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Quasiparticle picture of high-temperature superconductors in the frame of a Fermi liquid
with the fermion condensate
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A model of a Fermi liquid with the fermion condensate~FC! is applied to the consideration of quasiparticle
excitations in high-temperature superconductors, in their superconducting and normal states. Within our model
the appearance of the fermion condensate presents a quantum phase transition that separates the regions of
normal and strongly correlated electron liquids. Beyond the phase transition point the quasiparticle system is
divided into two subsystems, one containing normal quasiparticles and the other—fermion condensate local-
ized at the Fermi surface and characterized by almost dispersionless single-particle excitations. In the super-
conducting state the quasiparticle dispersion in systems with FC can be presented by two straight lines,
characterized by effective massesMFC* andML* , respectively, and intersecting near the binding energy, which
is of the order of the superconducting gap. This same quasiparticle picture persists in the normal state, thus
manifesting itself over a wide range of temperatures as new energy scales. Arguments are presented that
fermion systems with FC have features of a ‘‘quantum protectorate’’@R. B. Laughlin and D. Pines, Proc. Natl.
Acad. Sci. U.S.A.97, 28 ~2000!; P. W. Anderson, cond-mat/0007185~unpublished!; cond-mat/0007287~un-
published!#.
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I. INTRODUCTION

The single-particle excitations in ordinary Fermi liquid
e.g., electron liquid of metals and their energy scales, de
the major part of their low-temperature properties. Hig
temperature superconductors~HTS! are characterized by
number of striking features. Among them are extremely h
transition temperaturesTc and the linear dependence of th
resistivity on temperature atT.Tc . The former behavior has
been related to the existence of the only one relevant en
scale, that is, the temperatureT, which leads to a centra
conclusion of the marginal Fermi liquid~MFL! that the one-
particle self-energy depends only on temperature and
quency, and not on momentum.3 Such a behavior demon
strates that contributions from phonons excitatio
collective states, or impurities to the self-energy are iness
tial. All this permits to introduce the notion of a ‘‘quantum
protectorate,’’ as a state of a system with such strong co
lations that these conventional effects are inessential.1,2 On
the other hand, recent discovery of a new energy scale
quasiparticle dispersion in superconducting and nor
states of Bi2Sr2CaCu2O81d ~Refs. 4 and 5! can bring new
insight to the physics of HTS, imposing serious constrai
upon possible theories of HTS. The newly discovered ad
tional energy scale manifests itself as a break in the qu
particle dispersion near 50–70 meV, which results in a dr
tic change of the quasiparticle velocity.4–6 Such a behavior is
qualitatively different from what one could expect in a no
mal Fermi liquid. Moreover, this behavior can hardly be u
derstood in the frames of either the MFL theory or the qu
tum protectorate since there are no additional energy sc
in these theories.2,3 One could suggest that this observ
strong self-energy effect, leading to the new energy scale
0163-1829/2001/63~22!/224507~6!/$20.00 63 2245
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due to the electron coupling with collective excitations. B
in that case one has to give up the quantum protectorate i
which would contradict observations.1,2

The aim of our paper is to show that without giving up t
quantum protectorate idea the energy scale for quasipar
dispersion can be naturally explained within the model
correlated electron liquid with the fermion condensate~FC!.
In Sec. II, we review the general features of Fermi syste
with the FC, showing that an electron liquid of low densi
inevitably undergoes the fermion-condensation quant
phase transition~FCQPT!. In Sec. III we consider the super
conducting state, which takes place in the presence of the
and describe the quasiparticle dispersion and lineshape
nally, in Sec. IV, we summarize our main results.

II. THE GENERAL FEATURES OF ELECTRON
LIQUID WITH FC

To describe a correlated electron liquid a conventio
way can be used, assuming that the correlated regime is
nected to the noninteracting Fermi gas by adiabatic cont
ity in the same way as in the framework of the Landau n
mal Fermi-liquid theory.7 But a question exists whether th
is possible at all. Most likely, the answer is negative. The
fore, we direct our attention to a model, in the frame
which a strongly correlated electron liquid is separated fr
conventional Fermi liquid by a phase transition related to
onset of FC.8,9

Let us start by considering the key points of the F
theory. FC is a new solution of the Fermi liquid theo
equations7 for the quasiparticle distribution functionn(p,T)

d~F2mN!

dn~p,T!
5«~p,T!2m~T!2T ln

12n~p,T!

n~p,T!
50, ~1!
©2001 The American Physical Society07-1
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which depends on the momentump and temperatureT. Here
F is the free energy andm is the chemical potential, while

«~p,T!5
dE@n~p!#

dn~p,T!
~2!

is the quasiparticle energy. This energy is a functional
n(p,T) just like the total energyE@n(p)# and the other ther-
modynamic functions. Equation~1! is usually presented a
the Fermi-Dirac distribution,

n~p,T!5H 11expF«~p,T!2m

T G J 21

. ~3!

At T→0 one gets from Eqs.~1! and~3! the standard solution
nF(p,T→0)→u(pF2p), with «(p.pF)2m5pF(p
2pF)/ML* , wherepF is the Fermi momentum andML* is the
Landau effective mass,7

1

ML*
5

1

p

d«~p,T50!

dp U
p5pF

. ~4!

It is implied thatML* is positive and finite at the Fermi mo
mentumpF . As a result, theT-dependent corrections toML* ,
to the quasiparticle energy«(p), and other quantities star
with T2 terms. But this solution is not the only one possib
There exist ‘‘anomalous’’ solutions of Eq.~1! associated
with the so-called fermion condensation.8,10 Being continu-
ous and satisfying the inequality 0,n(p),1 within some
region in p, such solutionsn(p) admit a finite limit for the
logarithm in Eq.~1! at T→0 yielding

«~p!5
dE@n~p!#

dn~p!
5m, pi<p<pf . ~5!

At T50, Eq. ~5! determines the FCQPT, possessing so
tions at somer s5r FC as soon as the effective interelectro
interaction becomes sufficiently strong.11 In a simple elec-
tron liquid, the effective interelectron interaction is propo
tional to the dimensionless average interparticle distancr s
;r 0 /aB , with r 0;1/pF being the average distance andaB
being the Bohr radius. Equation~5! leads to the minimal
value ofE as a functional ofn(p) when in the system unde
consideration, a strong rearrangement of the single-par
spectra can take place. We see from Eq.~5! that the occupa-
tion numbersn(p) become variational parameters: the so
tion n(p) occurs if the energyE can be lowered by alteratio
of the occupation numbers. Thus, within the regionpi,p
,pf , the solutionn(p)5nF(p)1dn(p) deviates from the
Fermi step functionnF(p) in such a way that the energ
«(p) stays constant, while outside this regionn(p) coincides
with nF(p). It is pertinent to note that the above gene
consideration was verified by inspecting simple models.
the result, it was shown that the onset of the FC does lea
lowering the free energy.10,12 It follows from the above con-
sideration that the superconductivity order parameterk(p)
5An(p)@12n(p)# has a nonzero value over the region o
cupied by FC. The superconducting gapD(p) being linear in
the coupling constant of the particle-particle interactionVpp
22450
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gives rise to the high value ofTc because one has 2Tc.D
within the standard Bardeen-Cooper-Schrieffer~BCS!
theory.12 While in the presence of the superconducting g
DÞ0, as it is shown in Sec. III, the quasiparticle effecti
mass becomes finite. In consequence of these features
density of states at the Fermi level becomes finite and
involved quasiparticles are not localized. On the other ha
even atT50, D can vanish, providedVpp is repulsive or
absent. Then, as it is seen from Eq.~5!, the Landau quasi-
particle system becomes separated into two subsystems
first contains the Landau quasiparticles, while the seco
related to FC, is localized at the Fermi surface and formed
dispersionless quasiparticles. As a result, the standard K
Sham scheme for the single-particle equations is no lon
valid beyond the point of the FC phase transition.13 Such a
behavior of systems with FC is clearly different from wh
one expects from the well-known local-density calculatio
Therefore these calculations are hardly applicable to desc
systems with FC. It is also seen from Eq.~5! that a system
with FC has a well-defined Fermi surface.

Let us assume that FC has just taken place, that ispi
→pf→pF and the deviationdn(p) is small. Expanding
functionalE@n(p)# in Taylor’s series with respect todn(p)
and retaining the leading terms, one obtains from Eq.~5!,

m5«~p!5«0~p!1E FL~p,p1!dn~p1!
dp1

~2p!2
,

pi<p<pf , ~6!

whereFL(p,p1)5d2E/dn(p)dn(p1) is the Landau interac-
tion. Both the Landau interaction and the single-particle
ergy «0(p) are calculated atn(p)5nF(p). It is seen from
Eq. ~6! that the FC quasiparticles form a collective sta
since their energies are defined by the macroscopical num
of quasiparticles within the regionpi2pf , and vice versa.
The shape of the spectra is not effected by the Landau in
action, which, generally speaking, depends on the syste
properties including the collective states, impurities, etc. T
only thing defined by the interaction is the width of the r
gion pi2pf , provided the interaction is sufficiently strong t
produce the FC phase transition at all. Thus, we can c
clude that the spectra related to FC are of universal fo
being dependent, as we will see below, mainly on tempe
ture T, if T.Tc , or on the superconducting gap atT,Tc .

According to Eq.~1!, the single-particle excitations within
the intervalpi2pf have atTc<T!Tf the shape«(p,T) lin-
ear in T,12,14 which can be simplified at the Fermi level,

«~p,T!2m~T!5T ln
12n~p!

n~p!
.T

122n~p!

n~p!
U

p.pF

. ~7!

Tf is the temperature above which FC effects beco
insignificant,12

Tf

«F
;

pf
22pi

2

2M«F
;

VFC

VF
. ~8!
7-2
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HereVFC is the FC volume,«F is the Fermi energy, andVF
is the volume of the Fermi sphere. We note that atTc<T
!Tf the occupation numbersn(p) are approximately inde
pendent ofT, being given by Eq.~5!. One can imagine that a
these temperatures, the dispersionless plateau«(p)5m given
by Eq.~5! is slightly turned counter clockwise aboutm. As a
result, the plateau is just a little tilted and rounded off at
end points. According to Eq.~7! the effective massMFC*
related to FC is given by

pF

MFC*
.

4T

pf2pi
. ~9!

To obtain Eq. ~9! an approximation for the derivativ
dn(p)/dp.21/(pf2pi) was used. Having in mind thatpf
2pi!pF , and using Eqs.~8! and~9! the following estimates
for the effective massMFC* are obtained,

MFC*

M0
;

N~0!

N0~0!
;

Tf

T
. ~10!

Equations~9! and ~10! show the temperature dependence
MFC* . In Eq. ~10! M0 denotes the bare electron mass,N0(0)
is the density of states of noninteracting electron gas,
N(0) is the density of states at the Fermi level. Multiplyin
both sides of Eq.~9! by pf –pi we obtain the energy scaleE0
separating the slow-dispersing low-energy part, related to
effective massMFC* , from the faster-dispersing, relativel
high-energy part, defined by the effective massML* ,15

E0.4T. ~11!

It is seen from Eq.~11! that the scaleE0 does not depend on
the condensate volume. The single-particle excitations
defined according to Eqs.~7! and~9! by the temperature an
by n(p) given by Eq.~5!. Thus, we are led to the conclusio
that the one-electron spectrum is negligibly disturbed
thermal excitations, impurities, etc, so that one observes
features of the quantum protectorate.

It is seen from Eq.~5! that at the point of the FC phas
transitionpf→pi→pF , MFC* and the density of states, as
follows from Eqs. ~5! and ~10!, tend to infinity. One can
conclude that atT50 the beginning of the FC phase trans
tion is connected to the absolute growth ofML* . It is essen-
tial to have in mind, that the onset of the charge-dens
wave instability in a many-electron system, such as an e
tron liquid, which takes place as soon as the effective in
electron constant reaches its critical valuer s5r cdw ,16 is pre-
ceded by the unlimited growth of the effective mas
Therefore, the FC takes place before the onset of the cha
density wave. Hence, atT50, when r s reaches its critical
value r FC,r cdw , the FCQPT inevitably takes place. Thu
the formation of the FC can be thought as a general prop
of an electron liquid of low density, rather then an unco
mon and anomalous solution of Eq.~1!.11 Beyond the phase
transition into the FC the condensate volume is proportio
to (r s2r FC) as well asTf /«F;(r s2r FC) at least when (r s
2r FC)/r FC!1. Note, that such a behavior is in accordan
with the general properties of second-order phase transiti
22450
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Therefore, we can accept a model relating systems with
to HTS compounds, assuming that the effective coupl
constantr s increases with decreasing doping, exceeding
critical value r FC at the levels corresponding to optim
doped samples. We remark, that this critical valuer FC cor-
responds to ther s values of slightly overdoped samples.11 On
the other hand, there exist charge-density waves or str
fluctuations of charge ordering in underdoped HTS.17 As the
result, our quite natural model suggests that both quanti
Tf and condensate volumeVFC , increase with decrease o
doping. Thus, these values are higher in underdoped sam
as compared to overdoped ones providedr s meets the above
mentioned conditions. According to experimental facts
large density of states at the Fermi level reaches its m
mum in the vicinity of the Hove singularities, that is, aroun
the point (p,0) of the Brillouin zone, orM̄ , in HTS com-
pounds. The density of states reaches its minimum valu
the intersection of the so-called nodal direction of the B
louin zone with the Fermi surface~see, e.g., Ref. 18!. The FC
sets in around the van Hove singularities14 causing, accord-
ing to Eqs.~9! and ~10!, large density of states and a larg
value of the difference (pf2pi) at the pointM̄ . Then, the
volumeVFC and difference (pf2pi) starts to depend on th
point of the Fermi surface, say, on the anglef along the
Fermi surface, which we count from the pointM̄ to the point
at which the density of states reaches its minimum val
Nonetheless, as it is seen from Eq.~11!, E0 remains constan
being independent of the angle. This differs essentially fr
the case for the effective massMFC* that can strongly depend
upon the angle via the difference@pf(f)2pi(f)# as is seen
from Eq.~9!. It is pertinent to note that outside the FC regio
the single-particle spectrum is negligibly affected by t
temperature, being defined byML* @see Eq.~4!#, however
calculated atp<pi instead of atp5pF . Thus, we come to
the conclusion that a system with FC is characterized by
effective masses:MFC* , which is related to the single-particl
spectrum at lower energy scale andML* describing the spec
trum at higher energy scale. These two effective mas
manifest themselves as a break in the quasiparticle dis
sion, which can be approximated by two straight lines int
secting at the energyE0. This break takes place at temper
tures Tc<T!Tf in accordance with the experiment
findings,4 and as we will see, atT<Tc corresponding to the
experimental facts,4,5 when the superconducting state
based on the FC state. As to the quasiparticle formalism,
applicable to this problem since the widthg of single-
particle excitations is not large compared to their energy
ing proportionalg;T at T.Tc .12 The line shape can be
approximated by a simple Lorentzian,15 being in accordance
with experimental data obtained from scans at a cons
binding energy.6 Then, FC serves as a stimulating source
new phase transitions that lift the degeneration of the sp
trum. For example, FC can generate the spin-density wav
antiferromagnetic phase transition, thus leading to a wh
variety of the system’s properties. Then, the onset of
charge-density wave is preceded by the FCQPT and bot
these phases can coexist at the sufficiently low density w
r s>r cdw . The simple consideration presented above
7-3
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plains the extremely large variety of HTS properties. W
have seen above that the superconductivity is strongly a
by the FC, because both of the phases are characterize
the same order parameter. As a result, the superconduct
removing the spectrum degeneration, ‘‘wins the comp
tion’’ with the other phase transitions up to the critical tem
peratureTc . We turn now to a consideration of quasipartic
dispersions atT<Tc .

III. QUASIPARTICLE DISPERSIONS AT TÏTc

Let us discuss the origin of two effective massesML* and
MFC* in the superconducting state resulting in nontrivial qu
siparticle dispersion and in alteration of the quasiparticle
locity. As we will see, our results are in a reasonably go
agreement with experimental data.4–6 To simplify the discus-
sion let us putT50. The ground-state energyEgs of a sys-
tem in the superconducting state is given by the BCS the
formula

Egs@k~p!#5E@n~p!#1Esc@k~p!#, ~12!

where the occupation numbersn(p) are connected to the
order parameter,

n~p!5v2~p!, k~p!5v~p!A@12v2~p!#. ~13!

The second termEsc@kp# on the right-hand side of Eq.~12!
is defined by the superconducting contribution, which in
simplest case of the weak coupling regime is of the form

Esc@kp#5E Vpp~p1 ,p2!k~p1!k* ~p2!
dp1dp2

~2p!4
. ~14!

Consider a two-dimensional electron liquid on a simp
square lattice that is in the superconducting state w
d-wave symmetry of the order parameterk(p). In such a
case, the long-range component in momentum space
particle-particle interactionVpp is repulsive, and the short
range component is relatively dominant and attractive
small momenta.19 Then the short-range component can
taken, as a first approximation, to beVpp(q).2V2d(q).
The FC arises near the Van Hove singularities, causing,
follows from Eq. ~10!, large density of states at thes
points.14 Hence, the different regions with the maximal val
D1 of the gapD and the maximal density states overl
slightly.10,19,20Varying Egs given by Eq.~12! with respect to
k(p) one finds,

«~p!2m5D~p!
122v2~p!

2k~p!
. ~15!

Here«(p) is defined by Eq.~2! and

D~p!52E Vpp~p,p1!An~p1!@12n~p1!#
dp1

4p2
. ~16!

A few remarks are in order at this point. IfV2→0, then
D(p)→0 and Eq.~15! reduces to the equation

«~p!2m50 if 0,n~p!,1, k~p!Þ0 ~17!
22450
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presenting FC solutions defined by Eq.~5!.12,13 Thus, we
come to the conclusion that the functionk(p) is defined by
Eq. ~5!. While corrections to this function due to the pairin
interaction, being small, are of the order ofVpp /FL , because
interactionVpp is obviously weak as compared to the Land
interactionFL . We note again a remarkable peculiarity
the FC phase transition atT50: this transition is related to
spontaneous breaking of gauge symmetry when the su
conductivity order parameterk(p) has a nonzero value ove
the region occupied by the fermion condensate, whileD(p)
vanishes providedVpp50.12,13 We can conclude that the
transition temperature of the FC phase transition is zero
cause it is proportional to the gap, as it must be in the st
dard theory of superconductivity. Therefore, the FC ph
transition is a quantum phase transition, while at tempe
turesT!Tf , the properties of the considered many-electr
system, such as its single-particle spectra, occupation n
bers, etc., are strongly influenced by the ‘‘shadow’’
FCQPT as it is seen from Eqs.~9!–~11!.

If Vpp is nonzero but small as compared toFL and attrac-
tive, the gapD is given by Eq.~16!, with n(p) and k(p)
beingdeterminedby Eq.~5!. Therefore, as it is seen from Eq
~16!, the gap is linear in the coupling constant of the
particle-particle interactionV2, which leads to high values o
both D1 andTc .8 Taking into account thed-function shape
of the attractive component ofVpp , we have from Eq.~16!
simple estimations for the maximum value of the gap: 2D1
.V2. Since the order parameterk(p) is defined by Eq.~5!,
that is, determined by the interactionFL , the shape of the
gap including the location of its nodes is robust being res
tant to scattering upon impurities. We can again conclu
that such features resemble a quantum protectorate. Ge
ally speaking, the state of the quantum protectorate is p
served by the FCQPT. As soon as the coupling constanV2
becomes finite~although remains small!, the plateau«(p)
2m50 is slightly tilted and rounded off at the end point
that is, the effective massMFL* becomes finite. To calculate
MFL* , we differentiate the both parts of Eq.~15! with respect
to the momentump and obtain the following relations:

pF

MFL*
.

D1

4k~p!

1

pf2pi
.

2D1

pf2pi
U

p.pF

. ~18!

Deriving Eq.~18! we took into account that the gap achiev
its maximum valueD1 at the Fermi level andk(p.pF)
.1/2. We use the above approximation for the derivat
dn/dp and Eq.~13! to calculate the derivatived(v2)/dp,

d@v2~p!#

dp
.2

1

~pf2pi !
. ~19!

Now, one can conclude directly from Eq.~18! that the fol-
lowing relation is valid15

E0.
~pf2pi !pF

MFC*
.2D1 . ~20!

It is seen from Eq.~19! that again, this time atT50, the
quasiparticle dispersion can be presented by two stra
7-4
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lines characterized by two effective massesMFC* and ML* ,
respectively, and intersecting near the binding energyE0

.2D1. Evaluations of the effective massMFL* at T→Tc are
straightforward and similar to those presented above. I
important that at finite temperatures we have to replace
~13! by another equation of the BCS theory, namely, by

v2~p!5
n~p!2 f ~p!

122 f ~p!
, ~21!

where

f ~p!5
1

11exp@E~p!/T#
, E~p!5A~«~p!2m!21D2~p!.

~22!

After performing some straightforward algebraic transform
tions and taking into account that the functionf (p) reaches
its maximum at the Fermi level, whileE(p)!T, we obtain
instead of Eq.~19! the following equations:

d@v2~p!#

dp
.2

1

~pf2pi !@122 f ~p!#

.2
2T

E~p!~pf2pi !
U

T→Tc

. ~23!

Deriving Eq. ~23! we use the former approximation fo
dn/dp and have in mind that atT!Tf the occupation num-
bers are temperature independent and defined by Eq.~5!.
Differentiating Eq.~15! with respect to the momentump and
taking into account Eq.~23!, we estimate the effective mas
as

MFL* .
pF~pf2pi !

4T
. ~24!

As the result, we obtain from Eq.~24! an estimation for the
energy scale,

E0.
~pf2pi !pF

MFC*
.4T. ~25!

Comparing Eq.~20! with Eq. ~25! and bearing in mind tha
2Tc.D1 we conclude that both the effective massMFC* and
the energy scaleE0 are approximately temperature indepe
dent atT<Tc , while Eqs.~24! and ~25! match Eqs.~9! and
~11! at T5Tc as one should expect.

The break separating the faster-dispersing high-ene
part, related to massML* , from the slower-dispersing low
energy part defined byMFC* , is likely to be more pronounced
in underdoped samples. It is at least because of the rise o
condensate volumeVFC , leading to the growth ofMFC* as it
follows from Eqs.~9! and ~18!. We recall that according to
our model the condensate volumeVFC is growing with un-
derdoping. It follows from Eqs.~9! and ~18!, that as one
moves along the Fermi surface from the nodal direction
wards the pointM̄ , that is, from the minimal value o
VFC(f);@pf

2(f)2pi
2(f)# towards the maximal one, th

ratio MFC* /ML* grows in magnitude, transforming the dispe
22450
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sion kink into a distinct break at the pointM̄ , or at the gap
maximumD1 point. Thus, as it follows from Eqs.~11! and
~20! at T!Tf there exists a new energy scale defined byE0,
with E0.2D1 at T<Tc andE0.4T at Tc<T. These results
are in good agreement with the experimental facts, wh
show that atT<Tc as one moves towardsM̄ the dispersion
kink grows into the break, separating the faster-dispers
high-energy part of the single-particle spectrum from t
slower-dispersing low-energy part with a break in the slo
near 50 meV,4 or near 70 meV.5 This effect is enhanced in
underdoped samples and appears to persist atTc<T.4

Let us briefly discuss the lineshape of a quasiparticle p
obtained from scans at a constant binding energyv,6 and at
a constant momentumq, see e.g., Ref. 18. We recall that th
line shapeL of a quasiparticle peak can be presented a
function of two variables,L(q,v). Then, the scans at con
stant binding energy are given by the functionL(q,v5v0),
wherev0 is the binding energy of the quasiparticle. Accor
ingly, L(q5q0 ,v) presents the line shape obtained fro
scans at the fixed momentumq0 corresponding to the quas
particle momentum. In order to consider the widthg of a
quasiparticle peak, the special form of the quasiparticle d
persion characterized by the two effective masses shoul
taken into consideration. On the other hand, scans at
constant energy reveal well-defined single-particle exc
tions with the widthg;T at the Fermi level even at the poin
M̄ .6 Consideringg related to the lineshapeL(q,v5v0),
providedv0<E0, we can take into account only quasipar
cles with the effective massMFC* , which can be large bu
finite. We can do it because only quasiparticles with the
ergies less thenE0 contribute to the width of a quasiparticl
with the energyv0. Such a picture resembles the norm
Fermi liquid presented by quasiparticles with the effect
massMFC* . The only difference is that now the effectiv
mass, as it follows from Eq.~9!, depends on the temperatur
As the result, we are dealing with well-defined excitations
the widthg;T,12

g;
~MFC* !3T2

e2
;

~MFC* !3T2

~MFC* !2
;T

Tf

«F
. ~26!

Heree is the dielectric constant, which is proportional to th
effective massMFC* , the latter being inversely proportiona
to T, see Eq.~9!. This result is in good agreement with th
experimental findings cited above.6 Dealing with scans at
constantq, which correspond to the lineshape functionL(q
5q0 ,v), we have to consider the contribution coming fro
quasiparticles with the massML* as well, because now ther
are no limits on the energy of quasiparticles contributing
the widthg. In view of the fact that the contribution of thes
excitations is enhanced by the presence of FC, and that t
excitations start to contribute to the line shape at energ
v>E0, one can conclude that the peak inevitably has
broadening that can hardly be interpreted as standard w
obtained from scans at a constant binding energy. On
other hand, one may follow the procedure suggested in R
5, using the Kramers-Kro¨nig transformation to construct th
imaginary part of the self-energy starting with the real on
7-5
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As a result, the line shapeL(q5q0 ,v) of the quasiparticle
peak as a function of the binding energyv possesses a com
plex peak-dip-hump structure5 directly defined by the exis-
tence of the two effective masses,MFC* andML* .15

IV. CONCLUDING REMARKS

We have discussed the model of a strongly correla
electron liquid based on the FCQPT and applied it to hig
temperature superconductors. The FCQPT plays the role
boundary separating the region of a strongly interacting n
mal electron liquid from the region of a strongly correlat
electron liquid. It is important to have in mind that the ons
of the charge-density wave instability in a many-electr
system, which takes place as soon as the effective intere
tron constant reaches its critical valuer s5r cdw , is preceded
by the FCQPT. Hence atT50, whenr s reaches its critical
value r FC,r cdw , the FCQPT inevitably takes place. Thu
the FC can be thought of as a general property of an elec
liquid of the low density rather then a unique phenomen
We have shown that the quasiparticle dispersion in syst
with FC can be represented by two straight lines charac
ized by the respective effective massesMFC* andML* . At T
,Tc , these lines intersect near the pointE0;2D1, while
aboveTc , we haveE0;4T. It is argued that this strong
H
k

r

22450
d
-
a
-

c-

n
.
s

r-

change of the quasiparticle dispersion atE0 can be enhanced
in underdoped samples because of strengthening the FC
fluence. The single-particle excitations and their widthg are
also studied. Well-defined excitations withg;T exist at the
Fermi level even in the normal state. This result is in li
with the experimental findings determined from the scans
constant binding energiesv. We have discussed also the lin
shape obtained from scans at a constant momentumq. In this
case, the special form of the quasiparticle dispersion sho
be taken into consideration. As the result, the lineshape
the quasiparticle peak as a function of the binding energv
possesses a complex peak-dip-hump structure directly
fined by the existence of the two effective massesMFC* and
ML* . We have also presented arguments, that fermion
tems with FC have features of the quantum protectorate,
ing separated from the normal Fermi liquid by the FC qua
tum phase transition.
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