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Vortex structure in underdoped cuprates
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In underdoped cuprates the normal state is highly anomalous and is characterized as a pseudogap phase. The
question of how to describe the ‘‘normal’’ core of a superconducting vortex is an outstanding open problem.
We show that the SU~2! formulation of thet-J model provides a description of the normal state as well as the
vortex core. Interestingly, the pseudogap persists inside the core. We also found that it is likely that the core
consists of a state that breaks translational symmetry due to the existence of a staggered current that generates
a staggered magnetic field with very slow dynamics. This staggered-flux state is likely to be the ground state
for magnetic fields higher thanHc2. Experiments to test this picture are proposed.
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I. INTRODUCTION

It is now widely appreciated that highTc superconductors
are fundamentally different from conventional supercondu
ors in that they emerge by introducing doped holes int
Mott insulator. This contrast is most apparent in the und
doped region where the densityx of doped holes is small
Experimentally, this is also the regime where the physi
properties are most anomalous.1 Much attention has bee
focused on the normal state, which is characterized b
pseudogap regime below a relatively high temperatureT*
'300 K. The pseudogap appears in spin excitations an
tunneling and angle resolved photoelectron spectroscopy
periments. The superconducting state is anomalous as w
that the superfluid density is proportional to the hole den
x and not the electron density~Fermi surface area! 12x as in
conventional superconductors. Recently, it has become
sible to perform scanning tunneling microscope~STM! tun-
neling in the superconducting state and probe the electr
structure of the vortex core.2,3 This raises the following in-
teresting question. Common sense would indicate that
vortex core should be made up of the normal state and
would expect the pseudogap, i.e., a dip in the tunneling d
sity of states, to persist in the core region. This is in fact w
is seen experimentally. Yet a conventional description o
vortex core requires that the order parameter vanishes in
the core, which is usually accompanied by the vanishing
the energy gap. Thus it is clear that the electronic structur
the vortex core in the underdoped region is qualitatively d
ferent from that given by conventional theory. This po
was made eloquently in a recent paper by Franz and
s̆anović ~FT!.4 Recently this problem is also addressed n
merically using unrestricted mean-field theory by Han a
Lee.5

It is clear that any attempt to model the underdoped v
tex core must include the physics of the proximity to t
Mott insulator, i.e., the strong correlation physics. One of
few analytic tools available for this purpose is the slave
son method used to treat the constraint of no double occ
tion in a strong correlation model such as thet-J model. FT
employed the U~1! formulation of this theory where the elec
tron operatorcis is written ascis5 f isbi

† and the no double
0163-1829/2001/63~22!/224517~9!/$20.00 63 2245
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occupation constraint is replaced byf is
† f is1bi

†bi51, which
is in turn accomplished by the introduction of a U~1! gauge
field a. In the mean-field theory the pseudogap state is
scribed by a pairing of the fermionsD f(ĥ)5^ f ↑,i f ↓,i 1ĥ&
where ĥ is the nearest-neighbor vector andD f(ĥ) has
d-wave symmetry.6,7 The superconducting state is describ
by Bose condensation of the bosons^b&Þ0. D f is not gauge
invariant and the onset of the pseudogap is merely a cr
over, but the appearance of^b&5b0Þ0 triggers the appear
ance of the superconducting pairing amplitude^c↑ ic↓ i 1ĥ&
5b0

2D f that is gauge invariant and physical. Within th
theory, FT proposed a description of the vortex state wh
the bosonic amplitudêb& vanishes inside the core but th
fermion-pairing amplitudeuD f u remains finite. Since the
electronic spectrum is given by the fermion dispersion,
core will retain the energy gap just as in the pseudogap s

Upon closer examination, FT pointed out that this so
tion requires that the gauge field has negligible restor
force, i.e., a ‘‘Maxwell’’ term of the forms(“3a)2 must
have a very small coefficients. This requirement is in fact
related to a problem discussed by Sachdev8 and by Nagaosa
and Lee9 some time ago. Due to the existence of the tw
fields D f and^b&, it is possible to construct several kinds
vortices. The fieldD f is minimally coupled toa in the form
u(¹/ i 12a)D f u2 whereas the field̂b& is coupled to a combi-
nation of a and the electromagnetic fieldA in the form
u@(“/ i ) 1a2(e/c)A#^b&u2.

The different kinds of vortices are described below.
~i! A vortex carrying the conventionalhc/2e flux quan-

tum. A gauge vortex carrying half a flux quantum12 h is
generated so that̂b& has no singularity. The phase ofD f

winds by 2p and its amplitude vanishes in the core. This
just like the conventional vortex in that the energy gap va
ishes inside the core. This describes the optimal or ov
doped region.

~ii ! An hc/e vortex. This involves no winding ofD f and
no gauge flux. The advantage is thatuD f u is finite in the core
and the pseudogap is preserved. This state is energeti
favorable because the cost of the boson vortex is small
smallx. The price one pays is that because the boson ca
a chargee, this vortex carries a double superconducting fl
quantumhc/e. This has so far not been observed.

~iii ! The FT vortex. A third possibility proposed by FT i
©2001 The American Physical Society17-1
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PATRICK A. LEE AND XIAO-GANG WEN PHYSICAL REVIEW B 63 224517
that a flux tube for the gauge fielda carrying 2 1
2 h gauge

flux is attached to the core. Now theA flux can be a conven
tional flux quantumhc/2e and the phase of̂b& winds by 2p
with ^b&50 in the core. On the other hand,D f sees only a
flux tube and remains nonzero in the core. It is this lat
requirement that forces thea flux to be a flux tube, i.e.,
confined to a lattice plaquette.

Actually this possibility was considered by Nagaosa a
Lee and dismissed because the energy cost of a flux tub
large in the presence of a Maxwell term. The point is that
theory for D f and ^b& must be considered as a low-ener
effective action and the terms allowed by symmetry such
the Maxwell term will be generated by eliminating the hig
energy degrees of freedom. We expect the energy of the
tube will be of the order of the cut-off scale, i.e., the fermi
band widthJ. This will make this kind of vortex very costly
in energy compared with thehc/e vortex in the limit of
small x.

FT appealed to the papers by Nayak10 and Lee11 to justify
settings50. Even assuming, for the sake of argument, t
s vanishes and thea flux tube costs no energy, the FT vorte
still had a core energy at least of orderJ. Although the pair-
ing field D f cannot see theh/2 flux tube ofa, the fermions
see the flux tube. The mismatch of phasep at the lattice
scale in the fermion wave function will cost an energy
order J. ~Actually, this is why theh/2 flux tube costs an
energy of orderJ as discussed above.! In order to reduce this
energy cost,D f likes to vanish in a region of size of cohere
lengthjF;v f /D0, whereD0 is the spin gap. Such a vorte
has a core very similar to the standard BCS vortex@case~i!
mentioned above#. The fermion contribution to the core en
ergy is reduced to a value of orderD0.

We should add that recently Senthil and Fisher14 proposed
a model of the vortex based on theirZ(2) gauge theory tha
carrieshc/2e flux quantum and contains a pseudogap in
core. This is accomplished by attaching aZ(2) vortex to the
core. Senthil and Fisher15 recently showed how theZ(2)
gauge theory can be placed in the context of the U~1! theory
and it becomes clear that their model of the vortex is in
mately related to that of FT. Senthil and Fisher combined
phase of the boson and half that ofD f to form the phase of
the ‘‘chargon’’ that Bose condenses. TheZ(2) vortex is then
the residue of the half flux tube of FT. TheZ(2) vortex is
also localized to a lattice plaquette and has an energy
that Senthil and Fisher identify with the pseudogap sc
This also renders this vortex costly in comparison with
hc/e vortex ~where the chargon winds by 4p) in the limit of
smallx. Thus we conclude that models based on U~1! mean-
field theory still have difficulties coming up with ahc/2e
vortex with a pseudogap core that is stable against mer
into hc/e vortex in the limit of small doping.

Several years ago, we introduced an alternate formula
of the constraint in thet-J model called the SU~2! theory.16

This model is designed to connect smoothly to the Mott
sulator at half-filling in that the SU~2! symmetry known to
be present at half-filling is preserved for finite doping. T
SU~2! mean-field theory should have a better chance of
scribing the small doping limit. In this paper we show th
22451
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this theory leads naturally to a stablehc/2e vortex in the
underdoped limit. The spin gap is finite both inside and o
side the vortex core. Possible experimental consequence
explored at the end of the paper.

II. REVIEW OF THE SU „2… FORMULATION

First we summarize some of the salient features of
SU~2! formulation. This is well understood in the undope
case where SU~2! doubletsc↑ j5( f ↑ j , f ↓ j

† ) and c↓ j5( f ↓ j ,
2 f ↑ j

† ) were introduced on each sitej to represent the de
struction of spin up and spin down in the subspace of o
fermion per site.17,18 Wen and Lee extended the SU~2! for-
mulation away from half-filling by introducing a doublet o
bosonshj5(b1 j ,b2 j ). The physical electron is represente
as an SU~2! singlet formed out of the fermion and boso
doublets:cs j5(1/A2)hj

†cs j . The constraint of no double
occupation is enforced by projecting onto the SU~2!-singlet
subspace of the extendedhi ,cs i Hilbert space. On each sit
there are three such singlets corresponding touspin up&
5 f ↑

†u0&, uspin down&5 f ↓
†u0& and

uhole&5
1

A2
~b1

†1b2
†f ↑

†f ↓
†!u0&. ~1!

The role of the two bosons can be visualized as follows.
contrast to the U~1! formulation, the fermions may remain a
half-filling upon doping. Then a typical fermion configura
tion will contain spin up or spin down singly occupied sit
as well as empty and doubly occupied sites. The latter s
are both spin singlets and have the correct spin quan
number for a vacancy. Theb1 boson is used to mark th
empty site and theb2 boson the doubly occupied site, an
both b1 andb2 carry unit charge. This picture is a bit ove
simplified in that it is a linear superposition given by Eq.~1!
that correctly specifies a physical hole.

In order to perform the projection to SU~2! singlet, three
sets of gauge fieldsa0 j

( l ) associated with the three Pauli m
tricest l , l 51,2,3 are needed. These are the generalizatio
the time component of the gauge fielda0 j in the U~1! for-
mulation. The exchange and hopping terms are decouple
give the mean-field Hamiltonian,

H5(̂
jk&

~Jca j
† U jkcak1thj

†U jkhk1c.c.!

1(
j

a0 j
( l )S 1

2
ca j

† t lca j1hj
†t lhj D2m(

j
hj

†hj

1
J

2 (̂
jk&

Tr~U jk
† U jk!. ~2!

The matrixU jk is given by

U jk5S 2x jk*

D jk
f*

D jk
f

x jk
D ~3!

where
7-2
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VORTEX STRUCTURE IN UNDERDOPED CUPRATES PHYSICAL REVIEW B63 224517
x jk5^ f a j
† f ak&,

D jk
f 5^eab f a j f bk&. ~4!

The hole density iŝb1
†b11b2

†b2&5x and is enforced by the
chemical potentialm. The Lagrangian associated with E
~2! is invariant under the local SU~2! gauge transformation

ca j→gj
†ca j ,

hj→gj
†hj ,

U jk→gj
†U jkgk ,

a0 j
( l )t l→gj

†a0 j
( l )t lgj2gj]tgj

† , ~5!

wheregj5exp(iAj•t) is a space andt dependent 232 ma-
trix that represents an SU~2! group element.

In Ref. 16 the SU~2! mean-field theory was worked out b
making the approximation thata0 j

( l ) is independent of spac
andt. Of special interest is the pseudogap phase that o
pies the low-doping part of the phase diagram.@Note that the
pseudogap phase is called staggered flux ors-flux phase in
Refs. 16 and 19. Despite its name, thes-flux phase in the
SU~2! theory is translation invariant and has no stagge
physical current or magnetic field. In this paper, we w
reserve the name ‘‘staggered-flux phase’’ for the stagge
flux phase in the U~1! theory, which does have staggere
physical orbital current and magnetic field.20 We will use
‘‘spin-gap phase’’ to refer to what we previously called t
staggered-flux phase in the SU~2! theory.! The spin-gap
phase is described by the ansatz

a0 j
( l )50, ~6!

x i ,i 1 x̂5x i ,i 1 ŷ5x,

D i ,i 1 x̂
f

52D i ,i 1 ŷ
f

5D f ,

or

U j , j 1 x̂52xt31D ft1 ,

U j , j 1 ŷ52xt32D ft1 . ~7!

This resembles thed-wave fermion-pairing phase in the U~1!
theory. However, according to Eq.~5!, we can perform a
SU~2! gauge transformation with

gi5exp@2 ip~ i x1 i y!t1/2#eipt1/4~ i t3! i x1 i y ~8!

and the same mean-field state can be constructed with
choice

U j , j 1 x̂52 ix2~21! j x1 j yD ft3 , ~9!

U j , j 1 ŷ52 ix1~21! j x1 j yD ft3 .

This resembles the staggered flux phase in U~1! mean-field
theory20 because the hopping matrix elements are comp
and the sum of the phase angle around a plaquette giv
flux that alternates in sign as shown in Fig. 1. In the follo
22451
u-

d

d-

he

x
a

-

ing, we will use the ansatz Eq.~9! to describe the spin-gap
phase. In this ansatz the gauge fieldsam

1,2 have a finite energy
gap and will be ignored. The gapless U~1! gauge fluctuations
are described byam

3 . After including the gapless gauge fluc
tuationsam

3 and the electromagnetic gauge fieldA, the effec-
tive Hamiltonian has a form

H5(̂
jk&

~Jca j
† U jke2 ia jk

3 t~3!
cak1thj

†U jke2 ia jk
3 t~3!1 iA jkhk

1c.c.!1(
j

a0 j
( l )S 1

2
ca j

† t lca j1hj
†t lhj D2m(

j
hj

†hj

1
J

2 (̂
jk&

Tr~U jk
† U jk!, ~10!

whereAjk5(e/c)*k
j dx•A andU jk is given by Eq.~9!.

The fermion dispersion for ansatz Eq.~9! is given by

E656@«2~k!1h2~k!#1/2, ~11!

where

«~k!522Jx~sinkxa1sinkya!, ~12!

h~k!52JD f~sinkxa2sinkya!. ~13!

Due to our gauge choice, this dispersion is shifted
(p/2,p/2) compared with the more conventional parame
zation that has a maximumD05JD f at (0,p),(p,0) and
nodes at (6p/2,6p/2). The boson dispersion is the sam
except thatJ is replaced byt.

To study the boson-condensed phase at low temperatu
we note that the boson band bottom is atk5(p/2,p/2) if a0

( l )

are not too large. Thus the condensed boson has a form

hi5S b1~ i !

b2~ i !
D 5S b̃1

b̃2
D e2 i ( i x1 i y)p/2, ~14!

FIG. 1. Pictorial representation of the staggered flux state.
hopping integrals are complex in such a way that the sum of
phase angle around a plaquette yields a net flux that alternate
sign from plaquette to plaquette. This gives rise to circulating f
mion currents on the bonds as indicated by the arrow. In the p
ence of hole doping and condensation of the bosons, circula
physical-hole currents appear. We refer to this state as
staggered-flux state.
7-3
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PATRICK A. LEE AND XIAO-GANG WEN PHYSICAL REVIEW B 63 224517
whereh̃5(b̃1 ,b̃2) have no site dependence in the mean-fi
theory.

In Ref. 19 the approximation of constanta0 and h̃ is im-
proved by introducing a nonlinears model description in
terms of a slowly varying boson field. The idea is that at lo
temperatures the bosons are nearly Bose-condensed t
bottom of the boson bands and are slowly varying in sp
and time. On the other hand, the fermions have a short
herence lengthjF5v f /D0, which is the lattice scale becaus
D0;J/3. Then the fermions follow the local boson field an
can be integrated out after choosing ana0 field that mini-
mizes the action locally. The result is an effective Lagran
ian that depends only on the local boson field. In deriving
effective boson theory, it is convenient to choose the ferm
mean field in the staggered-flux representation given by
~9! because the gauge breaking pattern from SU~2! to U~1! is
manifest. Since the bottom of the boson band is
(p/2,p/2), h̃ j5hj exp@i(jx1jy)p/2# is slowly varying. At
low temperatures,h̃ j

†h̃ j5x and we write

h̃ j5AxS zj 1

zj 2
D , ~15!

where(auzj au251 and are parametrized by

zj 15eiae2 if/2cos
u

2
, ~16!

zj 25eiaeif/2sin
u

2
. ~17!

The phasea is the overall U~1! phase that couples to th
electromagnetic field. The anglesu andf are best visualized
by the isospin quantization axisI ,

I5za* tabzb5~sinu cosf,sinu sinf,cosu!, ~18!

i.e., u and f are the polar angles of the quantization ax
The physical state depends on the orientation of the vectI
as shown in Fig. 2.I pointing alongẑ corresponds to the
staggered-flux state in the U~1! formulation. This state
breaks translational symmetry and is characterized by a s
gered pattern ofphysicalhole-current distribution as show
in Fig. 1. We shall refer to this state as the staggered-
state.I pointing along2 ẑ describes the same physical sta
except that the current pattern is shifted by a unit cell. On
other hand,I in the x-y plane corresponds to ad-wave su-
perconductor state~with a finite chemical potential! that does
not break translational symmetry. These different phases
discussed in greater details in the Appendix.

All the different phases can be summarized by an eff
tive Lagrangian as derived in Ref. 19. It takes the form of
anisotropic O(4) s model (uz1u21uz2u251) coupled to
gauge fields. For the purpose of this paper we restrict
attention to time independent variation and the Lagrang
takes the simplified form
22451
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Leff5xtuD jzu21
x2J

2 F 4

c1
Uz1z2U21

1

c3
~ uz1u22uz2u2!2G

1
1

2
aj

(3)P jkak
(3) , ~19!

where

D j5
]

]r j
1 ia j

(3)t (3)2 i
e

c
Aj ~20!

is the covariant spatial derivative (j 5x,y), aj
(3) is the spatial

component of thea(3) gauge field, andc1 andc3 are numeri-
cal constants of order 1. Since the SU~2! gauge structure ha
been broken down to U~1! gauge structure by Eq.~9!, the
a(1) and a(2) gauge fields are massive by the Higgs mec
nism and have been ignored. The first term in Eq.~14! is the
boson kinetic energy minimally coupled to the remaini
a(3) gauge field and the electromagnetic fieldA. The second
term is a phenomenological term introduced to describe
difference in energy between the superconducting state
the staggered flux state so that the quantization axis pre
to lie in thex-y plane. The third term comes from integratin
out the fermion degrees of freedom whereP jk is the fermion
polarization bubble. In momentum space it is given by12,13

P jk'AJD0S d jk2
qjqk

q2 D uqu, ~21!

i.e., it does not take the Maxwell form that would have be
proportional toq2.

At higher temperatures the anisotropy term~second term!
in Eq. ~14! is unimportant and the quantization axisI is
disordered. This corresponds to the spin-gap phase. At
temperature, the quantization axis picks out a direction in
x-y plane and at the same time the U~1! a(3) gauge field is in
a Higgs phase and obtain a finite energy gap. This co
sponds to thed-wave superconductor.

FIG. 2. The isospin quantization axisI represents different
states depending on its orientation. In the north and south pole
represents the staggered-flux states. These are two degenerate
with the current pattern shifted by one lattice constant. In the eq
tor it represents thed-wave superconductor. Vectors connected

rotation around theẑ axis are gauge equivalent and represent
same physical state.
7-4
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VORTEX STRUCTURE IN UNDERDOPED CUPRATES PHYSICAL REVIEW B63 224517
Recently, quasi-long-range correlations in the stagge
current have been found in the Gutzwiller projectedd-wave
BCS wave function21 and in the exact ground state of sma
samples.22 Such current fluctuations are very natural in t
SU~2! theory and are a consequence of fluctuations of
quantization axisI towards the north and south poles. W
have suggested that these staggered-current correlations
characterize the pseudogap state, but experimental dete
of such fluctuating currents seems to be very difficult. N
we are ready to use this picture to describe the vortex in
superconducting state and show that the staggered-cu
fluctuations may slow down inside the vortex core, mak
its detection more hopeful.

III. MODEL OF THE VORTEX CORE

Our model of the vortex is the following. Far away fro
the core ub1u5ub2u, but b25Ax z2 changes its phase (a
1f/2) by 2p as we go around the vortex whileb15Ax z1
does not change its phase. The vortex containshc/2e flux for
the A field andh/2 flux for thea(3) field. From Eq.~15!, b2
sees the sum ofa(3) andA, i.e., a unit total flux whileb1 sees
no net flux, so the winding we suggested is consistent. N
that the average phasea @see Eqs.~11! and~12!# has a wind-
ing of p, as appropriate for anhc/2e vortex.

As we approach the vortex core, the amplitude ofuz2u
must vanish to avoid a divergent kinetic energy from the fi
term in Eq.~14!. Thus the center of the vortex core is repr
sented by (h̃5Ax,0) and is just the staggered-flux state.
shown in Fig. 3, the quantization axisI provides a nice way
to visualize this structure. It points to the north pole in t
center of the vortex and lies in the equator far away, but
azimuthal angle winds by 2p as we go around the vortex
This is sometimes referred to as the ‘‘Meron’’ configurati
or half of a hedgehog. It is important to recall thatI param-
etrizes only the internal gauge degrees of freedomu andf
and the winding off by 2p has nothing to do with the
winding of the overall phasea by p around the vortex. To
visualize the winding of botha andf, it is necessary to go
back to the (b1 ,b2) representation.

We can make a rough estimate of the vortex energy.

FIG. 3. Structure of the superconducting vortex. Top:b1 is con-
stant whileb2 vanishes at the center and its phase winds by 2p.
Bottom: The isospin quantization axis points to the north pole at
center and rotates towards the equatorial plane as one move

radially. The pattern is rotationally symmetric around theẑ axis.
22451
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sume that the core size~size of the Meron! is l c and the size
of the a(3) flux is l a . There are four contributions to th
energy. The first is the energy difference between the su
conducting state and the staggered-flux state. The main
ergy cost comes from the Fermi pockets. Assuming the a
of the pockets to bex, we estimate an energy cost o
l c
2x3/2AJD0. On the other hand, the Meron size cannot

smaller than 1/Ax without costing too much kinetic energy
~In fact, the effective action is valid only for momentumq
<Ax since we kept only the first quadratic term.! The second
term comes from the electronic supercurrent and is of or
xt ln(l/lc) where l is the London penetration depth. Th
third term comes from the supercurrent associated with
a(3) gauge field, which is of orderxt ln(la /lc) assumingl a
. l c . Finally, the fourth contribution is from the gauge fie
action, the last term in Eq.~14!. Settingq5 l a

21 in Eq. ~16!,
we estimate this contribution to bel a

2ua(3)u2AJD0/ l a

'AJD0/ l a . The important point is that unlike the U~1! case,
the gauge field is not confined to a flux tube, but can spr
over a distancel a . We note that the supercurrent contrib
tions depend logarithmically onl a and l c so that the main
dependence comes from the first and fourth contributio
The staggered-flux core sizel c would like to be as small as
possible while the size of the gauge fluxl a would like to be
large. However, our estimate of the gauge-flux energy sho
be cutoff for q,x because bosonic contributions will ent
Eq. ~16!. Thus we conclude that the staggered-flux core
cupies a radius ofx21/2 while the gauge field occupies
radius ofx21. The above estimate is very crude. The ma
purpose is to show that a standardhc/2e vortex is possible
with a staggered-flux core that does not cost too much
ergy asx→0.

If we include the effects of fluctuations, the size of th
staggered flux core will very likely be bigger than the abo
estimate. One way to include the fluctuation effects
through the following consideration. We have shown th
due to the excitation of quasiparticle, the superfluid dens
is reduced in the vicinity of the vortex core.23 We have also
shown that the quasiparticles carry currentevF after includ-
ing the fluctuation effects.24 In this case the superfluid den
sity vanishes inside a radius ofx21, which we identify as the
vortex core.23 This argument gives a lower bound on th
vortex radius, which matches the radiusl a . Inside this radius
the superconducting state loses phase coherence and
comes more costly in energy. Thus our earlier estimate m
have over estimated the energy difference between
staggered-flux state and the superconducting state inside
core and the staggered-flux state may expand to occupy
entire core of radiusx21 where the superfluid density van
ishes. The important point is the topological structure of
vortex, which should be robust while the details of the stru
ture may be model dependent.

One important consequence of the topological structur
that there are two kinds of vortices because the isospin qu
tization I can also rotate to the south pole at the vortex co
This just expresses the fact that the staggered-flux sta
doubly degenerate with the staggered flux shifted by one
cell. In the normal state these degenerate states fluctuat

e
out
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tween each other, being smoothly connected via the su
conducting state. Inside the vortex core of the supercond
ing state, the topological structure of the vortex forbids su
smooth fluctuations and freezes in the staggered current
tern. Thus the vortex core is closely related but not ident
to the pseudogap state.

Since the degrees of freedom in a vortex core is finite,
do not expect a genuine phase transition to an ordered s
Instead, it is likely that there will be a gradual freezing in
one of the two staggered-flux configurations as the temp
ture is lowered. Furthermore, even atT50, the two possible
staggered-flux states inside the core can tunnel into e
other. If the staggered flux core is as small asx21/2, the
tunneling rate can be as large as the spin gap. However, i
staggered flux core has a size of orderx21 ~which is more
likely!, the tunneling will be reduced exponentially. Dissip
tion due to quasiparticles may further suppress the tunne
rate. Indeed, this problem is analogous to the tunneling
tween degenerate two-level systems coupled to a Fermi
There due to the orthogonality catastrophe the tunneling
can scale to zero and the state completely frozen for str
enough coupling. In general, such exponential tunneling
is difficult to calculate, but we are hopeful that the dynam
will slow down sufficiently for the staggered currents to
measured experimentally.

As the magnetic field is increased, the vortex cores ev
tually overlap atH5Hc2. The staggered-current states ove
lap and it is reasonable to believe that the ground s
should be a long-range-ordered staggered flux state e
cially if the staggered-flux core has a size of orderx21. The
unit cell is doubled and the ground state is a Fermi liq
with small Fermi pockets with areax. We predicted that
Hc2;x2 since the core size scales asx21.23 If a high-quality
underdoped sample can be made,Hc2 can be at a scale ame
nable to laboratory experiment. The Fermi pocket may
measurable by cyclotron resonance or Shubnikov–de H
experiments. The cyclotron resonance has a unique signa
because the Fermi surface is close to a Dirac point so tha
Landau levels are not uniformly spaced. The doubling of
unit cell is difficult to measure directly because t
staggered-current pattern does not couple to charge-de
modulation. It does produce a small staggered magn
field, which we estimate very crudely to be of order
G.20,21 The possibility of detecting the staggered magne
field by neutron scattering and muon spin resonance (mSR)
was investigated theoretically by Hsuet al.20 They estimated
the neutron scattering intensity to be 1/70 of that from
ordered moments in the insulator.

IV. EXPERIMENTAL PROBE OF THE STAGGERED
CURRENT

If it is not possible to reachH.Hc2, the topological as-
pect of the vortex offers us an opportunity to test t
staggered-current picture. It is difficult to probe th
staggered-current pattern in the normal state because of
tial and temporal fluctuations. One of the few possible te
niques is x-ray scattering, which couples to chirality fluctu
tions at (p,p).25 However, according to our analysis, th
22451
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dynamics of the staggered-current pattern slow down ins
the vortex core. Depending on the time scale, it may be p
sible to measure the small staggered magnetic field cre
by the circulating current. The field distribution in the vorte
state is remarkably uniform as expected for an extreme t
II superconductor. FrommSR measurements, the field distr
bution has a width of roughly 5 G atH50.5 T.26 It should be
even narrower at higher fields. If the dynamics is slower th
themSR scale, the field distribution inside the vortex core
detectable. For even slower dynamics, a more sensitive
periment is NMR. In YBCO, the Y ion is ideally placed t
detect this current because it sits at the center of
plaquette. The weak magnetic field generated by the cir
lating current will produce side bands in the Y NMR lin
with a splitting independent ofH but with weight propor-
tional to H. However, there remains one complication wi
this proposed experiment. YBCO is a bilayer material with
sitting between the bilayers. It is likely that the stagger
pattern on the bilayers are out of phase in which case
magnetic field at the Y site exactly cancels. A way out of th
difficulty is to study the 2-4-7 structure where the two laye
are asymmetric because they are connected to diffe
charge reservoirs~single chain vs double chain!. It should be
possible to have one plane of the bilayer optimally dop
while the other plane~next to the double chain! remains un-
derdoped. Obviously, this proposal is quite a challenge~but a
rewarding one! for the experimentalists.

If it is possible to reachH.Hc2, NMR, mSR, neutron,
cyclotron resonance and Shubnikov–de Haas experim
can all be performed to look for the staggered flux state.

V. CONCLUSION

In summary, the SU~2! formulation of thet-J model leads
naturally to a picture of the staggered-flux phase aboveHc2
and a stablehc/2e vortex with a staggered-flux core in th
superconducting state. The basic physical picture is that
staggered-flux state is nearly degenerate in energy to
d-wave superconducting state. The pseudogap state is
scribed by fluctuations between the staggered-flux state
the superconductor. It has no long-range order, but may
characterized by short-range staggered currents. There
be short-range superconducting fluctuations as well,
these are not described by conventional phase fluctuat
alone. As the temperature is raised aboveTc , the fluctuations
initially resemble conventional phase fluctuations but gra
ally crossover to fluctuations into the metallic staggered-fl
state all the while maintaining the energy gap at (0,p). The
picture may reconcile the rather conventionalx-y model be-
havior observed 30 K aboveTc ~Ref. 27! with the surprising
persistence of a few vortexlike excitations up to 150 K.28

Inside the vortex core, these fluctuations are almost fro
out. The core consists mostly of the staggered-flux phase
the tunneling rate between the two kinds of vortex can
very small. The small energy difference between t
staggered-flux state and the superconductor in the limi
small doping renders this vortex stable. This picture sugg
a (H,T) phase diagram shown in Fig. 4. Below a relative
high-temperature scale~of order D0'J/3), the spin-gap
7-6
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phase is formed as described above.@This was called the
staggered-flux phase in the SU~2! mean-field theory.16# Its
onset is a crossover, not a phase transition. Due to the h
energy scale, this onset is insensitive to magnetic field, c
sistent with experimental findings.29 Superconductivity on-
sets below a coherence temperature'xt. In a magnetic field,
the vortex has a core of radiusx21. The state inside the cor
forms staggered currents on some slow time scales. AtHc2
'x2, these cores overlap forming a truly long-range orde
staggered-flux state. This state has a doubled unit cell an
Fermi surface consists of small pockets of areax, consistent
with Fermi liquid theory. Thus the metallic state genera
by a high magnetic field is a Fermi liquid state. This state
connected to the pseudogap phase by an Ising-like p
transition. The long-range order of the staggered-flux s
requires coherence among the holes and we expect its
sition temperature to bext ~i.e., comparable to the superco
ducting Tc) as well. This phase diagram is in contrast to
recent proposal by Chakravartyet al.,30 who suggested tha
the onset of the pseudogap is a genuine transition. In t
picture the staggered-flux state will extend up to the ene
scaleD0. The experimental test of staggered currents that
proposed should, in principle, be capable of distinguish
their proposal from ours.

We emphasize that the zero-temperature ground sta
the x-H phase is entirely conventional consisting of
d-wave superconductor, antiferromagnetic insulators,
Fermi liquids. At some criticalxc there is a transition be
tween the staggered-flux state with Fermi pockets to a Fe
liquid state with a large Fermi surface of area (12x). The
xc(H) line should terminate at the superconductingHc2(x)
boundary. Our picture of the zero-temperature phase diag
is the same as that proposed by Chakravartyet al. However,
Chakravartyet al. asserted that the transition between t

FIG. 4. Schematic phase diagram in the (H,T) plane for under-
doped cuprates. The pseudogap phase onsets below an energy
D0. This is described by the spin-gap phase where the vector in
2 is disordered. The dashed line is a crossover temperature.
superconducting state appears belowTc'xt. Its vortex core con-
tains ordered staggered currents. ForH exceedingHc2, the vortex
cores overlap and the staggered-flux state is stabilized.
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two Fermi liquids involves a violent change of Fermi surfa
topology and, by implication, of physical properties such
transport measurements. In contrast, we believe that a lin
continuous transitions with a change of the translation sy
metry is possible and in fact likely, in view of the smoo
crossover observed atH50 aboveTc as a function ofx. The
Fermi pockets are elongated and may merge to form a si
Fermi surface in the reduced Brillouin zone in the stagger
flux phase forx,xc . The restoration of translational sym
metry and a large Fermi surface can take place continuo
by the disappearance of the Fermi surface shifted by (p,p)
that lies outside the first reduced Brillouin zone. The s
nario of a continuous evolution from small to large Fer
surface via the ‘‘shadow band’’ was described by one of
some time ago.31

Finally, a third alternative exists, i.e., the staggered-fl
state is never stable~or in other words, it is destroyed b
strong quantum fluctuations even atT50). In this case,
something resembling the spin-gap state becomes the gr
state in a high magnetic field and inside the vortex core
true, this will be, to our knowledge, the first example of
non-Fermi-liquid ground state apart from superconductiv
in dimensions higher than one. Our proposed phase diag
offers a very natural route to avoid this exotic possibility.

We would like to stress that even when the vortex core
described by the spin-gap state, thehc/2e vortex still has a
small core energy that vanishes in thex→0 limit in the
mean-field theory. Hence thehc/2e vortex is still stable. In
fact, the SU~2! vortex is the only mean-field theory at prese
that gives a stablehc/2e vortex with a pseudogap in the core
Whether there exists a quasistatic staggered current in
the core is a question that is difficult to treat theoretically a
which is best settled by experiments.

We end by making a comment on the experiments p
posed by Senthil and Fisher32 to test for electron fractional-
ization. They propose trapping a vortex in a hole in a sup
conductor. When the temperature is raised aboveTc , the
magnetic field escapes, but theZ(2) vortex ~vison! is
trapped. Then when the temperature is cooled down be
Tc , the vison must capture a magnetic flux to spontaneou
form a hc/2e vortex of either sign. We would like to poin
out that our model of the vortex does not exhibit the Sent
Fisher effect. While our vortex is also a bound state o
magnetic flux with half a flux quantum of the gauge fie
a(3), the important difference is that the gauge vortex ha
finite extent and is not a flux tube. AboveTc , the size of this
gauge flux will expand to infinity at the same time the size
the magnetic vortex does, i.e., the penetration depth of
a(3) field and theA field both diverge in the normal state
They allow the gauge vortex to escape the hole in the nor
state.

In principle, the Senthil-Fisher effect, the electron fra
tionalization ~or the true spin-charge separation!, and other
physics of theZ(2) theory can be readily obtained from th
SU~2! slave boson theory if one assumes the SU~2! gauge
symmetry is broken down toZ(2) gauge symmetry@which
can be achieved by noncollinear SU~2! flux through different

cale
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PATRICK A. LEE AND XIAO-GANG WEN PHYSICAL REVIEW B 63 224517
plaquettes#.33 With this understanding, the difference b
tween theZ(2) approach and our SU~2! approach is clear. In
the Z(2) approach, one assumes that the SU~2! gauge sym-
metry is broken down toZ(2). While in our SU~2! approach,
the SU~2! is only broken down to U~1! in the normal state
@by a collinear SU~2! flux#. The Z(2) and our SU~2! ap-
proaches correspond to different choices of mean-field st
of the same SU~2! slave boson theory.

ACKNOWLEDGMENTS

We acknowledge helpful discussions with H. Alloul, W
Hardy, T. Imai, and N.P. Ong concerning various experim
tal possibilities and limitations. We also thank N. Nagao
M. Fisher, and T. Senthil for illuminating discussions. T
authors acknowledge support by NSF under the MRS
Program No. DMR98-08941. X.G.W. also acknowledg
support by NSF Grant No. DMR-97-14198.

APPENDIX: SYMMETRIES OF THE MEAN-FIELD
STATES

In this appendix, we study the symmetries of seve
mean-field states discussed in this paper. The mean-field
satz described by (Ui j ,hi ,a0) in Eq. ~9! and Eq.~14! is not
translationally invariant. But the breaking of translation sy
metry is a gauge artifact. Due to the SU~2! gauge structure
(Ui j ,hi ,a0) can describe a translation-invariant physic
state in thet-J model. In the following we would like to
discuss the physical symmetries of the above ansatz for
ferent boson condensations.

Note that under translation by one lattice spacing f
lowed by a gauge transformationUi j →gi

†Ui j gj with gi

52 i t1, our ansatzUi j transforms as

S Ui ,i 1 x̂

Ui ,i 1 ŷD→S 2 ix1~2 ! it3h

2 ix2~2 ! it3h D→S 2 ix2~2 ! it3h

2 ix1~2 ! it3h D .

~A1!

ThusUi j is invariant under a combination of the translati
and the gauge transformation. But the two transformati
do changea0

( l ) and h̃T5(b̃1,b̃2):

~a0
(1) ,a0

(2) ,a0
(3)!→~a0

(1) ,2a0
(2) ,2a0

(3)!,

~ b̃1 ,b̃2!→~ b̃2 ,b̃1!. ~A2!

Similarly, under 90° rotation about a lattice site followe
by a gauge transformationUi j →gi

†Ui j gj with gi52 i t1

(2) i x, the ansatzUi j transforms as

S Ui ,i 1 x̂

Ui ,i 1 ŷD→S 1 ix2~2 ! it3h

2 ix2~2 ! it3h D→S 2 ix2~2 ! it3h

2 ix1~2 ! it3h D .

~A3!

ThusUi j is invariant under a combination of the 90° rotatio
and the gauge transformation. The two transformations tra
form a0

( l ) and h̃ into
22451
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~a0
(1) ,a0

(2) ,a0
(3)!→~a0

(1) ,2a0
(2) ,2a0

(3)!,

~ b̃1 ,b̃2!→ i ~ b̃2 ,b̃1!. ~A4!

Now we are ready to discuss some basic physical pro
ties of our ansatz for different orientation of the condens
h̃. It is convenient to introduce a unit vectorI5h̃†th̃/x to
describe the orientation of the boson condensates.

~1! When b̃1Þ0 and b̃250, we haveI} ẑ, a0
(3)Þ0, and

a0
1,250. The ansatz, despite the boson condensation, d

not correspond to a superconducting state since the su
conducting order parameter^eabca,icb, j&50. It instead de-
scribes a Fermi liquid, which corresponds to the stagger
flux state in the U~1! formulation. The nonzeroa0

3, generated
by the polarization of the boson field, corresponds to a s
in the chemical potential for the fermions. This in turn co
verts the nodes at (p/2,p/2) into a small Fermi surface
pocket. This state breaks translational symmetry and is c
acterized by a staggered pattern ofphysicalhole-current dis-
tribution as shown in Fig. 1. We shall refer to this state as
staggered-flux state.

~2! WhenI is in thex-y plane~i.e., whenub̃1u5ub̃2u), we
have a0}I and the ansatz describes a translation a
rotation-invariant state. We first note thatI pointing any-
where in thex-y plane is gauge equivalent. This is a cons
quence of the residual U~1! symmetry of ansatz Eq.~9! and
any vectorI related by a rotation inz direction represents
states that are gauge equivalent. After a translation or a
tation @Eqs.~A2! and~A4!#, we see thatI is transformed into
another vector in thex-y plane @i.e., (I x ,I y)→(I x ,2I y)].
Since the twoI ’s correspond to the same physical wave fun
tion, the physical state is invariant under the translat
and/or the rotation. This state describes ad-wave supercon-
ducting state of thet-J model since the superconducting o
der parameter̂eabca,icb, j&Þ0 and has ad-wave symmetry.

~3! When ub̃1uÞub̃2u and ub̃1b̃2uÞ0 @i.e., whenI is point-
ing somewhere in between the north pole and thex-y plane!,
we havea0

(3)Þ0 anda0
(1,2)Þ0. The ansatz describes a supe

conducting state of thet-J model since the superconductin
order parameter̂eabca,icb, j&Þ0. The state also breaks th
translation symmetry. This is because the translation chan
(I z ,a0

(3)) to (2I z ,2a0
(3)). Two ansatz with different

(I z ,a0
(3)) are not gauge equivalent and correspond to diff

ent physical wave functions. The quasiparticle excitatio
have a finite gap except at the four isolated points n
(6p/2,6p/2).

~4! At high enough temperatures, the thermal fluctuatio
make ^b̃1&5^b̃2&5^a0

( l )&50. In this case, the ansatz de
scribes a translation- and rotation-invariant metallic sta
which is just the spin-gap phase~or the staggered-flux phas
studied in Ref. 16!. Note that the U~1! gauge fluctuations are
gapless since there is no boson condensation. Those ga
gauge fluctuations lead to long-range interations betw
quasiparticles at low energies. Thus the metallic spin-g
phase is not a Fermi liquid.
7-8



O

S.

Jp er,
.

a-

.
s,

k,

on

VORTEX STRUCTURE IN UNDERDOPED CUPRATES PHYSICAL REVIEW B63 224517
1For a recent review, see P.A. Lee, Physica C317-318, 194
~1999!.

2Ch. Renner, B. Revaz, K. Kadowaki, I. Maggio-Aprile, and” .
Fischer, Phys. Rev. Lett.80, 3606~1998!.

3S.H. Pan, E.W. Hudson, A.K. Gupta, K.-W. Ng, H. Eisaki,
Uchida, and J.C. Davis, Phys. Rev. Lett.85, 1536~2000!.
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