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Decoupling of theS=1/2 antiferromagnetic zig-zag ladder with anisotropy
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The spin-1/2 antiferromagnetic zig-zag ladder is studied by exact diagonalization of small systems in the
regime of weak interchain coupling. A gapless phase with quasi-long-range spiral correlations has been pre-
dicted to occur in this regime if easy-plan¢Y) anisotropy is present. We find in general that the finite zig-zag
ladder shows three phases: a gapless collinear phase, a dimer phase, and a spiral phase. We study the level
crossings of the spectrum, the dimer correlation function, the structure factor, and the spin stiffness within
these phases, as well as at the transition points. As the interchain coupling decreases we observe a transition in
the anisotropicXY case from a phase with a gap to a gapless phase that is best described by two decoupled
antiferromagnetic chains. The isotropic and the anisotrpiccases are found to be qualitatively the same,
however, in the regime of weak interchain coupling for the small systems studied here. We attribute this to a
finite-size effect in the isotropic zig-zag case that results from exponentially diverging antiferromagnetic
correlations in the weak-coupling limit.
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[. INTRODUCTION we consider the spin-1/2 antiferromagnetic zig-zag ladder
with anisotropy. The isotropic case has been studied
Antiferromagnetic ladder systems have attracted much inbeforé** as a function of the coupling paramete,
terest recently.On the theoretical side they interpolate be- =J,/J;, which is the ratio of the next-nearest-neighbor in-
tween the well studied antiferromagnetic cHfaand two-  teraction,J,, to the nearest-neighbor interactiody,. As j
dimensional antiferromagnetsThe evolution between 1D increases, the system goes from gaplessgle chain to a
and 2D spin-1/2 antiferromagnetism is not necessarilydimer phase and then to a spiral phase, where the structure
smooth, however. In particular, theleg ladder shows a re- factor has a maximum at a momentun2<q<. The sys-
markable alternating property in the spectrum as the numbdfm has a spin gap in these last two phases, and it therefore
of legs is even or oddThe spectrum has a gap for an evenOnly displays short-range order. In the limit that the intrac-
number of legs while it is gapless for an odd number of |egs_h_a|n interaction is m_uch larger than the interchain interaction
This is similar to the difference between integspin-gap (I —) the two chains decouple and a gapless single chain
and half-odd-integefgapless spin chains. In the limit of behavior is recovered. It has been argued that this only hap-
strong coupling between the two chains the two-leg ladder i§€ns, strictly speaking, gt=: the spin gap becomes expo-
essentially composed of weakly interacting singlets that fornfientially small asj grows, but it remains nonvanishing.
across the rungs. The lowest excitation is the promotion of a
rung singlet to a triplet with an excitation energy of the order i-1 i+1
of the interchain coupling. This spin gap remains nonvanish-
ing even for small interchain coupling due to the fact that a
single antiferromagnetic chain is criticalin the case of
pLérer Ising coupled chains the gap appears for all values of !
n.
The antiferromagnetic zigzag ladder has also attracted in-
terest recently, particularly in the context of experimental

systems with low-dimensional magnetic structures like that Jo : 2
of Cs,CuCl,.2 It is also interesting from a theoretical point of
view because it is a frustrated systésee Fig. 1 Indeed, the FIG. 1. Diagram of the zig-zag ladder. The nearest-neighbor

zig-zag ladder is equivalent to a single antiferromagnetidnteraction is parametrized by, and the next-nearest-neighbor in-
chain with next-nearest-neighbor interactions. In this papeteraction is parametrized kis.
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Recently, on the other hand, it has been proposed that incom- Il. MODEL AND PROBES
mensurf’ite quasrlong-rangg spin cqrr(_alatmns S.hOU|d pe ob- The anisotropic zig-zag ladder is defined by the Hamil-
served if easy-planeX(Y) anisotropy is included in the zig- tonian

5 . .
zag laddef® This is argued to be due to the presence of a
“twist” term that results from the interchain interaction. It 1
has been proposed that there is one gapless mode and oneH= EJfYZ (S'S1+S SL)+% 2 S'S
mode with a gap in the regime of stroXY anisotropy in the : !
inter-chain coupling. Another prediction of this work is the 1 L .
existence of spontaneous local spin currents. This, however, +5J 2 (S'SL S S5 2 SIS,
has been refuted in Ref. 16. Also, other recent numerical ' '
work!” has failed to confirm the gapless nature of the 1)

groun_dstate in the anlsqtropPCY case at We"’?k |r_1tercha|n The spin operators refer to sp+ 1/2 states, while the sum-
coupling. Recent density matrix renormalization group ..~ ", o )
mationi=1,...,N runs along the “rib” of the zig-zag lad-

8 .
(DMRG) results® suggest, however, that the zig-zag Iadderd}gr. We shall parametrize the interactions by the coupling

iges indeed show a gapless chiral phase as predicted in Rf)arameterj :J>2<Y/J>l<y and by the anisotropy parameter
) ZpAXY _ A — 127 1XY : . .
In this paper we use exact diagonalizations, the modifie&_ll‘]1 A ‘]2/;]2 ' (The' 'SOUOEZ'YC_ case reduces 1
i =J,/3;, andA=1.) We will setJ7"'=1 henceforth. Con-
Lanczos method and the Davidson meth6dto address the . : . . oo .
o g . ; sider first the nearest-neighbor Heisenberg chain with anisot-
possibility of a transition from a spin-gap regime to a gapless , .
; Lo : . . ropy, which corresponds to both the weak-coupling (
regime as a function gfwhen anisotropy is present in small

. o .=0) and to the strong-coupling{=0) limits of the zig-za
S=1/2 antiferromagnetic zig-zag ladders. We compute Va”]ad(;er(see Fig. 1 Thge sp:ctrl?]rﬁ is )gapless for thegcasg of

ous probes to identify the different phases and study thelg(Y anisotropy/A|<1, as shown by the Bethe ans&tZhe

behavior close to the transition points. We study in particulat,, .itation spectrum consists of spin-1/2 particles dubbed

the spin stiffness, the dimer correlation function, the Struc'spinons. Since flipping one spin represents a spin-1 excita-
ture factor, and analyze in detail the spectrum in the variougon, the spinons can only be created in pairs. Therefore the
parameter regimes. Since the zig-zag ladder effectively hagonventional spin 1 magnons are deconfined into spin-1/2
both nearest-neighbor and second neighbor interactions, ghinons that propagate incoherently. In the regime wiere
stiffness tensor is required to account for these two types ok — 1 the groundstate is ferromagnetic. Whel<A<1
interactions. The eigenvalues of this<2 matrix then be-  the leading spin configuration is the &lestate with the stag-
come the natural spin rigidities that we use to clarify thegered magnetization lying within th¢Y plane. AtA=1 the
behavior of the system in the various regimes. The stiffnesground state is again in a Mestate, but with a staggered
of a system is a particularly good measure of the long-rangenagnetization that can point in any direction. Last, the spec-
nature of the ground state. Introducing twisted boundary contrum shows a gap in the Ising regime/t-1. The ground-
ditions leads to a response in the energy if the quantum stategate, on the other hand, displays strict long-rangel Ne-
are extendedgapless cageOn the other hand, the energy is der, with the staggered magnetization directed alongzthe
insensitive to a change in the boundary conditions if theaxis.
quantum states are localizéspin-gap case Therefore, the We shall begin our study of the antiferromagnetic zig-zag
stiffness with respect to such a twist is positive if the systemadder by analyzing the classical limit of the isotropic
is gapless and it is zero if the system has a gap. Also, thgjeisenberg case first}Y=J, =J% and J>2<Y:JH:J§ as S
dimer correlation function naturally signals the dimer phase_, .. A spiral stateS" =Sd* yields an energy per site of
while t_he structure factor is a natural way to detect and studt(e) — SZJH cos(¥)+SX, cosé. This magnetic energy is
the spiral phase. , , o minimized at a pitch angl@, that satisfies coéy=—3J, /J,

Our results are consistent with a gapless excitation speggy; interchain exchange couplings that are below a critical
trum in the case oKX anisotropy at weak interchain cou- valueJ$ =4J;. A ferromagnetic state on each chain occurs,

pling. We obtain qualitatively similar results for the isotropic on the other hand, at strong couplidg>J° , with a pitch

case, however. This is most likely a finite size effect due to - . : .
-angle of o= . The spins are thus arranged antiparallel in-

the exponentially Sma”.spif‘ gap that persists in. thg is'o'[mp'(f)etvveen chains. To summarize, the system is in a spiral
zig-zag at weak coupling in the thermodynamic lifitin hase forJ, <4J;, while it is in é collinear phase fod,

fact, we show that the phase diagram that is obtained fro . .
the analysis of the spectrum for finite systems may be con- 4J) . The same holds true when oy coupling exists.

sistent with the field theory predictiGhafter performing ex- In the case of Ising coupling OQ'V' ?nz the oZtherZhr;md, we
trapolations to the thermodynamic limit. have the effective modeH=J/%SS ,+J 2SS, ;.
The paper is organized as follows: In Sec. Il we presenfrhere are two pgssible groundstatesz. Thelflrst is the cc_;llmear
the model and the quantities to be calculated. In Sec. Il wState defined b$=3, fori even ands/=— for i odd (this
present our results and in Sec. IV we summarize the workl@s a degeneracy 2) with an energy per siteEefS*(Jf
Technical details concerning exact diagonalization are giverrJ7). The other state is the antiferromagnetic one defined
in the Appendix. We also briefly review the extrapolation by = S/=3(—1)"/? for i even and+ S7=3(—1)(*V"2 for i
technique to the thermodynamic limit here. odd (this has a degeneracy<2), with an energy per site of
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E= —SzJﬁ. We have an Ising antiferromagnet faf <2Jf
and a collinear Ising ferromagnet fdﬁ>2Jﬁ, with a first
order transition separating the two phases.

Consider now the stiffness tensor in the classical limit.
Imposing a spiral spin configuration on the zig-zag ladder
with a pitch angled, the energy per site of the classichl

—J, model is then given as above by %

E
e=1 =S%J, coq 0+ 6,)+S2J,co926+6,), (2

where we have added small twigig and 6, to the nearest-
neighbor and the next-nearest-neighbor terms, respectively
For ,=0=0,, we have that cog,=—1 for J;>4J, and
that cosy=—3(J;/J,) for J;<4J,, as stated above. The spin 200 05 10 15 2.0
currents are then given by i

FIG. 2. Classical stiffnessep,1/(J;S?), p»/(3;S?), and

oe

jlzm =—S23;sinb,, ps/(3;S%) as a function of =J,/J;.
1lo
Je In the general quantum case we calculate the stiffness in
j2:7 =—S%J,sin 26, (3)  the standard wa§: We consider the Hamiltoniafl) with
9021, periodic boundary conditions imposing uniform twists

and the rigidity components by around thez axis:

dj1

EY 1 o
1311—(901 . S7J; cosby, H(gl,gz)zz\])lwzi: (S*S,€+S S e i)
91 1 oxv ta aifpy oot aif
pr=5g-| =0, 5352 (S8 ,€ 25 80T
2o i
dj z zoz z 7oz
p2228+922 = —S2J, cos 29,. (4) +J|Ei SS+1+JZZ SEIPE 5
0

Note that both the spin currents and the stiffnesses are indetere 0, and @, are two independent twists that act separately
pendent of the anisotropy parametein the classical limit:  along the interchain and intrachain directions, respectively.
the isotropic and theX'Y anisotropic cases give the same Expanding the exponentials to second order we obtain the
results. In the collinear phase &>4J,, the spin currents form

vanish (;=0=j,) and p;;=S%;, p,=0, and py

=—S2J,. On the other hand, in the spiral phase]g;t:4J2 1

the local spin currents are nonvanishing;=*+S°Jq[1 — 1 2_ T2
—(J,/43,)?1"? andj,= — %j,. However, the total spin cur- H(6:,62)=HO0+ 012 I 022 izt
rent js=j;+2j, is null. The stiffness tensor of this spiral 1

phase is given byp;,;=%S%(3%/3,), p1,=0, and py, x> T 22 T2, 6)
=SZ[J2—%(J§/J2)]. The natural stiffness associated with [ 25

the total spinjg is the response to an external twist that

satisfiesf,=260,, and is given byps=pq1+4p1ot4p,s. It where

reduces tops=S%(J;—4J,) in the collinear phase and to

ps=S74J,— %(Jf/\lz)] in the spiral phase. These results are .

displayed in Fig. 2. Here it is shown thaf is always posi- Ji:LII_Ji(Y(SIJrS:_l_S*SIt_l)'

tive and vanishes at the classical transition point between the 2

collinear ferromagnet to the spiral phase. Recall that the na-

ture of the ground state changes across this transition. Also, i

we remark that in the spiral phase only the stiffnpssand Ji2:_3>2<Y(s.l+ . ,—S S',) (7)

the total currents are “well behaved.” The other compo- 2

nents show spontaneous spin currents, whilgis not al-

ways positive(we will return to this point later while dis- are the spin currents along the interchain and intrachain di-
cussing the quantum cagse rections, respectively, and where
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11xv+— -t 1XY N + o - ot
Ti=591"(S"S51+ S Sk, H(81,82)= 53" 2 [1+(=1)'811(S' S 1+ S §')

1 _
1 + 53 2 (14 (=)' 81(S S+ S7S )
Ti=59Y(S'S,+SS%) ® |

+31 2 [1+(=1)'0,]S'S
are the kinetic energy operators. Using second-order pertur-
bation theory, we then obtain that the ground state stiffness 2 i 7z
tensor,pp= (39°E/36,30)|o, is given by +J2 2,: [1+(=1)'02]S'S 4. (12
Once again using second order perturbation theory we obtain
that the susceptibility,z= —(azE/&5a053)|0 is given by
paﬁz - ZI <O|Tia|0>5a,ﬁ

1 L
. Xep=2ReZ = 2 (10T MD)]y)
—22, =— 2 (Olif»(liflo), (9
v#0 By~ Eo 1 X (v|(TF+MP)|0), (13
) ) where

where|0) is the ground state and') are the excited states
(a,=1,2). The ground state is assumed to be nondegener- M{=0iSS, |,
ate. Both the spin current operat#ft=X;J{* and the kinetic
operatorT*=3; T commute with the translation operatar, MZ=J055"S7 . (14

and conserve tOt"’.‘I SpiB, (where a=1,2). Ther(_afore, the In the dimer correlation function, the factor-(L)'*! implies
states|v) in the stiffness formuld9) are the excited states ; . RO
o . o that the state$r) are contained in the same magnetization
within the subspace of a given magnetization and momentum . -
ubspace, but in the=ky*+ 7 momentum subspace, where

that contains the ground state. We note that the off-diagon i .
stiffnessp;, is equal to the static mixed spin-current Cor_el‘;%;isntehdeigr;)huenﬂssljz':ewrgg.mentum. Last, the structure factor is

relator.
As in the classical case discussed earlier, the stiffness can A

also be calculated direcfltaking numerical derivatives of S(q)=2, €'vc,, (15)

the energy with respect to small twist$, and 6,, that are '

imposed on the system. This procedure requires carefthat where the correlation functio8, is defined by
and 6, are small enough so that there be no level crossings.

(We prefer to use the correlation function method, even 1 . o
though the results using both methods agree very wHtle CFm Z (0ISi-Si+¢|0) (16)
change in energy due to small twisés and 0, takes the
form and is normalized such that the local correlation function
(r=0) is unity.
_1os 1 lll. RESULTS
OB =5 p1101+ p120102F 5 P22t (10

We now proceed to study th¥XZ zig-zag model(1)
using exact diagonalization of finite systems with sizes up to
in the absence of spontaneous spin currents. It is then naturtli=28. The full energy spectrum is obtained for the smaller
to consider the eigenvalues of the stiffness tensor system sized\ =< 16, while only the ground state and the first
few excited states can be determined for the larger system
sizes. The eigenvectors and eigenvalues of Hamiltonian Eq.
1 \/ pu—p2\° (1) are then substituted into EqQ), (13) and (15) to com-
P¢=§(P11+Pzz)i ( 2 ) +p12 11 pute the various correlation functions. Our main aim is to
study the transitions between the various phases.
SpectrumLet us first survey the energy spectrum that is
and the determinar=p ., p_=pip,— p3,. These eigen- displayed by these small systems. We shall keep track of
values will be computed using expressi® for the stiffness  important quantum numbers associated with each energy
tensor in the next section. level, such as the momentum along the rib of the zig-zag, the
We shall also calculate the correlation function associategpin, and the parity. We shall also identify points in param-
with the dimerization via linear response theory. Imposing aeter space where low-lying levels cross, and use this to iden-
small explicit dimerization, we consider the Hamiltonian  tify phase transitions in the system. This procedure is known
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to yield accurate transition points when applied to even rela- TABLE I. Lowest energy levels foN=16. The states are rep-

tively small system&:2® being free from logarithmic correc- resented by theis, values and momenteS(;k). When more than

tions, as discussed in Ref. 27. one state is represented this means they are degenerate. When the
Let us begin by determining the quantum numbers of thdnomenta are .not O7 or 7/2 the momentum of the state is repre-

groundstate as a function of the siidor the S=1/2 zig-zag ~ >cted Py an integen, such thak=(2/N)n.

antiferromagnet. Periodic boundary conditions are imposejj

throughout. The ground state is a spin singlet in general due A=0 A705 ——
to the antiferromagnetic interactions. For strong enough cou- (2;,m) (0;0) (0,1,2;097)
pling between chaing,=J,/J,<1/2, it has either momen- (0;m) (0;m) (0;7/2)
tum 7r for N=4n+2 or momentum 0 foN=4n. For weak (1;m7/2) (1;/2) (0,1;m/2)
enough coupling between chaips 1/2, on the other hand, 10 6,0 (0,0 (0,0
the momentum oscillates between 0 amdis a function of

the coupling parametgrand of the system sizi.?* There (2;m) (0,0 (0;m/2)
are several points alongin this regime where the corre- (0;m) (0;m) (0;m)
sponding energy levels for these two momentum values (1;712) (1;m/2) (0,1;m/2)
cross. The ground state is degenerate at these points, and tRis 6,0 (0,0 (00
is reflected by peaks in the dimer correlation functisee

Fig. 8. Such level crossings grow in number as the system (2;m) (0;7/2) (0;7/2)
size grows, and this indicates that the two singlet states in (0;m) (1;m/2) (0,1;7/2)
guestion are in fact degenerate in the thermodynamic limit. (1;7/2) (0;m) (0;m)
By the Lieb-Schultz-Mattis theorefi this is consistent with 1.5 (0;0) (0;0 (0;0

a spin gap in the excitation spectrum that survives the ther-

modynamic limit in the weak-coupling reginje>1/2. (0;) (0;)

Consider now the specific case of AXZ zig-zag chain (1;7/2) (1;7/2) (0,1;7m/2)
(1) with N=16 sites under periodic boundary conditidase (0;) (0;7) (0;m)
Table ). In the isotropic case\ =1, the states are organized 1 (0:0 (0:0 (0:0
into spin multiplets due to th8U(2) spin invariance. Again,
fche anti_ferr(_)magnetic interactions imply that the ground state (1:3) 1:3) (0,1:7)
is a spin singlet §,=0) in general. The system has three (0;m) (0;7) (0,1:3)
well defined regimes(a) strong coupling,(b) intermediate 0:0 0:0) (6.6)
coupling, andc) weak coupling. In the strong-coupling limit - (0',77) (0_'77) (0,'77)
(@, j=J,/3,—0, the ground state has momentkm0. The ' ' ' ’
first excited state forms a spin triplet in such case, vkith 0:0 (1:1) 0.1:1
=, while the second excited state is another spin singlet ! !
with S,=0 andk= . At j =j%,~0.24 there is a level cross- (Lim) (Lim) (00
. ) . cl . (0;7) (0;7) (0,1;7)
ing where the first excited states and the second excited statt)e5 (0:0) (0:07) (0:0m)
interchange(herej?1 is the value ofj at which the level ' ” Y Y
crossing occurs for the system with siX®. In the thermo- . . .
dynamic limit the two lowest singlet stateS,& 0, k=0 and (Ojﬂ) (OIW) (0'1_’])
S,=0, k=) become degenerate and there is a finite gap to (ij) (Ojﬁ) (O’.l’”)
the next excited statéhe triplet stateS,=0, +1, k=). (L;m) (L) (Oym)
Although the system begins to dimerize at this stélge 025 0.0 ©.0 ©.0
antiferromagnetic correlations along the rib of the zig-zag
remain dominant up to the Majumdar-Ghosh p8irt j (0;m) (0;m) 011
=1/2. The ground state is doubly degenerate for any system (0;m) (0;m) (0;m)
size at this point, where the two states are perfectly dimer- (Lim) (L) (0,1;m)
ized. Antiferromagnetic correlationgithin chains of the zig-  0-1 ;0 ;0 (0,0

zag become dominant beyond this point at weaker couplings
j>1/2 (see Fig. 9. Another level crossing occurs gsn-
creases to aboqfc\‘2~1.6 such that the first excited states  The spectrum of the anisotrop®=1/2 XXZ zig-zag lad-
become two triplets witt8,=0, =1, k= +#/2. The ground der has also been studied previously in the strong-coupling
state displays quantum numb&s=0 andk=0 at this stage regime up to the Majumdar-Ghosh line <G<1/2)?" A

(c), and it is no longer degenerate. This remains sg as gapless regime occurs fofY anisotropyA=<1 and strong
—oo, |t should be mentioned, however, that White and Af-couplingj<j..(A), an Ising antiferromagnet along the rib of
fleck predict that a nonzero spin gap persists in the thermahe zig-zag that shows a spin gap in the excitation spectrum
dynamic limit at weak-coupling>1 between chains, and occurs forA>1 andj<j.(A), and a dimer phase regime
that it becomes exponentially small agrows: (we will that also has a spin gap existsjatj.;(A) and anyA [here
return to this point later jc1(A) is the transition line obtained from extrapolation to
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3.5

GAPLESS PHASE

GAPPED PHASE

N 1

A
FIG. 3. Crossing points of the first excited state as a function of

N for different values ofA at weak coupling. FIG. 4. Phase diagram in the regime of weak interchain cou-
pling. The critical coupling parameter,, is obtained from the

the thermodynamic limjt The linej=j.(A) separates the crossing of the first excited state with the second excited state after

gapless phase from the dimer phasefex1, while it sepa- extrapolating to the thermodynamic lin(gee the Appendix

rates the dimer phase from tkising) Neel phase forA>1.

The line atA=1 andj<j., separates thXY gapless phase state is not a spin singlet. This level structure is in fact the

from the Ising phase. same as fof — .

Consider again the specific case Mf=16 sites in this In Fig. 3 we present the crossing points between the states
instance, with anisotropy parameteis=0 or A=0.5 (see ~S,=0, k=7 andS,=*1, k== «/2 that signal this transi-
Table ). The ground state is a singlet wiy=0 andk=0 tion as function of the number of sites for several values of
asj increases from the strong coupling limit g0 up to  the anisotropy parametér. We have attempted to extrapo-
j=1/2. The first excited state has degeneracy 2, with spifate the crossing pointgy, , to the thermodynamic limit by
S,= =1 and momentunk= 7 inside this regime. The next employing a standar@BST) algorithm due to Bulirsch and
excited state is again a singlet wiy=0 andk=m. Asj  Stoer?® The method is explained in the Appendix. The re-
increases there exists a line of poinjty,jg‘l(A), such that sults of this extrapolation procedure are shown in Fig. 4,
the energy level of the excited state wiy=+*1, k=7  wherej., is plotted as a function oA. The curvej., sepa-
crosses the energy level of the excited s&te 0, k=7.2"  rates a spin-gafdimen phase from a gapless phase at small
Forj >j§1(A) the two lowest states are the two singlets withinterchain couplingé® As expected the value gf, grows
S,=0, k=0 andS,=0, k= . Again, these two states be- near the isotropic point(lt should tend toj=o at A=1
come degenerat@vith a gap to the first excited statm the  according to White and Affleckd)
thermodynamic limit. The ground state must be a spin singlet Physical probesCorrelation functions can also be used to
with S,=0 due to the antiferromagnetic couplings. This ex-determine the nature of different thermodynamic ground
cludes the possibility that ang,= +1 state be degenerate States. The spin rigidity, in particular, can discriminate be-
with it. As a result, the level crossing between the=+1  tween phases that do and do not have spin gaps. The stiffness
and singlet states can be used as an accurate criterion @ the nearest-neighbor spin-1/2 Heisenberg chain has been
determine the phase transition between the gapless and thglculated exactly via the Bethe ans&tan the thermody-
spin-gap regime®.If we increasej up to j=1/2, then the namic limit this solution yields
system is exactly degenerate for all system sizes. This is a
feature of the Majumdar-Ghosh point, which has a perfectly P m™ T
dimerized ground state. The behavior of the system does not IXY_Z My
change much for intermediate couplifg-1/2 beyond this
point, with the exception that the momentum of the two low- . .
est states interchanges betwden0 andk= 7 asj grows. for anisotropies
At a larger value of =j’g‘2 between 1.2 and 1.6, however, ,
a level crossing occurs between t8g=0, k=0 or 7 state coszz i:A
(first excited stateand a state witls,= + 1, k= /2 (second nogx
excited state Notice that the momentum of the first excited
state is nowk= /2. This is to be expected in this regime Wherenis a positive integer. This yields;;/J} "= 1/4 in the
since the two chains are weakly coupled, and the periodicitysotropic case angy;/J%Y=1/m in the XY-case. In Fig. 5
doubles. Folj>2, in particular, the first excited state is now we plot the exact Bethe ansatz stiffédsr the single chain
fourfold degenerate,= +1k=+7/2), and we might ex- and compare it with the numerical diagonalization results for
pect to fall back into a gapless regime since the first excitedN=28,12,16,20 sites. The spectrum is gapless fromXfve

P —
n

— (17)
m o™
i

(18)
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S=1/2 Antiferromagnetic Chain 10

A=1 e
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FIG. 5. Comparison of the exact Bethe ansatz result for the spin
stiffness of a single chain to the numerical results obtained from
diagonalizing small systems as a functionAof os |
limit up to the isotropic Heisenberg case. Beyond this critical
point the spectrum acquires a gap due to the Ising anisotropy
and the stiffness goes to zero. The stiffness remains positive, o4 |
beyond the transition point for the small system sizes that we
studied, however. The anisotropy at whiph,=J7"/4 ex-
trapolates nicely to the Heisenberg poit= 1, in the ther-
modynamic limit,N— o, however.

The zig-zag laddefor the chain with next-nearest neigh-
bor interactiong on the other hand, is not solvable by the
Bethe ansatz, and so other methods become necessary = o0 : ‘
compute the spin rigidity. With this purpose in mind, exact () o0 08 e '8 20
diagonalization calculations of the isotropic spin-1/2 Heisen-
berg chain with next-nearest neighbors interactions where FIG. 6. (a) Stiffnesses;, p1,, andp,, as a function of for
carried out first by Boncat al*° on small systems, where A=1 andN=16.(b) p.. as a function of for various system sizes
the diagonal componemt;; of the stiffness tensor was com- for A=1.

puted(see also Ref. 31 We have completed this study by

calculating the remaining components of the stiffness tensofti €SS componeniy; tums negative with a transition point
(9), including cases with anisotropy. In Fig. 6 we show the!© & quantum disordered phase with a spin Gepxtrapolat-

results for the various stiffnesses for the zig-zag ladder in théd to the thermodynamic limit they estimated the transition
isotropic case as a function pffor N= 16, while the same PoInt to occur ag.=0.270=0.005. We believe that it is a
set of results are shown for theY case A =0) in Fig. 7. In better idea to Ioo_k at the 9|genvaIL(dﬂ) of _the full _stlffness
Figs. 6a) and Ta) we show the stiffnessgs,;, py, andpy,. tensor to determine pos§|ble phase transt?ﬁﬂa.ﬁgs. Qb)
For smallj we are in the limit of strong interchain coupling @nd Ab) we plotp.. for different system sizes. This stiffness
(small next-nearest neighbor interacti@nd we recover the IS @ways positive for al), while p_ is always negative. For
previous result€® p,,;>0 andp,,<0. This is also found in SMallj, p. is positive and of order unity. Ap growsp.,
the classical case. In the opposite weak-coupling limit of?€COMes close to zero ﬁtaval_u.q diat is close to the value
very highj, p;; remains negative, but,, becomes positive Whereps; crosses zerd,,; . Asj increases furthep . again
(as in the classical caseThe latter is consistent with the Pegins to grow appreciable near the point at whighturns
extreme limit of two decoupled antiferromagnetic chainsPOsitive,j;, . A finite size analysis reveals that as the dize
(3;=0). Also, p3, becomes nonzero in the intermediate re-grows the first “zero” ofp . (nearj=j},) occurs at smaller
gion where quantum fluctuations are stronger and where thealues ofj and extrapolates to a value close to the dimer
transition between weak coupling and strong coupling octransitionj; determined by the level-crossing method. Simi-
curs. Note that the classical analysis reveals that the fact théarly, we expect that the second transition to a nonzero stiff-
p1, becomes nonzero and the fact tpat becomes negative nessp. (near] =j§2) signals the transition to a gapless re-
are purely quantum effects. gime that extends up to=<0, and that it might therefore also
In the initial exact diagonalization study for the isotropic signal a decoupling transition. This happens, however, both
case, Boncat al. chose to identify the point at which the for A=0 and forA=1. We believe that this is due to a

02

224417-7



VIEIRA, GUIHERY, RODRIGUEZ, AND SACRAMENTO PHYSICAL REVIEW B63 224417

4.0 T T T

4000

N=16
o5 2000
40
6 ‘ k A .
0.0 05 1.0 15 20
4000 U .
A-1
3 .5 2000 |
6.0 . . . {
0.0 0.5 1.0 1.5 2.0 0 : » -
(@) i 0.0 05 1.0 1.5 2.0

FIG. 8. Dimer correlation function foN=16 andA=1 andA

j~1 the dimer correlation functiog,, becomes smallThe
susceptibilitiesy, and x,, are always quite small.

Finally, remnants of the spiral phase that exists in the
classical limit,S— o, are clearly apparent in the momentum
dependence of the structure factor. In Fig. 9 we show the
structure factor as a function of momentum for several val-
ues ofj in the Heisenberg case at=1. We see that the
location of the maximum shifts from,,,,= 7 (for j<0.5) to
a value 7/2<K <7 when j>0.5, thereby signaling the
spiral phase. The results are similar fo=0.

0.6

0.2

0.0 .
0.0 05 10 1.5 20

(b) ]

FIG. 7. (a) Stiffnesses11, p12, andp,, as a function of for
A=0 andN=16. (b) p, as a function of for various system sizes
for A=0.

IV. CONCLUSIONS

The S=1/2 antiferromagnetic zig-zag ladder is a difficult
problem to solve due to the intrinsic frustration and to the
criticality displayed by both the strong and the weak-

finite-size effect in the latter case as discussed above. Th
fact that finite-size effects in the spin stiffness of a single
chain become larger as tier anisotropy decreasésee Fig.
5) supports this claim. 3.0

The level crossing at weak couplingy,, does not, how-
ever, correlate well with,. The crossings defined bjy),
appear at smaller values johs compared witlj1c'\‘2 . Although o0
both have the same trend, apparently finite size effects ar
stronger in the calculation of the stiffness than in the deter-
mination of the level crossings. We have therefore limited
ourselves to the extrapolation of the level crossing points
jc2-

In Fig. 8 we show the behavior of the dimer correlation

0.0

function y4,. Forj >j?l the dimer correlation function in- 0.0 0.2 0.4 06 0.8 1.0
creases signaling the spontaneous dimerization observed i ¥n
the thermodynamic limit. The various peaks signal level kg 9 structure factors(q), for N=16 andA =1 for various

crossings of the ground state between near-degenerate staggfpling strengths. The peak is locatedjat in the single-chain
with momentunk=0 andk= 7 asj varies. The Majumdar- |imit, j=0, but this momentum tends tp= /2 asj increases. This

Ghosh point atj=1/2 is special since the ground state isindicates the presence of important spiral correlations in the
doubly degenerate for all system sizes in such case. Beyongeakly-coupledS=1/2 zig-zag antiferromagnet.

1.0
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coupling limits. The weak-coupling limit is particularly dif- tries of the problem. The Hamiltonian commutes with the
ficult in the absence of anisotropy, in which case antiferrototal spin operatoS;, with the translation operatd¥, the
magnetic correlations diverge exponentidffyThis renders spin flip operatorR, and the space reflection operato(i
any numerical study of finite systems hard. —N+1—-i,i=1,...N). In the absence of anisotropies the
In this paper, we have performed an analysis of the exagjamiltonian also commutes with the total spin operator
properties of such finite systems, looking at various correla(§T)2 and the energy levels come in spin multiplets. The

tion functions and the structure of the spectrum both in th%peratorR commutes withT but, althoughL. commutes with
isotropic and the anisotropic cases. We have looked at thﬁ it does not commute Wit éinceLT=T‘lL

spectrum and have computed the spin stiffness of the zig-zag The action of the local operatoS” and S is simply
ladder, and have thereby found evidence for a gapless regime . . , PN
at weak coupling that survives the thermodynamic limit in9'Ven N the d'rSCt product basisni)- - -|my), Wh'Ch, are

the case ofXY anisotropy. However, the isotropic and the &19€nvectors oSy. In general, these states are not eigenvec-
anisotropic cases look qualitatively similar. We believe that0rs of the additional symmetries. We consider first the trans-
this is due to a strong finite-size effect in the former caselations, obtaining the classes of states which are closed under

This claim is supported by the increase of finite-size effectdNem. One starts with a stafe) andNappllesNa times the
in the stiffness of a singl&=1/2 antiferromagnetic chain translation operator until one findsT a|a>_=|a>, whereN,
with decreasing(Y anisotropy, as shown in Fig. 5. is necessgnly a divisor dX. The s;ate}a) is the representa-
It was previously showhthat the dimer transition can be tive of this clgss. Ir_1 cpmbmatorlal theory this is called a
accurately determined in relatively small systems by study€cklace and its periodic part, of lendtfy, a Lyndon word.
ing the level crossing of the first and second excited stateghe other classes are formed proceeding in the same manner
after extrapolating to the thermodynamic limit. We haveStarting with other states, not already used, urltll all the states
used a similar criterion to detect a possible transition fromhave been exhausted. In each class, siflte=1, the pos-
the dimer phase to a gapless phase at weak-interchain cosible eigenvectors ofT are tNa(k)=e'2”k’Na, with Kk
pling. Using standard extrapolation techniqusee Appen- =0,... N,—1, corresponding to the momentunp,
dix) we have cpnstructed a ph'ase diagi@ee Fig. 4inthis  =27k/N,. The operatordy (k) = (1IN) = =0 T/ty(k) ]
regime that is in agreement with a recent proposéal for a gapare projectors, i.e., they satisBy(k)Py(k') = Sk Pu(K).
less spiral phase in the presenceXdf anisotropy: They also have the properfyPy (k) =ty(k) Pn(k). The pro-
Also, we expect the spin stiffnegs, to be a good mea- jector Py (k) acting on the states of a class with elements

sure of the nature of the spectrum. In particular, it can beduces to l/N,)Py_(K), if ty(K) is one of thety (k) and
used as an order parameter to distinguish gapless from spin- a 2

gap phases. A positive stiffness indicates a gapless excitati ves zero otherwise. The normalized eigenvector of mo-
’ ) - ; entump, formed from the class of the std@&) is given by
spectrum and a null stiffness indicates a net spin-gap. The . o
antiferromagnetic zig-zag for spi=1/2 showed an appre- 1K:a)= NPy, (K)[a). Since the Hamiltonian commutes
ciable positive stiffness in the limit of strong interchain cou-with S; and T, the subspaces of fixed magnetization and
pling (similar to the single chain cagea very small yet momentum are invariant subspaces and it is important to
positive stiffness in the intermediatepin-gap regime, and consider each of these subspaces separately. A general state
then again an appreciable positive stiffness in the limit ofis written as a linear combination of the statksa) corre-
weak interchain couplingsimilar to two decoupled chains sponding to that magnetization. The stdkea) is repre-
This was true for all values of theX(Y) anisotropyA<1.1t  sented bya). This allows us to reduce the size of the basis
is known from previous work® however, that a spin gap is to the number of representatives.
always expected to be present in the isotropic case at weak The spin reflection changes the sign of the magnetization.
coupling. The stiffness should therefore remain zero in thélherefore it is relevant only for the classification of the states
thermodynamic limit al =1 in the weak-coupling regime. when the magnetization is zero. Bfa) is not in the class of
We believe that the discrepancy between this expectatiofa) both eigenvectors with=1 andr=—1 can be formed.
and our results is a strong finite size effect in the isotropidF R|a) is in the class ofa), it must be obtained from this
case that is due to the exponentially diverging antiferromagstate byN,/2 translationgimplying thatN, must be even
netic correlations? Clearly, larger systems need to be stud-since for half-integer spin it is linearly independent |ej.

ied. The statelk,a) is an eigenvalue oR with r=1 for k even
andr=—1 for k odd.
ACKNOWLEDGMENTS The space reflection operator reverses the momentum,
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=—1. As a result, one sees that, for zero magnetization and
t==1, itis possible to use all the operatdrdk andL in the
construction of the states. This allows a further reduction of
Exact diagonalizationThe size of the Hilbert space under the size of the subspace under consideration. Since some
consideration can be considerably reduced using the symmelasses have a definite eigenvalueRobr L they are simply
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excluded if their values are not those of the state which wavhere
are studying.

Since the complete Hamiltonian commutes with the op- b=((H2)—(H))12 (A4)
eratorT only transitions to states with the same momentum
are allowed, even if separate terms in the Hamiltonian allow

them. If H|a)=3,aTP@P)|b), wherep(a,b) is an integer a=f—(f2+1)"? (A5)
and |b) is the representative of a class, one finally finds
(k,b[H|k,a)=2p"a(Na/Np)[ty ()P, where the and
summation is restricted to the allowed transitions.
The modified Lanczos methbtlis very useful to obtain (H3)=3(H}H?)+2(H)3
the ground state of an Hamiltonian. Restricting our attention f= 2((H2)—(H)?)3"2 (AB)

to a subspace of fixed magnetization and momentum we will
find the ground state of the block Hamiltonian in that sub-_ =~ _ .
space. To obtain an approximate ground state we choose z2KINd [#o) as the newyo) we can iterate the method to

trial state| o) that can not be orthogonal to the true groundOPtain a better estimate for the energy and the ground state.
state. We define a stafes,) as® Since the ground state and the first excited of the system

have different momenta they are both ground states of dif-

A | o) — (H)| o) ferent subspaces, and we apply the modified Lanczos method
|1)= > PN (Al)  to these subspaces. If the system does not have anisotropies
((HS—=(H)) one can alternatively look for the component of the spin

multiplet of the first excited state with magnetization 1.
Extrapolation. The results for the infinite system can be
estimated using standard extrapolation methods like the BST
- ~ ) method?® In the BST algorithm we look for the limit of a

for the energye,, and ground statpy), with sequence of the typeT(hj):TJrath@Jrazhjszr e

=0,... Np—1 (N, being the number of data pointsvhere

where (¢1|)=1, (y|hoy=0, and (H")= (4| H"|1hy).
Defining a matrix of the Hamiltonian in the basig,),| 1)
we can diagonalize? obtaining a next order approximation

‘€o=(H)+ba, (A2) : ; . _
h
j is a sequence converging to zerojasx, corresponding
. to different system sizebl;. Typically hj=1/N;, with N;
Yoy = M’ (A3)  =athj, for some values oh,b. The value of themth itera-
(1+a?)? tion for the sequence is obtained from

(imt1)_ +(im
TmTl _TmTl

(im) — 7(im+1)
L e ey R 5 e o R (A1)
Im ) __m-1 m-1 1
Mipem |7 Ty =Ty
with j,=0, ... M(m) and whereM(m) is the number of values onTj]’“) at each iteration. It decreases by one, at each

iteration, fromM(0)=N, to M(N,—1)=1, when the iteration process is fulfilled. As initial values one defifi¥s=0 and
TY=T(h;). The extrapolated value Péﬁ’g,l and the estimated error is= |T&13,2—T(N°p),2|. Finally, w is a free parameter

which is adjusted such that the estimate of the error is a minimum.
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