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Strongly reduced gap in the zigzag spin chain with a ferromagnetic interchain coupling
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We study a spin-~1/2! Heisenberg zigzag-spin-chain model near decoupled two chains. Taking into account
a symmetry breaking perturbation, we discuss the existence of an energy gap in the ferromagnetic interchain
coupling as well as the antiferromagnetic one. In the ferromagnetic model, a marginally relevant fixed line
reduces the gap strongly, so that the correlation length becomes an astronomical length scale even in order one
coupling. This result agrees with density-matrix renormalization group results.
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I. INTRODUCTION

It is interesting to study the effects of a frustration in
quantum system. The zigzag spin chain is one of the simp
quantum-spin models with a frustration. An experiment
the compound SrCuO2 reports a remarkable suppression
the three-dimensional ordering temperature due to a str
quantum fluctuation enhanced by the frustration.1 Here we
study the effect of frustration in the zigzag chain with t
following Hamiltonian

H5(
i

@J2~Si•Si 111T i•T i 11!1J1Si•~T i1T i 11!#.

~1!

The operatorsSi and T i are s51/2 spins. Here we treat a
interchain couplingJ1 as a perturbation to the two decouple
antiferromagnetic (J2.0) spin chains.

It is well known that the zigzag-chain model with antife
romagnetic regionJ1.0 has a dimer phase and gaple
phase.2 The region of the dimer phase3 (0,J1,Jc
;4.15J2) contains a Majumdar Ghosh pointJ152J2 where
the dimerized ground state is obtained exactly.4 The point
J150 is a critical point of the two decoupled antiferroma
netic chains. There is another critical pointJ1524J2, where
the level crossing between singlet and fully polarized fer
magnetic ground states occurs. There is an exact solution5 of
a fully polarized ferromagnetic ground state inJ1,24J2,
and for a doubly degenerated ground state at the crit
point J1524J2. A numerical analysis in a regionJ1.
24J2 indicates a complicated size dependence of
ground-state energy.6,7

It has been long believed that this model is gapless8,9 for
a small ferromagnetic regionJ1,0. In several papers, how
ever, one-loop renormalization group~RG! shows an insta-
bility of the critical point J150 both in ferromagnetic (J1
,0) and antiferromagnetic (J1.0) region due to a Lorentz
symmetry breaking perturbation.10,11 This fact is puzzling
because the expected energy gap produced by the uns
flow has never been observed in the ferromagnetic reg
either numerically or experimentally. If it were gapless, the
should be a new stable critical point missed in the one-lo
approximation. In this paper, we clarify a natural mechani
to solve this problem. We conclude that the actual ene
0163-1829/2001/63~22!/224423~6!/$20.00 63 2244
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gap is finite but very tiny in an extended region of the co
pling constant space. We can understand the unstable
flow and numerical analysis consistently. The energy ga
too small to observe in any numerical method.

A stable large-scale reduction is an important and diffic
fundamental problem in theoretical physics. In particle ph
ics, any unified theory has this kind of hierarchy proble
Generally speaking, a unified theory has only one large
ergy scale, and also should explain the generation of a s
energy scale to describe the low-energy physics. These
requirements make unified theories quite unnatural, since
need a fine tuning of the coupling constants for large-sc
reduction. We believe that nature does not choose spe
value of the coupling constants. From the view point of
erarchy problem in the theoretical physics, this zigzag-ch
model can be an interesting example in statistical phys
We conclude that the very tiny gap is always obtained in
extended region of the ferromagnetic interchain coupling
like the antiferromagnetic coupling.

This paper is organized as follows. In Sec. II we constr
an effective-field theory for the zigzag chain and calcul
the beta functions. In Sec. III, we study the RG flow a
discuss an energy gap reduced strongly in the ferromagn
interchain coupling region. In Sec. IV, we calculate the e
ergy spectrum to describe the results of numerical calc
tion. In Sec. V, we show our numerical analysis.

II. EFFECTIVE FIELD THEORY

The unperturbed theory is two decoupled Heisenberg
tiferromagnetic chains whose effective theory is two dec
pled SU(2)1 ~WZW! models.10 We introduce two free
bosonswa(z,z̄)5wa(z)1w̄a( z̄) (a51,2) with

S05
1

2pE d2z~]w1]̄w11]w2]̄w2!. ~2!

with two point functions ^wa(z)wb(0)&52dab ln z,

^w̄a( z̄)w̄b(0)&52dab ln z̄, for two WZW models. The spin
operator is written in terms of two bosons

2pSj5J11 J̄11~21! jM trF ~g11g1
†!

ts

2 G , ~3!
©2001 The American Physical Society23-1
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2pT j5J21 J̄21~21! jM trF ~g21g2
†!

ts

2 G , ~4!

where M is a nonuniversal real constant. Here, the SU~2!
currents and primaries are written in two bosons and Kl
factors

Ja
1~z!5ha↑ha↓eiA2wa(z), Ja

z~z!5
i

A2
]wa~z!, ~5!

J̄a
1~z!5h̄a↑h̄a↓e2 iA2w̄a( z̄), J̄a

z~ z̄!5
2 i

A2
]̄ w̄a~ z̄!,

ga↑↑5ha↑h̄a↑ exp@ i ~wa1w̄a!/A2#,

ga↑↓5ha↑h̄a↓ exp@ i ~wa2w̄a!/A2#,

ga↓↑5ha↓h̄a↑ exp@2 i ~wa2w̄a!/A2#,

ga↓↓5ha↓h̄a↓ exp@2 i ~wa1w̄a!/A2#,

with a51,2. The Klein factors obey anticommutation rel
tion $haa ,hbb%52dabdab , to satisfy the following correct
operator product expansion for the SU~2! symmetry

Ja
k~z!gbab~w,w̄!;

dab/2

z2w
~ tskga!ab~w,w̄!,

J̄a
k~ z̄!gbab~w,w̄!;2

dab/2

z̄2w̄
~ga

t sk!ab~w,w̄!. ~6!

The interaction operators

Sint5E d2z

2p (
i 51

5

l if i~z,z̄!, ~7!

can be represented in terms of two SU(2) currents and
mary fields of the WZW model

f1~z,z̄!5J1~z!• J̄1~ z̄!1J2~z!• J̄2~ z̄!,

f2~z,z̄!5J1~z!• J̄2~ z̄!1J2~z!• J̄1~ z̄!,

f3~z,z̄!5tr@g1i ~]2 ]̄ !g2#,

f4~z,z̄!5tr g1i ~]2 ]̄ !tr g2 ,

f5~z,z̄!5J1~z!•J2~z!1 J̄1~ z̄!• J̄2~ z̄!, ~8!

where l25J1 /p, l352J1M2/p, l45J1M2/(2p), l5
5J1 /(2p) andl1 is a certain negative constant. The initi
22442
n

ri-

coupling constantl1 is roughly estimated as the order 1/1
in numerical analysis for single linear chain.12 Note that the
the perturbationsf3(z,z̄) and f4(z,z̄) include operators

with the conformal dimension (3
2 , 1

2 ) and (1
2 , 3

2 ), which break
the Lorentz and the parity symmetry.10,11 The original spin
model has SU~2! symmetry, translational symmetry and
permutation with a translation of the one chain

Si→T i 11 , T i→Si , ~9!

which forbids interactions with dimensionx,2. If this sym-
metry is broken, the symmetry breaking can be measured
the following order parameter

Si•~T i2T i 11!;trF ~g11g1
†!

ts

2 G•trF ~g21g2
†!

ts

2 G . ~10!

This order parameter also changes sign under a translatio
one spinT i→T i 11. The operator product expansion

f i~z,z̄!f j~0,0!;(
k

Ci jk

uzu2
fk~0,0!,

gives one-loop renormalization-group beta function

2 l
dlk

dl
5

1

2 (
i j

Ci jkl il j ,

which has the following practical form

l
dl1

dl
5l1

22l3l42l4
2 ,

l
dl2

dl
5l2

21l3l41l3
2 ,

l
dl3

dl
52

1

2
l1l31

3

2
l2l31l2l4 ,

l
dl4

dl
5l1l31

3

2
l1l42

1

2
l2l4 ,

l
dl5

dl
5

1

2
l3l4 . ~11!

Note that the beta functions have a symmetryl3→2l3 ,
l4→2l4, which corresponds to a translation on one ch
T i→T i 11 in the original spin model.

III. RENORMALIZATION-GROUP FLOW

The critical pointJ150 divides ferromagnetic and ant
ferromagnetic dimer phases. Both regions have energy
The renormalization flow diverges eventually along a sta
direction (l1 ,l2 ,l3 ,l4)5(0,1,1/A2,0) for the ferromag-
3-2
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STRONGLY REDUCED GAP IN THE ZIGZAG SPIN . . . PHYSICAL REVIEW B63 224423
netic coupling J1,0, and along another stable directio
(l1 ,l2 ,l3 ,l4)5(0,1,21/A2,0) for the antiferromagnetic
couplingJ1.0. The current-current couplingl2 grows with
positive value both in ferromagnetic and antiferromagne
region. In the effective-field theory, the ferromagnetic mo
does not differ from the antiferromagnetic model tran
formed byT i→T i 11, which changes the sign ofl3 andl4.
This fact suggests that both ferromagnetic and antiferrom
netic models have the same dimerization pattern. The co
lation lengthj behaves as

j;a expcuJ1u2 ñ, ~12!

with ñ52/3 for J1;0 and the lattice spacinga. This result is
obtained in another RG method for the RG equation.13 In the
antiferromagnetic region, this scaling formula of the corre
tion length holds for relatively large value in 0,J1,Jc
;4.15J2, even though the formula is obtained merely
one-loop approximation. We demonstrate it by numerical
sults from density-matrix renormalization-group calculati
~DMRG! @Ref. 8# in Fig. 1. The gap-scaling formula can fi
the numerical result quite well. This agreement even in re
tively strong coupling region is not so surprising. There a
many systems with Kosterlitz Thouless-type phase transit
where the gap-scaling formula calculated in the we
coupling region holds even in the strong-coupling region.
the ferromagnetic region, however, this scaling formula d
not hold for uJ1u;J2. The energy gap in this region cann
be found in any numerical analysis. There should be so
special reason.

We clarify in the following why the gap-scaling formul
in ferromagnetic region differs from the antiferromagne
region. The beta functions forl1 ,l2 ,l3 ,l4 have simulta-
neous zero on a line

l15l250, l31l450. ~13!

This line behaves like a fixed line for a four-dimension
coupling constant space (l1 , . . . ,l4), sincel5 does not en-
ter their beta functions. Near this line, we define the dev

FIG. 1. The energy gapD vs the antiferromagnetic interchai
couplingJ1.0 is depicted. The solid line is drawn by the scalin
formulaD; exp(2cuJ1u22/3) for smallJ1 in the infinite order phase
transition, using Eq.~12! with j;1/D. The gapD calculated by the
DMRG is obtained from Ref. 8.
22442
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tion of the running coupling constants from the line byl3
5l1dl3 , l452l1dl4. The linearized beta functions ar

l
d

dl
~dl12dl2!;0,

l
d

dl
~dl11dl2!;2l~dl31dl4!,

~14!

l
d

dl
~dl31dl4!;2l~dl12dl2!,

l
d

dl
~dl32dl4!;0.

The eigenvalues of the scaling matrix all vanish on that li
This marginal property of the fixed line yields a remarkab
phenomenon. The linearized flow near the fixed line can
integrated as follows

dl1~ l !2dl2~ l !;A,

dl1~ l !1dl2~ l !;C12lB ln l

dl3~ l !1dl4~ l !;B2lA ln l

dl3~ l !2dl4~ l !;D, ~15!

whereA, B, C, andD are integration constants determine
by initial coupling constants that are nonuniversal. If the i
tial coupling constants lie near this fixed line,A1C is nega-
tive, A2C;22J1 /p, B1D52J1M2/p2l, and B2D
5J1M2/(2p)2l. We can study the nature of the RG flo
numerically together with an analytic argument based on
behavior of the fixed line. Although the line is unstable e
cept the caseA5B50, there is an extended region where t
running couplingsdl1( l )1dl2( l ) anddl3( l )1dl4( l ) flow
toward 0. In this case other couplings are renormalized lo
rithmically, and the running coupling constants spend a lo
time ~long length scale! near the fixed line~13!.

In the ferromagnetic region with smalluJ1u, we haveA
,0, B.0, C,0, l.0. In this case,dl3( l )1dl4( l ) does
not flow toward 0, and then the flow is free from the fixe
line as well as in the antiferromagnetic region. In this regio
we consider the gap-scaling formula~12! holds and the gap
is still small enough. AtJ1;20.1J2, however, the constan
A changes sign and the running coupling constants sta
flow toward 0. The correlation length grows again by t
effect of the fixed line~13!. The correlation length can b
estimated approximately from the length scalel where the
running coupling constantl i( l ) diverges. The numerical so
lution of the RG equation shows a dependence of the co
lation length on the nonuniversal constantM. Typically, the
minimal correlation length in the ferromagnetic region b
comes an astronomical length scale more than 1036a for J1
;20.2J2 and M51. The interaction between two chain
may change the nonuniversal quantitiesl1 and M2. How-
ever, the qualitative nature of the flow is unchanged
M2,2 andJ1,0. If M2.2.5, the gap may be observed b
3-3
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CHIGAK ITOI AND SHAOJIN QIN PHYSICAL REVIEW B 63 224423
numerical analysis. We estimate the gap of the zigzag ch
by numerically evaluating the renormalization-group eq
tions. The data lnD vs J1 is plotted in Fig. 2 setting the
nonuniversal quantitiesM51 andl1520.24/p as typical
values. Also in this case we could observe asymmetric pr
erty between the ferromagnetic and antiferromagnetic c
pling J1. The theoretical fitting function withñ52/3 can fit
the data in the antiferromagnetic sideJ1.0 better than those
in the ferromagnetic sideJ1,0.

This fact implies a quite unusual phenomenon. The in
nite system differs essentially from a macroscopic sys
with the finite size. A system with a macroscopic finite si
is described in a massless theory on the fixed line, while
infinite system is described in a massive theory. We
employ the massless-field theory for a macroscopic sys
available in an ordinary condensed matter experiment, s
the correlation length becomes an astronomical length sc
We can understand the quite slow convergence in nume
methods in this region. Although the beta functions depe
on the renormalization scheme,10,11 the existence of the mar
ginally relevant fixed line is scheme independent and
strong gap reduction in an extended region occurs uni
sally. On the other hand, in the antiferromagnetic interch
coupling, the flow is free from the fixed line and the corr
lation length becomesj;7a for J1;J2. This result is con-
sistent with the numerical analysis in Ref. 8 as depicted
Fig. 1.

IV. LOW-ENERGY LEVELS

Next we consider the effect of the chiral operato
f5(z)5J1(z)•J2(z) and f̄5( z̄)5 J̄1( z̄)• J̄2( z̄) with confor-
mal dimension (2,0) and (0,2), respectively. In an ordin
macroscopic system size, we can employ the massless th
as a good effective theory. A real fermion representation
useful to see the effect of the chiral operator9,10,14

FIG. 2. The logarithm of gap lnD vs smallJ1 estimated by the
scale where the solution of the RG equation has the singularity.
fitting line is obtained by fitting formulaD5a exp(2c/uJ1u2/3) with
data close to zero. Gaps obtained from RG equations in betw
0.1.J1.20.1 is used in fitting.
22442
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j1~z!1 i j2~z!5A2

a
h1 expF2 i

w1~z!1w2~z!

A2
G

j3~z!1 i j4~z!5A2

a
h2 expF2 i

w1~z!2w2~z!

A2
G . ~16!

Hereh6 are written in a bilinear ofhaa such that the total
current for the SO~3! generator becomesJ11J25( i /2)j
3j, wherej5(j1 ,j2 ,j3). Then the fieldsj and j4 corre-
spond to a triplet and singlet excitation, respectively. In t
mapping, the chiral perturbation operator has a free-field r
resentation

f5~z!52
1

2
]w1]w21h1↑h1↓h2↓h2↑

3cos@A2$w1~z!2w2~z!%#

5
1

4
j•]j2

3

4
j4]j4 . ~17!

The chiral perturbation operator~17! makes the shift of
the spin-wave velocities of triplet and singlet fields9

v t5v1
J1

4p
, vs5v2

3J1

4p
. ~18!

These shifts are found in the finite-size correction to the lo
energy levels of two triplet boundary operatorsj jjk ,j ij4
with j ,k51,2,3 in open-boundary condition~OBC! and two
triplet operatorss is jmkm4 , s im jmks4 for periodic bound-
ary condition ~PBC!.9 Each gap in the leading finite-siz
correction in OBC depends onJ1

DEjk;
pv t

L
5

p~v1J1/4p!

L
,

DEj;
p~v t1vs!

2L
5

p~v2J1/4p!

L
. ~19!

In PBC, all belong to the same energy independent ofJ1

DE;
2p~3v t1vs!

4L
5

2pv
L

. ~20!

There are some logarithmic corrections for a short ch
mainly throughl1(L)1l2(L);2/lnL much larger than the
effect of renormalizationdl5(L);631024 ln L. We can
expect the flat-band instability atJ1524pv in the fermion-
ization. This instability is a sign of a level crossing betwe
the singlet and the ferromagnetic states.

V. NUMERICAL ANALYSIS

These arguments are consistent with DMRG analysis
the OBC zigzag chain. Here we choseJ251 and calculate
the low-energy levels numerically by DMRG method.15 The
gap is too small and the correlation length is too large
check the energy gap directly forJ1,0 in numerical analy-
sis. However, the results obtained in previous sections ca

e

en
3-4
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supported by the lowest three energy levels of the syst
The ground state and first-excited state for each chain aJ1
50 are unique and of total spin zero and one, respective16

for even length chains. We label the ground state for
zigzag chain as (0,0) that is the product of the ground st
of the two chains. The two degenerate first-excited state
total spin one, (0,1)t and (0,1)s, are the parity odd and eve
states as the product of the ground state and the first-ex
state from different chains. The parity is for the symmetry
S-chain andT-chain permutation.

When J1 decreases from zero, the excitation energy
haves as gapless for the infinite system in our finite-size s
ing fitting. The energy of (0,1)t, pv t /L decreases, and th
onep(vs1v t)/2L of (0,1)s increases for smalluJ1u. In Fig.
3, we demonstrate the two different spin velocities obtain
by scaling for an arbitrary pointJ1520.5 in the phase with
small and negativeJ1. We have keptm5500 states in
DMRG calculation for OBC chains, and the biggest trunc
tion error in DMRG is 1027.

The linear increasing ofv t and decreasing ofvs predicted
in Eq. ~18! for J1;0 can be observed in Fig. 4 by the low
energy levels for OBCL58 chains. In Fig. 4, DMRG resul
is exact for such a short lengthL58. We have plotted the

FIG. 3. The spin velocities forJ1520.5. The excitation ener
gies calculated by DMRG for the state (0,1)t and (0,1)s multiplied
by L is plotted vs 1/lnL with L up to 48. Two different spin veloci-
ties v t and vs are obtained for them, respectively, by least-squ
fitting. The system behaves as its gap scaling being 1/L.

FIG. 4. Low-excitation energies calculated by DMRG for zigz
open chain for lengthL58 with negativeJ1. The lowest excited
state atJ1;0 is (0,1)t and the second lowest is (0,1)s. The states
collapse to zero energy whenJ1 approaches24. A nonsinglet
ground state seems to appear atJ1;22.
22442
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lowest five energy levels for eachSz
total in the figure vs the

interchain couplingJ1.
In Fig. 5, the low-energy levels obtained by exact diag

nalization for a PBCL56 chain is shown. We can check i
the figure that the two lowest excitation energies are in
pendent ofJ1, as we expected in Eq.~20!. The two lowest
excitation energies are of total spin 1. In the figure, eig
lowest energy levels for each total momentum andSz

total of
L56 ~12 sites! PBC chains has been plotted vs intercha
couplingJ1.

The low-energy excitations are described in the criti
theory nearJ150 with the shifted spin wave velocities
therefore we can naturally exclude a different critical theo
at a new fixed point away fromJ150 that describes this
system.

In Fig. 4 flat-band instability is demonstrated. It occurs
J1524 and the system enters the ferromagnetic phase
the maximum spinStot5L ground state, which is consisten
with previously obtained results.5,6 A nonsinglet ground state
seems to occur nearJ1522 as pointed by Cabraet al.11 It is
difficult to judge whether this partially polarized ground sta
can survive in the infinite-length limit. In a macroscopic sy
tem size, it seems alive inJ1.24.

VI. DISCUSSIONS

In conclusion, the divergent RG flow by the Lorentz sym
metry breaking perturbation certainly produces an ene
gap in the zigzag chain with the ferromagnetic interch
coupling as well as in the antiferromagnetic model. In
extended region of the ferromagnetic interchain coupl
with order one, the correlation length can be extremely la
due to the effect of the marginally relevant fixed line. If the
is a finite-energy gap, it becomes too tiny to observe. T
quantum fluctuation enhanced by the frustration yields
extraordinary reduction of the energy gap, which cannot
checked in ordinary macroscopic physics. The slow conv
gence in numerical analysis can be understood for this
son. The DMRG analysis shows that the massless the

e

FIG. 5. Low-excitation energies calculated by exact diagon
ization for zigzag PBC chains withL56 ~12 sites!. For each nega-
tive J1, eight lowest energy levels for each total momentum a
Sz

total is plotted. The two lowest excited states atJ1;0 are of total
spin 1. Their energy is degenerate and almost independent ofJ1 as
predicted in Eq.~20!.
3-5
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CHIGAK ITOI AND SHAOJIN QIN PHYSICAL REVIEW B 63 224423
near the two decoupled chains describes well the low-ene
levels in a macroscopic system.

Here, we comment on an experimental result on the z
zag chain compound SrCuO2 and the linear chain compoun
Sr2CuO3. Motoyama, Eisaki, and Uchida show that the te
perature dependence of the spin susceptibility of the zig
chain SrCuO2 differs from that in the linear chain
Sr2CuO3.17 The drastic decreasing of the susceptibility is o
served in the linear chain Sr2CuO3 in low temperature. This
phenomenon is not observed in the zigzag chain SrCu2,
even though the three-dimensional ordering tempera
;2 K of the zigzag chain SrCuO2 is less than the tempera
ture ;5 K of the linear chain Sr2CuO3. We would like to
point out the fact that the renormalization-group flow~11!
has a certain parameter region of the ferromagnetic in
chain coupling in which

x~T!;
1

pv
@12l1~1/T!/42l2~1/T!/4# ~21!

does not decrease so drastically in the low-temperature
gion. It might be possible to understand the difference of
low-temperature behavior of the susceptibility between
linear chain and the zigzag chain in terms of RG flow.

The universal scale reduction in the zigzag chain is in
esting as a rare example from the view point of the hierar
problem in the theoretical physics. A string theory as
ultimate unified theory of every thing in particle physi
needs a natural explanation of the strong suppression o
energy scale. Such a unified theory should explain the h
archy of masses of the elementary excitations as well as
hierarchy of all interactions. We should obtain the mass
the light particle as a reduction from the Planck ma
;1028 eV, for example, the neutrino mass;1 eV, the elec-
tron mass;106 eV, the muon mass;108 eV, the Z boson
mass;1011 eV. To understand this mass hierarchy proble
in a unified theory, we have to answer the following tw
questions. First, why do several energy scales appear
S

et
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pending on the species of the fundamental excitations? S
ond, how is the energy scale reduced with very large ra
Normally, the small mass of fermionic excitations is cons
ered as the result of a small chiral symmetry breaking.
the small mass of bosonic excitations, the super symmet18

or composite approaches may work. For the too large red
tion rate, however, we have to tune the coupling constant
the corresponding small region. This is possible, but
natural. These two questions seem too difficult to resolve
condensed-matter physics, however, we have interesting
amples to consider these problems. For the first question
can refer the charge-spin separation in the Tomona
Luttinger liquid. Even though this model has the explic
symmetry breaking, the two fundamental excitations ha
different energy scales in the long-distance physics. For
second question, a stable large-scale reduction occurs in
ferromagnetic zigzag-chain model without any fine tuning
the coupling constantJ1. In the almost models, as in th
antiferromagnetic zigzag-chain model, however, the fine t
ing of the coupling constant to the small region realizes
large-scale reduction, even if the spontaneous chiral sym
try breaking works there. The experience on these exam
may be useful to find a solution of the mass hierarchy pr
lem.

This model should be studied still in more accurate a
proaches than the one-loop renormalization group.
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