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Decoupling of theSÄ1Õ2 antiferromagnetic zig-zag ladder with anisotropy
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The spin-1/2 antiferromagnetic zig-zag ladder is studied by exact diagonalization of small systems in the
regime of weak interchain coupling. A gapless phase with quasi-long-range spiral correlations has been pre-
dicted to occur in this regime if easy-plane (XY) anisotropy is present. We find in general that the finite zig-zag
ladder shows three phases: a gapless collinear phase, a dimer phase, and a spiral phase. We study the level
crossings of the spectrum, the dimer correlation function, the structure factor, and the spin stiffness within
these phases, as well as at the transition points. As the interchain coupling decreases we observe a transition in
the anisotropicXY case from a phase with a gap to a gapless phase that is best described by two decoupled
antiferromagnetic chains. The isotropic and the anisotropicXY cases are found to be qualitatively the same,
however, in the regime of weak interchain coupling for the small systems studied here. We attribute this to a
finite-size effect in the isotropic zig-zag case that results from exponentially diverging antiferromagnetic
correlations in the weak-coupling limit.
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I. INTRODUCTION

Antiferromagnetic ladder systems have attracted much
terest recently.1 On the theoretical side they interpolate b
tween the well studied antiferromagnetic chain2 and two-
dimensional antiferromagnets.3 The evolution between 1D
and 2D spin-1/2 antiferromagnetism is not necessa
smooth, however. In particular, then-leg ladder shows a re
markable alternating property in the spectrum as the num
of legs is even or odd.4 The spectrum has a gap for an ev
number of legs while it is gapless for an odd number of le
This is similar to the difference between integer~spin-gap!
and half-odd-integer~gapless! spin chains.5 In the limit of
strong coupling between the two chains the two-leg ladde
essentially composed of weakly interacting singlets that fo
across the rungs. The lowest excitation is the promotion
rung singlet to a triplet with an excitation energy of the ord
of the interchain coupling. This spin gap remains nonvani
ing even for small interchain coupling due to the fact tha
single antiferromagnetic chain is critical.6 In the case of
purely Ising coupled chains the gap appears for all value
n.7

The antiferromagnetic zigzag ladder has also attracted
terest recently, particularly in the context of experimen
systems with low-dimensional magnetic structures like t
of Cs2CuCl4.8 It is also interesting from a theoretical point o
view because it is a frustrated system~see Fig. 1!. Indeed, the
zig-zag ladder is equivalent to a single antiferromagne
chain with next-nearest-neighbor interactions. In this pa
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we consider the spin-1/2 antiferromagnetic zig-zag lad
with anisotropy. The isotropic case has been stud
before9–14 as a function of the coupling parameter,j
5J2 /J1, which is the ratio of the next-nearest-neighbor i
teraction,J2, to the nearest-neighbor interaction,J1. As j
increases, the system goes from gapless~single chain! to a
dimer phase and then to a spiral phase, where the struc
factor has a maximum at a momentump/2,q,p. The sys-
tem has a spin gap in these last two phases, and it there
only displays short-range order. In the limit that the intra
hain interaction is much larger than the interchain interact
( j→`) the two chains decouple and a gapless single ch
behavior is recovered. It has been argued that this only h
pens, strictly speaking, atj 5`: the spin gap becomes expo
nentially small asj grows, but it remains nonvanishing.13

FIG. 1. Diagram of the zig-zag ladder. The nearest-neigh
interaction is parametrized byJ1 and the next-nearest-neighbor in
teraction is parametrized byJ2.
©2001 The American Physical Society17-1
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Recently, on the other hand, it has been proposed that inc
mensurate quasi-long-range spin correlations should be
served if easy-plane (XY) anisotropy is included in the zig
zag ladder.15 This is argued to be due to the presence o
‘‘twist’’ term that results from the interchain interaction.
has been proposed that there is one gapless mode and
mode with a gap in the regime of strongXY anisotropy in the
inter-chain coupling. Another prediction of this work is th
existence of spontaneous local spin currents. This, howe
has been refuted in Ref. 16. Also, other recent numer
work17 has failed to confirm the gapless nature of t
groundstate in the anisotropicXY case at weak interchai
coupling. Recent density matrix renormalization gro
~DMRG! results18 suggest, however, that the zig-zag ladd
does indeed show a gapless chiral phase as predicted in
15.

In this paper we use exact diagonalizations, the modi
Lanczos method19 and the Davidson method20 to address the
possibility of a transition from a spin-gap regime to a gapl
regime as a function ofj when anisotropy is present in sma
S51/2 antiferromagnetic zig-zag ladders. We compute v
ous probes to identify the different phases and study t
behavior close to the transition points. We study in particu
the spin stiffness, the dimer correlation function, the str
ture factor, and analyze in detail the spectrum in the vari
parameter regimes. Since the zig-zag ladder effectively
both nearest-neighbor and second neighbor interaction
stiffness tensor is required to account for these two type
interactions. The eigenvalues of this 232 matrix then be-
come the natural spin rigidities that we use to clarify t
behavior of the system in the various regimes. The stiffn
of a system is a particularly good measure of the long-ra
nature of the ground state. Introducing twisted boundary c
ditions leads to a response in the energy if the quantum s
are extended~gapless case!. On the other hand, the energy
insensitive to a change in the boundary conditions if
quantum states are localized~spin-gap case!. Therefore, the
stiffness with respect to such a twist is positive if the syst
is gapless and it is zero if the system has a gap. Also,
dimer correlation function naturally signals the dimer pha
while the structure factor is a natural way to detect and st
the spiral phase.

Our results are consistent with a gapless excitation sp
trum in the case ofXY anisotropy at weak interchain cou
pling. We obtain qualitatively similar results for the isotrop
case, however. This is most likely a finite size effect due
the exponentially small spin gap that persists in the isotro
zig-zag at weak coupling in the thermodynamic limit.13 In
fact, we show that the phase diagram that is obtained f
the analysis of the spectrum for finite systems may be c
sistent with the field theory prediction15 after performing ex-
trapolations to the thermodynamic limit.

The paper is organized as follows: In Sec. II we pres
the model and the quantities to be calculated. In Sec. III
present our results and in Sec. IV we summarize the w
Technical details concerning exact diagonalization are gi
in the Appendix. We also briefly review the extrapolatio
technique to the thermodynamic limit here.
22441
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II. MODEL AND PROBES

The anisotropic zig-zag ladder is defined by the Ham
tonian

H5
1

2
J1

XY(
i

~Si
1Si 11

2 1Si
2Si 11

1 !1J1
z (

i
Si

zSi 11
z

1
1

2
J2

XY(
i

~Si
1Si 12

2 1Si
2Si 12

1 !1J2
z (

i
Si

zSi 12
z .

~1!

The spin operators refer to spinS51/2 states, while the sum
mation i 51, . . . ,N runs along the ‘‘rib’’ of the zig-zag lad-
der. We shall parametrize the interactions by the coupl
parameter j 5J2

XY/J1
XY and by the anisotropy paramete

J1
z/J1

XY5D5J2
z/J2

XY . ~The isotropic case reduces toj
5J2 /J1 and D51.! We will set J1

XY51 henceforth. Con-
sider first the nearest-neighbor Heisenberg chain with ani
ropy, which corresponds to both the weak-coupling (J1
50) and to the strong-coupling (J250) limits of the zig-zag
ladder~see Fig. 1!. The spectrum is gapless for the case
XY anisotropy,uDu<1, as shown by the Bethe ansatz.21 The
excitation spectrum consists of spin-1/2 particles dubb
spinons. Since flipping one spin represents a spin-1 exc
tion, the spinons can only be created in pairs. Therefore
conventional spin 1 magnons are deconfined into spin-
spinons that propagate incoherently. In the regime wherD
<21, the groundstate is ferromagnetic. When21<D<1
the leading spin configuration is the Ne´el state with the stag-
gered magnetization lying within theXY plane. AtD51 the
ground state is again in a Ne´el state, but with a staggere
magnetization that can point in any direction. Last, the sp
trum shows a gap in the Ising regime atD.1. The ground-
state, on the other hand, displays strict long-range Ne´el or-
der, with the staggered magnetization directed along thz
axis.

We shall begin our study of the antiferromagnetic zig-z
ladder by analyzing the classical limit of the isotrop
Heisenberg case first:J1

XY5J'5J1
z and J2

XY5Ji5J2
z as S

→`. A spiral stateSi
15Seiu i yields an energy per site o

E(u)5S2Ji cos(2u)1S2J' cosu. This magnetic energy is
minimized at a pitch angleu0 that satisfies cosu0521

4J' /Ji
for interchain exchange couplings that are below a criti
valueJ'

c 54Ji . A ferromagnetic state on each chain occu
on the other hand, at strong couplingJ'.J'

c , with a pitch
angle ofu05p. The spins are thus arranged antiparallel
between chains. To summarize, the system is in a sp
phase forJ',4Ji , while it is in a collinear phase forJ'

.4Ji . The same holds true when onlyXY coupling exists.
In the case of Ising coupling only, on the other hand,
have the effective modelH5Ji

z( iSi
zSi 12

z 1J'
z ( iSi

zSi 11
z .

There are two possible groundstates. The first is the collin
state defined bySi

z5 1
2 , for i even andSi

z52 1
2 for i odd ~this

has a degeneracy 2) with an energy per site ofE5S2(Ji
z

2J'
z ). The other state is the antiferromagnetic one defin

by 6Si
z5 1

2 (21)i /2 for i even and6Si
z5 1

2 (21)( i 61)/2, for i
odd ~this has a degeneracy 232), with an energy per site o
7-2
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E52S2Ji
z . We have an Ising antiferromagnet forJ'

z ,2Ji
z

and a collinear Ising ferromagnet forJ'
z .2Ji

z , with a first
order transition separating the two phases.

Consider now the stiffness tensor in the classical lim
Imposing a spiral spin configuration on the zig-zag lad
with a pitch angleu, the energy per site of the classicalJ1
2J2 model is then given as above by

e5
E

N
5S2J1 cos~u1u1!1S2J2 cos~2u1u2!, ~2!

where we have added small twistsu1 andu2 to the nearest-
neighbor and the next-nearest-neighbor terms, respectiv
For u1505u2, we have that cosu0521 for J1.4J2 and
that cosu0521

4(J1 /J2) for J1,4J2, as stated above. The sp
currents are then given by

j 15
]e

]u1
U

0

52S2J1 sinu0 ,

j 25
]e

]u2
U

0

52S2J2 sin 2u0 ~3!

and the rigidity components by

r115
] j 1

]u1
U

0

52S2J1 cosu0,

r125
] j 1

]u2
U

0

50,

r225
] j 2

]u2
U

0

52S2J2 cos 2u0 . ~4!

Note that both the spin currents and the stiffnesses are i
pendent of the anisotropy parameterD in the classical limit:
the isotropic and theXY anisotropic cases give the sam
results. In the collinear phase atJ1.4J2, the spin currents
vanish (j 1505 j 2) and r115S2J1 , r1250, and r22
52S2J2. On the other hand, in the spiral phase atJ1,4J2
the local spin currents are nonvanishing:j 156S2J1@1
2(J1 /4J2)2#1/2 and j 252 1

2 j 1. However, the total spin cur
rent j s5 j 112 j 2 is null. The stiffness tensor of this spira
phase is given byr115

1
4 S2(J1

2/J2), r1250, and r22

5S2@J22 1
8 (J1

2/J2)#. The natural stiffness associated wi
the total spin j s is the response to an external twist th
satisfiesu252u1, and is given byrs5r1114r1214r22. It
reduces tors5S2(J124J2) in the collinear phase and t
rs5S2@4J22 1

4 (J1
2/J2)# in the spiral phase. These results a

displayed in Fig. 2. Here it is shown thatrs is always posi-
tive and vanishes at the classical transition point between
collinear ferromagnet to the spiral phase. Recall that the
ture of the ground state changes across this transition. A
we remark that in the spiral phase only the stiffnessrs and
the total currentj s are ‘‘well behaved.’’ The other compo
nents show spontaneous spin currents, whiler22 is not al-
ways positive~we will return to this point later while dis-
cussing the quantum case!.
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In the general quantum case we calculate the stiffnes
the standard way.22 We consider the Hamiltonian~1! with
periodic boundary conditions imposing uniform twis
around thez axis:

H~u1 ,u2!5
1

2
J1

XY(
i

~Si
1Si 11

2 eiu11Si
2Si 11

1 e2 iu1!

1
1

2
J2

XY(
i

~Si
1Si 12

2 eiu21Si
2Si 12

1 e2 iu2!

1Ji
z(

i
Si

zSi 11
z 1J2

z(
i

Si
zSi 12

z . ~5!

Hereu1 andu2 are two independent twists that act separat
along the interchain and intrachain directions, respectiv
Expanding the exponentials to second order we obtain
form

H~u1 ,u2!5H~0,0!1u1(
i

Ji
11u2(

i
Ji

22
1

2
u1

2

3(
i

Ti
12

1

2
u2

2(
i

Ti
2 , ~6!

where

Ji
15

i

2
J1

XY~Si
1Si 11

2 2Si
2Si 11

1 !,

Ji
25

i

2
J2

XY~Si
1Si 12

2 2Si
2Si 12

1 ! ~7!

are the spin currents along the interchain and intrachain
rections, respectively, and where

FIG. 2. Classical stiffnessesr11/(J1S2), r22/(J1S2), and
rs /(J1S2) as a function ofj 5J2 /J1.
7-3
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Ti
15

1

2
J1

XY~Si
1Si 11

2 1Si
2Si 11

1 !,

Ti
25

1

2
J2

XY~Si
1Si 12

2 1Si
2Si 12

1 ! ~8!

are the kinetic energy operators. Using second-order pe
bation theory, we then obtain that the ground state stiffn
tensor,rab5(]2E/]ua]ub)u0, is given by

rab52(
i

^0uTi
au0&da,b

22(
nÞ0

1

En2E0
(
i , j

^0u j i
aun&^nu j j

bu0&, ~9!

where u0& is the ground state andun& are the excited state
(a,b51,2). The ground state is assumed to be nondege
ate. Both the spin current operatorJa5( iJi

a and the kinetic
operatorTa5( iTi

a commute with the translation operator,T,
and conserve total spinSz ~where a51,2). Therefore, the
statesun& in the stiffness formula~9! are the excited state
within the subspace of a given magnetization and momen
that contains the ground state. We note that the off-diago
stiffnessr12 is equal to the static mixed spin-current co
relator.

As in the classical case discussed earlier, the stiffness
also be calculated directly30 taking numerical derivatives o
the energy with respect to small twists,u1 and u2, that are
imposed on the system. This procedure requires care thau1
andu2 are small enough so that there be no level crossin
~We prefer to use the correlation function method, ev
though the results using both methods agree very well.! The
change in energy due to small twistsu1 and u2 takes the
form

dE5
1

2
r11u1

21r12u1u21
1

2
r22u2

2 ~10!

in the absence of spontaneous spin currents. It is then na
to consider the eigenvalues of the stiffness tensor

r65
1

2
~r111r22!6AS r112r22

2 D 2

1r12
2 ~11!

and the determinantD5r1r25r11r222r12
2 . These eigen-

values will be computed using expression~9! for the stiffness
tensor in the next section.

We shall also calculate the correlation function associa
with the dimerization via linear response theory. Imposin
small explicit dimerization, we consider the Hamiltonian
22441
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H~d1 ,d2!5
1

2
J1

XY (
i

@11~2 i ! id1#~Si
1Si 11

2 1Si
2Si 11

1 !

1
1

2
J2

XY (
i

@11~2 i ! id2#~Si
1Si 12

2 1Si
2Si 12

1 !

1J1
z (

i
@11~2 i ! id1#Si

zSi 11
z

1J2
z (

i
@11~2 i ! id2#Si

zSi 12
z . ~12!

Once again using second order perturbation theory we ob
that the susceptibilityxab52(]2E/]da]db)u0 is given by

xab52 Re(
nÞ0

1

En2E0
(
i , j

~21! i 1 j^0u~Ti
a1Mi

a!un&

3^nu~Tj
b1M j

b!u0&, ~13!

where

Mi
15J1

zSi
zSi 11

z ,

Mi
25J2

zSi
zSi 12

z . ~14!

In the dimer correlation function, the factor (21)i 1 j implies
that the statesun& are contained in the same magnetizati
subspace, but in thek5k06p momentum subspace, wher
k0 is the ground state momentum. Last, the structure facto
defined in the usual way:

S~q!5(
r

eiqrCr , ~15!

where the correlation functionCr is defined by

Cr5
1

NS~S11! (
i

^0uSW i•SW i 1r u0& ~16!

and is normalized such that the local correlation funct
(r 50) is unity.

III. RESULTS

We now proceed to study theXXZ zig-zag model~1!
using exact diagonalization of finite systems with sizes up
N528. The full energy spectrum is obtained for the smal
system sizes,N<16, while only the ground state and the fir
few excited states can be determined for the larger sys
sizes. The eigenvectors and eigenvalues of Hamiltonian
~1! are then substituted into Eqs.~9!, ~13! and ~15! to com-
pute the various correlation functions. Our main aim is
study the transitions between the various phases.

Spectrum.Let us first survey the energy spectrum that
displayed by these small systems. We shall keep track
important quantum numbers associated with each ene
level, such as the momentum along the rib of the zig-zag,
spin, and the parity. We shall also identify points in para
eter space where low-lying levels cross, and use this to id
tify phase transitions in the system. This procedure is kno
7-4
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to yield accurate transition points when applied to even re
tively small systems,9,23 being free from logarithmic correc
tions, as discussed in Ref. 27.

Let us begin by determining the quantum numbers of
groundstate as a function of the sizeN for theS51/2 zig-zag
antiferromagnet. Periodic boundary conditions are impo
throughout. The ground state is a spin singlet in general
to the antiferromagnetic interactions. For strong enough c
pling between chains,j 5J2 /J1,1/2, it has either momen
tum p for N54n12 or momentum 0 forN54n. For weak
enough coupling between chainsj .1/2, on the other hand
the momentum oscillates between 0 andp as a function of
the coupling parameterj and of the system sizeN.24 There
are several points alongj in this regime where the corre
sponding energy levels for these two momentum val
cross. The ground state is degenerate at these points, an
is reflected by peaks in the dimer correlation function~see
Fig. 8!. Such level crossings grow in number as the syst
size grows, and this indicates that the two singlet state
question are in fact degenerate in the thermodynamic lim
By the Lieb-Schultz-Mattis theorem,25 this is consistent with
a spin gap in the excitation spectrum that survives the th
modynamic limit in the weak-coupling regimej .1/2.

Consider now the specific case of anXXZ zig-zag chain
~1! with N516 sites under periodic boundary conditions~see
Table I!. In the isotropic case,D51, the states are organize
into spin multiplets due to theSU(2) spin invariance. Again
the antiferromagnetic interactions imply that the ground s
is a spin singlet (Sz50) in general. The system has thre
well defined regimes:~a! strong coupling,~b! intermediate
coupling, and~c! weak coupling. In the strong-coupling lim
~a!, j 5J2 /J1→0, the ground state has momentumk50. The
first excited state forms a spin triplet in such case, withk
5p, while the second excited state is another spin sin
with Sz50 andk5p. At j 5 j c1

N ;0.24 there is a level cross
ing where the first excited states and the second excited
interchange~here j c1

N is the value ofj at which the level
crossing occurs for the system with sizeN). In the thermo-
dynamic limit the two lowest singlet states (Sz50, k50 and
Sz50, k5p) become degenerate and there is a finite gap
the next excited state~the triplet stateSz50, 61, k5p).
Although the system begins to dimerize at this stage~b!,
antiferromagnetic correlations along the rib of the zig-z
remain dominant up to the Majumdar-Ghosh point26 at j
51/2. The ground state is doubly degenerate for any sys
size at this point, where the two states are perfectly dim
ized. Antiferromagnetic correlationswithin chains of the zig-
zag become dominant beyond this point at weaker coupl
j .1/2 ~see Fig. 9!. Another level crossing occurs asj in-
creases to aboutj c2

N ;1.6 such that the first excited state
become two triplets withSz50, 61, k56p/2. The ground
state displays quantum numbersSz50 andk50 at this stage
~c!, and it is no longer degenerate. This remains so aj
→`. It should be mentioned, however, that White and A
fleck predict that a nonzero spin gap persists in the ther
dynamic limit at weak-couplingj @1 between chains, an
that it becomes exponentially small asj grows13 ~we will
return to this point later!.
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The spectrum of the anisotropicS51/2 XXZ zig-zag lad-
der has also been studied previously in the strong-coup
regime up to the Majumdar-Ghosh line (0, j ,1/2).27 A
gapless regime occurs forXY anisotropyD<1 and strong
coupling j , j c1(D), an Ising antiferromagnet along the rib o
the zig-zag that shows a spin gap in the excitation spect
occurs forD.1 and j , j c1(D), and a dimer phase regim
that also has a spin gap exists atj . j c1(D) and anyD @here
j c1(D) is the transition line obtained from extrapolation

TABLE I. Lowest energy levels forN516. The states are rep
resented by theirSz values and momenta (Sz ;k). When more than
one state is represented this means they are degenerate. Whe
momenta are not 0,p or p/2 the momentum of the state is repr
sented by an integer,n, such thatk5(2p/N)n.

j D50 D50.5 D51

(2;p) ~0;0! (0,1,2;0,p)
(0;p) (0;p) (0;p/2)

(1;p/2) (1;p/2) (0,1;p/2)
10 ~0;0! ~0;0! ~0;0!

(2;p) ~0;0! (0;p/2)
(0;p) (0;p) (0;p)

(1;p/2) (1;p/2) (0,1;p/2)
2 ~0;0! ~0;0! ~0;0!

(2;p) (0;p/2) (0;p/2)
(0;p) (1;p/2) (0,1;p/2)

(1;p/2) (0;p) (0;p)
1.5 ~0;0! ~0;0! ~0;0!

(0;p) (0;p)
(1;p/2) (1;p/2) (0,1;p/2)
(0;p) (0;p) (0;p)

1 ~0;0! ~0;0! ~0;0!

~1;3! ~1;3! (0,1;p)
(0;p) (0;p) (0,1;3)
~0;0! ~0;0! ~0;0!

0.75 (0;p) (0;p) (0;p)

~0;0! ~1;1! ~0,1;1!
(1;p) (1;p) ~0;0!

(0;p) (0;p) (0,1;p)
0.5 ~0;0,p! ~0;0,p! ~0;0,p!

~0;p! ~0;p! ~0,1;1!
~0;p! ~0;p! ~0,1;p!

~1;p! ~1;p! ~0;p!

0.25 ~0;0! ~0;0! ~0;0!

~0;p! ~0;p! ~0,1;1!
~0;p! ~0;p! ~0;p!

~1;p! ~1;p! ~0,1;p!

0.1 ~0;0! ~0;0! ~0;0!
7-5
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the thermodynamic limit#. The line j 5 j c1(D) separates the
gapless phase from the dimer phase forD<1, while it sepa-
rates the dimer phase from the~Ising! Néel phase forD.1.
The line atD51 and j , j c1 separates theXY gapless phase
from the Ising phase.

Consider again the specific case ofN516 sites in this
instance, with anisotropy parametersD50 or D50.5 ~see
Table I!. The ground state is a singlet withSz50 andk50
as j increases from the strong coupling limit atj 50 up to
j 51/2. The first excited state has degeneracy 2, with s
Sz561 and momentumk5p inside this regime. The nex
excited state is again a singlet withSz50 andk5p. As j
increases there exists a line of points,j 5 j c1

N (D), such that
the energy level of the excited state withSz561, k5p
crosses the energy level of the excited stateSz50, k5p.27

For j . j c1
N (D) the two lowest states are the two singlets w

Sz50, k50 andSz50, k5p. Again, these two states be
come degenerate~with a gap to the first excited state! in the
thermodynamic limit. The ground state must be a spin sin
with Sz50 due to the antiferromagnetic couplings. This e
cludes the possibility that anySz561 state be degenerat
with it. As a result, the level crossing between theSz561
and singlet states can be used as an accurate criterio
determine the phase transition between the gapless an
spin-gap regimes.9 If we increasej up to j 51/2, then the
system is exactly degenerate for all system sizes. This
feature of the Majumdar-Ghosh point, which has a perfec
dimerized ground state. The behavior of the system does
change much for intermediate couplingj .1/2 beyond this
point, with the exception that the momentum of the two lo
est states interchanges betweenk50 andk5p as j grows.
At a larger value ofj 5 j c2

N between 1.2 and 1.6, howeve
a level crossing occurs between theSz50, k50 or p state
~first excited state! and a state withSz561, k5p/2 ~second
excited state!. Notice that the momentum of the first excite
state is nowk5p/2. This is to be expected in this regim
since the two chains are weakly coupled, and the periodi
doubles. Forj .2, in particular, the first excited state is no
fourfold degenerate (Sz561,k56p/2), and we might ex-
pect to fall back into a gapless regime since the first exc

FIG. 3. Crossing points of the first excited state as a function
N for different values ofD at weak coupling.
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state is not a spin singlet. This level structure is in fact
same as forj→`.

In Fig. 3 we present the crossing points between the st
Sz50, k5p andSz561, k56p/2 that signal this transi-
tion as function of the number of sites for several values
the anisotropy parameterD. We have attempted to extrapo
late the crossing points,j c2

N , to the thermodynamic limit by
employing a standard~BST! algorithm due to Bulirsch and
Stoer.28 The method is explained in the Appendix. The r
sults of this extrapolation procedure are shown in Fig.
where j c2 is plotted as a function ofD. The curvej c2 sepa-
rates a spin-gap~dimer! phase from a gapless phase at sm
interchain couplings.29 As expected the value ofj c2 grows
near the isotropic point.~It should tend toj 5` at D51
according to White and Affleck.13!

Physical probes.Correlation functions can also be used
determine the nature of different thermodynamic grou
states. The spin rigidity, in particular, can discriminate b
tween phases that do and do not have spin gaps. The stiff
of the nearest-neighbor spin-1/2 Heisenberg chain has b
calculated exactly via the Bethe ansatz.22 In the thermody-
namic limit this solution yields

r11

J1
XY

5
p

4
sin

p

n

1

p

n S p2
p

n D ~17!

for anisotropies

cos
p

n
5

J1
z

J1
XY

5D, ~18!

wheren is a positive integer. This yieldsr11/J1
XY51/4 in the

isotropic case andr11/J1
XY51/p in the XY-case. In Fig. 5

we plot the exact Bethe ansatz stiffness22 for the single chain
and compare it with the numerical diagonalization results
N58,12,16,20 sites. The spectrum is gapless from theXY

f
FIG. 4. Phase diagram in the regime of weak interchain c

pling. The critical coupling parameterj c2 is obtained from the
crossing of the first excited state with the second excited state
extrapolating to the thermodynamic limit~see the Appendix!.
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limit up to the isotropic Heisenberg case. Beyond this criti
point the spectrum acquires a gap due to the Ising anisot
and the stiffness goes to zero. The stiffness remains pos
beyond the transition point for the small system sizes that
studied, however. The anisotropy at whichr115J1

XY/4 ex-
trapolates nicely to the Heisenberg point,D51, in the ther-
modynamic limit,N→`, however.

The zig-zag ladder~or the chain with next-nearest neigh
bor interactions!, on the other hand, is not solvable by th
Bethe ansatz, and so other methods become necessa
compute the spin rigidity. With this purpose in mind, exa
diagonalization calculations of the isotropic spin-1/2 Heis
berg chain with next-nearest neighbors interactions wh
carried out first by Boncaet al.30 on small systems, wher
the diagonal componentr11 of the stiffness tensor was com
puted ~see also Ref. 31!. We have completed this study b
calculating the remaining components of the stiffness ten
~9!, including cases with anisotropy. In Fig. 6 we show t
results for the various stiffnesses for the zig-zag ladder in
isotropic case as a function ofj for N516, while the same
set of results are shown for theXY case (D50) in Fig. 7. In
Figs. 6~a! and 7~a! we show the stiffnessesr11, r22 andr12.
For smallj we are in the limit of strong interchain couplin
~small next-nearest neighbor interaction! and we recover the
previous results:30 r11.0 andr22,0. This is also found in
the classical case. In the opposite weak-coupling limit
very high j, r11 remains negative, butr22 becomes positive
~as in the classical case!. The latter is consistent with th
extreme limit of two decoupled antiferromagnetic cha
(J150). Also, r12 becomes nonzero in the intermediate
gion where quantum fluctuations are stronger and where
transition between weak coupling and strong coupling
curs. Note that the classical analysis reveals that the fact
r12 becomes nonzero and the fact thatr11 becomes negative
are purely quantum effects.

In the initial exact diagonalization study for the isotrop
case, Boncaet al. chose to identify the point at which th

FIG. 5. Comparison of the exact Bethe ansatz result for the
stiffness of a single chain to the numerical results obtained fr
diagonalizing small systems as a function ofD.
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stiffness componentr11 turns negative with a transition poin
to a quantum disordered phase with a spin gap.30 Extrapolat-
ing to the thermodynamic limit they estimated the transiti
point to occur atj c50.27060.005. We believe that it is a
better idea to look at the eigenvalues~11! of the full stiffness
tensor to determine possible phase transitions.32 In Figs. 6~b!
and 7~b! we plotr1 for different system sizes. This stiffnes
is always positive for allj, while r2 is always negative. For
small j, r1 is positive and of order unity. Asj grows r1

becomes close to zero at a value ofj that is close to the value
wherer11 crosses zero,j r1

N . As j increases furtherr1 again
begins to grow appreciable near the point at whichr22 turns
positive, j r2

N . A finite size analysis reveals that as the sizeN
grows the first ‘‘zero’’ ofr1 ~near j 5 j r1

N ) occurs at smaller
values of j and extrapolates to a value close to the dim
transitionj c1 determined by the level-crossing method. Sim
larly, we expect that the second transition to a nonzero s
nessr1 ~near j 5 j r2

N ) signals the transition to a gapless r
gime that extends up toj 5`, and that it might therefore also
signal a decoupling transition. This happens, however, b
for D50 and for D51. We believe that this is due to

in

FIG. 6. ~a! Stiffnessesr11, r12, andr22 as a function ofj for
D51 andN516. ~b! r1 as a function ofj for various system sizes
for D51.
7-7
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finite-size effect in the latter case as discussed above.
fact that finite-size effects in the spin stiffness of a sin
chain become larger as theXY anisotropy decreases~see Fig.
5! supports this claim.

The level crossing at weak coupling,j c2
N , does not, how-

ever, correlate well withj r2
N . The crossings defined byj r2

N

appear at smaller values ofj as compared withj c2
N . Although

both have the same trend, apparently finite size effects
stronger in the calculation of the stiffness than in the de
mination of the level crossings. We have therefore limit
ourselves to the extrapolation of the level crossing po
j c2
N .

In Fig. 8 we show the behavior of the dimer correlati
function x11. For j . j c1

N the dimer correlation function in
creases signaling the spontaneous dimerization observe
the thermodynamic limit. The various peaks signal le
crossings of the ground state between near-degenerate
with momentumk50 andk5p as j varies. The Majumdar-
Ghosh point atj 51/2 is special since the ground state
doubly degenerate for all system sizes in such case. Bey

FIG. 7. ~a! Stiffnessesr11, r12, andr22 as a function ofj for
D50 andN516. ~b! r1 as a function ofj for various system sizes
for D50.
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j ;1 the dimer correlation functionx11 becomes small.~The
susceptibilitiesx12 andx22 are always quite small.!

Finally, remnants of the spiral phase that exists in
classical limit,S→`, are clearly apparent in the momentu
dependence of the structure factor. In Fig. 9 we show
structure factor as a function of momentum for several v
ues of j in the Heisenberg case atD51. We see that the
location of the maximum shifts fromkmax5p ~for j <0.5) to
a valuep/2,kmax,p when j .0.5, thereby signaling the
spiral phase. The results are similar forD50.

IV. CONCLUSIONS

The S51/2 antiferromagnetic zig-zag ladder is a difficu
problem to solve due to the intrinsic frustration and to t
criticality displayed by both the strong and the wea

FIG. 8. Dimer correlation function forN516 andD51 andD
50.

FIG. 9. Structure factor,S(q), for N516 andD51 for various
coupling strengths. The peak is located atq5p in the single-chain
limit, j 50, but this momentum tends toq5p/2 asj increases. This
indicates the presence of important spiral correlations in
weakly-coupledS51/2 zig-zag antiferromagnet.
7-8
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DECOUPLING OF THES51/2 ANTIFERROMAGNETIC . . . PHYSICAL REVIEW B 63 224417
coupling limits. The weak-coupling limit is particularly dif
ficult in the absence of anisotropy, in which case antifer
magnetic correlations diverge exponentially.13 This renders
any numerical study of finite systems hard.

In this paper, we have performed an analysis of the ex
properties of such finite systems, looking at various corre
tion functions and the structure of the spectrum both in
isotropic and the anisotropic cases. We have looked at
spectrum and have computed the spin stiffness of the zig
ladder, and have thereby found evidence for a gapless reg
at weak coupling that survives the thermodynamic limit
the case ofXY anisotropy. However, the isotropic and th
anisotropic cases look qualitatively similar. We believe th
this is due to a strong finite-size effect in the former ca
This claim is supported by the increase of finite-size effe
in the stiffness of a singleS51/2 antiferromagnetic chain
with decreasingXY anisotropy, as shown in Fig. 5.

It was previously shown9 that the dimer transition can b
accurately determined in relatively small systems by stu
ing the level crossing of the first and second excited sta
after extrapolating to the thermodynamic limit. We ha
used a similar criterion to detect a possible transition fr
the dimer phase to a gapless phase at weak-interchain
pling. Using standard extrapolation techniques~see Appen-
dix! we have constructed a phase diagram~see Fig. 4! in this
regime that is in agreement with a recent proposal for a g
less spiral phase in the presence ofXY anisotropy.15

Also, we expect the spin stiffnessr1 to be a good mea
sure of the nature of the spectrum. In particular, it can
used as an order parameter to distinguish gapless from s
gap phases. A positive stiffness indicates a gapless excita
spectrum and a null stiffness indicates a net spin-gap.
antiferromagnetic zig-zag for spinS51/2 showed an appre
ciable positive stiffness in the limit of strong interchain co
pling ~similar to the single chain case!, a very small yet
positive stiffness in the intermediate~spin-gap! regime, and
then again an appreciable positive stiffness in the limit
weak interchain coupling~similar to two decoupled chains!.
This was true for all values of the (XY) anisotropy,D<1. It
is known from previous work,13 however, that a spin gap i
always expected to be present in the isotropic case at w
coupling. The stiffness should therefore remain zero in
thermodynamic limit atD51 in the weak-coupling regime
We believe that the discrepancy between this expecta
and our results is a strong finite size effect in the isotro
case that is due to the exponentially diverging antiferrom
netic correlations.13 Clearly, larger systems need to be stu
ied.
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APPENDIX

Exact diagonalization.The size of the Hilbert space unde
consideration can be considerably reduced using the sym
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tries of the problem. The Hamiltonian commutes with t
total spin operatorST

z , with the translation operatorT, the
spin flip operatorR, and the space reflection operatorL ( i
→N112 i ,i 51, . . . ,N). In the absence of anisotropies th
Hamiltonian also commutes with the total spin opera
(SW T)2 and the energy levels come in spin multiplets. T
operatorR commutes withT but, althoughL commutes with
R, it does not commute withT, sinceLT5T21L.

The action of the local operatorsSi
6 and Si

z is simply
given in the direct product basisum1

z&•••umN
z &, which are

eigenvectors ofST
z . In general, these states are not eigenv

tors of the additional symmetries. We consider first the tra
lations, obtaining the classes of states which are closed u
them. One starts with a stateua& and appliesNa times the
translation operatorT until one findsTNaua&5ua&, whereNa
is necessarily a divisor ofN. The stateua& is the representa
tive of this class. In combinatorial theory this is called
necklace and its periodic part, of lengthNa , a Lyndon word.
The other classes are formed proceeding in the same ma
starting with other states, not already used, until all the sta
have been exhausted. In each class, sinceTNa51̂, the pos-
sible eigenvectors ofT are tNa

(k)5ei2pk/Na, with k

50, . . . ,Na21, corresponding to the momentumpk

52pk/Na . The operatorsPN(k)5(1/N)( i 50
i 5N21@T/tN(k)# i

are projectors, i.e., they satisfyPN(k)PN(k8)5dk,k8PN(k).
They also have the propertyTPN(k)5tN(k)PN(k). The pro-
jector PN(k) acting on the states of a class withNa elements
reduces to (N/Na)PNa

(k), if tN(k) is one of thetNa
(k) and

gives zero otherwise. The normalized eigenvector of m
mentumpk formed from the class of the stateua& is given by

uk,a&5ANaPNa
(k)ua&. Since the Hamiltonian commute

with ST
z and T, the subspaces of fixed magnetization a

momentum are invariant subspaces and it is importan
consider each of these subspaces separately. A general
is written as a linear combination of the statesuk,a& corre-
sponding to that magnetization. The stateuk,a& is repre-
sented byua&. This allows us to reduce the size of the ba
to the number of representatives.

The spin reflection changes the sign of the magnetizat
Therefore it is relevant only for the classification of the sta
when the magnetization is zero. IFRua& is not in the class of
ua& both eigenvectors withr 51 andr 521 can be formed.
IF Rua& is in the class ofua&, it must be obtained from this
state byNa/2 translations~implying that Na must be even!,
since for half-integer spin it is linearly independent ofua&.
The stateuk,a& is an eigenvalue ofR with r 51 for k even
and r 521 for k odd.

The space reflection operator reverses the moment
since one hasLPN(k)5PN(2k)L. The stateLua& can be in
a different class or in the same class. The statesuk,a& and
u2k,a& are linearly independent, except fork50, with ei-
genvaluel 51, or k5Na/2, for Na even, with eigenvaluel
521. As a result, one sees that, for zero magnetization
t561, it is possible to use all the operatorsT,R andL in the
construction of the states. This allows a further reduction
the size of the subspace under consideration. Since s
classes have a definite eigenvalue ofR or L they are simply
7-9
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excluded if their values are not those of the state which
are studying.

Since the complete Hamiltonian commutes with the o
eratorT only transitions to states with the same moment
are allowed, even if separate terms in the Hamiltonian al
them. If Hua&5(baTp(a,b)ub&, wherep(a,b) is an integer
and ub& is the representative of a class, one finally fin
^k,buHuk,a&5(b8aA(Na /Nb)@ tNa

(k)#p(a,b), where the
summation is restricted to the allowed transitions.

The modified Lanczos method19 is very useful to obtain
the ground state of an Hamiltonian. Restricting our attent
to a subspace of fixed magnetization and momentum we
find the ground state of the block Hamiltonian in that su
space. To obtain an approximate ground state we choo
trial stateuc0& that can not be orthogonal to the true grou
state. We define a stateuc1& as19

uc1&5
Ĥuc0&2^H&uc0&

~^H2&2^H&2!1/2
, ~A1!

where ^c1uc1&51, ^c1uc0&50, and ^Hn&5^c0uĤnuc0&.
Defining a matrix of the Hamiltonian in the basisuc0&,uc1&
we can diagonalize it19 obtaining a next order approximatio
for the energyẽ0, and ground stateuc̃0&, with

ẽ05^H&1ba, ~A2!

uc̃0&5
uc0&1auc1&

~11a2!1/2
, ~A3!
et

v.

v.

22441
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a

where

b5~^H2&2^H&2!1/2, ~A4!

a5 f 2~ f 211!1/2, ~A5!

and

f 5
^H3&23^H&^H2&12^H&3

2~^H2&2^H&2!3/2
. ~A6!

Taking uc̃0& as the newuc0& we can iterate the method t
obtain a better estimate for the energy and the ground s

Since the ground state and the first excited of the sys
have different momenta they are both ground states of
ferent subspaces, and we apply the modified Lanczos me
to these subspaces. If the system does not have anisotr
one can alternatively look for the component of the sp
multiplet of the first excited state with magnetization 1.

Extrapolation.The results for the infinite system can b
estimated using standard extrapolation methods like the B
method.28 In the BST algorithm we look for the limit of a
sequence of the typeT(hj )5T1a1hj

v1a2hj
2v1•••, j

50, . . . ,Np21 (Np being the number of data points!, where
hj is a sequence converging to zero asj→`, corresponding
to different system sizesNj . Typically hj51/Nj , with Nj
5a1b j , for some values ofa,b. The value of themth itera-
tion for the sequence is obtained from
ach

r

Tm
( j m)

5Tm21
( j m11)

1
Tm21

( j m11)
2Tm21

( j m)

S hj m

hj m1m
D vS 12

Tm21
( j m11)

2Tm21
( j m)

Tm21
( j m11)

2Tm22
( j m11)D 21

, ~A7!

with j m50, . . . ,M (m) and whereM (m) is the number of values ofTm
( j m) at each iteration. It decreases by one, at e

iteration, fromM (0)5Np to M (Np21)51, when the iteration process is fulfilled. As initial values one definesT21
( j ) 50 and

T0
( j )5T(hj ). The extrapolated value isTNp21

(0) and the estimated error ise5uTNp22
(1) 2TNp22

(0) u. Finally, v is a free paramete

which is adjusted such that the estimate of the error is a minimum.
se-
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14D. Allen and D. Se´néchal, Phys. Rev. B55, 299 ~1997!.
15A.A. Nersesyan, A.O. Gogolin, and F.H.L. Essler, Phys. R

Lett. 81, 910 ~1998!.
16M. Kaburagi, H. Kawamura, and T. Hikihara, J. Phys. Soc. J

68, 3185~1999!.
7-10



18

95

ys

.

ns.

ase
the
-
ery

v. B

it is
the
tem
the

con-

DECOUPLING OF THES51/2 ANTIFERROMAGNETIC . . . PHYSICAL REVIEW B 63 224417
17A.A. Aligia, C.D. Batista, and F.H.L. Essler, cond-mat/00023
~unpublished!.

18T. Hikihara, M. Kaburagi, and H. Kawamura, cond-mat/00070
~unpublished!.

19E.R. Gagliano, E. Dagotto, A. Moreo, and F.C. Alcaraz, Ph
Rev. B34, 1677~1986!.

20E.R. Davidson, J. Comp. Physiol.@A# 17, 87 ~1975!.
21R.J. Baxter, Ann. Phys.~N.Y.! 70, 193 ~1972!.
22B.S. Shastry and B. Sutherland, Phys. Rev. Lett.65, 243 ~1990!.
23T. Tonegawa, I. Harada, and M. Kaburagi, J. Phys. Soc. Jpn61,

4665 ~1992!.
24T. Tonegawa and I. Harada, J. Phys. Soc. Jpn.56, 2153~1987!.
25E.H. Lieb, T. Schultz, and D.J. Mattis, Ann. Phys.~N.Y.! 16, 407

~1961!; I. Affleck and E.H. Lieb, Int. J. Impact Eng.12, 57
~1986!.

26C.K. Majumdar and D.K. Ghosh, J. Math. Phys.10, 1388~1969!.
27K. Nomura and K. Okamoto, J. Phys. Soc. Jpn. Lett.62, 1123

~1993!; J. Phys. A27, 5773~1994!.
22441
.

28See, for example, M. Henkel and G. Schutz, J. Phys. A21, 2617
~1988!; P.D. Sacramento and V.R. Vieira, J. Phys.: Conde
Matter 9, 10 687~1997!.

29An alternative way to determine a transition into a spin-gap ph
is to extrapolate the values of the gaps for spin excitations in
two regimes to the thermodynamic limit. This is a difficult nu
merical problem because it is hard to distinguish between a v
small gap and a null gap.

30J. Bonca, J.P. Rodriguez, J. Ferrer, and K.S. Bedell, Phys. Re
50, 3415~1994!.

31T. Einarsson and H.J. Schulz, Phys. Rev. B51, 6151~1995!.
32The stiffness can be negative for finite systems even though

expected to be either zero or positive for infinite systems. In
thermodynamic limit, a negative stiffness means that the sys
is unstable. In the case of a finite system it may mean that
true ground state is incommensurate with the system size
sidered~see Ref. 31!.
7-11


