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Second harmonic generation by charge-transfer excitons interacting with phonons
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Effects of exciton-phonon interaction on the nonlinear optical response of charge-transfer gx&TtBnare
studied in the framework of an exactly solvable model. It is found that the second order excitonic optical
polarizability 8 is modified due to the CTE-phonon interaction. For a nonresonant frequency range,Bvhere
is relatively small, the change is not significant. On the contrary, in the vicinity of resonémies the light
frequencyw~ wy Or w=~ wy/2, wg is the CTE transition frequengythe CTE-phonon interaction may remark-
ably diminish the value of3. This should be taken into account when considering CTE systems in nonlinear
optics.
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There is considerable research interest in molecular sys- The model Hamiltonian is taken in the fortd=H,
tems where molecular optical excitations are accompanied V(t). Here the Hamiltonian of the unperturbed exciton-
by an electronic charge transf@ee, e.g., Ref.)1Studies of phonon system reads
systems with charge-transfer excitai@sTES are stimulated
by recent progress in the fabrication of organic multilayer
structures(OMS); see, e.g., Refs. 2—4. Considerable atten-
tion has been devoted to nonlinear optical phenomena in
CTE systems. It has been shown, for instance, that effects ¢fherea’ (a) andb] (b,) are the exciton and phonon cre-
mutual interaction between CTEs may show up in the genation (annihilatior) operators, the lower index enumerates
eration of higher spatial harmonics of the initial grating of phonon modes. The perturbation Hamiltoniak/(t)
the CTE density. A novel photovoltaic effect in strongly = —pE(t), where
pumped CTE systems has been propdsedrticular optical
nonlinearities have been pr_eqlicted for moderately pumped p=u(a’+a)+ ula’a 2)

CTE systemd. A characteristic feature of systems with

charge-transfer electronic excitations is that the transition i$s the operator of the exciton dipole moment aBt)
accompanied by a change of thetic dipole moment. This =E&exp(—iwt)+c.c. is an external electromagnetic field of
is in contrast to usual Frenkel excitons which possess only fequencyw. In Eq. (2), the first term has nonzero matrix
transition dipole moment, with vanishing static dipole mo- elements only between the ground and excited states, there-
ments in both ground and excited states. The occurrence offare u is the transition dipole moment of the molecule. On
nonzero static dipole moment with the excitations of CTEsthe contrary, the second term in Eg) has a nonzer¢diag-
destroys the inversion symmetry and allows for a nonzermnal) matrix element only in the excited state, hene®is
second order optical response and, in particular, for secontthe change of the static dipole moment associated with the
harmonic(SH) generatiorf:® The SH generation process may real charge transfer in course of the electronic excitation. As
occur also in a composite medium consisting of centrosymhas been noted above, this change of the static dipole mo-
metric molecules and containing in addition a small amouniment is just a feature of CTEs.

of charge transfer complexé$. The applicability of the mode{l) to exciton systems is

In the present paper we study effects of the excitonbased on two common physical assumptions. The first one is
phonon interaction on the second-order optical properties ad restriction to only linear phonon terms in the exciton-
charge-transfer molecular transitions. The charge transfgshonon interaction and also the neglect of phonon-phonon
causes a perturbation of the crystal lattice which results in amteractions. This neglect of anharmonic terms is a widely
enhanced exciton-phonon interaction, a broadening of exciaccepted approximation when considering excitonic systems
tonic optical absorption lines, and a decrease of the excito(see, e.g., Ref. 32which seems reasonable as far as one is
hopping raté. For strong coupling, the complicate CTE- not interested in subtle detailtike the finite width of the
phonon system may be modetéds localized electronic ex- zero-phonon transition line The second physical assump-
citations interacting with phonons and ligtgee, e.g., Ref. tion of the model(1) is the conservation of the number of
12). This model, also known as the independent bosortharge-transfer excitons. This idealization disregards nonra-
model® allows an exact treatment and is widely used indiative exciton decay processes. The usual justification of
studies of optical absorption, hot luminescence, and resonattiis assumption is based on the considerable difference be-
Raman effect of localized electron centdeee, e.g., Ref. tween exciton and phonon energy scales: exciton creation
14), etc. Here we use this model to study the second ordeenergies are typically tens times higher than phonon ener-
polarizability 8 of a localized charge-transfer center interact-gies. Therefore, nonradiative exciton decay processes are as-
ing with phonons. We shall show that the CTE-phonon in-sociated with a big number of emitted phonons and are rela-
teraction may change considerably the valuggof tively weak. Below we shall restrict ourselves to the case of

H=wea'a+a’a, (gibl+g,b,)+> Q,blb,, (1)
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a single molecular transition and do not take into accounproducts in Eq(8) may be replaced by unity. This leads to a
any collective effectésuch as the appearance of a static elecimuch simpler expression for the second-order polarization of
tric field, local field corrections, etcin a highly pumped Eq. (4)
dense molecular system.

The induced molecular polarizatiqe{t) is determined by pi(z)(Zw)EBijk(Zw)r‘?jcfk
standard response theory expressions. The first and the sec-

ond order of the polarization in the perturbatigiit) read _ _igjgkf dtydt,0(t—t,) (t,—ty)

pfl’(t)=if dty 0(t—t)([pi(1).p;(t) DEj(t) () X expli (2t —t; —t) J{ i u G(t— )
and —G*(t—ty)]— uluml G(tz—ty)
—G*(tx—t1)]} ©)

Performing the time integrations we obtain for the second
order polarizabilityB(2w)

@)= f dtdt0(t—t,) Bty ty)

X([IPi(1), P(t2) 1P (t) 1D E; (1) Ex(tz), (4)

respectively; latin lower indices,j,k=1,2,3 correspond to I-LiMjI-L(k)Jf_ ,ui,u?,uk N

Cartesian vector components. Heisenberg operators in Egs. Bijk(20)= 2w {G(0)=[G(-w)]

(3) and (4) are determined with respect to the unperturbed

Hamiltonian(1); averaging - - - ) is performed over the elec- —G(20) +[G(~2w)]*}

tronic ground staténo exciton and the thermal phonon dis- 0

tribution. | | | + B G0 -[6(-0) ). (10
For a monochromatic external field, the linear response 2w

polarization of Eq(3) may be expressed in the form . i
A remarkable fact is that both the first- and the second-order

0 ) polarizabilities, Eqgs.(6) and (10), are expressed via the
Pi (w)EaijgjzlﬂiMjgjf dt; 6(t—ty) Green's functiorG(w) given by Eq.(7). The imaginary part
of G(w) is directly connected with the shap& ) of the
x([a(t)a'(ty) —a(tp)a’(t) yexdio(t—ty)], linear absorption linec(w) = —(1/7)Im G(w), and the real

(5) part may be obtained, in principle, via the Kramers-Kronig
relations. Below we shall exploit the fact that for the model

and thus the linear polarizability(w) is given by Eq. (1) there exists an explicit exact expression for the func-
tion G(t).
@ij = — uini{G(w) +[G(—w)]*}. (6) In the absence of the exciton-phonon interaction, we have

Here the retarded Green'’s function has been introduced:
do G(t)=—|0(t)exr(—|w0t); G((u):m,
G(t)=—i6(t)<a(t)a*(0)):jEG(w)exp(—iwt).

(7) 56— +0. (11

The linear polarizabilityx(w) (6) is determined only by the | this limiting case we arrive at the usual expressions for

transition dipole momeng and does not depend on the static a(w) and B(2w):®° both a(w) and B(2w) possess a reso-

dipole mo_mentpz0 associated with the c;har'ge transfer. nance atw=wg; in addition, B(2w) possesses also a reso-
Returning to the second-order polarization of interest, We,5nce atw = wyl2 (for definiteness, we assure>0).

find the following expression for the double commutator in |, the presence of the excitor’1-phonon interaction. both

the integrand of Eq(4): a(w) and B(2w) change considerably. However, in the vi-
N N - cinity of the above resonances we may still exprBé2w)
([LPi(t),p(t2) ], pj(t1) 1) directly in termsa(w). So, in the resonance range~ w,

one may keep only the terG(w) in Egs. (6) and (10),

= mipjpaal(tp)altz)a’(t) +a(tyal(ty) which results i

xa(t)a'(t) — ulpjm(alt)a’(tHa(ta’(ty)

1
+a(tyaf(ta(t)al(ty)). 8 Bijk(zw)“_z—wo[aij(w)MEWL ajn( ) u)+ (@) ufT;
An important feature of the modél) is the conservation of
the number of excitons, i.e[H,a'a]=0. Therefore, the w~wg. (12

Heisenberg operata'(t)a(t) does not depend on time, so
that the operatorm'a in the middle of the four-operator Similarly, for the resonance ranges2 w, we find
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1 )
Bij(2w)~ w—o[ai,—(zw)ﬂ% aio)uil;  o~wy/2. G(w)=—i JO dtexdi(w— we)t— y*t?]
(13
Nm (0—wp)? . W~ g
The above relationships are rather general, they are obtained =—l Z—GXI{ - — [1—q>( -1 2 ) ,
under the only assumption that the exciton-phonon interac- Y 4y Y
tion conserves the number of excitons. Now we use the (17
known exact expression fda(t) in order to get more de- h
tailed information abouB(2w). The Green’s functior(t) where
for the model of Eq1) is given by(see, e.g., Refs. 12,13
y=2 lg.f’(n,+1/2) (18)

G(t)=—i6(t)exd —iwot +F(1)], (14
and®d(z)= (2/\/F)f6exp(—x2)dx is the Gaussian error func-

where tion. If the detuning|w— w,| is small as compared to the

lg,/2 19,/2 absorption band width, we have
F(h=—it>, ————> ——(2n,+1)
> Q, T 0?2 G(w)%—iﬁ. (19
2y
2
+> %[nvexqiﬂvt)_l_(ny_l_ yexp—iQ,b)], On the contrary, if the detuningo—wo| is large as com-
” 2 pared to the absorption band widih we return back to the

nonresonant situation described in item 1. With the replace-
ment w— 2w, Egs. (17),(19) describe also the resonance
n,=1[exp(Q,/T)—1] is the phonon occupation number at "anNge o= wo. _

temperatureT. Although exact, Eq(15) is rather complicate ~ 1he above expressions fGi(w) [G(2w)] completely de-
which does not allow us to obtain a closed explicit expresi€rmine the second order polarizabili(2w) near the two
sion for G(w). That is why we consider the following lim- fesonances

iting situations.

G(w) 0, 0 0
(1) The frequency detuningw— wo| (@nd|2w—wy|) is  Bik(2w)= 200 [pimjmict mi wjpit pisjmds 0= wo,

(15

large compared to the absorption band width in the presence (20)
of the exciton-phonon coupling. The leading contribution to G(20)

G(w) stems from a small time integration rande-1/ (20)~— il il o~ w2
|o—wg|. As F(t)—0 att—0, we return in this limit to the Piik g L pict s pd 0
case with no exciton-phonon interaction, whe8€2w) is (21

determined by Eqs(10) and (11). Therefore, the exciton-
phonon interactiordoes not influencéhe second-order re-
sponse of the charge-transfer system twmaresonanexter-
nal field.

(2) Consider now the opposite limiting case, when the
frequencyw (or 2w) is in resonance with a zero-phonon
transition. The leading contribution ®&(w) stems from long
integration times so that the thir@scillating term in Eq.
(15 may be neglected. One obtains

In conclusion, we have considered the second-order po-
larizability B(2w) for the charge-transfer molecular transi-
tion in the presence of the exciton-phonon interaction. Under
the assumption that the exciton-phonon interaction conserves
the number of excitons, a closed expression@02w) has
been obtained in terms of the single-exciton Green’s function
G(t). With the use of the exact representationGfft) for
model (1), we have described the influence of the exciton-
phonon interaction on the second-order polarizability of the
charge-transfer molecular transition. In the off-resonance fre-
quency range, where the second-order polarizability is rather
small, this influence is weak anél(2w) coincides with the
usual result in the absence of the exciton-phonon interaction.
However, in the near resonance range~<(wq Or w~ wgy/2),

) the second-order polarizability of the charge-transfer mo-
—2w, Eq. (16) would describe also the resonance2wo  |gcylar transition may be strongly diminished by the exciton-
—A. As follows from Eq.(16), the exciton-phonon interac- nhonon interaction as compared to the noninteracting sys-
tion may strongly influence the resonant second-order polaksm, This fact may be important for studies of the second

izability. For small values of the Debye-Waller factor harmonic generation in systems with charge-transfer transi-
exp(=S), the resonant second harmonic generation may bgy,g.

considerably suppressed.

(3) In the intermediate case of not too large detuning, one This work was supported in part by the Volkswagen-
may obtain an estimate f@&(w) keeping the second order Stiftung, the Deutsche Forschungsgemeinschaft, and by the
terms of the expansion of EGL5) in t (the first order terms Grant (No. 97-107% “Solid State Nanostructures” from
cancel identically. Russian Ministry of Sciencév.Y.).

G(w)=Go(w+A)exp—S), (16)
where A=3|g,|?/Q, describes the shift of the transition

frequency;wy— wg— A, and expt9) is the Debye-Waller
factor S=ZV(2ny+1)|gV|2/Q§. With the replacementw
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