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First- and second-order transitions for a superconducting cylinder in a magnetic field obtained
from a self-consistent solution of the Ginzburg-Landau equations

G. F. Zharkov
P.N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow, 117924, Russia

~Received 2 October 2000; revised manuscript received 29 January 2001; published 23 May 2001!

Based on self-consistent solution of nonlinear GL equations, the phase boundary is found, which divides the
regions of first- and second-order phase transitions to normal state of a superconducting cylinder of radiusR,
placed in magnetic field and remaining in the state of fixed vorticitym. This boundary is a complicated
function of the parameters (m,R,k) (k is the GL parameter!, which does not coincide with the simple phase
boundaryk51/A2, dividing the regions of first- and second-order phase transitions in infinite~open! super-
conducting systems.
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I. INTRODUCTION

The GL theory is widely used for studying the gene
properties of the superconducting state. This theory lead
two coupled three-dimensional nonlinear equations for
order parameterc and magnetic field vector potentialA,
which are usually solved using various simplifying assum
tions. The self-consistent solutions of GL equations in
particular case of a long superconducting cylinder of rad
R, placed in the axial magnetic fieldH, were found first by
Fink et al.1,2 In this case the three-dimensional GL equatio
reduce to the one-dimensional form, what simplifies the c
culations and enables one to study the specific nonlinea
fects, as well as the role of the sample boundary. Later,
one-dimensional equations were also addressed in Refs.
~Strictly speaking, in Refs. 4,5 the case of thin supercond
ing disk in a perpendicular magnetic field was consider
which models the geometry, used in experiments.9 The phys-
ics of the processes in disks4,5,9 and cylinders2,3,6–8may dif-
fer, however, many qualitative results are similar for diffe
ent geometries.! As was shown in Refs. 6,7 the one
dimensional solution for the order parameterc ~with fixed
vorticity m) may change its form~under the influence of the
external fieldH) either gradually@in one interval of the pa-
rameters (R,k), k is the GL parameter#, vanishing by the
second-order phase transition, or abruptly@in the other inter-
val of (R,k)#, undergoing the first-order jump transform
tion. Such jump transformations, in principle, may be o
servable, because they are accompanied by jumps of
magnetizationM (H). It is shown below, that these jump
and also the presence~or absence! of the tails in the magne
tization curves, play important roles, enabling one to find
boundary between the first and second-order phase tra
tions in superconducting cylinder.

@The jump transformations of the self-consistent solutio
of GL equations were encountered first by Fink a
Presson.2 However, they did not pay much attention to th
‘‘tails,’’ which remain in the magnetization curves after th
points of a jump~see, for details, Figs. 1–5 below!, and
disregarded them completely, as being not characteristic
the superconducting state~see a footnote in Ref. 2a, p. 400!.
The jumps in the magnetization for disks are present als
0163-1829/2001/63~22!/224513~6!/$20.00 63 2245
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some of the curves, found numerically by Schweigert a
Peeters ~see Figs. 19 and 20 in Ref. 4c!. ~The one-
dimensional solutions for a long cylinder were studied a
in Ref. 3, but, unfortunately, most of the numerical resu
presented there, contain errors.! The physics behind the jump
transitions within the states of fixedm, and between the
states of different vorticities, is different. Probably, in th
experiments with mesoscopic disks9 both types of transitions
may be seen. However, the connection with experiment
not be discussed here in detail~partly, because the long
cylinder models the thin-disk geometry rather poorly!. We
will concentrate below on the investigation of some form
properties of the solutions, what may give the additional
sight into the complicated picture, observed experimental#

In the present paper the phase boundary is found, wh
divides the region of parameters (R,k), where the supercon
ducting solution of fixedm terminates~in the increasing ex-
ternal field! by the first-order jump to normal state (c[0),
from the region (R,k), where the solution vanishes grad
ally, by the second-order phase transition. This phase bou
ary is a complicated function ofR andk, different from the
simple boundaryk51/A2, which divides the first- and
second-order phase transitions in infinite~open!
superconductors.10 We consider the phase diagrams for t
bounded system, found below@see Figs. 1~a!, 3~a!, and 5#, as
the main new result of the present investigation.~Similar
phase diagrams exist also in thin-disk geometry, see Fig
in Ref. 4c!.

Other topics are touched only in passing~such as meta-
stability, the paramagnetic Meissner effect, the pinning
vortices to the sample boundary, etc.!. Such questions were
studied in more detals in Refs. 2,3,6–8~for long cylinders!,
and in Refs. 4,5,9~for thin disks!.

In Sec. II the mathematical side of the problem is form
lated and the basic GL equations, used in calculations,
written. Sec. III contains the numerical results, alongs
with necessary comments. In Sec. IV the results are sum
rized and discussed.

II. EQUATIONS

In what follows below, the case is considered of a lo
superconducting cylinder of radiusR, in the external mag-
©2001 The American Physical Society13-1
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FIG. 1. ~a! The boundary (SI-II ) between re-
gions (sI andsII), where the first- or second-orde
phase transitions to normal state (c[0) in mag-
netic field exist.~b! The behaviorcmax(hl) at the
points 1–6 (m50,Rl[R/l54) in ~a!. In the re-
gion sI the order parameter vanishes by the fir
order jump. In the regionsII the order paramete
cmax(hl) has a ‘‘tail,’’ and vanishes smoothly, by
the second-order phase transition.~c! Analogous
behavior for magnetizationMl(hl). ~The possi-
bility of the acoustic radiation during the solutio
transition from one branch to another is mark
by the letterv.! The peep-holes 1–9 in~a! are
pierced in the points 1:k50.2, 2:k50.4, 3:k
50.7, 4:k51, 5:k51.05, 6:k51.2 (Rl54),
7:Rl53, 8:Rl52, 9:Rl51.5 (k50.7).
n
b

r

.

th

o

s 3,
netic fieldH>0, which is parallel to the cylinder element. I
cylindrical coordinates the system of GL equations may
written in dimensionless form7

d2U

dr2 2
1

r

dU

dr
2c2U50, ~1!

d2c

dr2 1
1

r

dc

dr
1k2~c2c3!2

U2

r2 c50. ~2!

Here U(r) is the dimensionless field potential,b(r) is the
dimensionless magnetic field,c(r) is the normalized orde
parameter,r5r /l, l is the field penetration length,l5kj,
wherej is the coherence length, andk is the GL parameter
The dimensioned potentialA, field B, and currentj s are re-
lated to the corresponding dimensionless quantities by
formulas:

A5
f0

2pl

U1m

r
, B5

f0

2pl2 b, b5
1

r

dU

dr
,

j ~r!5 j s /
cf0

8p2l3 52c2
U

r
, r5

r

l
. ~3!

@The field B in Eq. ~3! is normalized byHl5f0 /(2pl2),
with b5B/Hl ; instead ofHl one can normalize byHj

5f0 /(2pj2), or by Hk5f0 /(2pjl)5Hj /k. The coeffi-
cients in Eqs.~1!, ~2! would change accordingly.# The vor-
ticity m in Eq. ~3! specifies how many flux quanta are ass
ciated with the vortex, centered at the cylinder axis~the so-
called giant-vortex state!.

The boundary conditions to Eq.~1! are
22451
e

e

-
FIG. 2. The dependences~a! cmax(hl) and ~b! Ml(hl) for m

50, k50.7. The numeration of curves corresponds to the point
7–9 in Fig. 1~a!.
3-2
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FIG. 3. Analogous to Fig. 1, but form51.
The dashed curveCns in ~a! separates the norma
~n! and superconducting~s! regions. The curve
P0 marks the points (Rl ,k), where the meta-
stable vortex state (m51) may still exist in ab-
sence of the field (hl50) due to the pinning to
the boundary. Below the curveP0 the vortex
state may exist only in presence of finite extern
field @hl.0, see the curves 1,2 in~b!, ~c!#. ~This
is an example of the field stimulation effect, o
reentrant superconductivity.! The peep-holes 1–8
in ~a! are pierced in the points 1:k50.35, 2:k
50.4, 3:k50.7, 4:k51, 5:k51.07, 6:k51.2
(Rl54) 7:Rl53, 8:Rl52.4 (k50.7).
me

efs.

tor,
e

f

ds
FIG. 4. Analogous to Fig. 2, but form51. The presence o
paramagnetic (Ml.0) and diamagnetic (Ml,0) parts of magne-
tization is evident from~b!. The numeration of curves correspon
to the peep-holes in Fig. 3~a!.
22451
UU
r50

52m,
dU

dr U
r5Rl

5hl , ~4!

where Rl5R/l, hl5H/Hl . The boundary conditions to
Eq. ~2! are

dc

dr U
r50

50,
dc

drU
r5Rl

50 ~m50!, ~5!

cU
r50

50,
dc

drU
r5Rl

50 ~m.0!.

@The solutions, found from Eqs.~1!–~5!, describe the radially
symmetric giant-vortex states of fixed vorticitym. The more
complicated asymmetric multivortex solutions of the sa
total vorticity m5( imi (mi is the vorticity of a vortex, situ-
ated at arbitrary pointr i on the cylinder cross section! may
be studied numerically by the methods, developed in R
4,5.#

The magnetic moment~or, magnetization! of the cylinder,
related to the unity volume, may be written in the form

M

V
5

1

VE B2H

4p
dv5

Bav2H

4p
,

Bav5
1

VE B~r !dv5
1

S
FR ,

whereBav is the mean field value inside the superconduc
FR is the total magnetic flux, confined in the cylinder. In th
normalization ~3!, denoting b̄5Bav/Hl , hl5H/Hl , Ml

5M /Hl , one finds
3-3
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4pMl5b̄2hl , b̄5
2

Rl
2 ~Ul1m!, ~6!

fR5
FR

f0
5Ul1m, Ul5U~Rl!, Rl5

R

l
.

Accordingly, the normalized Gibbs free energy of the s
tem may be written as7

Dg5DG/S Hcm
2

8p
VD 5g02

8pMl

k2 hl1
4m

k2

b~0!2hl

Rl
2 ,

~7!

g05
2

Rl
2E

0

Rl
rdrFc422c21

1

k2 S dc

dr D 2G .
Here DG5Gs2Gn is the difference of free energies in s
perconducting and normal states,b(0)5B(0)/Hl , B(0) is
the magnetic field at the cylinder axis,Hcm

FIG. 5. Analogous to Figs. 1~a! and 3~a!, but for m52. The
vertical asymptotek50.94 is the same form50,1,2. This is natu-
ral, because for large radii (Rl@1) the influence of the vortex field
is negligible. The bottom part of the curveSI-II lays atRl52.78
~with Rl52.45 for m51, andRl51.69 for m50). The dashed
curve Cns is well approximated by the dependenceCns'1.81/k
~the dotted line!.
22451
-

5f0 /(2pA2lj) is thermodynamical critical field of massiv
superconductor,g0 and is the condensation energy with a
count for the order parameter gradient. The expressions~6!,
~7! may be used for calculating the corresponding quantit

III. NUMERICAL RESULTS

The solutions of Eqs.~1!–~5! depend on the space co
ordinate r and several parameters, for instance,c(r)
5c(m,Rl ,k,hl ;r) @analogously for the potentialU(r) and
the field b(r)#. Let the vorticity m be fixed (m
50,1,2, . . . ) andconsider at first the casem50 ~the vortex-
free Meissner state!. Consider the plane of paramete
(Rl ,k) @see Fig. 1~a!#. In every point of this plane there
exists a set of solutions of Eqs.~1!–~5!, which depend para-
metrically on the external fieldhl . ~Several points, laying
along the lineRl54 are numerated as 1–6.! One may imag-
ine a peep-hole, pierced in arbitrary point (Rl ,k), which
allows us to see the solutions behavior versusH. The set of
solutionsc(hl ;r) is unique for each peep-hole and may
characterized, for instance, by the field dependence of
maximal value of the order parametercmax(hl), or by the
form of the magnetization curveMl(hl) ~6!. The examples
of such dependences in different points of the plane (Rl ,k)
are given in Figs. 1~b!, 1~c! ~only the casehl>0 is consid-
ered; some illustrations for the casehl,0, as well as the
corresponding coordinate dependences, may be foun
Refs. 2,6,7!.

It is clear from Fig. 1~b!, that the characteristic behavio
cmax(hl) depends substantially on the value ofk. For small
k, the valuecmax(hl) terminates by jump~the curves 1–4! at
some pointhl5hs , where the first-order phase transition
normal state@c(r)[0# occurs~if hl increases!. The region,
where the superconducting solutions terminate by the fi
order phase transition, is marked in Fig. 1~a! assI .

For larger k ~the curves 5, 6! there is also a jump in
cmax(hl) at some pointhl5hs , but with a ‘‘tail’’ remaining
on the curve. If the fieldhl increases, the superconductin
solutions 5,6 vanish gradually at the pointhc , by the second-
order phase transition to normal state. The region, where
superconducting solutions terminate by the second-o
phase transition, is marked in Fig. 1~a! assII . @The appear-
ance of the tail on the magnetization curve means the t
sition of the solution to the edge-suppressed form~see Ref. 7
for details!. At the transition points~see the dashed vertica
lines in Figs. 1, 2! the shape of the solutions changes, i.e.,
order parameter becomes time dependent~the increment at
these points becomes positive!. Various nonequilibrium ef-
fects may accompany this evolution process~we mention, for
instance, the possibility of electromagnetic and acou
waves generation.11!#

It is evident, that for small radius cylinder (Rl,1.69) the
superconducting solution terminates by the second-o
phase transition, even in type-1~i.e., small k)
superconductors.12 The transformation of the solutions wit
diminishing radiusRl is illustrated in Fig. 2 fork50.7.

Note, that if the linek51 in Fig. 1~a! is followed from
large to smallRl , the superconducting states, which ex
along this line, display at first the second-order phase tra
3-4
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FIRST- AND SECOND-ORDER TRANSITIONS FOR A . . . PHYSICAL REVIEW B63 224513
tion in magnetic field~for larger radiiRl!, then the first order
~for intermediateRl), and again the second order~for
smaller radiiRl). Only, if k.1.05, all the solutions display
the second-order behavior. Notice also, that the statem50 is
totally diamagnetic (24pMl.0).

Because in every point ofsII-region the order paramete
vanishes by the second-order phase transition@cmax→0, see
Fig. 1~b!#, the superconducting phase boundary in magn
field, hc , may be found analytically, by linearizing the sy
tem ~1!, ~2! ~with account, thatc!1 andb'hl), and pass-
ing to single linear equation for the order parameter,13 whose
solution may be expressed in terms of the Kummer functi
~see also Refs. 3–5,14!. However, inside thesI region~where
the solution terminates by jump from a finite valuecmax to
zero! the phase boundaryhs ~i.e., the highest fieldhl , still
compatible with the superconductivity! cannot be found by
solving the linearized equation, but full system of Eqs.~1!–
~5! is needed.

The analogous investigation can be carried out in the c
m51 ~see Fig. 3!, with a single vortex on the cylinder axis
In Fig. 3~a! are shown the regionsI , where the supercon
ducting state terminates~if the field increases! by the first-
order jump to the normal state, having finite valuecmax at
the transition point; the regionsII , where the superconduc
tivity vanishes by the second-order phase transition; and
curveSI-II , which represents the boundary between the fi
and second-order phase transitions.

The behavior of the order parametercmax(hl) and of the
magnetizationMl(hl) in different points of the plane
(Rl ,k) are shown in Figs. 3~b!, 3~c! ~and in Fig. 4!. For
small k ~the curves 1,2! the solutions terminate by the firs
order jump. When the lineSI-II is crossed, the tail appears o
the curves 3,4, which widens, ifRl and k increase. IfRl

diminishes~Fig. 4!, the magnitude of the jump incmax also
diminishes, and the solutions terminate~if the field increases!
by the second-order phase transition to normal state.

On the curveCns @Fig. 3~a!# the valuecmax50. The letter
n denotes the normal metal region (c[0); here the super
conducting state (m51) is impossible.@In this region the
radiusRl is too small, and the vortex own field is too stron
to be confined within the mesoscopic sample.# It is evident,
that when the radiusRl diminishes~but k is fixed! the tran-
sition from s to n state always is the second-order pha
transition, however the width of the region between t
curvesSI-II andCns ~where the second-order transitions e
ist! is very small for smallk. The curveCns may be well
approximated by the dependenceRl;a/k ~or Rj5kRl

5a), with a51.34.
Notice, that for any point of thes region in Fig. 3~a! the

magnetization functionMl(hl) @Fig. 3~c!# has two sections
the paramagnetic (Ml.0) and diamagnetic (Ml,0). This
is because the superconducting current has two compon
j s5 j p1 j d . One of these currents (j p) screens the own field
of the vortex (m51) and flows around the vortex axis in
counterclockwise direction~the paramagnetic current!. The
second current (j d) screens out the external fieldhl and
flows near the cylinder surface in clock-wise direction~the
diamagnetic current!. Depending on which of these curren
22451
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prevail, the magnetization@or, equivalently, the magnetic
momentMl5(1/2c)*@ j sr #dv# can change sign, as functio
of hl ~see Ref. 8 for details!. Recall, that in the vortex-free
state (m50) there exists only diamagnetic current, i.e.,Ml

,0, see Fig. 1~c!. In presence of the vortex (m51), but in
absence of the external field (hl50), the screening curren
flows in opposite direction~the paramagnetic stateMl.0).
Such state is metastable, because the vortex-free
posesses smaller free-energy, than the statem51.2–8 @How-
ever, the energetically metastable~excited! state may be
stable relative small distortions of its shape~when the incre-
ment of perturbations is negative!.#

The curveP0 in Fig. 3~a! corresponds to the minima
radiusRl , when the paramagnetic vortex state (m51) can
still exist inside the homogeneous cylinder in absence of
field (hl50). @The metastable vortex is held inside by th
pinning to the cylinder boundary.# In those points (Rl ,k),
which lay below the curveP0, to hold the vortex inside the
cylinder, it is necessary to impose a finite external field,hl

.0. ~This corresponds to the field stimulated and reentr
superconductivity.2–9! Notice, that if the cylinder radiusR
and the parameterk are fixed, to cross the paramagne
pinning boundary (P0) it is sufficient to vary only the
sample temperature, becauseRl5R/l(T) ~see Ref. 8 for
details!.

The presence of a smooth tail in the functioncmax(hl)
@see Figs. 3~b! and 4~a! for m51# allows one~as in the case
m50) to use the linear approximation (c!1) for finding
the upper bound of the superconducting statehc . In the re-
gion of the first-order jumps@sI in Fig. 3~a!#, where the
function c(r) is not small, the linear approach fails an
more rigorous analysis, based on full system of nonlin
equations~1!–~5!, is necessary.@The boundariesSI-II (k) and
Cns(k) themselves cannot be found from the linear equati
because the latter does not depend onk.13 The detailed com-
parison of the results of the rigorous and linear analysis w
be reported elsewhere.#

Similarly, one can consider the higher giant-vortex sta
with m.1 ~see Fig. 5 form52). There also exist the bound
aries of the first- and second-order phase transitions,
jumps on the magnetization curves, the paramagnetic
diamagnetic currents, and other peculiarities, analogou
those, presented in Figs. 1–4.

IV. CONCLUSIONS AND DISCUSSION

Based on self-consistent solution of nonlinear system
GL equations, the boundary,SI-II , is found, which separate
the regions, where the superconducting giant-vortex stat
a cylinder is destroyed by the external magnetic field eit
by the first-order jump~the regionsI), or gradually, by the
second-order phase transition~the regionsII). This boundary
is a complicated function of the parameters (m,Rl ,k) @see
Figs. 1~a!, 3~a!, 5#. Note, that in the case of an infinite~open!
superconductor the phase boundary between the first-
second-order transitions lays at the valuek51/A2.10 @At this
value the surface energys at the interface of superconduc
ing and normal metals vanishes, and the magnetiza
M (H) acquires a smooth tail.10# However, the case of infi-
3-5
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G. F. ZHARKOV PHYSICAL REVIEW B 63 224513
nite superconductor is degenerated, in the sense that the
number of vortices in the open system cannot be defin
Due to this degeneracy there are many solutions of the
tem ~1!, ~2! with different m, and it is possible to conside
the superconducting state as a linear combination of st
with different vorticities.10 In the bounded system this de
generacy is removed, and it is necessary to consider
states of fixed total vorticitym5( imi ~the quantum numbe
m is now a topological invariant, so it is not permissible
consider the mixture of states with differentm). @Notice, that
the linear combination of different states, considered
Yampolsky and Peeters,4f Eq. ~22!, satisfies the conservatio
conditionm5( imi5const; instead ofm andmi they use the
quantum-mechanical angular momenta notations,L and Li
~see also Refs. 3,5!.#

The mentioned difference of theSI-II boundary from the
valuek51/A2 is due to the difference in geometries and
the account of the space-quantization effects, present in
bounded system.~To trace the limiting transition from the
bounded to open geometry, it might be necessary to cons
the case of flattened elliptical cylinder, which models bet
the geometry of infinite slab, adopted in Ref. 10.!

We mention in conclusion that the main attention in t
present work was drawn to the mathematical side of
problem: to find theSI-II boundary for the giant-vortex stat
of fixed vorticity m. It is clear, that such state may decay in
the multi-vortex configuration of the same vorticity,m
5( imi , and to find the most stable~equilibrium! vortex
configuration it would be necessary to compare the Gi
B

,
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free energies of the corresponding states. To find s
consistent solution in a case of a general multivortex c
figuration is a very difficult task, which was not handled
the present paper.~The examples of such solutions for thin
disk geometry with various boundary conditions may
found in Refs. 4,5,9! Some of the edge-suppressed gia
vortex states might be metastable~having larger free-energy
than the equilibrium configuration!. However, as is well
known, the physical system not necessarily must be in e
librium, but may remain in the excited metastable state. S
metastable states manifest themselves in the hysteresis
perheating and supercooling phenomena, in the paramag
Meissner effect, in the jumps of magnetization, and in oth
peculiarities of the mesoscopic samples behavior, obse
experimentally.9 For this reason, the one-dimensional gian
vortex states are interesting not only as an example of s
consistent solutions of one-dimensional nonlinear equatio
but, may possibly be used in the interpretation of some
perimental details. Thus, further analysis of the questio
raised in the present paper~as well as the possible connectio
with experiment!, is necessary.
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