schwinger series can be construc
by separating the Hamiltonian in various ways.9 For the case
of the Green’s functionG(2) corresponding to two delta
function potentialsV11V2, one may useG(1) and expand in
V2. One gets

G(2)5G(1)1G(1)V2G(2), ~17!

with the corresponding expansion

G(2)5G(1)1G(1)V2G(1)1G(1)V2G(1)V2G(1)1 . . . .
~18!

Then

^x8uG(1)V2G(1)ux&5U2^x8uG(1)ua2&^a2uG(1)ux&. ~19!

The second-order term inV2 can be obtained similarly to Eq
~15!, and is given by

^x8uG(1)V2G(1)V2G(1)ux&

5U2
2^x8uG(1)ua2&^a2uG(1)ux&

3S 2 im

k
1

S 2 im

k D 2

ei2kua12a2uU1

11
im

k
U1

D ,

5U2
2^x8uG(1)ua2&^a2uG(1)ux&^a2uG(1)ua2&. ~20!

By repeating this procedure for higher-order terms, we
tain again a geometrical series whose sum can be expre
as

^x8uG(2)ux&5^x8uG(1)ux&1
U2^x8uG(1)ua2&^a2uG(1)ux&

12U2^a2uG(1)ua2&
.

~21!

Explicitly,

^x8uG(2)ux&5a/b ~22!

where
8-2
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a52 i
k

m
eikux2x8u1eikux2x8u~U11U2!

2eik(ux2a1u1ua12x8u)U12eik(ux2a2u1ua22x8u)U2

1
2 im

k
@eik(ux2x8u12ua12a2u)2eikux2x8u

1eik(ux2a1u1ua12x8u)1eik(ux2a2u1ua22x8u)

2eik(ux2a2u1ua12a2u1ua12x8u)

2eik(ux2a1u1ua12a2u1ua22x8u)#U1U2 , ~23!

and

b5S k

mD 2

1 i
k

m
~U11U2!1~e2ikua12a2u21!U1U2 .

~24!

C. General recursive formula

The procedure we have followed to deduce the ma
element ofG(2) in Eq. ~21! in terms of the matrix element o
G(1) andU2 depends on the fact that under integration w
the delta potential, the internal elements of the Lippma
Schwinger series become a geometrical series of power
separate numbers that can be summed into a single analy
formula. By repeating this procedure, in the case of an a
trary U(x), we obtain a recursive formula forG(n11) in
terms ofG(n), Un11 , an11, given by

^x8uG(n11)ux&5^x8uG(n)ux&

1
Un11^x8uG(n)uan11&^an11uG(n)ux&

12Un11^an11uG(n)uan11&
.

~25!

III. OUTLOOK

It is interesting to note that the Green’s function in E
~25! need not be assumed to come from a Hamiltonian w
a kinetic and a delta-function potential part; in fact, the de
vations we have made do not depend on the type of non
turbed HamiltonianH0, and therefore, can serve also for a
s
;

23310
x

-
of
cal
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Hamiltonian to which an arbitrary delta-function potential
added, and it is enough to have an initial numerical value
its Green’s function to carry out the calculation.

While the analytical expressions that can be obtained
the Green’s function with a series of delta potentials
rather elaborate, the derived recursive formula in Eq.~25!
could be useful computationally or numerically as the nu
ber of calculations necessary to obtain a matrix elem
grows like the number of potential terms, that is, ifN is the
number of potential elements, the number of necessary
culations is proportional toN, unlike the exact formulas
whose determinants may require an order of the number
culations as large asN!. Also, this method can be useful fo
calculations with large memory demands as it is necessar
keep only one complex number for each Green’s funct
matrix element when carrying out this calculation.

The formula obtained in Eq.~25! leads to a known recur
sive procedure for the consideration of one-dimensional s
terings in terms of the transfer matrix. Given that no restr
tions are put on the arguments of Eq.~25!, it is clear this
formula extends this method by allowing also for consid
ation of off-the-energy-shell states~after transforming to mo-
mentum space!.

In addition, the recursive formula could provide new i
formation in areas where it has been useful, namely, in
plications in the description of both periodic and nonpe
odic, discrete and continuous potentials in nuclear a
condensed-matter physics, in the investigation of cohe
and incoherent effects, in mesoscopic systems, etc. It co
also serve in theoretical studies requiring descriptions of
Green’s function for nonanalytically solvable potentials;
mentioned, this formula is also utile to obtain analytical i
formation on the solutions of a problem with a potent
expressed as a discrete series of delta-function potentials
is approached when adding ever more terms.

In order to know more about how to adequately calcul
with this method properties of any potential approximated
series of delta functions, and in particular, the converge
quality of successively approximated values of the wa
function, the energy eigenvalues, and the scattering am
tude, further study is required.
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