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First- and second-order transitions for a superconducting cylinder in a magnetic field obtained
from a self-consistent solution of the Ginzburg-Landau equations
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Based on self-consistent solution of nonlinear GL equations, the phase boundary is found, which divides the
regions of first- and second-order phase transitions to normal state of a superconducting cylinder &, radius
placed in magnetic field and remaining in the state of fixed vortinityThis boundary is a complicated
function of the parametersi(R,«) (« is the GL parametégr which does not coincide with the simple phase
boundaryx = 1//2, dividing the regions of first- and second-order phase transitions in infinjiten super-
conducting systems.
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[. INTRODUCTION some of the curves, found numerically by Schweigert and
Peeters(see Figs. 19 and 20 in Ref. ¥c(The one-
The GL theory is widely used for studying the generaldimensional solutions for a long cylinder were studied also
properties of the superconducting state. This theory leads t& Ref. 3, but, unfortunately, most of the numerical results,
two coupled three-dimensional nonlinear equations for théresented there, contain errgrghe physics behind the jump
order parametery and magnetic field vector potenti#l,  transitions within the states of fixedh, and between the
which are usually solved using various simplifying assump-States of different vorticities, is different. Probably, in the
tions. The self-consistent solutions of GL equations in the?XPeriments with mesoscopic diSkth types of transitions
particular case of a long superconducting cylinder of radiudn@y be seen. However, the connection with experiment will

R, placed in the axial magnetic field, were found first by not be discussed here in detdfartly, because the long-

Fink et al? In this case the three-dimensional GL equationsCYIInder models the thin-disk geomgtry_rather popriye
will concentrate below on the investigation of some formal

reduce to the one-dimensional form, what simplifies the cal- roperties of the solutions, what may give the additional in-

culations and enables one to study the specific nonlinear e Sight into the complicated picture, observed experimentally.
fects, as well as the role of the sample boundary. Later, the

. . . 4 In the present paper the phase boundary is found, which
one-dimensional equations were also addressed in Refs. 3-8, .1a< the region of parameterB (), where the supercon-

(Strictly speaking, in Refs. 4,5 the case of thin SUpercondUCtducting solution of fixedn terminated(in the increasing ex-
ing. disk in a perpendicular magnfatic fielq was consideredigrngl field by the first-order jump to normal state/<0),
which models the geometry, éjsed n gxperwg?ﬁé[he PhYS- from the region R, ), where the solution vanishes gradu-
ics of the processes in digks’and cylinder$**°may dif-  ajiy, by the second-order phase transition. This phase bound-
fer, however, many qualitative results are similar for differ- ary is a complicated function &® and «, different from the
ent geometrie3. As was shown in Refs. 6,7 the one- simple boundaryx=1/y2, which divides the first- and
dimensional solution for the order parameter(with fixed  second-order phase transitions in infinitgopen
vorticity m) may change its fornfunder the influence of the  syperconductor¥ We consider the phase diagrams for the
external fieldH) either graduallyin one interval of the pa- pounded system, found beldsee Figs. (a), 3(a), and §, as
rameters R, ), « is the GL parametéy vanishing by the the main new result of the present investigati¢®imilar
second-order phase transition, or abruptiythe other inter-  phase diagrams exist also in thin-disk geometry, see Fig. 21
val of (R,«)], undergoing the first-order jump transforma- in Ref. 49.
tion. Such jump transformations, in principle, may be ob-  Other topics are touched only in passifaych as meta-
servable, because they are accompanied by jumps of thgapility, the paramagnetic Meissner effect, the pinning of
magnetizationM (H). It is shown below, that these jumps, vortices to the sample boundary, &tSuch questions were
and also the presencer absenceof the tails in the magne-  studied in more detals in Refs. 2,3,68r long cylinders,
tization curves, play important roles, enabling one to find theand in Refs. 4,5,%for thin disks.
boundary between the first and second-order phase transi- |n Sec. Il the mathematical side of the problem is formu-
tions in superconducting cylinder. lated and the basic GL equations, used in calculations, are
[The jump transformations of the self-consistent solutionsyritten. Sec. Ill contains the numerical results, alongside
of GL equations were encountered first by Fink andwith necessary comments. In Sec. IV the results are summa-
Pressorf. However, they did not pay much attention to the rized and discussed.
“tails,” which remain in the magnetization curves after the
points of a jump(see, for details, Figs. 1-5 belpwand
disregarded them completely, as being not characteristic for
the superconducting stateee a footnote in Ref. 2a, p. 400 In what follows below, the case is considered of a long
The jumps in the magnetization for disks are present also isuperconducting cylinder of radilg, in the external mag-

II. EQUATIONS
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5 % Umaxdhy) has a “tail,” and vanishes smoothly, by
s . the second-order phase transiti¢e). Analogous
ad b2 4.8 085 "‘=_“’1 5 \o—h behavior for magnetizatioM, (h,). (The possi-
04l R 4 ’ bility of the acoustic radiation during the solution
3 7 s ' transition from one branch to another is marked
& os _ 3 et ® by the letterw.) The peep-holes 1-9 ifa) are
) 6// v Jia_ g pierced in the points k=0.2, 2.k=0.4, 3«
| — 024 2 (c) =0.7, 4x=1, 5:k=1.05, 6x=1.2 (R,=4),
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netic fieldH=0, which is parallel to the cylinder element. In
cylindrical coordinates the system of GL equations may be
written in dimensionless form
dZU_Ediu_ 2y=0 (1) = \8
dp2 p dp — Y 0.6+ H !
m=0 b
H [}
d2¢+ 1 d¢+ ) . u? 0 ) 0.4 x=0.7 : ::,
dp2 pdp K(l/, lr//) p2d/ . () i i tail
0.2 . : 4
Here U(p) is the dimensionless field potentid(p) is the
dimensionless magnetic fielgy(p) is the normalized order 0.0 !
parameterp=r/\, \ is the field penetration length,= «¢, 00 02 04 06 08 10 12 14
whereé is the coherence length, ardis the GL parameter. N
The dimensioned potentid, field B, and curreng s are re- 0.35-
lated to the corresponding dimensionless quantities by the m=0 3
formulas: 0301  _57 : (b)
<
_$o Utm g _1dU =" 0259 \7
2mh p ' T 2m\*T T pdp’ Y 620 .
N P o1 8
](p)_JS/S,n,Z)\3_ l/l p! p_)\' (3) 0.10- i i
[The field B in Eq. (3) is normalized byH, = ¢ /(2m\?), 0.05- 5 {
with b=B/H, ; instead ofH, one can normalize by, 000'

=¢ol(2mE%), or by H,= ¢o/(2mEN) =H/ k. The coeffi-
cients in Eqs(1), (2) would change accordingllyThe vor-
ticity min Eq. (3) specifies how many flux quanta are asso-
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ciated with the vortex, centered at the cylinder axie so-
called giant-vortex staje
The boundary conditions to E¢l) are

FIG. 2. The dependencés) ¢.(h,) and(b) M,(h,) for m
=0, k=0.7. The numeration of curves corresponds to the points 3,
7-9 in Fig. 1a).
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1 @ ) h, the boundary. Below the curv@, the vortex
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4 A% ‘ Y 0.44 field [hy>0, see the curves 1,2 iiv), (c)]. (This
VOANS = is an example of the field stimulation effect, or
34 . & 0.3 reentrant superconductivij)yThe peep-holes 1-8
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5 where R,=R/\, h,=H/H, . The boundary conditions to
> Eq. (2) are
0.6
dy dy
0.4- dp 0, dp =0 (m=0), 5
=0 =R
tail ’ P
0.2 - d(//
¥ 0, —+— 0 (m>0).
p=0 dp =R
0.0 . . — . . PN
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. [The solutions, found from Eq§l)—(5), describe the radially
0.25- symmetric giant-vortex states of fixed vorticity. The more
’ complicated asymmetric multivortex solutions of the same
0.20- total vorticity m=X;m; (m; is the vorticity of a vortex, situ-
< 0151 ated at arbitrary point; on the cylinder cross sectipmay
% ’ be studied numerically by the methods, developed in Refs.
< 0.104 45]
0.05. The magnetic momertor, magnetizationof the cylinder,
' related to the unity volume, may be written in the form
0.00
-0.05 lef B_HdU:Bav_H
V V) 4= 4
-0.104
-0.15 T T T T T 1
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FIG. 4. Analogous to Fig. 2, but fom=1. The presence of
paramagnetici,>0) and diamagneticM, <0) parts of magne-

tization is evident from(b). The numeration of curves corresponds normalization (3), denoting b=B,/H,, hy=H/H,, M,
to the peep-holes in Fig.(d.

1 1
BaV:vJ' B(r)dU: §CI)R,

whereB,, is the mean field value inside the superconductor,
dr is the total magnetic flux, confined in the cylinder. In the

=M/H, , one finds
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FIG. 5. Analogous to Figs. (&) and 3a), but for m=2. The
vertical asymptotec=0.94 is the same fam=0,1,2. This is natu-
ral, because for large radiR{>1) the influence of the vortex field
is negligible. The bottom part of the cun®,, lays atR,=2.78
(with R, =2.45 form=1, andR,=1.69 for m=0). The dashed
curve C,¢ is well approximated by the dependenCg.~1.81k
(the dotted ling

— — 2
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=¢o/(2m\/2\ &) is thermodynamical critical field of massive
superconductorg, and is the condensation energy with ac-
count for the order parameter gradient. The expressiéns

(7) may be used for calculating the corresponding quantities.

Ill. NUMERICAL RESULTS

The solutions of Eqs(1)—(5) depend on the space co-
ordinate p and several parameters, for instanag(p)
=y(m,R, ,«,h, ;p) [analogously for the potenti&l (p) and
the field b(p)]. Let the vorticity m be fixed Mm
=0,1,2 ...) andconsider at first the casa=0 (the vortex-
free Meissner staje Consider the plane of parameters
(R, ,«) [see Fig. 1d)]. In every point of this plane there
exists a set of solutions of Egdl)—(5), which depend para-
metrically on the external fielth, . (Several points, laying
along the lineR, =4 are numerated as 13+®ne may imag-
ine a peep-hole, pierced in arbitrary poirR,(,«), which
allows us to see the solutions behavior versusrhe set of
solutionsy(h, ;p) is unique for each peep-hole and may be
characterized, for instance, by the field dependence of the
maximal value of the order parametéf,(h,), or by the
form of the magnetization curvil, (h,) (6). The examples
of such dependences in different points of the plaRe, k)
are given in Figs. (), 1(c) (only the caséh, =0 is consid-
ered; some illustrations for the cabg<<0, as well as the
corresponding coordinate dependences, may be found in
Refs. 2,6,7.

It is clear from Fig. 1b), that the characteristic behavior
Umax{hy) depends substantially on the valueafFor small
k, the valuey,.,(h,) terminates by jumgthe curves 1-pat
some pointh, =hg, where the first-order phase transition to
normal staté ¢(p)=0] occurs(if h, increaseps The region,
where the superconducting solutions terminate by the first-
order phase transition, is marked in Figajlass;.

For larger k (the curves 5, Bthere is also a jump in
Yma{hy) at some poinh, = hg, but with a “tail” remaining
on the curve. If the fieldh, increases, the superconducting
solutions 5,6 vanish gradually at the paomt, by the second-
order phase transition to normal state. The region, where the
superconducting solutions terminate by the second-order
phase transition, is marked in Fig(al ass; . [The appear-
ance of the tail on the magnetization curve means the tran-
sition of the solution to the edge-suppressed f¢spe Ref. 7
for detailg. At the transition pointg§see the dashed vertical
lines in Figs. 1, 2the shape of the solutions changes, i.e., the

tem may be written ds

H2, 87M, 4m b(0)—h,
Ag—AG/( e V)—go_ K2 h)\+7R—§’

()

2 (R

N
=— d
Jo R)z\OPP

d¢)2
dp/ |

1
4_ o2
Y =2y e

Here AG=G4— G, is the difference of free energies in su-
perconducting and normal statég,0)=B(0)/H, , B(0) is
the magnetic field at the cylinder axis,H.,

these points becomes positiv&/arious nonequilibrium ef-
fects may accompany this evolution procéss mention, for
instance, the possibility of electromagnetic and acoustic
waves generatioh)]

It is evident, that for small radius cylindeR(<1.69) the
superconducting solution terminates by the second-order
phase transition, even in type-l(i.e., small «)
superconductor¥ The transformation of the solutions with
diminishing radiusik, is illustrated in Fig. 2 forc=0.7.

Note, that if the linex=1 in Fig. 1(a) is followed from
large to smallR, , the superconducting states, which exist
along this line, display at first the second-order phase transi-
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tion in magnetic fieldfor larger radiiR, ), then the first order prevail, the magnetizatiofior, equivalently, the magnetic

(for intermediateR,), and again the second ordéfor  momentM, = (1/2c) [[j¢r]dv] can change sign, as function

smaller radiiR,). Only, if x>1.05, all the solutions display of h, (see Ref. 8 for details Recall, that in the vortex-free

the second-order behavior. Notice also, that the stat® is ~ state (M=0) there exists only diamagnetic current, i},

totally diamagnetic € 47M,>0). <0, see Fig. (). In presence of the vortexr(=1), but in
Because in every point af,-region the order parameter absence of the external fielth(=0), the screening current

vanishes by the second-order phase trans{tiip,,—0, see flows in opposite directiorithe paramagnetic statd, >0).

Fig. 1(b)], the superconducting phase boundary in magnetk,SUCh state is metastable, because the vozr_taex—free state

field, h,, may be found analytically, by linearizing the sys- POS€sSes smaller free-energy, than the statel " [How-

tem (1), (2) (with account, thaty<1 andb~h, ), and pass- ever, the energetically metastablexcited state may be

ing to single linear equation for the order paramétazhose stable relative sm_all d|§tort|ons of its shafwéhen the incre-
ment of perturbations is negativg

solution may be expressed in terms of the Kummer functions g -
o . The curvePy in Fig. 3@ corresponds to the minimal

(see alsq Refs. 3_—5,14—|owe_ver, inside the_a, _reglon(where radiusR, , when the paramagnetic vortex state1) can
the solution terminates by jump from a finite valygay 0 iy eyist inside the homogeneous cylinder in absence of the
zerg the phase boundary; (i.e., the highest fieldh, , still  geiq (h =0). [The metastable vortex is held inside by the
com.patlble Wlth t_he supercpnductlv)txzannot be found by pinning to the cylinder boundadyin those points R, , ),
solving the linearized equation, but full system of EGS—  \yhich lay below the curvé®,, to hold the vortex inside the
(5 is needed. o _ . cylinder, it is necessary to impose a finite external fiélgd,

The analogous investigation can be carried out in the case o, (This corresponds to the field stimulated and reentrant
m=1 (see Fig. 3 with a single vortex on the cylinder axis. superconductivity=® Notice, that if the cylinder radiu®
In Fig. 3(a) are shown the regios,, where the supercon- ang the parametek are fixed, to cross the paramagnetic
ducting state terminate@f the field increasesby the first- pinning boundary P,) it is sufficient to vary only the
order jump to the normal state, having finite valiigac at  sample temperature, becauBe=R/\(T) (see Ref. 8 for
the transition point; the regios,, where the superconduc- details.
tivity vanishes by the second-order phase transition; and the The presence of a smooth tail in the functigh,.(h,)
curve S, which represents the_ boundary between the firs[See Figs. @) and 4a) for m=1] allows one(as in the case
and second-order phase transitions. m=0) to use the linear approximationy{1) for finding

The behavior of the order parametgg,,(h,) and of the  the upper bound of the superconducting state In the re-
magnetization Mx(h.x) in different pomts_ of_the plane gion of the first-order jumpss, in Fig. 3a@)], where the
(Ry,«) are shown in Figs. ®), 3(c) (and in Fig. 4. For  fynction y(p) is not small, the linear approach fails and
small x (the curves 1,Pthe solutions terminate by the first- more rigorous analysis, based on full system of nonlinear
order jump. When the lin&,, is crossed, the tail appears on equationg1)—(5), is necessaryThe boundaries,, (x) and
the curves 3,4, which widens, R, and « increase. IfR, () themselves cannot be found from the linear equation,
diminishes(Fig. 4), the magnitude of the jump ifkna, alSO  pecause the latter does not depend<dfi The detailed com-
diminishes, and the solutions termindifethe field increases  parison of the results of the rigorous and linear analysis will
by the second-order phase transition to normal state. be reported elsewheie.

On the curveC,,¢ [Fig. 3@)] the valueym,,=0. The letter Similarly, one can consider the higher giant-vortex states
n denotes the normal metal regiog£0); here the super- wjth m>1 (see Fig. 5 fom=2). There also exist the bound-
conducting stateng=1) is impossible[In this region the  aries of the first- and second-order phase transitions, the
radiusR, is too small, and the vortex own field is too strong jumps on the magnetization curves, the paramagnetic and

to be confined within the mesoscopic sambleis evident,  diamagnetic currents, and other peculiarities, analogous to
that when the radiuR, diminishes(but « is fixed) the tran-  those, presented in Figs. 1—4.

sition from s to n state always is the second-order phase

transition, however the width of the region bety\{een the IV. CONCLUSIONS AND DISCUSSION

curvesS,,, andC,s (where the second-order transitions ex-

ist) is very small for smallk. The curveC, s may be well Based on self-consistent solution of nonlinear system of

approximated by the dependen&g~a/x (or R.=«R, GL equations, the boundar$,, , is found, which separates

=a), with a=1.34. the regions, where the superconducting giant-vortex state of
Notice, that for any point of the region in Fig. 3a) the  a cylinder is destroyed by the external magnetic field either

magnetization functioM, (h,) [Fig. 3(c)] has two sections: by the first-order jumgthe regions;), or gradually, by the

the paramagneticM, >0) and diamagneticNl, <0). This  second-order phase transiti¢he regions,). This boundary

is because the superconducting current has two componerigsa complicated function of the parameters,R, ,«) [see

js=iptia. One of these currentg f) screens the own field Figs. Xa), 3(a), 5]. Note, that in the case of an infinitepen

of the vortex m=1) and flows around the vortex axis in a superconductor the phase boundary between the first- and

counterclockwise directiofithe paramagnetic currentThe  second-order transitions lays at the vakie 1/y/2 1°[At this

second current ji) screens out the external field, and  value the surface energy at the interface of superconduct-

flows near the cylinder surface in clock-wise directighe ing and normal metals vanishes, and the magnetization

diamagnetic curreint Depending on which of these currents M(H) acquires a smooth t&if] However, the case of infi-
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nite superconductor is degenerated, in the sense that the tofeée energies of the corresponding states. To find self-
number of vortices in the open system cannot be definectonsistent solution in a case of a general multivortex con-
Due to this degeneracy there are many solutions of the sysiguration is a very difficult task, which was not handled in
tem (1), (2) with differentm, and it is possible to consider the present papefThe examples of such solutions for thin-
the superconducting state as a linear combination of statefisk geometry with various boundary conditions may be
with different VOI’tiCitiesl.O In the bounded SyStem this de- found in Refs. 4,519 Some of the edge_suppressed giant_
generacy is removed, and it is necessary to consider thgyrtex states might be metastalffeaving larger free-energy
states of fixed total vorticityn=X;m; (the quantum number ihan the equilibrium configuration However, as is well
mis now a toplological invarian'g, so it is not permissible t0 known, the physical system not necessarily must be in equi-
consider the mixture of states with differen). [Notice, that | hut may remain in the excited metastable state. Such
the linear combination of different states, considered byyatastable states manifest themselves in the hysteresis, su-
Yampolsky and Peetef‘éEq_ (22), satisfies the conservation o heating and supercooling phenomena, in the paramagnetic
conditionm=2;m; = const; instead ofnandm; they use the  \jeissner effect, in the jumps of magnetization, and in others
quantum-mechanical angular momenta notatidngnd L pecyliarities of the mesoscopic samples behavior, observed
(see also Refs. 34 ) experimentally’. For this reason, the one-dimensional giant-
The mentioned difference of t., boundary from the ey states are interesting not only as an example of self-
value k=1/2 is due to the difference in geometries and toconsistent solutions of one-dimensional nonlinear equations,
the account of the space-quantization effects, present in theut may possibly be used in the interpretation of some ex-
bounded system(To trace the limiting transition from the nerimental details. Thus, further analysis of the questions,

bounded to open geometry, it might be necessary to considegjsed in the present pap@s well as the possible connection
the case of flattened elliptical cylinder, which models betteryjth experimeny, is necessary.

the geometry of infinite slab, adopted in Ref.)10.
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