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Strongly reduced gap in the zigzag spin chain with a ferromagnetic interchain coupling
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We study a spir(4/2) Heisenberg zigzag-spin-chain model near decoupled two chains. Taking into account
a symmetry breaking perturbation, we discuss the existence of an energy gap in the ferromagnetic interchain
coupling as well as the antiferromagnetic one. In the ferromagnetic model, a marginally relevant fixed line
reduces the gap strongly, so that the correlation length becomes an astronomical length scale even in order one
coupling. This result agrees with density-matrix renormalization group results.
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[. INTRODUCTION gap is finite but very tiny in an extended region of the cou-
pling constant space. We can understand the unstable RG
It is interesting to study the effects of a frustration in aflow and numerical analysis consistently. The energy gap is
guantum system. The zigzag spin chain is one of the simple$¢vo small to observe in any numerical method.
guantum-spin models with a frustration. An experiment on A stable large-scale reduction is an important and difficult
the compound SrCufreports a remarkable suppression of fundamental problem in theoretical physics. In particle phys-
the three-dimensional ordering temperature due to a stronigs, any unified theory has this kind of hierarchy problem.
quantum fluctuation enhanced by the frustrafidiere we  Generally speaking, a unified theory has only one large en-
study the effect of frustration in the zigzag chain with theergy scale, and also should explain the generation of a small
following Hamiltonian energy scale to describe the low-energy physics. These two
requirements make unified theories quite unnatural, since we
need a fine tuning of the coupling constants for large-scale
H:Z [J2(S-S41+Ti- Tir ) + 31§ (Ti+ Tin )] reduction. We believe that nature does not choose special
(1) value of the coupling constants. From the view point of hi-
erarchy problem in the theoretical physics, this zigzag-chain
The operatorss; and T; are s=1/2 spins. Here we treat an model can be an interesting example in statistical physics.
interchain couplingl; as a perturbation to the two decoupled We conclude that the very tiny gap is always obtained in an
antiferromagnetic J,>0) spin chains. extended region of the ferromagnetic interchain coupling un-
It is well known that the zigzag-chain model with antifer- like the antiferromagnetic coupling.
romagnetic regionJ;>0 has a dimer phase and gapless This paper is organized as follows. In Sec. Il we construct
phas€ The region of the dimer pha%e(0<J;<J. an effective-field theory for the zigzag chain and calculate
~4.15],) contains a Majumdar Ghosh poii4=2J, where  the beta functions. In Sec. lll, we study the RG flow and
the dimerized ground state is obtained exattlphe point discuss an energy gap reduced strongly in the ferromagnetic
J,=0 is a critical point of the two decoupled antiferromag- interchain coupling region. In Sec. IV, we calculate the en-
netic chains. There is another critical paigt= —4J,, where  ergy spectrum to describe the results of numerical calcula-
the level crossing between singlet and fully polarized ferrotion. In Sec. V, we show our numerical analysis.
magnetic ground states occurs. There is an exact sotuifon
a fully polarized ferromagnetic ground state Jp<—4J,, N Il. EEEECTIVE FIELD THEORY
and for a doubly degenerated ground state at the critical
point J;=—4J,. A numerical analysis in a regiod,> The unperturbed theory is two decoupled Heisenberg an-
—4J, indicates a complicated size dependence of thdiferromagnetic chains whose effective theory is two decou-
ground-state enerdy’ pled SU(2) (WZW) models'® We introduce two free
It has been long believed that this model is gagté$sr  bosonse,(z,2) = ¢.(2) + ¢a(2) (a=1,2) with
a small ferromagnetic regiody <0. In several papers, how-
ever, one-loop renormalization grodRG) shows an insta- 1 _ o
bility of the critical pointJ;=0 both in ferromagneticJ; Sﬁzf dz(d@19@1+ dd@,). (2
<0) and antiferromagnetic]{>0) region due to a Lorentz
symmetry breaking perturbatidfi!! This fact is puzzling ngh two point functions (@.(2)ep(0))=— 8ap Iz
because the expected energy gap produced by the unsta —— — .
flow has never been observed in the ferromagnetic regioZ‘Pa(Z)‘Pb(.O»:. B 53.” Inz, for two WZW models. The spin
either numerically or experimentally. If it were gapless, therePPErator is written in terms of two bosons
should be a new stable critical point missed in the one-loop
approximation. In this paper, we clarify a natural mechanism _ T i
to solve this problem. We conclude that the actual energy 2m§=dit It (~DIM

t
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; tor coupling constank 4 is roughly estimated as the order 1/10
(921 92)5 |, (4 in numerical analysis for single linear chafNote that the

the perturbations%(z,?) and ¢4(z,5 include operators

where M is a nonuniversal real constant. Here, the(3U with the conformal dimensiongg%) and G,%)' which break

currents and primaries are written in two bosons and Klein . . .
FaCtorS P the Lorentz and the parity symmet$/}! The original spin

model has S(2) symmetry, translational symmetry and a
permutation with a translation of the one chain

27T =3+ 0+ (—1)M tr

+5) — iIV2@a(2) z :i_
Ja (2)= 1701770 €927, J3(2) \/5‘99”6(2)' 5 S—Ti.1, Ti—S, (9)

which forbids interactions with dimensioa< 2. If this sym-
—j _ metry is broken, the symmetry breaking can be measured by

33 (2)= 10y mae 2@, Ji(z)= E%a(z)y the following order parameter
tor tor
a1 = a1 Mar EXHi(@at @a)/V2], S (Ti=Tip)~tr (91+9D? r (92+9£)7}- (10)
_ ) _ This order parameter also changes sign under a translation of
Jar | = a1 Ma, &XHi(¢a— @a)/ V2], one spinT;—T;;. The operator product expansion
a1~ 77a¢;aT qu_i(‘Pa_;a)/\/E]y — Ciik
$i(2.2)$(00~ 2 ¢¢k<o,0>,

Qa1 = 77a¢;a1 exd — i(@a"'ga)/\/z]-

with a=1,2. The Klein factors obey anticommutation rela-

tion { 7.4, Mop} =20an04p, 10 satisfy the following correct dy 1

operator product expansion for the @Jsymmetry —I a9 "2 E Cijk\iNj,
i

gives one-loop renormalization-group beta function

— /2 — which has the following practical form
I5(2)Goap(W W)~ —= - ('0*Ga) s W, W),

d\

5.2 |57 =M Asha— A,

TiDGoap(WW) = = == (g7 (W), (O

2

The interaction operators lW:)‘ng N3yt )\5,

d?z O
| —= b(2.7) d\ 1 3
Sint J o 2 Nidi(2.2), (7) D3t Aok,

can be represented in terms of two SU(2) currents and pri-

mary fields of the WZW model dhy 3 1
| W:)\l)\g‘l‘ E)\l)\4_ E)\2)\4,
$1(2,2)=31(2) - 31(2) +32(2) - Io(2),
- L L ds 1
$2(2,2)=11(2)-3p(2) + 35(2) - 31(2), ar T2 D
. o Note that the beta functions have a symmetp/— —\3,
$3(2,2) =tr[g4i(d—3)g5], Na— — A4, Which corresponds to a translation on one chain

T,—T;, in the original spin model.

$a(2.2) =1 Qi (9= O)r G, I1l. RENORMALIZATION-GROUP FLOW

= _ - T The critical pointJ;=0 divides ferromagnetic and anti-
$5(2,2)=91(2) J2(2) +41(2) - J(2), ® ferromagnetic dimer phases. Both regions have energy gap.
where \,=J;/m, \3=—-J;M?m, N,=J;M?/(27), N5 The renormalization flow diverges eventually along a stable
=J,/(27) and\, is a certain negative constant. The initial direction \1,M2,M3,04)=(0,1,1A/2,0) for the ferromag-
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0.8 ——————rr tion of the running coupling constants from the line ky
o7} DMRG data + =N+ 6N3, Ays=— AN+ S\, The linearized beta functions are
10 exp[ -3.66 (J1/J2)28] ——
o6} d
qO.S I |a(5)\1—5)\2)~0,
<S04l d
03 Ia(57\1+ 5)\2)~2)\(5)\3+5)\4),
02}F (14)
o1} d
I a(ﬁ)\g"’ 5)\4)"" _)\(5)\1_ 6)\2),
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FIG. 1. The energy gap vs the antiferromagnetic interchain la(é)\s_ O\4)~0.

couplingJ;>0 is depicted. The solid line is drawn by the scaling . . . . .
formulaA ~ exp(—clJy| "2 for smallJ; in the infinite order phase 1 h€ eigenvalues of the scaling matrix all vanish on that line.

transition, using Eq(12) with é&~1/A. The gapA calculated by the ~ This marginal property of the fixed line yields a remarkable

DMRG is obtained from Ref. 8. phenomenon. The linearized flow near the fixed line can be
integrated as follows

netic couplingJ;<0, and along another stable direction

(A1, N\2,h3,00)=(0,1—1/y2,0) for the antiferromagnetic SN (1) = dNa(h)~A,

couplingJ;>0. The current-current coupling, grows with

positive value both in ferromagnetic and antiferromagnetic

region. In the effective-field theory, the ferromagnetic model

does not differ from the antiferromagnetic model trans-

formed byT;—T,. 4, which changes the sign af; andA,.

This fact suggests that both ferromagnetic and antiferromag- Shg(1) = on4(1)~D, (19

netic models have the same dimerization pattern. The corgjhereA B. C. andD are integration constants determined

lation length¢ behaves as by initial coupling constants that are nonuniversal. If the ini-
~ tial coupling constants lie near this fixed ling;+ C is nega-
g~aexpc|dq| (12 tive, A-C~—2J);/m, B+D=-J;M%7—\, and B-D
- =J;M?/(27)—\. We can study the nature of the RG flow
with v=2/3 for J;~0 and the lattice spacirgy This resultis  numerically together with an analytic argument based on the
obtained in another RG method for the RG equatidim the  hehavior of the fixed line. Although the line is unstable ex-
antiferromagnetic region, this scaling formula of the correla-cept the cas&=B=0, there is an extended region where the
tion length holds for relatively large value in<QJ;<J, running couplingss\ (1) + 8\ ,(1) and Sh (1) + Sh4(1) flow
~4.15),, even though the formula is obtained merely bytoward 0. In this case other couplings are renormalized loga-
one-loop approximation. We demonstrate it by numerical rerithmically, and the running coupling constants spend a long
sults from density-matrix renormalization-group calculationtime (long length scalenear the fixed ling13).
(DMRG) [Ref. 8] in Fig. 1. The gap-scaling formula can fit | the ferromagnetic region with smdll,|, we haveA
the numerical result quite well. This agreement even in rela=<g. B>0, C<0, A\>0. In this casephs(l)+ Shy(l) does
tively strong coupling region is not so surprising. There arenot flow toward 0, and then the flow is free from the fixed
many systems with Kosterlitz Thouless-type phase transitionjne as well as in the antiferromagnetic region. In this region,
where the gap-scaling formula calculated in the weakyye consider the gap-scaling formula2) holds and the gap
coupling region holds even in the strong-coupling region. Injs still small enough. Atl;~ —0.1],, however, the constant
the ferromagnetic region, however, this scaling formula doeg, changes sign and the running coupling constants start to
not hold for|J;|~J,. The energy gap in this region cannot flow toward 0. The correlation length grows again by the
be found in any numerical analysis. There should be someffect of the fixed line(13). The correlation length can be
special reason. _ _ estimated approximately from the length schlehere the
We clarify in the following why the gap-scaling formula rynning coupling constan;(1) diverges. The numerical so-
in ferromagnetic region differs from the antiferromagnetic|ytion of the RG equation shows a dependence of the corre-
region. The beta functions far;,A;,\3,A4 have simulta-  |ation length on the nonuniversal constant Typically, the
neous zero on a line minimal correlation length in the ferromagne;i?% region be-
L _ comes an astronomical length scale more thatvel®r J,
M=h2=0, Ag+As=0. (13 ~—0.2J, and M=1. The interaction between two chains
This line behaves like a fixed line for a four-dimensional may change the nonuniversal quantities and M?. How-
coupling constant spacé{, ... ,\4), since\s does not en- ever, the qualitative nature of the flow is unchanged for
ter their beta functions. Near this line, we define the deviaM?<2 andJ;<0. If M?>2.5, the gap may be observed by

Sh1(1)+ S\ y(1)~C+2)B nl
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o , 2 01(2) + ¢5(2)
. RG equations’ data —— ] 51(2) +i fz(Z): \[a’ﬁ ex;{ —j RO s

For negative J1: 4711 1011 28 . \/E
For positive J1:  25.7-8.0 [J1] 2/3.

; 2 - 01(2) — ¢2(2)
PN o |
o200} £3(2)+i1é4(2) 37 exr{ i % (16)
2-400 . Here 5. are written in a bilinear ofy,, such that the total

current for the S@B) generator becomed;+J,=(i/2)&

X & whereé=(£1,¢,,&3). Then the fields£ and &, corre-
spond to a triplet and singlet excitation, respectively. In this
mapping, the chiral perturbation operator has a free-field rep-
resentation

-600 F

-800 b

04 03 02 01 0 01 02 03 04 1
Ji _
bs(2)=— 5991092+ M11 71, M2, 721

FIG. 2. The logarithm of gap 1A vs smallJ; estimated by the
scale where the solution of the RG equation has the singularity. The X cog \/5{901(2) —¢.(2)}]
fitting line is obtained by fitting formula = a exp(—c/|J,/%®) with
data close to zero. Gaps obtained from RG equations in between _ 1 3
0.1>J,>-0.1 is used in fitting. - Zf' 23 254554' (17)

The chiral perturbation operat@l7) makes the shift of

numerical analysis. We estimate the gap of the zigzag chai{'he spin-wave velocities of triplet and singlet figlds

by numerically evaluating the renormalization-group equa-

tions. The data la vs J, is plotted in Fig. 2 setting the J; 3J,

nonuniversal quantitieM =1 and\,=—0.24/7 as typical VeTUF 2 UsTUT 4 (18

values. Also in this case we could observe asymmetric prop-

erty between the ferromagnetic and antiferromagnetic couThese shifts are found in the finite-size correction to the low-

pling J,. The theoretical fitting function witv=2/3 can fit €Nergy levels of two triplet boundary operatdfgy,&iés

the data in the antiferromagnetic sidig>0 better than those With J,k=1,2,3 in open-boundary conditid®BC) and two

in the ferromagnetic sidé;<0. triplet operatorsojojuyis, oipjuios for periodic bound-
This fact implies a quite unusual phenomenon. The infi-ary condition (PBC).° Each gap in the leading finite-size

nite system differs essentially from a macroscopic systengorrection in OBC depends ah

with the finite size. A system with a macroscopic finite size

is described in a massless theory on the fixed line, while an AE  ~ moe_ mo+ Jifam)

infinite system is described in a massive theory. We can ' L L '

employ the massless-field theory for a macroscopic system

available in an ordinary condensed matter experiment, since AE. ~ m(vit+vs) _ (v —Jy/4m)

the correlation length becomes an astronomical length scale. ! 2L L '

We can understand the quite slow convergence in numeric

methods in this region. Although the beta functions depen

on the renormalization schenfi;* the existence of the mar- 2m(3vi+vy)  2m

ginally relevant fixed line is scheme independent and the AE~ L =

strong gap reduction in an extended region occurs univer-

sally. On the other hand, in the antiferromagnetic interchaimhere are some logarithmic corrections for a short chain

coupling, the flow is free from the fixed line and the corre-mainly through\ (L) +X,(L)~2/InL much larger than the

lation length becomeg~ 7a for J;~J,. This result is con-  effect of renormalizationdhs(L)~6x10"*InL. We can

si'stent with the numerical analysis in Ref. 8 as depicted inexpect the flat-band instability d; = —4v in the fermion-

Fig. 1. ization. This instability is a sign of a level crossing between

the singlet and the ferromagnetic states.

(19

Erlw PBC, all belong to the same energy independent;of

(20

IV. LOW-ENERGY LEVELS V. NUMERICAL ANALYSIS

Next we consider the effect of the chiral operators These arguments are consistent with DMRG analysis on
¢5(2)=31(2) - I»(2) and ¢5(2) =J41(2) - J»(2) with confor-  the OBC zigzag chain. Here we cho3ge=1 and calculate
mal dimension (2,0) and (0,2), respectively. In an ordinarythe low-energy levels numerically by DMRG methtidThe
macroscopic system size, we can employ the massless theayggp is too small and the correlation length is too large to
as a good effective theory. A real fermion representation icheck the energy gap directly f@;<0 in numerical analy-
useful to see the effect of the chiral operdfdr** sis. However, the results obtained in previous sections can be
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FIG. 3. The spin velocities fod;= —0.5. The excitation ener-
gies calculated by DMRG for the state (0,nd (0,1 multiplied ization for zigzag PBC chains with=6 (12 site3. For each nega-

by L is plotted vs 1/ with L up to 48. Two different spin veloci- tive J4, eight lowest energy levels for each total momentum and

tiesv, andvg are obtained for them, respectively, by least-square.total is plotted. The two lowest excited statesat-0 are of total

o . : ! ,
fiting. The system behaves as its gap scaling beibg 1/ spin 1. Their energy is degenerate and almost independeit as

predicted in Eq(20).
supported by the lowest three energy levels of the system.

The ground state and first-excited state for each chalhy at |, est five energy levels for eaﬂiotal in the figure vs the
=0 are unique and of total spin zero and one, respectiely, interchain couplingl;

f(.)r even Iength chains. We label the ground state for the In Fig. 5, the low-energy levels obtained by exact diago-
zigzag chain as (0,0) that is the product_of the ground Statelialization for a PBA.=6 chain is shown. We can check in
of the two chains. The two degenerate f|r_st-ex0|ted states ghe figure that the two lowest excitation energies are inde-
total spin one, (0,%)and (0,15, are the parity odd and even ndent ofJ;, as we expected in EG20). The two lowest
states as the product of the ground state and the first-excit '

tate f ditf t chains. Th ity is for th v of citation energies are of total spin 1. In the figure, eight
stale from difierent chains. Tne parity 1S for the symmetry o, , o energy levels for each total momentum éﬁda' of
S-chain andT-chain permutation.

When J; decreases from zero, the excitation energy be—l‘:6 (12 site3 PBC chains has been plotted vs interchain

h AP ) R Fouplinng.
aves as gapless for the infinite system in our finite-size scal The low-energy excitations are described in the critical
ing fitting. The energy of (0,1) mv,/L decreases, and the theory nearJ;=0 with the shifted spin wave velocities
one m(vs+v,)/2L of (0,1)° increases for smallJ,|. In Fig. ! : . :
st ' . . - . éherefore we can naturally exclude a different critical theory
3, we demonstrate the two different spin velocities obtaine : . A X .
. . o . ; at a new fixed point away frond;=0 that describes this
by scaling for an arbitrary poinit; = —0.5 in the phase with svstem
small and negativel;. We have keptm=500 states in y ’

DMRG calculation for OBC chains, and the biggest trunca- ln Fig. 4 flat-band instability is demonstrated._ It occurs at
; . : 7 J;=—4 and the system enters the ferromagnetic phase with
tion error in DMRG is 10 ‘.

The linear increasing of. and decreasing of. predicted the maximum spir8'°'=L ground state, which is consistent
in Eq. (18) for J,~0 ca% b(ta observed in F?g 4S|Ey the low with previously obtained resulf$ A nonsinglet ground state
. 17 . - — . 11 .
energy levels for OB =8 chains. In Fig. 4, DMRG result seems to occur nedy 2 as pointed by Cabret al.” Itis

. - difficult to judge whether this partially polarized ground state
's exact for such a short length=8. We have plotted the can survive in the infinite-length limit. In a macroscopic sys-

tem size, it seems alive idy>—4.

FIG. 5. Low-excitation energies calculated by exact diagonal-

—_
=]

VI. DISCUSSIONS

In conclusion, the divergent RG flow by the Lorentz sym-
metry breaking perturbation certainly produces an energy
gap in the zigzag chain with the ferromagnetic interchain
coupling as well as in the antiferromagnetic model. In an
extended region of the ferromagnetic interchain coupling
with order one, the correlation length can be extremely large
due to the effect of the marginally relevant fixed line. If there
is a finite-energy gap, it becomes too tiny to observe. The

FIG. 4. Low-excitation energies calculated by DMRG for zigzag quantum fluctuation enhanced by the frustration yields the
open chain for length. =8 with negativeJ;. The lowest excited ~€xtraordinary reduction of the energy gap, which cannot be
state atJ;~0 is (0,1 and the second lowest is (051)The states Cchecked in ordinary macroscopic physics. The slow conver-
collapse to zero energy whedy approaches—4. A nonsinglet gence in numerical analysis can be understood for this rea-
ground state seems to appeadat —2. son. The DMRG analysis shows that the massless theory

excitaion energy times the chain length

0 -1 -2 -3 -4 -5
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near the two decoupled chains describes well the low-energgending on the species of the fundamental excitations? Sec-
levels in a macroscopic system. ond, how is the energy scale reduced with very large rate?
Here, we comment on an experimental result on the zigNormally, the small mass of fermionic excitations is consid-
zag chain compound SrCy@nd the linear chain compound ered as the result of a small chiral symmetry breaking. For
Sr,Cu0;. Motoyama, Eisaki, and Uchida show that the tem-the small mass of bosonic excitations, the super symrfetry
perature dependence of the spin susceptibility of the zigzagr composite approaches may work. For the too large reduc-
chain SrCu@ differs from that in the linear chain tion rate, however, we have to tune the coupling constants to
Sr,Cu0,.1" The drastic decreasing of the susceptibility is ob-the corresponding small region. This is possible, but un-
served in the linear chain SuQ; in low temperature. This natural. These two questions seem too difficult to resolve. In
phenomenon is not observed in the zigzag chain SgCuO condensed-matter physics, however, we have interesting ex-
even though the three-dimensional ordering temperaturemples to consider these problems. For the first question, we
~2 K of the zigzag chain SrCuQs less than the tempera- can refer the charge-spin separation in the Tomonaga-
ture ~5 K of the linear chain SCuO;. We would like to  Luttinger liquid. Even though this model has the explicit
point out the fact that the renormalization-group flofd)  Symmetry breaking, the two fundamental excitations have
has a certain parameter region of the ferromagnetic interdifferent energy scales in the long-distance physics. For the
chain coupling in which second question, a stable large-scale reduction occurs in the
ferromagnetic zigzag-chain model without any fine tuning of
the coupling constand;. In the almost models, as in the
antiferromagnetic zigzag-chain model, however, the fine tun-
) ) ing of the coupling constant to the small region realizes the
does not decrease so drastically in the low-temperature rgs,4q_gcale reduction, even if the spontaneous chiral symme-
gion. It might be possible to understand the difference of thqry breaking works there. The experience on these examples

low-temperature behavior of the susceptibility between they, e yseful to find a solution of the mass hierarchy prob-
linear chain and the zigzag chain in terms of RG flow.

The universal scale reduction in the zigzag chain is inter- fhis model should be studied still in more accurate ap-

esting as a rare example from the view point of the hierarch)broaches than the one-loop renormalization group.
problem in the theoretical physics. A string theory as an

ultimate unified theory of every thing in particle physics
needs a natural explanation of the strong suppression of the
energy scale. Such a unified theory should explain the hier- The authors would like to thank I|. Affleck for helpful
archy of masses of the elementary excitations as well as thdiscussions and for informing about the consistent result ob-
hierarchy of all interactions. We should obtain the mass otained by F. D. M. Haldane using a different approach. We
the light particle as a reduction from the Planck masshank J. Pond for reading the manuscript and correcting the
~10% eV, for example, the neutrino massl eV, the elec- presentation. We are also grateful to D. Allen for correcting
tron mass~ 1P eV, the muon mass-10° eV, the Z boson  a mistake in the first version of this article. S.Q. was partially
mass~ 10' eV. To understand this mass hierarchy problemsupported by NSFC. C.I. would like to thank N. Sakai for
in a unified theory, we have to answer the following two helpful discussions for mass hierarchy problems in particle
questions. First, why do several energy scales appear deghysics.

1
X(T)~W—v[l—)\l(lfl')/4—)\2(1fr)/4] (21)
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