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Spin accumulation and resistance due to a domain wall

E. S̆imánek*
6255 Charing Lane, Cambria, California 93428

~Received 20 October 2000; published 22 May 2001!

Starting from the kinetic equation for the Wigner function, we study the spin-accumulation mechanism of
excess resistance in a domain wall. The magnetization induced around the wall is calculated in local~rotated!
coordinates. Compared to the spin-diffusion length of the longitudinal magnetization, that of the transverse one
is greatly reduced due to the fast precession of the magnetization vector in the local exchange field. Conse-
quently, a considerable quenching of the spin-accumulation mechanism is predicted. For a Bloch wall in
cobalt, the excess resistance due to this mechanism is 1023– 1024 of the value expected for the interface with
an abrupt rotation of the magnetization vector. Thus, contrary to the suggestion of Ebelset al. @Phys. Rev. Lett.
84, 983~2000!#, the spin accumulation mechanism cannot explain the large excess resistance observed on thin
cobalt wires.

DOI: 10.1103/PhysRevB.63.224412 PACS number~s!: 75.70.2i, 73.40.Cg, 73.50.Bk
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I. INTRODUCTION

A number of transport experiments on ferromagnetic m
als with electric currents traversing domain walls ha
shown that the walls act as a source of extra resistanc1–3

Theoretical studies of this effect began with the works
Cabrera and Falicov.4 Using the classical Boltzmann ap
proach, they calculate the local conductivity tensor from
local effective mean free path. Assuming a relatively pu
specimen, such as iron whisker,1 they investigate first the
electron scattering due to the twisting exchange field in
wall ~paramagnetic effect!. The main result is that as long a
the wall is thick compared to the electron wavelength, th
is no significant reflection of the electrons by the wall a
the contribution of the paramagnetic effect to the electri
resistivity is negligible. Further investigation led to the co
clusion that, in metals with a few impurities, the observ
wall resistance can be accounted for by the ‘‘diamagn
effect’’ involving zigzagging electron trajectories near t
wall.4

Compared to the resistivity of iron whiskers at low tem
peratures, that of thin films of cobalt studied by Gregget al.2

is three orders of magnitude larger due to inherent defe
The recently studied cobalt wires probably exhibit resistiv
of the same order of magnitude.3 Due to the short mean fre
path, the diamagnetic contribution4 that is operative in a
clean metal is quenched in samples of Refs. 2 and 3. M
over, since the walls are thick compared to the elect
wavelength, the paramagnetic effect involving reflections
the electron from the wall cannot explain the large ex
resistance in these samples.

To interpret their measurements, Gregget al.2 advanced
the idea of spin mistracking. The relevant physics is based
a theorem well known in magnetic resonance.5 According to
this theorem, the electron spin can follow adiabatically
direction of a rotating magnetic field if the precession f
quency of the spin about the field is much greater than
angular velocity of the rotation. When an electron moves
Fermi velocityvF through the wall of thicknessd, it sees an
exchange field rotating at angular velocityv5pvF /d. Adia-
batic tracking takes place whenv!ve whereve52Jsd /\,
0163-1829/2001/63~22!/224412~8!/$20.00 63 2244
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Jsd being thes-d exchange integral. Actually, a certain d
gree mistracking given by the ratioj5v/2ve takes place in
a domain wall in cobalt. According to Gregget al.,2 this
mistracking acts in combination with the spin-depend
scattering due to impurities. The latter effect is also resp
sible for the giant magnetoresistance~GMR! in magnetic
multilayers.

Starting from the same Hamiltonian as used to expl
this GMR, Levy and Zhang6 calculate the spin-dependen
scattering in the wall using electron wave functions p
turbed by the twisting magnetization in the wall. Due to m
tracking, the wave function of an electron with spin align
along the local magnetization direction acquires an adm
ture, proportional toj, of a state with opposite spin. Thi
causes the impurity potentials to mix the two-spin chann
The extra resistance of the wall is obtained since the ch
nels exhibit unequal conductivities in a ferromagnet in t
absence of the wall~bulk spin asymmetry!. Levy and Zhang6

find a good agreement with the resistivity data of Gre
et al.2

The present investigation is motivated by recent pape
Ebelset al.3 These authors report transport measurements
thin epitaxial Co wires containing one or two isolated d
main walls. The observed relative change of the resistivity
at least one order of magnitude larger than that deduced f
the model involving mixing of the spin channels.6 Ebels
et al.3 argue that the large extra resistance is due to the
accumulation at the domain wall.

This concept was originally introduced by Johnson a
Silsbee7 and independently by Son, Kempen, and Wyder8 to
treat the electron transport through an interface between
romagnetic and nonmagnetic metals. The idea is based
the observation that, due to the spin asymmetry of the c
ductivity, the electric current in a ferromagnetic metal is sp
polarized. This leads to the formation of excess spin den
around the interface. The chemical potential associated w
this spin density gives rise to a voltage drop that is prop
tional to the net current density. Consequently, the interf
imposes an extra resistance called the ‘‘spin-coupled in
face resistance.’’7

The same mechanism is believed to cause the giant m
©2001 The American Physical Society12-1
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netoresitance in ferromagnetic multilayers with curre
flowing perpendicular to the plane~CPP geometry!. Valet
and Fert9 developed a theory of the CPP-GMR starting fro
the Boltzmann equation. They find that when the spin dif
sion length is much greater than the electron mean free p
the macroscopic equations of the theory of the ‘‘sp
coupled interface resistance’’7,8 are recovered.

The example of an isolated interface of ferromagne
metals with opposite magnetizations, presented in Ref. 9
closely related to the interpretation of the domain-wall ma
netoresistance proposed by Ebelset al.3 In this case, the in-
terface resistance is found proportional to the spin-diffus
length times the square of the conductivity asymmetry
rameter. Arguing that the spin-diffusion length in cobalt
much larger than the width of the domain wall, Ebelset al.3

replace the wall by an abrupt transition and estimate the r
tive change of the resistance using the result obtained
Valet and Fert9 for an isolated interface. This estimate is
quantitative agreement with the measured wall resistanc2

The assumption of an abrupt transition, made in Ref
deserves closer inspection for the following reason.
shown by Levy and Zhang,6 the mistracking in the Bloch
wall of cobalt is small (j'0.1). In the extreme adiabati
limit, j50, the electron spin sees a homogeneous medium
that there is no scattering of the spin-polarized curre
Hence, no spin accumulation is expected in this case.
fact that the parameterj in cobalt is small casts doubts on th
assumption of an abrupt transition.

In the present paper, we study the contribution of s
accumulation to the wall resistance by extending the tra
port theory of Valet and Fert9 to a ferromagnet with noncol
linear magnetization. The conduction-electron magnetiza
is obtained from the kinetic equation in Wigner space.10 For
spin 1

2 particles, the density matrix and the correspond
Wigner function are 232 matrices in spin space. The equ
tions of motion for these matrices are transformed from
laboratory frame~X,Y,Z! to a rotated reference frame~x,y,z!
where thez axis coincides with the orientation of the loc
magnetization vector and the rotation is about thex axis ~see
Ref. 6!.

The components of the conduction-electron magnetiza
m in the rotated frame satisfy Bloch equations, w
diffusion,11 containing additional forcing torques propo
tional to the gradient of the rotation angle. These torques
present in the kinetic equation since the rotation opera
does not commute with the kinetic energy operator for
conduction electron.6 They are responsible for the mistrac
ing and the magnetization pile up around the wall.

In the rotated reference frame, the conductivity asymm
try factor is constant~in thex direction! and the voltage drop
due to spin accumulation is obtained by integrating they
component of the magnetization overx. This result follows
from the transformation of the derivative of thez component
of the induced magnetization to the rotated frame. The p
ence of they component of the magnetization originat
from the fact that]/]x does not commute with the rotatio
operator.

We obtainmy(x) by solving the coupled equations formx
andmy to first order in the external electric field and to th
22441
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lowest order in the gradient of the rotation angle. It is t
exchange field acting along thez axis that couplesmx to my
and causes a fast precession of the magnetization abou
axis. It turns out that the precession frequencyve is much
greater than the transverse relaxation rate of the magne
tion making the spin diffusion length much shorter than th
of the longitudinal component. Thus we expect that the vo
age drop across the wall is strongly reduced compared to
obtained for the isolated interface.9 Estimates made in this
paper confirm this expectation.

The paper is organized as follows. Section II introduc
the kinetic equation for the Wigner function. The spi
polarized current is reviewed in Sec. III. The magnetizat
in the rotated frame is studied in Sec. IV. The resistance
to the spin accumulation around the wall is derived
Sec. V.

II. KINETIC EQUATION FOR WIGNER FUNCTION

We follow the standpoint that most of the electrical cu
rent in a metallic ferromagnet is carried by electrons in ths
band. This point of view was first introduced by Mott,12 and
adopted in recent theories of GMR.6–9 Similar to Refs. 2 and
6, the mutual interaction between thes electrons is neglected
and the interaction with thed electrons is described by a
s-d exchange field acting parallel to the local magnetizati
The corresponding many-body Hamiltonian is a sum of o
body Hamiltonians of the form6

ĥ52
\2

2m
¹21

2

\
Jsdŝ•M ~X!1ĥ~s!1eV~X!, ~1!

where Jsd ,ŝ, and M (x) are s-d exchange integral, the
s-electron spin operator, and the unit vector parallel to
local magnetization, respectively. The Hamiltonianĥ(s) rep-
resents the scattering of the conduction by impuriti
phonons, and magnons. It is responsible for the relaxa
terms in the kinetic equations. The last term describes
interaction with an electric fieldE052]V/]X.

We consider a 180° wall in an infinite ferromagnet.6 In
the laboratory coordinate system (X,Y,Z), the magnetization
for X52` is parallel toOZ, for X51` antiparallel toOZ.
The wall is centered about the origin of the~X,Y,Z! system.
The angle between the magnetization and theOZ axis is a
function of X and is denoted bya. We now choose a new
coordinate system (x5X,y,z), such that theOZ axis coin-
cides with the direction of the local magnetization@parallel
to the vectorM (x)#, and theOX axis is not changed.

In the spin space, the transformation to the rotated re
ence frame~x,y,z! is described by the 232 matrix

R̂a5expF2
i

2
a~x!ŝxG , ~2!

whereŝx52/\ ŝx is the Pauli matrix.
If x(r ) is the spinor in rotated~local! frame, then the

eigenstate of the Hamiltonian~1! is given by the spinorc
5R̂ax(r ). Let r̂ be the density matrix in the representatio
2-2
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of c states. It is related to the density matrix in thex repre-
sentationr̂x by the transformation

r̂5R̂ar̂xR̂a
21. ~3!

The equation of motion forr̂x reads

]r̂x

]t
5

i

\
@r̂x ,ĥx#, ~4!

where

ĥx5R̂a
21ĥR̂a . ~5!

Using Eqs.~1! and ~2!, we obtain from Eq.~5! ~see Ref. 6!

ĥx'2
\2

2m
¹22

\

2m
ŝxa8~x!px1Jsdŝz1ĥx

~s!1eV~x!.

~6!

Based on the assumption that the wall thicknessd is much
larger than the Fermi wavelength, we confine ourselves
the ‘‘twist-induced’’ perturbation that is first order i
a8(x)5da/dx.

The kinetic equation in Wigner space is based on
transformation10

F̂~x,p!5h23E d3p8 r̂x~p1 1
2 p8,p2 1

2 p8!expS i

\
p8•xD ,

~7!

where the Wigner functionF̂(x,p) is a matrix on the spin12
space. Applying this transformation to Eq.~4!, we obtain
with use of Eq.~6!

]F̂

]t
52vx

]F̂

]x
1

i

2m
pxa8~x!@ŝx ,F̂#1

\

2m
a8~x!ŝx

]F̂

]x

2
\

4m
a8~x!F ŝx ,

]F̂

]x
G2eE0

]F̂

]px
1S ]F̂

]t
D

coll

. ~8!

The last term on the right-hand side~RHS! of this equation
originates from the scattering termĥ(s). In what follows, we
neglect the effect of the transformation~2! on the scattering
probabilities. This effect has been treated in great detai
Ref. 6. Since the perturbation in Eq.~6! is independent of the
coordinatesy and z, the Wigner functionF̂(x,p) depends
only on the variablesx andp.

In the derivation of Eq.~8! we assume thata8(x) is a
slowly varying function on the scale of the Fermi wav
length.

Since any 232 matrix may be expanded in terms of th
three Pauli matrices and the identity matrixÎ , we write the
Wigner function as a sum

F̂~x,p!5 1
2 @ f 1~x,p! Î 1 f x~x,p!ŝx1 f y~x,p!ŝy1 f z~x,p!ŝz#.

~9!

Inserting this expansion into Eq.~8!, and using the commu
tation relations for the Pauli matrices, we obtain the follo
ing system of equations for the four functionsf i(x,p)
22441
to

e

in

-

vx

] f 1

]x
2

\

2m
a8

] f x

]x
1evxE0

] f 1

]e
5S ] f 1

]t D
coll

~10a!

vx

] f x

]x
2

\

2m
a8

] f 1

]x
1evxE0

] f x

]e
1vef y5S ] f x

]t D
coll

~10b!

vx

] f y

]x
2vxa8 f z1evxE0

] f y

]e
2vef x5S ] f y

]t D
coll

~10c!

vx

] f z

]x
2vxa8 f y1evxE0

] f z

]e
5S ] f z

]t D
coll

. ~10d!

Since we are considering a steady state, the] f i /]t terms
vanish. These equations represent the generalization o
two-component Boltzmann equation used by Valet and Fe9

The macroscopic transport equations forming the basis
our spin accumulation theory follow from Eqs.~10a!–~10d!
by taking a trace over the momentum and spin degree
freedom. For that purpose, we express the average mag
zation density in terms of the Wigner function. Using th
expansion~9!, we obtain

mi~x!5
mB

h3 E d3p tr@ŝ i F̂~x,p!#5
mB

h3 E d3p fi~x,p!,

~11!

where i 5x, y, z, and mB is the Bohr magneton. For th
electric current density in thex direction, we have

j ~e!5
e

h3 E d3p vxtr @ F̂~x,p!#5
e

h3 E d3p vxf 1~x,p!.

~12!

The magnetic current density in thex direction carrying a
magnetization componentmi is expressed as

j i5
mB

h3 E d3p vxtr @ŝ i F̂~x,p!#5
mB

h3
E d3p vxf i~x,p!.

~13!

III. SPIN-POLARIZED ELECTRIC CURRENT

Spin polarization of the current results mainly from co
ductivity asymmetry. For its description, we define the d
tribution function

f s~x,p!5 1
2 @ f 1~x,p!1s fz~x,p!#, ~14!

where s511 or 21 corresponds to a conduction electro
with spin parallel or antiparallel to the vectorM (x), respec-
tively. Then the current density in channels is

j s
~e!5

e

h3 E d3p vxf s~x,p!. ~15!

The transport equation satisfied byf s(x,p) is obtained by
combining Eqs.~10a! and ~10d! with use of the definition
~14!:
2-3
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vx

] f s

]x
2

\

2m
a8

] f x

]x
2svxa8 f y1evxE0

] f s

]e
5S ] f s

]t D
coll

.

~16!

We assume that the external electric field produces on
small deviation from equilibrium and write

f s~x,p!5 f s
~0!~e !1 f̃ s

~1!~x!1 f s
~1!~x,p!. ~17!

In the relaxation time approximation, the collision term
Eq. ~16! takes the form9

S ] f s

]t D
coll

52S 1

tsf
1

1

ts
D f s

~1!~x,p!2
1

tsf
@ f̃ s

~1!~x!2 f̃ 2s
~1!~x!#,

~18!

wherets is the relaxation time in thes channel without spin
flip, and tsf is the ~s independent! spin-flip relaxation time.
Introducing Eqs.~17! and~18! into Eq. ~16! and linearizing,
we have

f s
~1!~x,p!52vxTsS eE0

] f s
~0!~e !

]e
1

] f̃ s
~1!~x!

]x
D , ~19!

where

Ts
215ts

211tsf
21. ~20!

The quantityf s
(0) represents the equilibrium distribution in a

exchange polarized electron gas. It can be expressed in t
of the unpolarized Fermi-distribution functionf (0) as follows

f s
~0!~e !5 f ~0!~e2sJsd!. ~21!

Compared to the asymmetry ofTs , this spin-polarization
effect is small and can be neglected in the calculation of
bulk electrical conductivity. The current densityj s is ob-
tained from Eqs.~15! and ~19!, with the use of the relation

] f s
~0!

]e
.

] f ~0!

]e
52

d~v2vF!

mvF
. ~22!

Performing the momentum integration in Eq.~15!, we obtain
with use of Eq.~19! the electric current density in thes
channel in terms of the gradient of the electrochemical
tential

j s
~e!5

ss

e

]

]x
@ms~x!2eV~x!#5

ss

e

]m̄s~x!

]x
, ~23!

wheress5(1/2m)ne2Ts is the channel conductivity,n being
the total conduction electron density. The chemical poten
ms(x) is defined by9

f̃ s
~1!~x!5

] f s
~0!

]e
@ms~x!2m~0!#. ~24!

Following Ref. 9, we introduce the bulk-spin asymmetry c
efficient b

ss5
s0

2
~12sb!21, ~25!
22441
a

ms

e

-

al

-

where s0(12b2)21 is the conductivity due to both spin
channels. The spin-polarized electric current densityj z

(e) is
obtained from the magnetization current density of Eq.~13!
by replacing the Bohr magneton by the electron charge

j z
~e!5

e

mB
j z5

e

h3 E d3p vxf z~x,p!. ~26!

Using the relation~14!, we expressf z in Eq. ~26! in terms of
f s and find in the absence of spin accumulation

j z
~e!5

e

h3 E d3p vxs~ f s2 f 2s!5s~ss2s2s!E0 . ~27!

With the use of relation~25!, we obtain from Eq.~26! the
bulk-spin-polarized electric current density

j z
~e!5

bE0

~12b2!rF*
, ~28!

whererF* 5s0
21 is the resistivity of a ferromagnet introduce

in Ref. 9. For cobalt, the coefficientb.0.5. Then a consid-
erable spin polarization of the electric current is predicted
formula ~28! in this metal. In combination with the magne
tization twist, the spin-polarized current acts as a source
the spin accumulation around the domain wall.

IV. SPIN ACCUMULATION

In theories of GMR of ferromagnetic multilayers, the sp
accumulation is obtained by solving the spin-diffusion equ
tion with the appropriate boundary condition at th
interface.7–9 For a domain wall, the continuous rotation o
the magnetization endows the spin-diffusion equation w
an additional torque and turns it into a kind of Bloch equ
tion with the diffusion.11 The Bloch equations for the com
ponents ofm(x) then follow by momentum averaging of th
equations~10a!–~10d!.

A. Diffusion equation for mz„x…

To establish the diffusion of equation formz(x) we need
a continuity equation and the magnetic version of Ohm
law. The continuity equation follows from the momentu
average of Eq.~10d!, while the Ohm’s law is given by the
average of the same equation multiplied byvx . The collision
term in Eq.~10d!, that is, consistent with Eqs.~14! and~18!,
is of the form

S ] f z

]t D
coll

52
2

tsf
f̃ z

~1!~x!2 1
2 S 1

Ts
1

1

T2s
D f z

~1!~x,p!

2
s

2 S 1

Ts
2

1

T2s
D f 1

~1!~x,p!. ~29!

Introducing this result into Eq.~10d!, multiplying the latter
by mB , and integrating over the momentum variable, w
obtain

] j z~x!

]x
2a8~x! j y~x!52

2

tsf
@mz~x!2mz

~0!#. ~30!
2-4
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This is a continuity equation modified by coupling toj y(x)
as a result of the magnetization twist.

Next, we integrate Eq.~10d!, multiplied by mBvx , over
the momentum variable. Besides Eqs.~11!–~13!, the follow-
ing relations play a role:

mB^vx
2f i(x,p!&5

mB

h3 E d3p vx
2f i~x,p!5 1

3 vF
2mi~x!

~31!

and

K vx
2

] f x
~0!

]e L 52
2Jsd

m
D~eF! ~32!

whereD(eF)53n/4e f is the conduction electron density o
states at the Fermi level,n being the electron density. Th
brackets on the left-hand side~LHS! of Eqs. ~31! and ~32!
are shorthand for the momentum integral. Linearizing theE0
field term in Eq.~10d!, we arrive at the following macro
scopic equation~Ohm’s law!:

1
3 vF

2 S ]mz~x!

]x
2a8~x!my~x! D1

3Jsd

2meF
emBE0

52
1

2 S 1

Ts
1

1

T2s
D j z~x!2

mB

2e S 1

Ts
2

1

T2s
D j ~e!.

~33!

Differentiating Eq. ~33! with respect tox and noting that
] j (e)/]x50, we obtain

]2mz

]x2 5a8
]my

]x
2

1

2D

] j z

]x
, ~34!

whereD is the diffusion constant

D5 1
3 vF

2 T̃ ~35!

with T̃5(Ts
211T2s

21)21.
The diffusion equation formz(x) follows from Eqs.~30!

and ~34!. Eliminating ] j z /]x, we obtain

]2mz

]x2 2
mz2mz

~0!

Dtsf
5a8S ]my

]x
2

1

2D
j yD . ~36!

This is a diffusion equation augmented by the torques g
erated by the magnetization twist. In the absence of th
torques, Eq.~36! takes the form of the spin diffusion equa
tion of Refs. 8 and 9, with the spin diffusion lengthl sf
5(Dtsf)

1/2.

B. Diffusion equation for my„x…

Since the exchange field couplesf y to f x , we must con-
sider both the Eqs.~10c! and ~10d! to derive a diffusion
equation formy(x). The collision term in these equations
of the form

S ] f i

]t
D

coll

52
2

t
f̃ i

~1!~x!2
1

2T̃
f i

~1!~x,p!, ~37!
22441
n-
se

wherei 5x, y, andt is the transverse-relaxation time that
assumed independent ofi. Introducing this relation into Eq
~10b!, we obtain after the momentum integration

] j x

]x
2

mB\a8

2m K ] f 1

]x L 1vemy52
2

t
mx . ~38!

The quantity^] f 1 /]x& can be expressed in terms of th
excess electric field. For that purpose we use the relat
~14! and ~24! to write

S ] f 1

]x D5S ] f ~0!

]e D ]

]x
@ms~x!1m2s~x!#. ~39!

Next, the electrochemical potential defined in Eq.~23! is
written as9

m̄s~x!5m̄~x!1sDm~x!, ~40!

whereDm(x) is the spin accumulation part, andm̄(x) is the
spin independent part the gradient of which gives the ac
electric field

F~x!5
1

e

]m̄~x!

]x
. ~41!

Using Eqs.~40! and ~41!, we obtain from Eq.~39!

K ] f 1

]x L 52eK ] f ~0!

]x L F1

e

]m̄

]x
2E0G52

3ne

2eF
@F~x!2E0#,

~42!

where Eq.~22! was used to evaluate the quantity^] f (0)/]x&.
We note that the excess electric fieldF(x)2E0 vanishes for
a8(x)50. Thus the second term on the LHS of Eq.~38! is of
higher order ina8 and will be neglected in our perturbatio
approach.

To determine the term] j x /]x, we consider the momen
tum average of Eq.~10a!, multiplied byevx

eK vx
2 ] f 1

]x L 2
e\

2m
a8K vx

] f x

]x L 1e2E0K vx
2

] f 1
~0!

]e L
52

e

Ts
^vx f s

~1!~x,p!&2
e

T2s
^vx f 2s

~1!~x,p!&. ~43!

On the LHS of this equation we use@see Eq.~39!#

K vx
2 ] f 1

]x L 52
n

2m

]

]x
@ms~x!1m2s~x!# ~44!

and

K vx
2

] f 1
~0!

]e L 52
n

m
. ~45!

On the RHS of Eq.~43! we have

2
1

Ts
j s2

1

T2s
j 2s52

ne

2m S ]ms

]x
1

]m2s

]x
12eE0D .

~46!
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Introducing Eqs.~44!–~46! into Eq. ~43!, we see that all
terms cancel out except the second on the LHS. This yiel
constraint

] j x

]x
~x!50. ~47!

With this constraint Eq.~38! yields

mx.2
vet

2
my . ~48!

Let us turn to Eq.~10c! and take the momentum averag

mBK vx

] f y

]x L 2vemB^ f x&52
2mB

t
^ f̃ y

~1!&1mBa8^vxf z&.

~49!

Using Eqs.~11! and ~13!, this equation reads

] j y

]x
2vemz52

2

t
my1a8 j z . ~50!

This is a continuity equation frommy , modified by coupling
to mx and j z .

Proceeding to the Ohm’s law for the magnetization c
rent densityj y , we multiply Eq.~10c! by mBvx , and take the
momentum average. Noting that] f y

(0)/]y50, we have

1
3 vF

2 ]my

]x
2 1

3 a8vF
2mz2vej x52

1

2T̃
j y . ~51!

Differentiating this equation with respect tox, and eliminat-
ing ] j y /]x with use of Eq.~50!, we obtain to ordera8

2D
]2my

]x2 5
2

t
my2vemx2a8 j z5S 2

t
1

1

2
ve

2t Dmy2a8 j z ,

~52!

where the second equality follows by applying the relat
~48!.

Generally, we expect thatvet@1. In fact, assuming tha
the transverse relaxation timet'tsf , we obtainvet'103

for cobalt ~see Sec. V!. In view of this, Eq. ~52! can be
simplified to

]2my~x!

]x2 2
my~x!

l y
2 52

a8~x!

2D
j z , ~53!

wherel y is given by

l y
25

4D

ve
2t

5
4t

~vet!2tsf
l sf
2 . ~54!

We see that compared with the spin-diffusion lengthl sf
5(Dtsf)

1/2, the diffusion length for themy component is
drastically reduced due to the rapid precession ofm about
the exchange field.

Seeking a solution formy(x) that is first order ina8, we
need the quantityj z for a homogeneous ferromagnet (a8
50). The latter is given by Eqs.~26! and~28!. Thus, denot-
ing the RHS of Eq.~53! by b(x), we have
22441
a

-

b~x!52
a8~x!mBbE0

2eD~12b2!rF*
. ~55!

The solution of the inhomogeneous equation~53! can be
obtained using the Green’s function

my~x!5E
2`

`

dx8G~x2x8!b~x8!, ~56!

where

G~x!52 1
2 l y expS 2

uxu
l y

D . ~57!

As l y→0, the Green’s functionG(x)→2 l y
2d(x), and the Eq.

~56! yields

my~x!.2 l y
2b~x!5

a8~x!mBbE0l y
2

2eD~12b2!rF*
. ~58!

This approximation is applicable to a domain wall in coba
since the functiona8(x) varies slowly on the scale ofl y .

V. WALL-INDUCED RESISTANCE

The extra resistance due to the domain wall is obtained
calculating the excess voltage dropDVI from the relation

DVI52E
2`

`

dx@F~x!2E0#. ~59!

The excess electric field,F(x)2E0 , can be expressed in
terms of the gradient ofDm(x). Using Eqs.~40! and~41! in
Eq. ~23!, the electric current density in thes channel be-
comes

j s
~e!5ssS F~x!1

s

e

]Dm~x!

]x D . ~60!

From this relation, we obtain the total electric current dens

j ~e!5~s11s2!F~x!1
1

e
~s12s2!

]Dm~x!

]x
. ~61!

As x→`, F(x)→E0 , since the spin accumulation decays
zero as one moves away from the wall. In this limit, we ha

j ~e!5~s11s2!E0 . ~62!

Noting thatj (e) is independent ofx, we obtain from Eqs.~61!
and ~62! with use of Eq.~25!

F~x!2E05
b

e

]Dm~x!

]x
. ~63!

This relation was derived in Ref. 9 in the laboratory frame
can also be used to calculate the excess voltage in the ro
frame as long as the RHS is treated carefully. First of all,
conductivity asymmetry parameterb is independent ofx in
the rotated frame. Second, the gradient ofDm(x) on the
RHS of Eq.~63! must be transformed to the rotated fram
before substituting into the integral~59!. In the Appendix,
we derive the following expression for this quantity:
2-6
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S ]Dm~x!

]x D
x

52
2eF

3nmB
S ]mz~x!

]x
1a8~x!my~x! D . ~64!

Actually, only the second term on the RHS of this express
contributes to the integral in Eq.~59!. The reason is that the
solution of the inhomogeneous differential equation~36! has
the property

lim
uxu→`

mz~x!50. ~65!

This is because the forcing term on the RHS of Eq.~36! is
localized over the width of the wall, and the solution deca
exponentially away from the wall. Hence, as long as
sample length is much greater than the spin diffusion len
the limit ~65! is applicable and the integral of]mx(x)/]x
vanishes. This result is consistent with the example of
isolated interface considered in Ref. 9. In this case it is p
sible to obtain the excess voltage in a rotated coordin
system by integrating the quantity@]Dm(x)/]x#x , where
Dm(x) is given by Eq.~22! of Ref. 9. The quantitymz(x)
exhibits a discontinuity atx50 leading to ad-function term
in ]mz /]x. This term causes the vanishing of the integral
the latter function.

Using Eqs.~63!, ~64!, and ~58! in the integrand of Eq.
~59!, we get

DVI52
b

e E
2`

`

dxS ]Dm

]x D
x

5
2eFl y

2b2E0

6ne2DrF* ~12b2!
E

2`

`

dx@a8~x!#2. ~66!

We consider a 180° wall witha8(x)5p/d, for 2 1
2 d,x

, 1
2 d, and zero otherwise~see Ref. 6!. For the purpose of

computing the resistance per unit area, we express the
tric field E0 in terms of the electric current densityj (e).
Using Eqs.~25! and ~62!, we get

E05rF* ~12b2! j ~e!. ~67!

The formula on the RHS of Eq.~66! can be further rear-
ranged with use of the relationne2/m5(2T̃rF* )21. Substi-
tuting Eq.~54! for l y

2, we obtain the following expression fo
the extra resistance per unit area due to the wall,

r w5
DVI

j ~e! 52b2rF* l eff ~68!

with

l eff5
2p2vF

2 T̃

3dve
2t

5
8

3
j2d

T̃

t
, ~69!

wherej is the mistracking parameter equal topvF/2dve .6

We note that for the isolated interface considered by Va
and Fert,9 the spin-coupled interface resistance per unit ar
r SI , has the same form as Eq.~68! except thatl eff is replaced
by l sf . Then the suppression of the spin accumulation eff
in the domain wall can be characterized by the ratio
22441
n

s
e
h,

n
s-
te

f

ec-

t
a,

ct

r w

r SI
5

l eff

l sf
5

8T̃j2d

3t l sf
. ~70!

We will now estimate this ratio for a domain wall in coba
In this case we haved'1.531026 cm, ve'1.531015 s21,
and vF'1.43108 cm/s yieldingj'0.1. A reliable estimate
of the ratioT̃/t is more difficult since little is known abou
transverse spin relaxation for the conduction electrons i
domain wall. If we assume thatt'tsf , a value of T̃/t
'1022 is expected at liquid helium temperatures.9 Actually,
this number should be regarded only as a lower limit forT̃/t
sincet can be shorter thantsf . This is because, in contras
with the longitudinal decay, the transverse relaxation proc
conserves magnetic energy.5 This argument is particularly
relevant at low temperatures in view of the large value of
exchange splitting. Nevertheless, it is doubtful thatT̃/t
would be larger than 1021.

Since l sf'631026 cm for cobalt at 77 K, we estimate
that the ratio~70! is 1023– 1024 for a Bloch wall in this
material.

VI. CONCLUSION

That some suppression of the spin-accumulation effec
domain walls takes place, due to spin tracking, was poin
out by Ebelset al.3 These authors also argue that, since
spin density at the domain wall decays over distances
order l sf , the spin accumulation mechanism can be stro
enough to explain the large excess resistance in cobalt w

In contrast, the present analysis shows that the length
is relevant for the calculation ofr W is much shorter thanl sf
as a result of spin tracking. Analyzing the transport equati
in rotated frame of reference, we show that the quantity t
contributes tor W is the transverse magnetizationmy . It is the
rapid precession of this component about the exchange
that causes the drastic reduction of the relevant sp
diffusion length and the quenching of the spin-accumulat
mechanism. An estimate made for a Bloch wall in cob
shows that the strength of this mechanism is three to f
orders magnitude weaker than required to explain the dat
Ref. 3. In fact, it is at least one to two orders of magnitu
weaker than the mechanism of Ref. 6. As for a possi
explanation of the enhanced excess resistance in co
wires,3 it should be pointed out that the domain wall config
ration in a thin wire differs from that of the planar Bloc
wall considered in Ref. 6 as well as in the present wo
Possible consequences of such nonplanar configuration
electron transport remain to be investigated.
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APPENDIX: DERIVATION OF EQ. „64…

We start by establishing a relationship between the tra
formed derivative ofr̂ and the derivative of the density ma
trix in the x representation. Differentiating Eq.~3! with re-
2-7
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spect tox, and using Eq.~2!, we get

S ]r̂

]xD
x

5R̂a
21 ]r̂

]x
R̂a5

]r̂x

]x
1

i

2
a8~x!@ r̂x ,ŝx#. ~A1!

Since the magnetization components are defined in Eq.~11!
in terms of the Wigner function, we need an analog of t
relation~A1! for this function. It is convenient to express th
Wigner function in terms of the density matrix in the coo
dinate representation

F̂~x,p!5E d3x8r̂x~x1 1
2 x8,x2 1

2 x8!expS 2 i

\
p•x8D .

~A2!

We note that this definition is equivalent to Eq.~7! and can
be derived from it. Let us also define a Wigner functionF̂A
in the absolute~laboratory! coordinate system

F̂A~x,p!5E d3x8r̂~x1 1
2 x8,x2 1

2 x8!expS 2 i

\
p•x8D .

~A3!

Multiplying Eq. ~A1! by exp(2ip•x8\) and integrating over
x8, we get with the use of Eqs.~A2! and ~A3!

S ]F̂A~x,p!

]x
D

x

5
]F̂~x,p!

]x
1

i

2
a8~x!@ F̂~x,p!,ŝx#.

~A4!

The commutator on the RHS of Eq.~A4! can be evaluated
with use of the expansion~9! yielding

@ F̂~x,p!,ŝx#52 i @ f y~x,p!ŝz2 f z~x,p!ŝy#. ~A5!
l

2244
e

-

In the absolute coordinate system we have a relation sim
to Eq. ~11!

mZ~x!5
mB

h3 E d3p tr@ŝzF̂A~x,p!#. ~A6!

Using Eqs.~A4!–~A6!, we get

S ]mZ~x!

]x D
x

5
mB

h3 E d3p tr

3H ŝzS ]F̂

]x
1

1

2
a8~x!~ f yŝz2 f zŝy! D J

5
]mz~x!

]x
1a8~x!my~x! ~A7!

As a final step, we relate the magnetization incrementDmz
to Dm. From Eqs.~14!, ~24!, and~40! we get

D f z5
] f ~0!

]e
s~m̄s2m̄2s!52

] f ~0!

]e
Dm. ~A8!

Multiplying this equation bymB , and taking the momentum
average, we find

DmZ52mBK ] f ~0!

]e L Dm52
3mBn

2eF
Dm. ~A9!

Eqs.~A7! and ~A9! then yield

S ]Dm~x!

]x D
x

52
2eF

3nmB
S ]mz~x!

]x
1a8~x!my~x! D

~A10!
tt.
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