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Spin accumulation and resistance due to a domain wall
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Starting from the kinetic equation for the Wigner function, we study the spin-accumulation mechanism of
excess resistance in a domain wall. The magnetization induced around the wall is calculated (v iats]
coordinates. Compared to the spin-diffusion length of the longitudinal magnetization, that of the transverse one
is greatly reduced due to the fast precession of the magnetization vector in the local exchange field. Conse-
quently, a considerable quenching of the spin-accumulation mechanism is predicted. For a Bloch wall in
cobalt, the excess resistance due to this mechanism 510 * of the value expected for the interface with
an abrupt rotation of the magnetization vector. Thus, contrary to the suggestion oBEBE[$hys. Rev. Lett.

84, 983(2000], the spin accumulation mechanism cannot explain the large excess resistance observed on thin

cobalt wires.
DOI: 10.1103/PhysRevB.63.224412 PACS nunt®er75.70—i, 73.40.Cg, 73.50.Bk
[. INTRODUCTION Jsq being thes-d exchange integral. Actually, a certain de-

gree mistracking given by the raté= /2w, takes place in

A number of transport experiments on ferromagnetic meta domain wall in cobalt. According to Gregef al.,? this
als with electric currents traversing domain walls havemistracking acts in combination with the spin-dependent
shown that the walls act as a source of extra resistifice. scattering due to impurities. The latter effect is also respon-
Theoretical studies of this effect began with the works ofsible for the giant magnetoresistan@@MR) in magnetic
Cabrera and FalicoY.Using the classical Boltzmann ap- multilayers.
proach, they calculate the local conductivity tensor from the Starting from the same Hamiltonian as used to explain
local effective mean free path. Assuming a relatively purethis GMR, Levy and Zharfycalculate the spin-dependent
specimen, such as iron whiskethey investigate first the scattering in the wall using electron wave functions per-
electron scattering due to the twisting exchange field in theurbed by the twisting magnetization in the wall. Due to mis-
wall (paramagnetic effectThe main result is that as long as tracking, the wave function of an electron with spin aligned
the wall is thick compared to the electron wavelength, therealong the local magnetization direction acquires an admix-
is no significant reflection of the electrons by the wall andture, proportional to, of a state with opposite spin. This
the contribution of the paramagnetic effect to the electricatauses the impurity potentials to mix the two-spin channels.
resistivity is negligible. Further investigation led to the con- The extra resistance of the wall is obtained since the chan-
clusion that, in metals with a few impurities, the observednels exhibit unequal conductivities in a ferromagnet in the
wall resistance can be accounted for by the “diamagneti@bsence of the walbulk spin asymmetry Levy and Zhan%
eﬁec4t” involving zigzagging electron trajectories near the find 51 good agreement with the resistivity data of Gregg
wall. et al:

Compared to the resistivity of iron whiskers at low tem-  The present investigation is motivated by recent paper of
peratures, that of thin films of cobalt studied by Greg@l?  Ebelset al® These authors report transport measurements on
is three orders of magnitude larger due to inherent defectshin epitaxial Co wires containing one or two isolated do-
The recently studied cobalt wires probably exhibit resistivitymain walls. The observed relative change of the resistivity is
of the same order of magnituddue to the short mean free at least one order of magnitude larger than that deduced from
path, the diamagnetic contributibrthat is operative in a the model involving mixing of the spin channél€bels
clean metal is quenched in samples of Refs. 2 and 3. Moreet al® argue that the large extra resistance is due to the spin
over, since the walls are thick compared to the electroraccumulation at the domain wall.
wavelength, the paramagnetic effect involving reflections of This concept was originally introduced by Johnson and
the electron from the wall cannot explain the large extraSilsbeé and independently by Son, Kempen, and W§der
resistance in these samples. treat the electron transport through an interface between fer-

To interpret their measurements, Gregigal? advanced romagnetic and nonmagnetic metals. The idea is based on
the idea of spin mistracking. The relevant physics is based othe observation that, due to the spin asymmetry of the con-
a theorem well known in magnetic resonandeccording to  ductivity, the electric current in a ferromagnetic metal is spin
this theorem, the electron spin can follow adiabatically thepolarized. This leads to the formation of excess spin density
direction of a rotating magnetic field if the precession fre-around the interface. The chemical potential associated with
guency of the spin about the field is much greater than théhis spin density gives rise to a voltage drop that is propor-
angular velocity of the rotation. When an electron moves ational to the net current density. Consequently, the interface
Fermi velocityv g through the wall of thicknessd, it sees an  imposes an extra resistance called the “spin-coupled inter-
exchange field rotating at angular velocity= mv /d. Adia-  face resistance.”
batic tracking takes place when<w, where w.=2Jq4/%, The same mechanism is believed to cause the giant mag-
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netoresitance in ferromagnetic multilayers with currentslowest order in the gradient of the rotation angle. It is the
flowing perpendicular to the plan€CPP geometry Valet — exchange field acting along tlzeaxis that couplesn, to m,

and Ferl developed a theory of the CPP-GMR starting fromand causes a fast precession of the magnetization about this
the Boltzmann equation. They find that when the spin diffu-axis. It turns out that the precession frequenrgyis much

sion length is much greater than the electron mean free patgreater than the transverse relaxation rate of the magnetiza-
the macroscopic equations of the theory of the “Spin_tion making the spin diffusion Iength much shorter than that
coupled interface resistancé® are recovered. of the longitudinal component. Thus we expect that the volt-

The example of an isolated interface of ferromagnetic@de drop across the wall is strongly reduced compared to that
metals with opposite magnetizations, presented in Ref. 9, igbtained fc_)r the_lsolated m_terfa&eEsnmates made in this
closely related to the interpretation of the domain-wall mag-Paper confirm this expectation. _ .
netoresistance proposed by Ebetsal® In this case, the in-  The paper is organized as follows. Section Il introduces
terface resistance is found proportional to the spin-diffusiorfh® kinetic equation for the Wigner function. The spin-
length times the square of the conductivity asymmetry paPolarized current is reviewed in Sec. lll. The magnetization
rameter. Arguing that the spin-diffusion length in cobalt isin the rotated frame is studied in Sec. IV. The resistance due
much larger than the width of the domain wall, Ebetsal® 10 the spin accumulation around the wall is derived in
replace the wall by an abrupt transition and estimate the rela>ec. V.
tive change of the resistance using the result obtained by
Valet and Feftfor an isolated interface. This estimate is in Il. KINETIC EQUATION FOR WIGNER FUNCTION
quantitative agreement with the measured wall resistance.

The assumption of an abrupt transition, made in Ref. 3, We follow the standpoint that most of the electrical cur-
deserves closer inspection for the following reason. Adentin a metallic ferromagnet is carried by electrons inghe
shown by Levy and Zhan%,the mistracking in the Bloch band. This point of view was first introduced by Maﬁtand
wall of cobalt is small £~0.1). In the extreme adiabatic adopted in recent theories of GMR? Similar to Refs. 2 and

||m|t, é‘: O, the electron Spin sees a homogeneous medium &) the ml.-]tual int-eraCtipn between thele(?trons iS_negleCted
that there is no scattering of the spin-polarized currentand the interaction with the electrons is described by an
Hence, no spin accumulation is expected in this case. The-d exchange field acting parallel to the local magnetization.
fact that the parameterin cobalt is small casts doubts on the The corresponding many-body Hamiltonian is a sum of one-
assumption of an abrupt transition. body Hamiltonians of the forfn

In the present paper, we study the contribution of spin
accumulation to the wall resistance by extending the trans-
port theory of Valet and Fetto a ferromagnet with noncol-
linear magnetization. The conduction-electron magnetization
is obtained from the kinetic equation in Wigner spa&t€or  where Jsg,8 and M(x) are s-d exchange integral, the
spin 7 particles, the density matrix and the correspondings-electron spin operator, and the unit vector parallel to the
Wigner function are X2 matrices in spin space. The equa-|ocq| magnetization, respectively. The Hamiltonia® rep-
tions of motion for these matrices are transformed from thgogents the scattering of the conduction by impurities,
laboratory frame(X,Y,2 to a rotated reference frantey,2  phonons, and magnons. It is responsible for the relaxation
where thez axis coincides with the orientation of the local {oms in the kinetic equations. The last term describes the
magnetization vector and the rotation is aboutxtaxis (see interaction with an electric fiel@y= — JV/X.

Ref. 6. We consider a 180° wall in an infinite ferromagﬁdn

T_he components of the cond_uction-electron miagnetiza_tio%e laboratory coordinate systei,{,Z), the magnetization
m in the rotated frame satisfy Bloch equations, with¢ v o o parallel toOZ, for X=+ antiparallel toOZ

diffusion!! containing additional forcing torques propor- The wall is centered about the origin of tt%,Y,2 system.
tional to the gradient of the rotation angle. These torques argy, . angle between the magnetization and @& axis is a
present in the kinetic equation since the rotation operatof,nction of X and is denoted by.. We now choose a new
does not commute with the kinetic energy operator for the. , dinate systemx(=X,y,Z), such that theDZ axis coin-
conduction electrofi.They are responsible for the mistrack- cides with the direction of the local magnetizatigparallel
ing and the magnetization pile up around the \.N‘f"”' to the vectorM(x) ], and theOX axis is not changed.

In the rotated reference frame, the conductivity asymme- In the spin space, the transformation to the rotated refer-

try factor is constantin the x direction and the voltage drop ence framex,y,2 is described by the 22 matrix
due to spin accumulation is obtained by integrating yhe e

component of the magnetization owerThis result follows
o

2

ﬁ:_ﬁ_v2+ EJ 8- M(X)+h®+eV(X) (1)
2m fL sd !

from the transformation of the derivative of tagomponent B =

o

; 2

of the induced magnetization to the rotated frame. The pres-
ence of they component of the magnetization originates

from the fact that/dx does not commute with the rotation Whereo,=2/5, is the Pauli matrix.
operator. If x(r) is the spinor in rotatedlocal) frame, then the

We obtainmy(x) by solving the coupled equations for, ~ €igenstate of the Hamiltoniafi) is given by the spinow
andm, to first order in the external electric field and to the =R,x(r). Let p be the density matrix in the representation
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of ¢ states. It is related to the density matrix in theepre-
sentationp, by the transformation

p=Rup\R, " 3)
The equation of motion fop, reads

by

W_g[pxlhx]l (4)
where

R =R IAR,. )

Using Eqgs.(1) and(2), we obtain from Eq(5) (see Ref. §
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of, & ,an+ £ afy ml) 10
Uxox am® ax TeEeG =\ ) o (10a
of, h o of, ot I,
S ’_+ — 4 = —=

Uxgx " am® ax T eUxBoge Twdly=| ol
(10b)

oy ot e o et =| 1Y 10

Ux IX Uya T,+€vy 0 e Wel x= ot ol (100
of, y e (ot 0
UXW vy y-l—el)X OE— E ( O)

coll

Since we are considering a steady state, dhg'dt terms

e’ (X) Pyt s, + (P +eV(x). vanish. These equations represent the generalization of the
(6)  two-component Boltzmann equation used by Valet and ¥ert.
The macroscopic transport equations forming the basis of
Based on the assumption that the wall thicknéss much oy spin accumulation theory follow from Eq&.0a—(10d)
larger than the Fermi wavelength, we confine ourselves @y taking a trace over the momentum and spin degrees of
the “twist-induced” perturbation that is first order in freedom. For that purpose, we express the average magneti-

a’(x)=da/dx. S . zation density in terms of the Wigner function. Using the
The kinetic equation in Wigner space is based on thexpansion9), we obtain

transformatior?

X 2m 2m

i (x1="B | 430 tri6-E — M8 43 .
'E(X,p):hisj d3pr b)((p+%plap_%p,)exif;—p"x)y mI(X) h3 f d ptr[UIF(le)] h3 f d p fl(xrp)éll)
(7

where the Wigner functiofir(x,p) is a matrix on the spi
space. Applying this transformation to E@}), we obtain
with use of Eq.(6)

wherei=X, y, z, and ug is the Bohr magneton. For the
electric current density in the direction, we have

() e 3 ~ S 3
19=13 | Epodr[Fp) =17 | d°puifa(x,p).
(12)

The magnetic current density in thedirection carrying a
magnetization componemnt; is expressed as

aF aﬁ_¥ i ate. Ela hoodF
Tt Uxg T om P (X)[ox,F] ﬁa(x)axﬁ

_OF
Oy, -

X

oF (aﬁ)
_ean_px+ E coII. (8)

The last term on the right-hand sid@HS) of this equation

originates from the scattering tef®. In what follows, we
neglect the effect of the transformati¢®) on the scattering
probabilities. This effect has been treated in great detail in
Ref. 6. Since the perturbation in E®) is independent of the
coordinatesy and z, the Wigner functionF(x,p) depends
only on the variablex andp.

In the derivation of Eq(8) we assume that'(x) is a
slowly varying function on the scale of the Fermi wave- fo(x,p)=3[f1(x,p)+sf,(x,p)],
length.

Since any X 2 matrix may be expanded in terms of the wheres=+1 or —1 corresponds to a conduction electron

three Pauli matrices and the identity matfixwe write the ~ With spin parallel or antiparallel to the vectbt(x), respec-
Wigner function as a sum tively. Then the current density in chanreis

h !
“am® ™

=53 [ @purtaFom= 52 [ @podixp)
13

Ill. SPIN-POLARIZED ELECTRIC CURRENT

Spin polarization of the current results mainly from con-
ductivity asymmetry. For its description, we define the dis-
tribution function

(14)

ﬁ(x,p>=%[f1<x,p)f+fx<x,p>€rx+fy<x,p)ay+fz<x,p>az(]é) j ;ee% d*p oyfo(x.p). (15)
Inserting this expansion into E¢8), and using the commu- The transport equation satisfied Iby(x,p) is obtained by
tation relations for the Pauli matrices, we obtain the follow-combining Eqs.(10a and (10d) with use of the definition

ing system of equations for the four functiofi§x,p) (14):
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ot ko of, ot (afs) where oo(1— %) ! is the conductivity due to both spin
ot
coll

U om® oy Sux fytevEo——= channels. The spin-polarized electric current .denjﬁﬂ/ is
(16) obtained from the magnetization current density of &)

by replacing the Bohr magneton by the electron charge
We assume that the external electric field produces only a
small deviation from equilibrium and write . e. €
a ](ze):_Jz:FJ' d3p vxfA(X,p). (26)
G =10+ TR0 +P(p). (17 e
s s s Using the relatior(14), we express, in Eq. (26) in terms of
In the relaxation time approximation, the collision term in f_ and find in the absence of spin accumulation
Eq. (16) takes the form

e
AR E T LV P = [ vl )=s(o:-0 JEo. (@D
i) Tt fs (xp)m ()~ ()],
coll st s f 18 With the use of relatior(25), we obtain from Eq(26) the
(18) bulk-spin-polarized electric current density

where 7 is the relaxation time in the channel without spin
flip, and 7 is the (s independentspin-flip relaxation time. (e) _ BEo (29)
Introducing Eqgs(17) and(18) into Eq. (16) and linearizing, Ry
we have

wherepf = 051 is the resistivity of a ferromagnet introduced
&f(so)(e) &7(51)(x) in Ref. 9._For co_balt: the coefficiel;ﬁ_z 0.5. The_n a co_nsid-
+ , (19 erable spin polarization of the electric current is predicted by
J€ 28 formula (28) in this metal. In combination with the magne-
where tization twist, the spin-polarized current acts as a source of
the spin accumulation around the domain wall.

fM(x,p)= —vsz( ek,

Tot=ro gt (20)

. el . . . IV. SPIN ACCUMULATION
The quantityf*) represents the equilibrium distribution in an

exchange polarized electron gas. It can be expressed in terms In theories of GMR of ferromagnetic multilayers, the spin
of the unpolarized Fermi-distribution functidff) as follows  accumulation is obtained by solving the spin-diffusion equa-
tion with the appropriate boundary condition at the
P (e)=10(e—s3q. (21)  interface’=® For a domain wall, the continuous rotation of
the magnetization endows the spin-diffusion equation with
n additional torque and turns it into a kind of Bloch equa-
ion with the diffusion'! The Bloch equations for the com-
ponents oim(x) then follow by momentum averaging of the
equationg109—(10d).

Compared to the asymmetry dfs, this spin-polarization
effect is small and can be neglected in the calculation of th
bulk electrical conductivity. The current density is ob-
tained from Eqs(15) and(19), with the use of the relation

afP 9t @ S(v—vE) - . .
e e mop (22 A. Diffusion equation for m,(x)

To establish the diffusion of equation far,(x) we need
a continuity equation and the magnetic version of Ohm’s
law. The continuity equation follows from the momentum
average of Eq(10d), while the Ohm’s law is given by the

Performing the momentum integration in E5), we obtain
with use of Eq.(19) the electric current density in the
channel in terms of the gradient of the electrochemical po

tential average of the same equation multiplieddgy The collision
— term in Eq.(10d), that is, consistent with Eq§14) and(18),
d s dug(X) .
e s 7 _ _ Ts Iks is of the form
s =g axlHsX) eV ]=—— —, (23
_ . - . of 2. 1 1
whereo = (1/2m)ne’T, is the channel conductivity) being _7 == FOX) -3 =+ — f(l)(x,p)
the total conduction electron density. The chemical potential A Tst © Ts T 7
X) is defined b
Ms(X) ? s/ 1 1 "
~ gf0 Sl /TP (29)
f00= =[x~ n?]. (24) c
de Introducing this result into Eq10d), multiplying the latter
Following Ref. 9, we introduce the bulk-spin asymmetry co-PY #g, and integrating over the momentum variable, we
efficient 8 obtain
3j (X) 2
0o _ 2 i - _ —_m
os=— (1-sp) 1 (25) o @ (Xiy(x)= Tsf[mz(X) m;’]. (30
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This is a continuity equation modified by coupling jta(x)
as a result of the magnetization twist.

Next, we integrate Eq(10d), multiplied by ugv,, over
the momentum variable. Besides E(El)—(13), the follow-
ing relations play a role:

)%
/-LB<U§fi(X-p)>=h_§f d3p vifi(x,p)=3vEm;(x)
(31)
and

2J54
_m

D(er) (32

< zaf;°>> B
UT9e | T
whereD (eg) = 3n/4e; is the conduction electron density of
states at the Fermi leveh being the electron density. The
brackets on the left-hand sideHS) of Egs.(31) and (32)
are shorthand for the momentum integral. LinearizingEpe
field term in Eq.(10d), we arrive at the following macro-
scopic equatiofOhm’s law):

3J
1.2 — vsd
SUF| T a'(x)my(x) | + 2mer eugEop
1/1 1 usll 1\
= 5| T )i Sl 5 )i
2\ T T, 2e\Ts T_q
(33

Differentiating Eq.(33) with respect tox and noting that
3j®/9x=0, we obtain

a°m, amy, 1 dj,
=% 2D ax’ 39
whereD is the diffusion constant
D=1v2T (35)

with T=(T 4+ T2 L
The diffusion equation fom,(x) follows from Eqgs.(30)
and (34). Eliminating dj ,/9x, we obtain

am 1
a’ —y——j
ax 2D

2 0
g*m, m,— m{?

EN (36)

DTSf
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wherei =X, y, and 7 is the transverse-relaxation time that is
assumed independent bfintroducing this relation into Eq.
(10b), we obtain after the momentum integration

djx msha' <f7f1

3

(38

2
+ =——-m,.
Ix 2m > @elMy me

The quantity(df,/dx) can be expressed in terms of the
excess electric field. For that purpose we use the relations
(14) and (24) to write

2

ox
Next, the electrochemical potential defined in EB3) is
written a$

of©@
de

Jd
a[ﬂs(x) +u_o(X)].

(39

ms(X) = p(X) +sAu(x), (40)

whereA p(x) is the spin accumulation part, apd x) is the
spin independent part the gradient of which gives the actual
electric field

~1op(x)
T e ox

Using Eqgs.(40) and (41), we obtain from Eq(39)
_ 3ne . £
= 2_6,:[ (x)—Eql,

ofa\ [ of©
x| =28\ ax
(42)

where Eq.(22) was used to evaluate the quantif (%) gx).
We note that the excess electric fiélx) — E, vanishes for
a'(x)=0. Thus the second term on the LHS of E8@) is of
higher order ina’ and will be neglected in our perturbation
approach.

To determine the termj,/dx, we consider the momen-
tum average of Eq.10a, multiplied by ev,

of et of af(®
2071\ = Ix 2 2911
e<”Xax> 2m“ <Uxax>'+e E°<UX de
e e
== T (ufP00p) — T (ou P, (43
S —S

F(x)

(41)

1om

eox °

This is a diffusion equation augmented by the torques gen-

erated by the magnetization twist. In the absence of thes@n the LHS of this equation we ugeee Eq/(39)]

torques, Eq(36) takes the form of the spin diffusion equa- of n g
tio(nDof)Il?lzefs. 8 and 9, with the spin diffusion lengtky <U§a_xl>:_ﬁ5[ﬂvs(x)+ﬂs(x)] (44
=\U7gs)
and
B. Diffusion equation for my(x)
Since the exchange field couplggsto f,, we must con- 02 af(lo) __n (45)
sider both the Eqs(100 and (10d) to derive a diffusion X Je m’
equation formy(x). The collision term in these equations is
of the form On the RHS of Eq(43) we have
1 1 ne|(d e
of; 2. 1 i —_E(OHs, OF-s
(—') —-—H0-—fPxp, (37 T T )" T am T Tk TS
at coll T 2T (46)
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Introducing Eqgs.(44)—(46) into Eq. (43), we see that all a' (X) ugBEo
terms cancel out except the second on the LHS. This yields a b(x)=— 26D(1= g pE " (55)
constraint PF
] The solution of the inhomogeneous equati@3) can be
%(x)=o. 47) obtained using the Green'’s function
With this constraint Eq(38) yields my(x) = fﬁ dx'G(x—=x")b(x"), (56)
WaT
m,=— ; m, . (49 where
_ ]
Let us turn to Eq(100) and take the momentum average G(x)=—zlyexp — T, (57)
of 2pug ~ , Asl,—0, the Green’s functio(x) — —125(x), and the Eq.
,U«B< Uxa_xy> — wepp(fx)=— T<f§,l)>+,u5a (Uxf2). (56)yyields Y
(49) ’ 2
Using Egs.(11) and(13), this equation reads m,(x)=—12b(x)= M (58)
T ’ ¢ y 2eD(1-B%)p¢
Ay _ weM,= — Em +a'j,. (50)  This approximation is applicable to a domain wall in cobalt,
IX T 7 z

since the function’(x) varies slowly on the scale df .

This is a continuity equation fromn,,, modified by coupling

to m, andj, . V. WALL-INDUCED RESISTANCE
Proceeding to the Ohm’s law for the magnetization cur-

rent densityj,, we multiply Eq.(10¢) by ugvy, and take the

momentum average. Noting that{”’/3y=0, we have

The extra resistance due to the domain wall is obtained by
calculating the excess voltage dray, from the relation

1

) ) _ _ AV,Z—J dX[F(x)—Eg]. (59
%UF__ﬁa,Usz_weJx:__.,Jy- (51) 703

The excess electric fields (x)—Ey, can be expressed in
Differentiating this equation with respect xpand eliminat-  terms of the gradient ok x(x). Using Eqs.(40) and(41) in

ing dj,/9x with use of Eq.(50), we obtain to order’ Eqg. (23), the electric current density in the channel be-
comes
2D &Zmy 2 ,. n 2 s A
=—My—wMy—a |,=|—+sw7/M—a’|,, s d X
Wz_ Ty elllx z 7 2%e Yy (252) j(se)zg-s(F(x)—l-E :;(( )) (60)

where the second equality follows by applying the relationFrom this relation, we obtain the total electric current density
(48).

Generally, we expect thad,7>1. In fact, assuming that
the transverse relaxation times i, we obtainw,r~10°
for cobalt (see Sec. Y In view of this, Eq.(52) can be

A p(x)

_ 1
jO= (0, o JFO+ (=0 ) —

(61)

As x—, F(X)—Eg, since the spin accumulation decays to

simplified to zero as one moves away from the wall. In this limit, we have
?my(x) my(x a'(x .
aé L T(?-' - z(D)Jz. (53) j9=(0+0)E,. (62
o Y Noting thatj(® is independent of, we obtain from Eqs(61)
wherel, is given by and(62) with use of Eq.(25)
4D 47 B A u(x)
12=——= 12 54 _g =P 2K
y 55_ m Sf (54 F(x)—Eq e ox (63

We see that compared with the spin-diffusion length  This relation was derived in Ref. 9 in the laboratory frame. It
=(Drg)'? the diffusion length for them, component is can also be used to calculate the excess voltage in the rotated
drastically reduced due to the rapid precessionmoéibout  frame as long as the RHS is treated carefully. First of all, the
the exchange field. conductivity asymmetry parametgris independent ok in
Seeking a solution fom,(x) that is first order inae’, we  the rotated frame. Second, the gradientAgi(x) on the
need the quantityj, for a homogeneous ferromagnet’( RHS of Eq.(63) must be transformed to the rotated frame
=0). The latter is given by Eq$26) and(28). Thus, denot- before substituting into the integréb9). In the Appendix,
ing the RHS of Eq(53) by b(x), we have we derive the following expression for this quantity:
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&A,u(x)) 2€r (&mz(x) rw lex 8T&d

=— +a'(x)my(x) |. (64) w_eff _Z 57

X SnMB 2 / s Isf 37l sf (70)
Actually, only the second term on the RHS of this expressioWWe will now estimate this ratio for a domain wall in cobalt.
contributes to the integral in E¢59). The reason is that the In this case we havd~1.5xX10° cm, w,~1.5x10" s,
solution of the inhomogeneous differential equatiBf) has  andve~1.4x10° cm/s yielding&é~0.1. A reliable estimate

the property of the ratioT/7 is more difficult since little is known about
transverse spin relaxation for the conduction electrons in a

domain wall. If we assume that~ry, a value of /7

o _ _ ~10"2 is expected at liquid helium temperaturesctually,

This is because the forcing term on the RHS of Bf) IS thjs number should be regarded only as a lower limitifor
localized over the width of the wall, and the solution decaysSsince + can be shorter thamy. This is because, in contrast
exponentially away from the wall. Hence, as long as th&yjith the longitudinal decay, the transverse relaxation process
sample length is much greater than the spin diffusion lengthyynserves magnetic energyrhis argument is particularly

the limit (65) is applicable and the integral @fim,(x)/dx  yelevant at low temperatures in view of the large value of the

vanishes. This result is consistent with the example of an

isolated interface considered in Ref. 9. In this case it is posz_axchange splitting. Nevertheless, it is doubtful thiltr

: . . P>would be larger than 10
sible to obtain the excess voltage in a rotated coordinate Since | ~6x10-5cm for cobalt at 77 K, we estimate

system by integrating the quantifypAu(x)/dx],, where . . 3 2 . .

Au(x) is given by Eq.(22) of Ref. 9. The quantitym,(x) ?Z:etr?;i ratio(70) is 10 °-10 “ for a Bloch wall in this
exhibits a discontinuity at=0 leading to as-function term '
in m,/ox. This term causes the vanishing of the integral of

lim my,(x)=0. (65)

‘X‘—»oc

the latter function. V1. CONCLUSION
Using Egs.(63), (64), and (58) in the integrand of Eq. That some suppression of the spin-accumulation effect in
(59), we get domain walls takes place, due to spin tracking, was pointed
out by Ebelset al® These authors also argue that, since the
AV|=—E - dx(aA—M) spin density at the domain wall decays over distances of
o X ; order |, the spin accumulation mechanism can be strong

enough to explain the large excess resistance in cobalt wires.
In contrast, the present analysis shows that the length that
is relevant for the calculation afy, is much shorter thahy
) ) . as a result of spin tracking. Analyzing the transport equations
We consider a 180° wall withe'(x)==/d, for —3d<X  in rotated frame of reference, we show that the quantity that
<3d, and zero otherwisésee Ref. f For the purpose of contributes tay is the transverse magnetizationy . It is the
computing the resistance per unit area, we express the eleggpid precession of this component about the exchange field
tric field Eq in terms of the electric current densify®.  that causes the drastic reduction of the relevant spin-

2ecl S B7Eg
 6ne’Dpr(1-8

2 fﬁmdx[a’(x)]z. (66)

Using Egs.(25) and(62), we get diffusion length and the quenching of the spin-accumulation
. 20 (e) mechanism. An estimate made for a Bloch wall in cobalt
Eo=pr(1-89)1". (67 shows that the strength of this mechanism is three to four

The formula on the RHS of Eq66) can be further rear- orders magnitut_jg weaker than required to explain the dgta of
: ione?/m= (27 p*) 1 . Ref. 3. In fact, it is at least one to two orders of magnitude
rar)ged with use ozf the relat!um /m_(ZTPF) ) Su.bsu- weaker than the mechanism of Ref. 6. As for a possible
tuting Eq.(54) for 1y, we obtain the following expression for gy pjanation of the enhanced excess resistance in cobalt
the extra resistance per unit area due to the wall, wires? it should be pointed out that the domain wall configu-

AV ration in a thin wire differs from that of the planar Bloch
|

r=—  =282,%| (68  Wwall considered in Ref. 6 as well as in the present work.
w= (e Bprles . - .
J Possible consequences of such nonplanar configurations for
with electron transport remain to be investigated.
2720 2T 8 T ACKNOWLEDGMENT
=g =5 £~ (69) o N
N 3dw§r 3 T’ | thank Professor B. Heinrich for inspiring correspon-

) ) ) 6 dence.
where ¢ is the mistracking parameter equal 4@ £/2d w, .

We note that for the isolated interface considered by Valet

. . . . APPENDIX: DERIVATION OF EQ. (64)
and Ferf the spin-coupled interface resistance per unit area,

rs), has the same form as E@8) except that is replaced We start by establishing a relationship between the trans-
by ls. Then the suppression of the spin accumulation effectormed derivative o and the derivative of the density ma-
in the domain wall can be characterized by the ratio trix in the x representation. Differentiating E3) with re-
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spect tox, and using Eq(2), we get
Ip
a_x
Since the magnetlzatlon components are defined in(EL.
in terms of the Wigner function, we need an analog of theUsing Egs.(A4)—(A6), we get

relation(Al) for this function. It is convenient to express the
f d3p tr

Wigner function in terms of the density matrix in the coor- (amz X))

dinate representation 28
X [ o,
am,(X)

= + a' (x)my(X)

In the absolute coordinate system we have a relation similar
to Eq. (11

~ 0P dpy
R

gt PR =Py Ly

@ X ax 2 (A1)

(X)[py0x].

0= 5% [ FpulsFam] a0

—i
F(x,p)= f d3’p(X+ 32X, x—3x")ex TD'X,)'
(A2)
We note that this definition is equivalent to E@) and can

be derived from it. Let us also define a Wigner functieg
in the absolutdlaboratory coordinate system

JF 1 L
(9_X+ Ea (X)(fyO'Z_fZO'y)

(AT)

As a final step, we relate the magnetization increntemt,

) to Au. From Eqs.(14), (24), and (40) we get

. —i

FA(x,p):j d3x’ p(x+ 3x' ,x—3x")ex 7p-x’). 9f (0 9f©
(A3) Af,= Je S(Ius n-s)= Z_AM

Multiplying Eq. (A1) by exp(~ip-x'#) and integrating over
x", we get with the use of Eq$A2) and (A3)

(A8)

Multiplying this equation byug, and taking the momentum
average, we find

Faxp)| _FXP) P [t Buen
( . )X— 5 @ OIF (), . Amz—2u5<7 Ap==Z5 —du (A9
(A4)  Egs.(A7) and (A9) then yield
The commutator on the RHS of EGA4) can be evaluated
. ) . AA u(X) 2ep [ IMy(X)
with use of the expansio(®) yielding —_ z ’
IX 3nugl X +a’ (X)my(x)
[F(Xap):‘}x]: _i[fy(xap)&z_ fz(xup)&y]- (AS) (AlO)
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