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A model of a Fermi liquid with the fermion condensa&EeC) is applied to the consideration of quasiparticle
excitations in high-temperature superconductors, in their superconducting and normal states. Within our model
the appearance of the fermion condensate presents a quantum phase transition that separates the regions of
normal and strongly correlated electron liquids. Beyond the phase transition point the quasiparticle system is
divided into two subsystems, one containing normal quasiparticles and the other—fermion condensate local-
ized at the Fermi surface and characterized by almost dispersionless single-particle excitations. In the super-
conducting state the quasiparticle dispersion in systems with FC can be presented by two straight lines,
characterized by effective masdds . andM{ , respectively, and intersecting near the binding energy, which
is of the order of the superconducting gap. This same quasiparticle picture persists in the normal state, thus
manifesting itself over a wide range of temperatures as new energy scales. Arguments are presented that
fermion systems with FC have features of a “quantum protectorgiRe’'B. Laughlin and D. Pines, Proc. Natl.

Acad. Sci. U.S.A97, 28 (2000; P. W. Anderson, cond-mat/000718&npublishe¢t cond-mat/0007287un-

published].
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[. INTRODUCTION due to the electron coupling with collective excitations. But

in that case one has to give up the quantum protectorate idea,
The single-particle excitations in ordinary Fermi liquids, which would contradict observations.

e.g., electron liquid of metals and their energy scales, define The aim of our paper is to show that without giving up the
the major part of their low-temperature properties. High-quantum protectorate idea the energy scale for quasiparticle
temperature superconductodTS) are characterized by a dispersion can be naturally explained within the model of
number of striking features. Among them are extremely higreorrelated electron liquid with the fermion condensidt€).
transition temperatures, and the linear dependence of the N Sec. Il, we review the general features of Fermi systems
resistivity on temperature at>T,. The former behavior has With the FC, showing that an electron liquid of low density

been related to the existence of the only one relevant ener he;”f?gn L!?ggé%oe;ntr}i szgml'ﬁn'(;oggﬁr%?'(:ﬂe quagtum
scale, that is, the temperatufie which leads to a central S st QPT. W siaer super-

conclusion of the marginal Fermi liquidFL) that the one- conducting state, which takes place in the presence of the FC

particle self-energy depends only on temperature and freand describe the quasiparticle dispersion and lineshape. Fi-

quency, and not on momentuirSuch a behavior demon- nally, in Sec. IV, we summarize our main results.
strates that contributions from phonons excitations,
collective states, or impurities to the self-energy are inessen-
tial. All this permits to introduce the notion of a “quantum
protectorate,” as a state of a system with such strong corre- To describe a correlated electron liquid a conventional
lations that these conventional effects are inessehti@in  way can be used, assuming that the correlated regime is con-
the other hand, recent discovery of a new energy scale fanected to the noninteracting Fermi gas by adiabatic continu-
quasiparticle dispersion in superconducting and normaity in the same way as in the framework of the Landau nor-
states of BiS,CaCyOs. 5 (Refs. 4 and can bring new mal Fermi-liquid theory. But a question exists whether this
insight to the physics of HTS, imposing serious constraintds possible at all. Most likely, the answer is negative. There-
upon possible theories of HTS. The newly discovered addifore, we direct our attention to a model, in the frame of
tional energy scale manifests itself as a break in the quasihich a strongly correlated electron liquid is separated from
particle dispersion near 50—70 meV, which results in a drasconventional Fermi liquid by a phase transition related to the
tic change of the quasiparticle velocfty? Such a behavior is onset of FC?

qualitatively different from what one could expect in a nor- Let us start by considering the key points of the FC
mal Fermi liquid. Moreover, this behavior can hardly be un-theory. FC is a new solution of the Fermi liquid theory
derstood in the frames of either the MFL theory or the quan€duation’ for the quasiparticle distribution functiam(p,T)

tum protectorate since there are no additional energy scales

in these theorie$® One could suggest that this observed O(F—uN) —e(pT)— (T)—Tlnl_n(p'T)
strong self-energy effect, leading to the new energy scale, is on(p,T) P » n(p,T)

Il. THE GENERAL FEATURES OF ELECTRON
LIQUID WITH FC

=0, (1
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which depends on the momentyrand temperatur&. Here  gives rise to the high value df, because one hasTg=A
F is the free energy angd is the chemical potential, while ~ within the standard Bardeen-Cooper-SchriefféBCS)
theory!? While in the presence of the superconducting gap
SE[Nn(p)] , A#0, asitis shown in Sec. Ill, the quasiparticle effective
on(p,T) @ mass becomes finite. In consequence of these features the
. . . ) ) . density of states at the Fermi level becomes finite and the
is the quasiparticle energy. This energy is a functional ofiolved quasiparticles are not localized. On the other hand,
n(p,T) just like the total energ¥[n(p)] and the other ther-  oyen 4tT=0, A can vanish, provided/,,, is repulsive or
modynan_uc .funct|_on§. E.quatloﬁl) is usually presented as gpgent. Then, as it is seen from H§), the Landau quasi-
the Fermi-Dirac distribution, particle system becomes separated into two subsystems. The
e(p.T)— 1 first contains the Landau quasiparticles, while the second,
n(p,T)= | 1+exp{y ] (3y  related to FC, is localized at the Fermi surface and formed by

dispersionless quasiparticles. As a result, the standard Kohn-
At T—0 one gets from Eqs1) and(3) the standard solution Sham scheme for the single-particle equations is no longer
Ne(p, T—0)—60(pr—p), with  e(p=pg)—u=pe(p

valid beyond the point of the FC phase transittdiSuch a
—pe)/M? , wherepe is the Fermi momentum ard * is the behavior of systems with FC is clearly differ_ent from what
Landau effective mags one expects from the W(_ell-known Iocal-denslty calculatmn_s.
' Therefore these calculations are hardly applicable to describe
systems with FC. It is also seen from H§) that a system
(4) with FC has a well-defined Fermi surface.
Let us assume that FC has just taken place, thap;is,
—ps—PpPg and the deviationsn(p) is small. Expanding
It is implied thatM{ is positive and finite at the Fermi mo- functional E[n(p)] in Taylor's series with respect tén(p)
mentumpg . As a result, thd-dependent corrections M,  and retaining the leading terms, one obtains from (Gy.
to the quasiparticle energy(p), and other quantities start
with T2 terms. But this solution is not the only one possible.
There exist “anomalous” solutions of Eql) associated uzs(p)zso(p)-l—f FL(p,p1)dn(py)
with the so-called fermion condensati®H Being continu-
ous and satisfying the inequality<h(p)<1 within some
region inp, such solutions1(p) admit a finite limit for the Pi<pP=ps, (6)
logarithm in Eq.(1) at T—0 yielding

e(p,T)=

1  1ds(p,T=0)
MF P dp

P=PE

dp;
(2m)?’

whereF | (p,p;) = 6°E/én(p) 6n(p,) is the Landau interac-
SE[Nn(p)] tion. Both the Landau interaction and the si.ngle-particle en-
e(p)= Wz,u, pPi<p=ps. (5) ergy eo(p) are calculated ah(p)=ng(p). It is seen from
Eqg. (6) that the FC quasiparticles form a collective state,
At T=0, Eq. (5) determines the FCQPT, possessing solu-since their energies are defined by the macroscopical number
tions at some s=rgc as soon as the effective interelectron of quasiparticles within the regiop;—ps, and vice versa.
interaction becomes sufficiently strohgin a simple elec- The shape of the spectra is not effected by the Landau inter-
tron liquid, the effective interelectron interaction is propor- action, which, generally speaking, depends on the system’s
tional to the dimensionless average interparticle distagce Properties including the collective states, impurities, etc. The
~rolag, with ro~1/pe being the average distance aag  ©nly thing defined by the interaction is the width of the re-
being the Bohr radius. Equatiof5) leads to the minimal gionp;—p¢, provided the interaction is sufficiently strong to
value ofE as a functional oh(p) when in the system under Produce the FC phase transition at all. Thus, we can con-
consideration, a strong rearrangement of the single-particlelude that the spectra related to FC are of universal form,
spectra can take place. We see from & that the occupa- being dependent, as we will see below, mainly on tempera-
tion numbersn(p) become variational parameters: the solu-ture T, if T>T,, or on the superconducting gap Bt T.
tion n(p) occurs if the energi can be lowered by alteration ~ According to Eq(1), the single-particle excitations within
of the occupation numbers. Thus, within the regiprcp  the intervalp;—p; have afT <T<T; the shape:(p,T) lin-
<ps, the solutionn(p)=ng(p)+ on(p) deviates from the e€ar in T121%which can be simplified at the Fermi level,
Fermi step functiomg(p) in such a way that the energy

e(p) stays constant, while outside this regiofp) coincides _ 1-n(p) 1-2n(p)
with ng(p). It is pertinent to note that the above general e(p,T)—u(T)=TlIn n(p) = n(p) - (™
consideration was verified by inspecting simple models. As P=Pr

the result, it was shown that the onset of the FC does lead t?
lowering the free energ¥f:*?It follows from the above con-
sideration that the superconductivity order parametgy)
=yn(p)[1—n(p)] has a nonzero value over the region oc-
cupied by FC. The superconducting gafp) being linear in L B It (8)
the coupling constant of the particle-particle interactig, eg 2Mer  Qf

¢ Is the temperature above which FC effects become
insignificant!?
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HereQrc is the FC volumeg is the Fermi energy, an@ Therefore, we can accept a model relating systems with FC
is the volume of the Fermi sphere. We note thafTg&T to HTS compounds, assuming that the effective coupling
<T; the occupation numbers(p) are approximately inde- constantr increases with decreasing doping, exceeding its
pendent off, being given by Eq(5). One can imagine that at critical value rgc at the levels corresponding to optimal
these temperatures, the dispersionless platép)= u given  doped samples. We remark, that this critical valug cor-

by Eq.(5) is slightly turned counter clockwise about As a  responds to the, values of slightly overdoped sampfesOn
result, the plateau is just a little tilted and rounded off at thethe other hand, there exist charge-density waves or strong
end points. According to Eq7) the effective masM{.  fluctuations of charge ordering in underdoped HT3s the

related to FC is given by result, our quite natural model suggests that both quantities,
T¢ and condensate volum@r., increase with decrease of
Pe 4T doping. Thus, these values are higher in underdoped samples
x = Pi—pi ©) as compared to overdoped ones providgtheets the above-

mentioned conditions. According to experimental facts the
To obtain Eq.(9) an approximation for the derivative large density of states at the Fermi level reaches its maxi-
dn(p)/dp=—1/(p;— p;) was used. Having in mind that; ~ mum in the vicinity of the Hove singularities, that is, around
—Pi<pg, and using Eq98) and(9) the following estimates  the point ¢r,0) of the Brillouin zone, oM, in HTS com-

for the effective mas#f are obtained, pounds. The density of states reaches its minimum value at
the intersection of the so-called nodal direction of the Bril-
e N(O) Ty 10 louin zone with the Fermi surfadsee, e.g., Ref. 28The FC

sets in around the van Hove singularitiesausing, accord-

_ ing to Egs.(9) and (10), large density of states and a large

Eq*uatlons(9) and(10) show the temperature dependence Ofvalue of the differencef;—p;) at the pointl\W. Then, the
rc - In Eq. (10) M, denotes the bare electron malis(0) | ojume (. and difference §;— p;) starts to depend on the

is the density of states of noninteracting electron gas, anBoint of the Fermi surface, say, on the anglealong the
N(O0) is the density of states at the Fermi level. Multiplying Eermi surface. which we count from the poﬁtto the point

both sides of Eq(9) by ps—p; we obtain the energy scal®y "\ pich the density of states reaches its minimum value.
separating the slow-dispersing low-energy part, related to thﬁonetheless as it is seen from Eyl), E, remains constant

. * . . X
effecuve massMec, from the faster-d{spersmg, lrselatlvely being independent of the angle. This differs essentially from
high-energy part, defined by the effective masg, the case for the effective mab&f . that can strongly depend
Eo=4T. (11) upon the angle_: via the differen¢es( ) — pi(_qS)] asis seen
from Eq.(9). It is pertinent to note that outside the FC region
It is seen from Eq(11) that the scal&, does not depend on the single-particle spectrum is negligibly affected by the
the condensate volume. The single-particle excitations artemperature, being defined by [see Eq.(4)], however
defined according to Eq$7) and(9) by the temperature and calculated ap<p; instead of atp=pg. Thus, we come to
by n(p) given by Eq.(5). Thus, we are led to the conclusion the conclusion that a system with FC is characterized by two
that the one-electron spectrum is negligibly disturbed byeffective massedvif., which is related to the single-particle
thermal excitations, impurities, etc, so that one observes thepectrum at lower energy scale akd describing the spec-
features of the quantum protectorate. trum at higher energy scale. These two effective masses
It is seen from Eq(5) that at the point of the FC phase manifest themselves as a break in the quasiparticle disper-
transitionpi— p;i—pg, Mgc and the density of states, as it sion, which can be approximated by two straight lines inter-
follows from Egs.(5) and (10), tend to infinity. One can secting at the energl,. This break takes place at tempera-
conclude that aT =0 the beginning of the FC phase transi- tures T.<T<T; in accordance with the experimental
tion is connected to the absolute growthMf . It is essen-  findings? and as we will see, a&F<T, corresponding to the
tial to have in mind, that the onset of the charge-densityexperimental fact® when the superconducting state is
wave instability in a many-electron system, such as an eledased on the FC state. As to the quasiparticle formalism, it is
tron liquid, which takes place as soon as the effective interapplicable to this problem since the width of single-
electron constant reaches its critical vatyer.q,,,:%is pre-  particle excitations is not large compared to their energy be-
ceded by the unlimited growth of the effective mass.ing proportionaly~T at T>T,.'? The line shape can be
Therefore, the FC takes place before the onset of the chargapproximated by a simple Lorentzidhbeing in accordance
density wave. Hence, &i=0, whenrg reaches its critical with experimental data obtained from scans at a constant
valuergc<r.qw, the FCQPT inevitably takes place. Thus, binding energy. Then, FC serves as a stimulating source of
the formation of the FC can be thought as a general propertgew phase transitions that lift the degeneration of the spec-
of an electron liquid of low density, rather then an uncom-trum. For example, FC can generate the spin-density wave or
mon and anomalous solution of Ed).* Beyond the phase antiferromagnetic phase transition, thus leading to a whole
transition into the FC the condensate volume is proportionaVvariety of the system’s properties. Then, the onset of the
to (rg—rgc) as well asT;/eg~(rs—rgc) at least whenr;  charge-density wave is preceded by the FCQPT and both of
—rec)/rec<1. Note, that such a behavior is in accordancethese phases can coexist at the sufficiently low density when
with the general properties of second-order phase transitionss=r.q,,. The simple consideration presented above ex-
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plains the extremely large variety of HTS properties. Wepresenting FC solutions defined by E@).}*! Thus, we
have seen above that the superconductivity is strongly aidecbme to the conclusion that the functiaitp) is defined by
by the FC, because both of the phases are characterized By. (5). While corrections to this function due to the pairing
the same order parameter. As a result, the superconductivitinteraction, being small, are of the order\gf,/F, , because
removing the spectrum degeneration, “wins the competiinteractionV,, is obviously weak as compared to the Landau
tion” with the other phase transitions up to the critical tem-interactionF, . We note again a remarkable peculiarity of
peratureT,. We turn now to a consideration of quasiparticle the FC phase transition dt=0: this transition is related to
dispersions alT<T,. spontaneous breaking of gauge symmetry when the super-
conductivity order parameter(p) has a nonzero value over
the region occupied by the fermion condensate, whi(g)
. o . vanishes provided/,,=0.">** We can conclude that the
Let us discuss the origin of two effective mas$éb and  ransition temperature of the FC phase transition is zero be-
MEc in the superconducting state resulting in nontrivial qua-cause it is proportional to the gap, as it must be in the stan-
siparticle dispersion and in alteration of the quasiparticle vedard theory of superconductivity. Therefore, the FC phase
locity. As we will see, our results are in a reasonably goodransition is a quantum phase transition, while at tempera-

IIl. QUASIPARTICLE DISPERSIONS AT T=<T,

agreement with experimental d4t&.To simplify the discus-
sion let us puffT=0. The ground-state enerdy,s of a sys-

turesT<<T;, the properties of the considered many-electron
system, such as its single-particle spectra, occupation num-

tem in the superconducting state is given by the BCS theoryers, etc., are strongly influenced by the “shadow” of

formula

Egd k(P)]=E[n(p)]+Esd (p)], (12

where the occupation numbergp) are connected to the
order parameter,

n(p)=v3(p), «(P=v(pP[1-v2(P)]. (13

The second ternkg{ ] on the right-hand side of Eq12)
is defined by the superconducting contribution, which in th
simplest case of the weak coupling regime is of the form

dp,dp,
2m*
Consider a two-dimensional electron liquid on a simple-

square lattice that is in the superconducting
d-wave symmetry of the order parametefp). In

Eod 1= | VoplPr.pa)(pr)#* () (14

such a

case, the long-range component in momentum space ?_F]

particle-particle interactio’V,, is repulsive, and the short-

range component is relatively dominant and attractive a
small momentd® Then the short-range component can be

taken, as a first approximation, to B&,(q)=—V,4(q).
The FC arises near the Van Hove singularities, causing, as
follows from Eq. (10), large density of states at these
points!* Hence, the different regions with the maximal value
A, of the gapA and the maximal density states overlap
slightly.***%?°Varying E4 given by Eq.(12) with respect to
x(p) one finds,

1-2v3(p)
S(D)—M:A(D)T(p) (15
Heree(p) is defined by Eq(2) and
dp
AP~ [ Vb TNy, . (19

A few remarks are in order at this point. \f,—0, then
A(p)—0 and Eq.(15) reduces to the equation

e(p)—u=0 if 0<n(p)<l, w(p)#0 (17

e

state witrb

FCQPT as it is seen from Eq&)—(11).

If V,p is nonzero but small as comparedRp and attrac-
tive, the gapA is given by Eq.(16), with n(p) and «(p)
beingdeterminedy Eq.(5). Therefore, as itis seen from Eq.
(16), the gap islinear in the coupling constant of the
particle-particle interactiol,, which leads to high values of
both A; andT,.® Taking into account thes-function shape
of the attractive component &f,,, we have from Eq(16)
simple estimations for the maximum value of the gap:;; 2
=V,. Since the order paramete(p) is defined by Eq(5),
that is, determined by the interactidét) , the shape of the
gap including the location of its nodes is robust being resis-
tant to scattering upon impurities. We can again conclude
that such features resemble a quantum protectorate. Gener-
ally speaking, the state of the quantum protectorate is pre-
served by the FCQPT. As soon as the coupling constant
ecomes finite(although remains smajlthe plateaus(p)
=0 is slightly tilted and rounded off at the end points,
at is, the effective mas¥l £, becomes finite. To calculate
{\/I’F‘L, we differentiate the both parts of E@.5) with respect
to the momentunp and obtain the following relations:

Pr Ay 1 2A;

foo AP PP PP

(18

Deriving Eq.(18) we took into account that the gap achieves
its maximum valueA, at the Fermi level and«(p=pg)
=1/2. We use the above approximation for the derivative
dn/dp and Eq.(13) to calculate the derivative(v?)/dp,

do’(p] 1

dp (Pr—pi)
Now, one can conclude directly from E(L8) that the fol-
lowing relation is valid®

(19

(Ps—Pi)Pe
*

FC

It is seen from Eq(19) that again, this time aT=0, the
quasiparticle dispersion can be presented by two straight
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lines characterized by two effective masddg. andM{,  sjon kink into a distinct break at the poiM, or at the gap
respectively, and intersecting near the binding enegy maximumA; point. Thus, as it follows from Eqg11) and
=2A,. Evaluations of the effective ma$d;, atT—T.are (20) at T<T; there exists a new energy scale definedZgy
straightforward and similar to those presented above. It isvith Eq=2A; atT<T, andE,=4T at T,<T. These results
important that at finite temperatures we have to replace Edare in good agreement with the experimental facts, which
(13) by another equation of the BCS theory, namely, by  show that aff<T, as one moves towardd the dispersion
kink grows into the break, separating the faster-dispersing

v2(p):M, (21)  high-energy part of the single-particle spectrum from the
1-2f(p) slower-dispersing low-energy part with a break in the slope
where near 50 meV, or near 70 meV?. This effect is enhanced in

underdoped samples and appears to persistafl.*
1 —— Let us briefly discuss the lineshape of a quasiparticle peak
f(p)= 1+exdE(p)/T]’ E(p)=1(e(p)—w)*+A%(p). obtained from scans at a constant binding enesdyand at
(22)  aconstant momentum) see e.g., Ref. 18. We recall that the

. . . line shapel of a quasiparticle peak can be presented as a
After performing some straightforward algebraic transformax,~iion of two variablesl (g, ). Then, the scans at con-

tions and taking into account that the functibfp) reaches  gyont hinging energy are given by the functiofy, o= o),
its maximum at the Fermi level, while(p)<T, we obtain  here, is the binding energy of the quasiparticle. Accord-
instead of Eq(19) the following equations: ingly, L(q=0o,®) presents the line shape obtained from

d[v2(p)] 1 scans at the fixed momentugg corresponding to the quasi-
=— particle momentum. In order to consider the widghof a
dp (Pr=p)[1-2f(p)] quasiparticle peak, the special form of the quasiparticle dis-
oT persion characterized by the two effective masses should be
m (23 taken into consideration. On the other hand, scans at the
P){Ps—Pi T-T, constant energy reveal well-defined single-particle excita-

Deriving Eq. (23) we use the former approximation for tions with the widthy~T at the Fermi level even at the point

dn/dp and have in mind that &<T; the occupation num- M.° Consideringy related to the lineshape(q,w=wo),
bers are temperature independent and defined by(®Bq. Providedwo<E,, we can take into account only quasiparti-
Differentiating Eq.(15) with respect to the momentupand ~ cles with the effective masBlz, which can be large but
taking into account Eg(23), we estimate the effective mass finite. We can do it because only quasiparticles with the en-

as ergies less thei, contribute to the width of a quasiparticle
with the energyw,. Such a picture resembles the normal
* Pe(Pt—Pi) 5 Fermi liquid presented by quasiparticles with the effective

Me=""21 (24) massMZ.. The only difference is that now the effective

mass, as it follows from Ed9), depends on the temperature.
As the result, we are dealing with well-defined excitations of
the width y~ T,

As the result, we obtain from E@24) an estimation for the
energy scale,

By P PIPE_ (25 S MEPT? (MEQ)T® Ty (26)
Mec € (Mgc)? oF

Comparing Eq(20) with Eq. (25) and bearing in mind that
2T.~A, we conclude that both the effective mad . and
the energy scal&, are approximately temperature indepen-
dent atT<T., while Egs.(24) and(25) match Eqgs(9) and
(11) at T=T,. as one should expect.

The break separating the faster-dispersing high-energ

Heree is the dielectric constant, which is proportional to the
effective massM i, the latter being inversely proportional
to T, see Eq.9). This result is in good agreement with the
experimental findings cited abo%eDealing with scans at
constantg, which correspond to the lineshape functiofg
qu,w), we have to consider the contribution coming from

* ; .
2?2; rem;?f dtec;i:tl,zst;wlsl/l*’ fric;rﬂkter}e t?)lc;)v(:er:\gizperfrlmr:)%riz\g q quasiparticles with the mad4; as well, because now there
9y p FC» y P are no limits on the energy of quasiparticles contributing to

in underdoped samples. Itis at least because of the rise of trfﬁe widthy. In view of the fact that the contribution of these

. S
condensate volum&c, leading to the growth oMec asit oy citations is enhanced by the presence of FC, and that these
follows from Egs.(9) and (18). We recall that according 0 gxcitations start to contribute to the line shape at energies

our model the condensate volurflg. is growing with un- > " one can conclude that the peak inevitably has a
derdoping. It follows from Eqs(9) and (18), that as one pgadening that can hardly be interpreted as standard width
moves along the Fermi surface from the nodal direction toyptained from scans at a constant binding energy. On the
wards the pointM, that is, from the minimal value of other hand, one may follow the procedure suggested in Ref.
QFC(¢)~[pf(q§)—pi2(¢)] towards the maximal one, the 5, using the Kramers-Krig transformation to construct the
ratio Mg/M} grows in magnitude, transforming the disper- imaginary part of the self-energy starting with the real one.
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As a result, the line shape(g=qg,w) of the quasiparticle change of the quasiparticle dispersiorEgtcan be enhanced
peak as a function of the binding energypossesses a com- in underdoped samples because of strengthening the FC in-
plex peak-dip-hump structutelirectly defined by the exis- fluence. The single-particle excitations and their wigthre

tence of the two effective massed;. andM .*° also studied. Well-defined excitations with-T exist at the
Fermi level even in the normal state. This result is in line
IV. CONCLUDING REMARKS with the experimental findings determined from the scans at

constant binding energies. We have discussed also the line
We have discussed the model of a strongly correlatedhape obtained from scans at a constant momentumthis
electron liquid based on the FCQPT and applied it to hightase, the special form of the quasiparticle dispersion should
temperature superconductors. The FCQPT plays the role ofige taken into consideration. As the result, the lineshape of
boundary separating the region of a strongly interacting northe quasiparticle peak as a function of the binding energy
mal electron |IQUId from the region of a Strongly correlated possesses a Comp|ex peak-dip-hump structure direcﬂy de_
electron liquid. It is important to have in mind that the onsetfineq by the existence of the two effective masb. and
of the charge-density wave instability in @ many-electrony;*+ \ye have also presented arguments, that fermion sys-

. . . L
system, which takes place as soon as the effective mterelegéms with FC have features of the quantum protectorate, be-

tron constant reaches its critical valug=rcqy, is preceded o4 senarated from the normal Fermi liquid by the FC quan-
by the FCQPT. Hence at=0, whenr reaches its critical phase transition.

valuergc<r.qw, the FCQPT inevitably takes place. Thus,
the FC can be thought of as a general property of an electron
liquid of the low density rather then a unique phenomenon.

We have shown that the quasiparticle dispersion in systems V.R.S. thanks the Racah Institute of Physics at the He-
with FC can be represented by two straight lines charactetbrew University of Jerusalem, where part of this work has
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