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Second harmonic generation by charge-transfer excitons interacting with phonons
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Effects of exciton-phonon interaction on the nonlinear optical response of charge-transfer excitons~CTE! are
studied in the framework of an exactly solvable model. It is found that the second order excitonic optical
polarizability b is modified due to the CTE-phonon interaction. For a nonresonant frequency range, whereb
is relatively small, the change is not significant. On the contrary, in the vicinity of resonances~when the light
frequencyv'v0 or v'v0/2, v0 is the CTE transition frequency!, the CTE-phonon interaction may remark-
ably diminish the value ofb. This should be taken into account when considering CTE systems in nonlinear
optics.

DOI: 10.1103/PhysRevB.63.233101 PACS number~s!: 42.65.2k, 73.20.2r
sy
ie

e
en

ts
en
of

pe
th
n

ly
-
o
E
er
o
y
m

un

on
s
sf
a

xc
ito
-

-

so
in

na

rd
ct
in

n-

-

of
x
ere-
n

the
As
mo-

e is
n-
non
ely
ms
is

-
f

nra-
of
be-

tion
ner-
e as-
ela-
of
There is considerable research interest in molecular
tems where molecular optical excitations are accompan
by an electronic charge transfer~see, e.g., Ref. 1!. Studies of
systems with charge-transfer excitons~CTEs! are stimulated
by recent progress in the fabrication of organic multilay
structures~OMS!; see, e.g., Refs. 2–4. Considerable att
tion has been devoted to nonlinear optical phenomena
CTE systems. It has been shown, for instance, that effec
mutual interaction between CTEs may show up in the g
eration of higher spatial harmonics of the initial grating
the CTE density.5 A novel photovoltaic effect in strongly
pumped CTE systems has been proposed.6 Particular optical
nonlinearities have been predicted for moderately pum
CTE systems.7 A characteristic feature of systems wi
charge-transfer electronic excitations is that the transitio
accompanied by a change of thestatic dipole moment. This
is in contrast to usual Frenkel excitons which possess on
transition dipole moment, with vanishing static dipole mo
ments in both ground and excited states. The occurrence
nonzero static dipole moment with the excitations of CT
destroys the inversion symmetry and allows for a nonz
second order optical response and, in particular, for sec
harmonic~SH! generation.8,9 The SH generation process ma
occur also in a composite medium consisting of centrosy
metric molecules and containing in addition a small amo
of charge transfer complexes.10

In the present paper we study effects of the excit
phonon interaction on the second-order optical propertie
charge-transfer molecular transitions. The charge tran
causes a perturbation of the crystal lattice which results in
enhanced exciton-phonon interaction, a broadening of e
tonic optical absorption lines, and a decrease of the exc
hopping rate.1 For strong coupling, the complicate CTE
phonon system may be modeled11 as localized electronic ex
citations interacting with phonons and light~see, e.g., Ref.
12!. This model, also known as the independent bo
model,13 allows an exact treatment and is widely used
studies of optical absorption, hot luminescence, and reso
Raman effect of localized electron centers~see, e.g., Ref.
14!, etc. Here we use this model to study the second o
polarizabilityb of a localized charge-transfer center intera
ing with phonons. We shall show that the CTE-phonon
teraction may change considerably the value ofb.
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The model Hamiltonian is taken in the formH5H0
1V(t). Here the Hamiltonian of the unperturbed excito
phonon system reads

H5v0a†a1a†a(
n

~gn* bn
†1gnbn!1(

n
Vnbn

†bn , ~1!

wherea† (a) and bn
† (bn) are the exciton and phonon cre

ation ~annihilation! operators, the lower indexn enumerates
phonon modes. The perturbation HamiltonianV(t)
52p̂E(t), where

p̂5m~a†1a!1m0a†a ~2!

is the operator of the exciton dipole moment andE(t)
5E exp(2ivt)1c.c. is an external electromagnetic field
frequencyv. In Eq. ~2!, the first term has nonzero matri
elements only between the ground and excited states, th
fore m is the transition dipole moment of the molecule. O
the contrary, the second term in Eq.~2! has a nonzero~diag-
onal! matrix element only in the excited state, hencem0 is
the change of the static dipole moment associated with
real charge transfer in course of the electronic excitation.
has been noted above, this change of the static dipole
ment is just a feature of CTEs.

The applicability of the model~1! to exciton systems is
based on two common physical assumptions. The first on
a restriction to only linear phonon terms in the excito
phonon interaction and also the neglect of phonon-pho
interactions. This neglect of anharmonic terms is a wid
accepted approximation when considering excitonic syste
~see, e.g., Ref. 12!, which seems reasonable as far as one
not interested in subtle details~like the finite width of the
zero-phonon transition line!. The second physical assump
tion of the model~1! is the conservation of the number o
charge-transfer excitons. This idealization disregards no
diative exciton decay processes. The usual justification
this assumption is based on the considerable difference
tween exciton and phonon energy scales: exciton crea
energies are typically tens times higher than phonon e
gies. Therefore, nonradiative exciton decay processes ar
sociated with a big number of emitted phonons and are r
tively weak. Below we shall restrict ourselves to the case
©2001 The American Physical Society01-1
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a single molecular transition and do not take into acco
any collective effects~such as the appearance of a static el
tric field, local field corrections, etc.! in a highly pumped
dense molecular system.

The induced molecular polarizationp(t) is determined by
standard response theory expressions. The first and the
ond order of the polarization in the perturbationV(t) read

pi
(1)~ t !5 i E dt1u~ t2t1!^@ p̂i~ t !,p̂ j~ t1!#&Ej~ t1! ~3!

and

pi
(2)~ t !52E dt1dt2u~ t2t2!u~ t22t1!

3^@@ p̂i~ t !,p̂k~ t2!#,p̂ j~ t1!#&Ej~ t1!Ek~ t2!, ~4!

respectively; latin lower indicesi , j ,k51,2,3 correspond to
Cartesian vector components. Heisenberg operators in
~3! and ~4! are determined with respect to the unperturb
Hamiltonian~1!; averaginĝ •••& is performed over the elec
tronic ground state~no exciton! and the thermal phonon dis
tribution.

For a monochromatic external field, the linear respo
polarization of Eq.~3! may be expressed in the form

pi
(1)~v![a i j Ej5 im im jEjE dt1u~ t2t1!

3^@a~ t !a†~ t1!2a~ t1!a†~ t !#&exp@ iv~ t2t1!#,

~5!

and thus the linear polarizabilitya(v) is given by

a i j 52m im j$G~v!1@G~2v!#* %. ~6!

Here the retarded Green’s function has been introduced

G~ t !52 iu~ t !^a~ t !a†~0!&5E dv

2p
G~v!exp~2 ivt ! .

~7!

The linear polarizabilitya(v) ~6! is determined only by the
transition dipole momentm and does not depend on the sta
dipole momentm0 associated with the charge transfer.

Returning to the second-order polarization of interest,
find the following expression for the double commutator
the integrand of Eq.~4!:

^@@ p̂i~ t !,p̂k~ t2!#,p̂ j~ t1!#&

5m im jmk
0^a~ t !a†~ t2!a~ t2!a†~ t1!1a~ t1!a†~ t2!

3a~ t2!a†~ t !&2m i
0m jmk^a~ t2!a†~ t !a~ t !a†~ t1!

1a~ t1!a†~ t !a~ t !a†~ t2!&. ~8!

An important feature of the model~1! is the conservation o
the number of excitons, i.e.,@H,a†a#50. Therefore, the
Heisenberg operatora†(t)a(t) does not depend on time, s
that the operatorsa†a in the middle of the four-operato
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products in Eq.~8! may be replaced by unity. This leads to
much simpler expression for the second-order polarization
Eq. ~4!

pi
(2)~2v![b i jk~2v!EjEk

52 iEjEkE dt1dt2u~ t2t2!u~ t22t1!

3exp@ iv~2t2t12t2!#$m im jmk
0@G~ t2t1!

2G* ~ t2t1!#2m i
0m jmk@G~ t22t1!

2G* ~ t22t1!#%. ~9!

Performing the time integrations we obtain for the seco
order polarizabilityb(2v)

b i jk~2v!5
m im jmk

01m im j
0mk

2v
$G~v!2@G~2v!#*

2G~2v!1@G~22v!#* %

1
m i

0m jmk

2v
$G~v!2@G~2v!#* %. ~10!

A remarkable fact is that both the first- and the second-or
polarizabilities, Eqs.~6! and ~10!, are expressed via th
Green’s functionG(v) given by Eq.~7!. The imaginary part
of G(v) is directly connected with the shapek(v) of the
linear absorption linek(v)52(1/p)Im G(v), and the real
part may be obtained, in principle, via the Kramers-Kron
relations. Below we shall exploit the fact that for the mod
Eq. ~1! there exists an explicit exact expression for the fun
tion G(t).

In the absence of the exciton-phonon interaction, we h

G~ t !52 iu~ t !exp~2 iv0t !; G~v!5
1

v2v01 id
,

d→10. ~11!

In this limiting case we arrive at the usual expressions
a(v) andb(2v);8,9 both a(v) andb(2v) possess a reso
nance atv5v0; in addition,b(2v) possesses also a res
nance atv5v0/2 ~for definiteness, we assumev.0).

In the presence of the exciton-phonon interaction, b
a(v) andb(2v) change considerably. However, in the v
cinity of the above resonances we may still expressb(2v)
directly in termsa(v). So, in the resonance rangev'v0,
one may keep only the termG(v) in Eqs. ~6! and ~10!,
which results in

b i jk~2v!'2
1

2v0
@a i j ~v!mk

01a jk~v!m i
01a ik~v!m j

0#;

v'v0 . ~12!

Similarly, for the resonance range 2v'v0 we find
1-2
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BRIEF REPORTS PHYSICAL REVIEW B 63 233101
b i jk~2v!'
1

v0
@a i j ~2v!mk

01a ik~2v!m j
0#; v'v0/2.

~13!

The above relationships are rather general, they are obta
under the only assumption that the exciton-phonon inte
tion conserves the number of excitons. Now we use
known exact expression forG(t) in order to get more de
tailed information aboutb(2v). The Green’s functionG(t)
for the model of Eq.~1! is given by~see, e.g., Refs. 12,13!

G~ t !52 iu~ t !exp@2 iv0t1F~ t !#, ~14!

where

F~ t !52 i t(
n

ugnu2

Vn
2(

n

ugnu2

Vn
2 ~2nn11!

1(
n

ugnu2

Vn
2 @nn exp~ iVnt !1~nn11!exp~2 iVnt !#,

~15!

nn51/@exp(2Vn /T)21# is the phonon occupation number
temperatureT. Although exact, Eq.~15! is rather complicate
which does not allow us to obtain a closed explicit expr
sion for G(v). That is why we consider the following lim
iting situations.

~1! The frequency detuninguv2v0u ~and u2v2v0u) is
large compared to the absorption band width in the prese
of the exciton-phonon coupling. The leading contribution
G(v) stems from a small time integration ranget;1/
uv2v0u. As F(t)→0 at t→0, we return in this limit to the
case with no exciton-phonon interaction, whereb(2v) is
determined by Eqs.~10! and ~11!. Therefore, the exciton
phonon interactiondoes not influencethe second-order re
sponse of the charge-transfer system to anonresonantexter-
nal field.

~2! Consider now the opposite limiting case, when t
frequencyv ~or 2v) is in resonance with a zero-phono
transition. The leading contribution toG(v) stems from long
integration times so that the third~oscillating! term in Eq.
~15! may be neglected. One obtains

G~v!5G0~v1D!exp~2S!, ~16!

where D5(nugnu2/Vn describes the shift of the transitio
frequency;v0→v02D, and exp(2S) is the Debye-Waller
factor S5(n(2nn11)ugnu2/Vn

2 . With the replacementv
→2v, Eq. ~16! would describe also the resonance 2v'v0
2D. As follows from Eq.~16!, the exciton-phonon interac
tion may strongly influence the resonant second-order po
izability. For small values of the Debye-Waller facto
exp(2S), the resonant second harmonic generation may
considerably suppressed.

~3! In the intermediate case of not too large detuning, o
may obtain an estimate forG(v) keeping the second orde
terms of the expansion of Eq.~15! in t ~the first order terms
cancel identically!:
23310
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G~v!52 i E
0

`

dt exp@ i ~v2v0!t2g2t2#

52 i
Ap

2g
expF2

~v2v0!2

4g2 G F12FS 2 i
v2v0

2g D G ,
~17!

where

g25(
n

ugnu2~nn11/2! ~18!

andF(z)5(2/Ap)*0
zexp(2x2)dx is the Gaussian error func

tion. If the detuninguv2v0u is small as compared to th
absorption band widthg, we have

G~v!'2 i
Ap

2g
. ~19!

On the contrary, if the detuninguv2v0u is large as com-
pared to the absorption band widthg, we return back to the
nonresonant situation described in item 1. With the repla
ment v→2v, Eqs. ~17!,~19! describe also the resonanc
range 2v'v0.

The above expressions forG(v) @G(2v)# completely de-
termine the second order polarizabilityb(2v) near the two
resonances

b i jk~2v!'
G~v!

2v0
@m im jmk

01m i
0m jmk1m im j

0mk#; v'v0 ,

~20!

b i jk~2v!'2
G~2v!

v0
@m im jmk

01m im j
0mk#; v'v0/2.

~21!

In conclusion, we have considered the second-order
larizability b(2v) for the charge-transfer molecular trans
tion in the presence of the exciton-phonon interaction. Un
the assumption that the exciton-phonon interaction conse
the number of excitons, a closed expression forb(2v) has
been obtained in terms of the single-exciton Green’s funct
G(t). With the use of the exact representation ofG(t) for
model ~1!, we have described the influence of the excito
phonon interaction on the second-order polarizability of
charge-transfer molecular transition. In the off-resonance
quency range, where the second-order polarizability is ra
small, this influence is weak andb(2v) coincides with the
usual result in the absence of the exciton-phonon interact
However, in the near resonance range (v'v0 or v'v0/2),
the second-order polarizability of the charge-transfer m
lecular transition may be strongly diminished by the excito
phonon interaction as compared to the noninteracting s
tem. This fact may be important for studies of the seco
harmonic generation in systems with charge-transfer tra
tions.
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