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Magnon dispersion and thermodynamics in CsNiF3
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We present an accurate transfer matrix renormalization group calculation of the thermodynamics in a
quantum spin-1 planar ferromagnetic chain. We also calculate the field dependence of the magnon gap and
confirm the accuracy of the magnon dispersion derived earlier through a 1/n expansion. We are thus able to
examine the validity of a number of previous calculations and further analyze a wide range of experiments on
CsNiF3 concerning the magnon dispersion, magnetization, susceptibility, and specific heat. Although it is not
possible to account for all data with a single set of parameters, the overall qualitative agreement is good and the
remaining discrepancies may reflect a departure from ideal quasi-one-dimensional model behavior. Finally, we
present some indirect evidence to the effect that the popular interpretation of the excess specific heat in terms
of sine-Gordon solitons may not be appropriate.
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I. INTRODUCTION

The magnetic compound CsNiF3 undergoes three
dimensional~3D! ordering at very low temperaturesT,TN
52.7 K, but exhibits essentially one-dimensional~1D! be-
havior forT.TN . A number of experimental investigations1

suggest that an appropriate 1D model is described by
spin s51 Hamiltonian

W5(
n

@2JSn•Sn111A~Sn
z!22gmBH•Sn#, ~1.1!

which contains a ferromagnetic (J.0) isotropic exchange
interaction and an easy-plane (A.0) single-ion anisotropy,
in addition to the usual Zeeman term produced by an app
field H.

The derivation of accurate theoretical predictions ba
on Hamiltonian~1.1! turned out to be more difficult than
anticipated thanks to the strong quantum fluctuations
occur in this quasi-1D system. In particular, the leadin
order magnon dispersion derived within the usual 1/s expan-
sion is too crude an approximation fors51. As a result,
inelastic neutron scattering experiments were analyz2

mostly on the basis of an alternative dispersion derived
Lindgard and Kowalska3 using a self-consistent approac
that is designed to properly account for single-ion anis
ropy. Similarly, a large body of experimental data beca
available for thermodynamic quantities such as magnet
tion, susceptibility, and specific heat, but a correspond
theoretical calculation proceeded slowly. To the best of
knowledge, the most accurate calculation of thermodynam
was provided by Delicaet al.4 based on a quantum transf
matrix, while comparable success was claimed more rece
by Cuccoli et al.5 through a sophisticated semiclassical a
proach. The above two papers also contain an extensive
of references to earlier work.

It is the aim of the present paper to derive theoreti
predictions that are accurate to within the line thickness
0163-1829/2001/63~22!/224406~9!/$20.00 63 2244
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thus provide a safe basis for the discussion of various iss
that have been raised during the long history of this subj

In Sec. II, experimental data on the magnon dispersion
analyzed in terms of an unconventional 1/n expansion6

which is shown to contain the Lindgard-Kowalska dispers
as a special case. The accuracy of the leading-1/n approxi-
mation is confirmed by an independent calculation of
field dependence of the magnon gap using a density ma
renormalization group~DMRG! method,7 while a discussion
of anharmonic corrections within the conventional 1/s ex-
pansion is also included for comparison. Thermodynam
quantities are calculated in Sec. III by a powerful trans
matrix renormalization group~TMRG! algorithm8–10 which
addresses directly the infinite-chain limit. We are thus in
position to appreciate the relative accuracy of earlier cal
lations, analyze all available data, and anticipate the res
of possible future experiments, as well as challenge pop
interpretations in terms of sine-Gordon solitons. A brief su
mary of the main conclusions is given in Sec. IV.

II. MAGNON DISPERSION

The standard spin-wave theory is a method for calculat
quantum corrections around the classical minimum
Hamiltonian ~1.1! by a systematic 1/s expansion. The 1/n
expansion developed in Ref. 6 is of a similar nature, exc
that the corresponding ‘‘classical’’ minimum is a variation
Hartree-like ground state that is more sensitive to the na
of single-ion anisotropy and thus provides a more sens
starting point. Hence one obtains an accurate magnon dis
sion even if the 1/n series is restricted to the harmonic a
proximation.

For a field applied in a direction perpendicular to thec
axis, e.g.,H5(H,0,0), the magnon energy at crystal mome
tum q is given by

vq52JH ~11«!S a

4«
2cosqD

3F a

4«
~11«!2~12«!cosqG J 1/2

. ~2.1!
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Here and in the rest of the paper we employ rationaliz
parameters for the anisotropy and field,

a5A/J, h5g'mBH/J, ~2.2!

while the energy and temperature may be measured in u
of the exchange constantJ. The notation employed for the
gyromagnetic ratiog' implies that the corresponding ratiogi
for a field parallel to thec axis may be different. Finally, the
dimensionless parameter« in Eq. ~2.1! is determined in
terms ofa andh by the algebraic equation

«5
a~12«2!1/2

2h14~12«2!1/2
. ~2.3!

One should add that derivation of systematic 1/n corrections
to the harmonic approximation~2.1! is possible6 but unnec-
essary in the parameter range of current interest:a,h,0.5.

At zero field, the root of Eq.~2.3! is «5a/4 which is
inserted into Eq.~2.1! to provide a completely explicit ex
pression for magnon dispersion. For nonzero field, Eq.~2.3!
may be solved by simple iteration starting with«50. In fact,
the result of a single iteration,

«.
a

2h14
, ~2.4!

is practically indistinguishable from the exact root of E
~2.3! for parameters such thata,h,0.5. The last remark be
comes especially important if one notes that the dispers
obtained by inserting the approximate root~2.4! into Eq.
~2.1! is precisely the magnon dispersion derived earlier
Lindgard and Kowalska,3 applied for s51, which was in
turn employed for an analysis of experimental data from
elastic neutron scattering.2

The latter analysis provided what is often referred to
the standard set of parameters for CsNiF3:

J523.6 K, A59 K, g'52.4. ~2.5!

The corresponding theoretical predictions of the magnon
persion~2.1! are compared to experimental data2 in the upper
panel of Fig. 1. The agreement is obviously very good for
field H541 kG, while a slight but systematic deviation
observed forH50. This conclusion is somewhat surprisin
in view of the claim in Ref. 2 that nearly perfect agreemen
obtained for both field values, even though the Lindga
Kowalska dispersion employed in the above reference
practically identical to Eq.~2.1! for the set of parameter
~2.5!. The systematic nature of this discrepancy makes it
likely that the data communicated to us by Steiner11 differ
from the data actually used in the analysis of Ref. 2. A m
likely explanation is that the Lindgard-Kowalska dispersi
was further approximated by the authors of Ref. 2, as
evident in the expression for the magnon gap given in th
Eq. ~5!.

Although the observed discrepancy appears to be mino
nonetheless leads to a substantial redefinition of parame
Thus we have redetermined the exchange constantJ and an-
isotropy A by a least-squares fit of the zero-field data
dispersion~2.1!, while the gyromagnetic ratio was subs
22440
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quently obtained by a one-parameter least-squares fit of
H541 kG data. The resulting new set of parameters

J523.6 K, A511 K, g'52.18 ~2.6!

restores agreement with experiment for both field values
is shown in the lower panel of Fig. 1. A notable feature
Eqs. ~2.5! and ~2.6! is that the exchange constant has
mained unchanged. Indeed, throughout our analysis,
found no evidence for a departure of the exchange cons
from the valueJ523.6 K which will thus be adopted in the
following without further questioning.

In contrast, the observed significant fluctuations in t
anisotropy constantA and gyromagnetic ratiog' simply re-
flect the fact that the magnon dispersion is not especi
sensitive to those parameters. Therefore, their values g
in either Eq.~2.5! or ~2.6! cannot be considered as esta
lished without further corroboration. Now, the reduced va
of the gyromagnetic ratio given in Eq.~2.6! is consistent
with g'52.160.05 obtained independently by measuri
the saturation magnetization at strong fields4 and is also sup-
ported by the analysis of the zero-field susceptibility in S
III. But a proper choice of the anisotropy constantA will be

FIG. 1. The magnon energyE5vq as a function of crystal
momentumq calculated from Eq.~2.1! for two values of the applied
field, H50 andH541 kG, and two different sets of parameter
The insets illustrate the corresponding field dependence of thq
50 magnon gapG calculated from Eq.~2.7!. Solid circles represen
experimental data from Ref. 2 taken atT54.2 K.
6-2
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MAGNON DISPERSION AND THERMODYNAMICS IN CsNiF3 PHYSICAL REVIEW B 63 224406
a matter of debate throughout this paper. In this respect,
should keep in mind that the neutron data displayed in Fig
were taken at helium temperatureT54.2 K, which is rela-
tively high but not too distant from the 3D-ordering trans
tion temperatureTN52.7 K. Hence, finite-temperature e
fects as well as deviations from ideal 1D behavior m
already be present.

An important special case of the magnon dispersion~2.1!
is the zero-momentum gapG5vq50 or

G5H g'mBHFg'mBH1AS 11«

12« D 1/2G J 1/2

, ~2.7!

where we have made use of the algebraic equation~2.2! to
simplify the expression.6 A comparison of the predictions o
Eq. ~2.7! with the measured field dependence of the mag
gap2,11 is shown in the insets of Fig. 1 for both sets of p
rameters. Although the overall agreement is reasonable,
tematic deviations are present at relatively low field values
both cases. An attempt to redetermine the parameters
least-squares fit of theq50 data to Eq.~2.7! yields values
for A andg' that would significantly compromise the agre
ment obtained at nonzero crystal momentumq.

Implicit in the preceding discussion is the presumpti
that the magnon dispersion~2.1! and its special case~2.7! are
sufficiently accurate and there is no need to proceed with
calculation of anharmonic 1/n corrections. We now test thi
assumption by a completely independent calculation of
field dependence of the magnon gap based on a density
trix renormalization group algorithm.7 An early effort12 to
apply a renormalization group technique was restricted
short chains~16 sites! and thus provided reasonable but n
especially accurate estimates of the magnon gap. The DM
algorithm allowed us to calculate the gap on long chains
to 400 sites. We have also tested the stability of our res
through Shanks or Richardson extrapolation13 and believe to
have calculated the gap to an accuracy greater than the
figures actually displayed in the third column of Table I.

It is then important that the corresponding results obtai
through Eq.~2.7!, listed in the second column of Table I, a

TABLE I. Magnon gap in units ofJ, for a typical anisotropy
a5A/J50.38, and a fieldh5g'mBH/J applied in a direction per-
pendicular to thec axis.

Magnon gapG
h 1/n DMRG 1/s

0.000 0.000 0.000 0.000
0.025 0.105 0.106 0.109
0.050 0.152 0.155 0.160
0.075 0.192 0.195 0.201
0.100 0.227 0.230 0.238
0.150 0.290 0.295 0.304
0.200 0.350 0.354 0.365
0.250 0.406 0.411 0.422
0.300 0.461 0.466 0.478
0.400 0.568 0.573 0.586
0.500 0.673 0.677 0.691
22440
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in agreement with the DMRG calculation. Since the relat
accuracy is expected to further improve at nonzero cry
momentumq, one must conclude that the magnon dispers
~2.1! is sufficiently accurate for all practical purposes. The
fore, any disagreement between theory and experim
should be attributed to other reasons. In particular, o
should note in Table I that the 1/n results slightly underesti-
mate the DMRG data and hence the latter cannot be use
eliminate the remaining small disagreement with the exp
mental data shown in the insets of Fig. 1.

Next we comment on the relative validity of the standa
semiclassical theory based on a 1/s expansion. The corre
sponding harmonic approximation of the magnon dispers
is clearly inaccurate, as is apparent in the estimate of ani
ropy A54.5 K encountered in the early literature.1 How-
ever, the semiclassical prediction can be significantly i
proved by including the first~anharmonic! 1/s correction. At
zero field, a completely analytical calculation is possible a
may be found in Ref. 14. For nonzero field, the anharmo
correction is expressed in terms of complicated integrals
cannot be computed analytically. Therefore, for simplici
the main point is made here by considering only theq50
magnon gap which can be written as

G5G0@11d/s1O~1/s2!#,

G05sJ@h~h12a!#1/2, d5
a

h12a S 1

2
2I D ,

I 5
1

pE0

p

dq
12cosq1h/21a/4

@~12cosq1h/2!~12cosq1h/21a!#1/2
,

~2.8!

where the rationalized field is now defined ash
5g'mBH/sJ which differs from the definition given in Eq
~2.2! by a factor that becomes unimportant fors51. Here
G0 is the~harmonic! classical approximation andd provides
the first anharmonic correction which amounts to ab
15–20 % of the total answer. Numerical values for the g
calculated from Eq.~2.8!, applied fors51, are listed in the
fourth column of Table I. These values overestimate
DMRG data by a wider margin than theharmonic1/n ap-
proximation underestimates the same data. Therefore,
again conclude that the magnon dispersion~2.1! and the
magnon gap~2.7! provide the most accurate description.

Finally, we mention that a 1/n expansion is also possibl
in the case of a field parallel to thec axis, along the lines
outlined in the Appendix of Ref. 6. Such a possibility w
not be pursued further in the present paper, except fo
minor application in Sec. III B, mainly because we do n
know of an experimental measurement of the magnon
persion for this field orientation.

III. THERMODYNAMICS

The most straightforward method for calculating the p
tition function is a complete numerical diagonalization of t
Hamiltonian on finite chains. The size of the resulting ma
ces is 3N33N and grows exponentially with the total numb
6-3
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of sitesN. Therefore, a calculation is possible only on sh
chains while a reliable extrapolation to larger values ofN is
difficult.

More powerful numerical methods proceed with the co
struction of a quantum transfer matrix~QTM! obtained by an
M-step Trotter decomposition. An explicit calculation w
initially performed via quantum Monte Carlo sampling15 and
was also limited to short chains (N516) and a relatively
small number of Trotter steps (M512). This procedure led
to reasonable results for the magnetization and susceptib
but the calculation of the specific heat was plagued by la
statistical errors.

A more systematic QTM calculation was lat
accomplished4 on long chains (N;150) by limiting the
number of Trotter steps (M<6) which allows an accurate
diagonalization of the matrices involved in the Trotter d
composition. At first sight, a smallM limits the calculation to
high temperatures. However, Delicaet al.4 extrapolate their
results forM54, 5, and 6 to higher values ofM and thus
obtain thermodynamic quantities that are expected to be
curate to within a few percent in the temperature regionT
.0.16J.4 K. This restriction is not crucial for applicatio
to CsNiF3 in view of the 3D-ordering transition belowTN
52.7 K which limits the validity of the 1D model anyway

Our calculation is based on the recently developed tra
fer matrix renormalization group algorithm8–10 which con-
centrates on the largest eigenvalue of the QTM and t
addresses directly the infinite-chain limit. Furthermore,
number of Trotter steps can be chosen to be largeM
;160) if the resulting huge matrices are diagonalized b
judicious truncation to a finite number of important sta
chosen in a manner analogous to that employed in the ea
DMRG calculation of ground-state properties.7 The explicit
numerical results discussed in the remainder of this pa
were stabilized to an accuracy better than line thickne
down to a temperature as low asT50.02J.0.5 K, which is
one order of magnitude lower than the lowest tempera
reached in earlier calculations. We find that the results
Delica et al.4 are reliable, within the anticipated limits o
accuracy, whereas the more recent elaborate semiclas
calculation of Cuccoliet al.5 is not very accurate over th
temperature region of current interest.

A. Field perpendicular to c

We begin with the discussion of the temperature dep
dence of the zero-field transverse susceptibilityx' measured
sometime ago by Dupas and Renard.16 The TMRG result for
the standard set of parameters~2.5! is depicted by a dashe
line in Fig. 2 and is seen to systematically deviate from
experimental data. The agreement with experiment for
set of parameters claimed by Cuccoliet al.5 is due to inac-
curacies in their calculation, a point that will be made mo
explicit in our subsequent discussion of the specific heat

Now, the transverse susceptibilityx' is found to be
largely insensitive to the specific strength of anisotropy,
demonstrated in the inset of Fig. 2. On the other hand,x'

depends quadratically on the gyromagnetic ratiog' and is
thus very sensitive to its specific value. It is then importa
22440
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that a reasonable agreement with the data is achieved fo
same valueg'52.18 obtained by our spin-wave analysis
Sec. II, as shown by the solid line in the main frame of F
2. The remaining systematic departure from the data
served forT&5 K could be due to a gradual onset of 3
ordering at low temperatures.

The above choice of gyromagnetic ratio is further ch
lenged by comparing, in Fig. 3, the TMRG prediction for th
field dependence of the magnetization with experimen
data taken at selected temperatures.4 The specific value ofA
chosen in Fig. 3 is not important because the transverse m
netization is also not particularly sensitive to the strength
anisotropy. But the relatively low valueg'52.18 was again

FIG. 2. Comparison of TMRG predictions for the temperatu
dependence of the zero-field transverse susceptibilityx' with ex-
perimental data from Ref. 16~solid circles!. The dashed line corre
sponds to the standard set of parameters of Eq.~2.5! and the solid
line to a lower value of the gyromagnetic ratio (g'52.18). The
inset illustrates the calculated susceptibility for two values of
isotropy, A59 K ~solid line! and A511 K ~dotted line!, which
lead to virtually identical results.

FIG. 3. Comparison of TMRG predictions for the field depe
dence of the magnetizationM at selected temperatures with expe
mental data from Ref. 4~solid circles!. Ms is the saturation magne
tization, and the specific choice of parameters is discussed in
text.
6-4
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important to improve agreement with the data. Yet a sign
cant disagreement between theory and experiment is ap
ent in Fig. 3, even at relatively high temperatures. The low
value g'52.1 employed in Ref. 4 reduces but does n
eliminate the discrepancy. An attempt to remedy this sit
tion by incorporating a phenomenological interchain inter
tion leads to a deterioration of the corresponding theoret
prediction for the zero-field transverse susceptibility.4

We next discuss the specific heatC5C(T,H) which was
measured experimentally by Ramirez and Wolf.17 In fact,
most of the attention was concentrated on theexcessspecific
heat

DC5C~T,H !2C~T,0! ~3.1!

viewed as a function of fieldH at some specified temperatu
T. An elementary argument based on the dilute-magnon
proximation suggests thatDC is negative and decreases wi
increasing field, because the magnon dispersion discuss
Sec. II increases monotonically withH for all values of the
crystal momentumq. Nevertheless, the experiment reveal
that DC rises to a positive maximum at some fieldHmax
;T2 before it begins to decrease and eventually reach n
tive values for stronger fields. A possible explanation of t
unexpected behavior could be that the dilute-magnon
proximation breaks down in the actual temperature rang
the experiment or ‘‘nonlinear modes’’ are activated in ad
tion to magnons, whence the beginning of a long deb
concerning the possible relevance of sine-Gordon kinks
least in some approximate sense.4,5

One of the advantages of an accurate numerical algori
such as TMRG is that potential nonlinear effects are au
matically taken into account. Our results for the excess s
cific heat calculated for the standard choice of parame
given in Eq.~2.5! are depicted in Fig. 4 for two characterist
values of temperature actually employed in the experimen17

In spite of the overall qualitative agreement, significa
quantitative differences are apparent in Fig. 4 for both val

FIG. 4. Comparison of TMRG predictions for the excess s
cific heat ~solid lines! with experimental data from Ref. 17~solid
circles! for two typical values of temperature. The dashed lin
depict the corresponding theoretical results of Ref. 5 for the s
set of parameters given by Eq.~2.5!.
22440
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of the temperature. We were thus surprised to note that
theoretical results of Cuccoliet al.5,18 for the same set of
parameters, depicted by dashed lines in Fig. 4, are in ag
ment with the data for the specific temperatureT57.1 K. On
the other hand, our results agree with those given by De
et al.4 for the same set of parameters, except for some m
~a few percent! differences anticipated by the introducto
remarks of this section. As mentioned already, a similar cr
cism applies to the calculation of the transverse susceptib
by Cuccoliet al.5 We must thus conclude that the semicla
sical nature of their method does not allow a complet
accurate calculation in this temperature range and
claimed agreement with experiment is fortuitous.

It is now interesting to examine whether or not the alt
native set of parameters given in Eq.~2.6! may be used to
eliminate the observed differences. In fact, our results quo
in Fig. 5, together with those given in Fig. 4 of Ref. 4 for y
another set of parameters, suggest that an accurate fit o
data is not possible for any reasonable choice of parame

Nevertheless, the main qualitative features of the exp
mental data are reproduced by the theoretical calculat
Therefore, it is important to examine further within the 1
model the mechanism by which the simple spin-wave ar
ment given earlier in the text is reconciled with a positi
excess specific heat. We first consider the quantity

2T ln~T3/2C!5G1G1T1G2T21•••, ~3.2!

where the expansion in the right-hand side presumes tha
low-temperature thermodynamics is dominated by magn
with a q50 energy gap equal toG. A detailed TMRG cal-
culation of the left-hand side of Eq.~3.2! for low tempera-
tures down toT50.02J reveals a behavior that is indee
consistent with the right-hand side of the same equation. P
ting it in more practical terms, an extrapolation toT50 us-
ing a second-degree polynomial to fit the low-temperat
numerical data yields estimates of the magnon gapG which
are in agreement with the direct DMRG calculation given
Table I. A curious fact is that the present calculation giv

-

s
e

FIG. 5. Comparison of TMRG predictions for the excess s
cific heat for two different sets of parameters, with experimen
data from Ref. 17~solid circles!.
6-5



nd

n
w

ne
e

in
e

n

e

ur

lo
a

ct
ac

c

-
e
e
e-

to

ny
i-

t of

on
de-
n of

e
use

n
es-

ism

at

c
the

es

-

lly

ar,

nite

his
de-
the

een
ture
A

-
nc

-
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values for the gap that are even closer to the 1/n results of
Table I, but this may be an artifact of the specific seco
order interpolation scheme.

The implied normal spin-wave behavior of this easy-pla
ferromagnetic chain should be contrasted with the lo
temperature anomalies discovered by Johnson and Bon19

in an easy-axis ferromagnetic chain and recently confirm
by a TMRG calculation.20 The absence of such anomalies
the present model reinforces the need for explaining the
cess specific heat in simple terms.

In the remainder of this subsection we find it convenie
to work exclusively with the rationalized parametersa andh
of Eq. ~2.2! whereas the temperaturet5T/J is measured in
units of the exchange constantJ. The corresponding absolut
specific heat per lattice site is denoted byc5c(t,h) and the
excess specific heat bydc5c(t,h)2c(t,0).

The inset of Fig. 6 illustrates the calculated temperat
dependence of the specific heatc for a typical anisotropya
50.5 and two field valuesh50 and 0.1. It is clear that a
nonzero field causes a depression of the specific heat at
temperatures thanks to the opening of a finite magnon g
This is the expected normal spin-wave behavior, as predi
by the usual dilute-magnon approximation. What is not
counted for by dilute magnons is the crossing of theh50
andh50.1 curves at a pointP that corresponds to a specifi
temperaturet which depends onh. In particular,P is located
near the origin for smallh and moves outward with increas
ing h. This crossing is precisely the origin of the positiv
excess specific heat at lowh, as demonstrated again by th
a50.5 solid curve in the main frame of Fig. 6 for the sp
cific temperaturet5t050.2.

Indeed, for any fixedt0, the crossing pointP occurs at
some t,t0 for sufficiently weak fields and thus leads
positivedc at t5t0. With increasing field the pointP moves
to the right and the corresponding temperaturet eventually
overtakest0, thus leading to negativedc at t5t0 for suffi-
ciently strong fields. The picture described is valid for a
choice oft0 and is confirmed by all of our numerical exper

FIG. 6. TMRG calculation of the excess specific heatdc for a
typical anisotropy (a50.5) and for the isotropic spin-1 ferromag
netic chain (a50). The inset depicts the temperature depende
of the absolute specific heatc for two field values,h50 and 0.1,
and anisotropya50.5. All quantities shown in this figure are ex
pressed in rationalized units.
22440
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ments. Therefore, the explanation of a positivedc at low
fields is equivalent to ascertaining the robust enhancemen
the absolute specific heatc with increasing field, in spite of
its initial depression by the field dependent magnon gap.

At this point one could invoke the popular sine-Gord
approximation to argue that the crossing mechanism
scribed in the preceding paragraph is due to the activatio
kinks or other nonlinear modes in addition to magnons. W
think that such an interpretation is dubious simply beca
the same mechanism occurs also in theisotropicHeisenberg
chain, as illustrated by thea50 line in Fig. 6. In fact, the
effect is strongly pronounced in the isotropic limit, eve
though a sine-Gordon approximation is clearly out of qu
tion.

Therefore, we return to the described crossing mechan
and attempt to explain it by more elementary means.21 The
absolute specific heat satisfies the obvious identity

E
0

`

dtc~t,h!5u~`,h!2u~0,h!, ~3.3!

where u(t,h) is the internal energy at temperaturet and
field h. A corresponding identity for the excess specific he
is obtained by applying Eq.~3.3! twice:

E
0

`

dtdc~t,h!5@u~`,h!2u~`,0!#1@u~0,0!2u~0,h!#.

~3.4!

A significant simplification occurs in the limit of an isotropi
ferromagnetic chain for which the field dependence of
energy levels is simply a linear Zeeman shiftmh, with m
50,61,62, . . . . Therefore the field dependence averag
out of the infinite-temperature internal energyu(`,h), which
is the sum of all energy levels, andu(`,h)2u(`,0)50. If
we further recall thate(h)5u(0,h) is the ground-state en
ergy at fieldh, we obtain the elementary sum rule

E
0

`

dtdc~t,h!5e~0!2e~h!5h, ~3.5!

where we have also invoked the known energy of the fu
polarized ferromagnetic ground state.

The obvious consequence of Eq.~3.5! is that positive val-
ues ofdc are the rule rather than the exception. In particul
the initial depression of the specific heat (dc,0) at low
temperatures, due to the opening of a magnon gap at fi
field, is overwhelmed by positive values ofdc attained at
higher temperatures also thanks to the applied field. T
explains the gross features of the crossing mechanism
scribed earlier in the text and concludes our discussion of
excess specific heat.

B. Field parallel to c

The case of a field parallel to thec axis is equally inter-
esting but the corresponding experimental work has not b
as extensive. We begin with a discussion of the tempera
dependence of the zero-field longitudinal susceptibility.
notable feature ofx i(T) is that it must approach a finite

e

6-6
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value in the limitT→0. A simple estimate of this value i
obtained by a straightforward classical argument. In the p
ence of a fieldH5(0,0,H) the classical ground state is suc
that all spins form an angleu with thec axis calculated from
cosu5gimBH/2A. Therefore, theT50 magnetization is given
by M5NgimBcosu and the susceptibility by

x i
cl~T50!5

1

2A
~Ngi

2mB
2 !, ~3.6!

whereN is the total number of magnetic sites andgi is the
gyromagnetic ratio for a field applied along thec axis.

Of course, numerical estimates based on the above c
sical result are not expected to be accurate, for reasons s
lar to those explained in Sec. II. However, a more accur
prediction may again be obtained through the 1/n expansion.
To leading order, theT50 magnetization is calculated as th
expected value of the azimuthal spin in the Hartree va
tional ground state given in the Appendix of Ref. 6. Restri
ing that calculation to weak fields one may extract theT
50 longitudinal susceptibility

x i
1/n~T50!5

1

A S 12
A

4JD ~Ngi
2mB

2 !. ~3.7!

The main difference from Eq.~3.6! is an overall factor of 2,
which is essentially the same factor that caused the low
timateA54.5 K in the early literature,1 in addition to some
mild dependence on the exchange constant. In any case
main conclusion is thatx i is more sensitive to the value o
the anisotropy constantA than to the exchange constantJ, a
situation that is reverse to the one encountered in Sec. II

Therefore, the longitudinal susceptibility is an ideal phy
cal quantity to yield a sensible estimate of the anisotro
constantA, provided that an accurate value forgi is also
available. The latter is fixed here by appealing to a theor
cal estimate16 of the differenceg'2gi.531022 which
leads togi52.13 if we adopt our earlier value for the tran
verse gyromagnetic ratiog'52.18. The corresponding
TMRG calculation ofx i(T) is illustrated in Fig. 7 for vari-

FIG. 7. Comparison of TMRG predictions for the temperatu
dependence of the zero-field longitudinal susceptibilityx i with ex-
perimental data from Ref. 16~solid circles!.
22440
s-

s-
i-

te

-
-

s-

the

.
-
y

i-

ous reasonable choices ofA. The experimental data16 are
well reproduced for the set of parameters

J523.6 K, A58.25 K, gi52.13, ~3.8!

which is closer to the set employed by Delicaet al.4 In ad-
dition, the field dependence of the magnetization measure
selected temperatures4 agrees with our TMRG calculation
without further fit of parameters, as demonstrated in Fig.

Incidentally, for this choice the classical result~3.6! yields
0.10 emu/mol and the leading 1/n approximation~3.7! gives
0.19 emu/mol. These values should be compared w
x i(T50).0.175 emu/mol extracted by a visual extrapo
tion of the solid curve in Fig. 7 toT50. Including the 1/n
correction produced by zero-point fluctuations in Eq.~3.7!
will bring its prediction to the same level of accuracy wi
the magnon gap discussed in Table I.

It is now interesting to take this calculation into the regi
of strong fields where the ground state becomes comple
ordered along thec axis. Such a ferromagnetic state is act
ally an exact eigenstate of the Hamiltonian for any stren
of the fieldH. But the corresponding magnon gap

G5gimBH2A ~3.9!

is positive only forH.Hc where

Hc5A/gimB ~3.10!

is the critical field beyond which the fully ordered state is t
absolute ground state. The gap vanishes for allH,Hc be-
cause the corresponding magnon is a Goldstone mode a
ciated with the axial symmetry for this field orientation.

For the set of parameters~3.8! one finds that Hc
558 kG, in reasonable agreement with the value 62.5
estimated from an experiment of A. Miedan which is quot
in Ref. 16 but is apparently unpublished. According to t
description of Dupas and Renard,16 Miedan measured the
field dependence of the magnetization atT54.2 K and ex-
tractedHc from the observed bending of theM (H) curve.
Although we do not know the details of this experiment, w
have calculated theM (H) curve atT54.2 K for a wide

FIG. 8. Comparison of TMRG predictions for the field depe
dence of the magnetizationM at selected temperatures with expe
mental data from Ref. 4~solid circles!. The field is applied along
the c axis andMs is the saturation magnetization.
6-7
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field range and the result is depicted by a dashed line in
9. Interestingly, the bending of theM (H) curve is not pre-
dicted to be especially sharp at this temperature, as is ap
ent in the corresponding susceptibility displayed also b
dashed line in the inset of Fig. 9. In other words, if t
location of the maximum of the susceptibility were taken
an estimate of the critical fieldHc , the latter would have
been severely underestimated. The situation improves slo
at lower temperatures, as indicated by the solid lines in F
9 which correspond toT52.4 K; i.e., to a temperature tha
is already below the 3D-transition temperatureTN52.7 K.

It is clear that we cannot go further with our theoretic
arguments without explicit knowledge of detailed expe
mental data onM (H) in this field region. We thus conclud
the discussion of magnetization with a comment concern
an apparent contradiction between the results of Fig. 9
those given earlier in Fig. 8 for lower field strengths. Inde
Fig. 8 suggests that the magnetizationM (H) for any given
field H decreases with increasing temperature, as expec
while Fig. 9 indicates that a relative crossing occurs betw
any twoM (H) curves. The resolution of this apparent pa
dox lies in the fact that the values of temperature emplo
in Fig. 8 are all greater than the temperatureT.7.5 K, at
which the maximum of the zero-field susceptibility of Fig.
occurs, while those of Fig. 9 are smaller.

Finally, we discuss the specific heat in a field parallel
the c axis. It appears that no measurements have been m
for this field orientation but could prove to be feasible in t
future.22 Our TMRG calculation of the excess specific hea
illustrated in Fig. 10 for the two values of temperature e
ployed in our preceding discussion of the magnetization. T
characteristic double peak near the critical fieldHc was an-
ticipated in earlier work21 based on a classical transfer matr
calculation and on the known exact solution for a spin-1

2 XY
chain, as well as on an accurate numerical solution fo
spin-12 XXZ chain based on the Bethe ansatz. The calcula
double peak is also a clear departure from the correspon

FIG. 9. TMRG calculation of the field dependence of the ma
netizationM for a wide field range and two typical values of tem
perature. The inset displays the corresponding results for the
dependence of the susceptibility. The field is applied along thc
axis and the critical fieldHc is estimated to be 58 kG forgi
52.13.
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prediction of the dilute-magnon approximation21 and could
eventually be observed in CsNiF3. An unfortunate feature of
Fig. 10 is that a strongly pronounced double peak is p
dicted to occur in the low-temperature region where the
model is no longer applicable.

IV. CONCLUSION

We have presented a more or less complete calculatio
the dynamics and the thermodynamics associated with
spin-1 Hamiltonian~1.1!. The T50 dynamics is efficiently
described by a 1/n expansion whose full potential has not y
been explored. For example, an accurate calculation of
magnon dispersion for a field parallel to thec axis is also
possible but has not been carried out mainly because t
seems to have been no experimental effort in that direct

On the other hand, the thermodynamics is calculated b
powerful TMRG method which has opened the way to obt
accurate theoretical predictions for a wide class of quan
magnetic chains. Suffice it to say that our present algorit
may be trivially adjusted to handle spin-1 Haldane-g
antiferromagnets23 in the presence of anisotropy and extern
fields. Even in the case of completely integrable spin1

2

chains, for which the Bethe ansatz applies, the calculatio
the thermodynamics is far from trivial.24 Nevertheless,
TMRG can be applied in a straightforward manner irresp
tive of complete integrability.20

The extent to which the 1D Hamiltonian~1.1! may de-
scribe the magnetic properties of CsNiF3 has been debate
on several occasions. Our calculations confirm the gen
conclusion that the 1D model accounts for the main featu
of all available experimental data. But it is also clear th
departures from ideal model behavior are present, espec
at low temperatures approaching the 3D-ordering transi
temperatureTN52.7 K.
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FIG. 10. TMRG calculation of the excess specific heat fo
wide field range and two typical values of temperature. The field
applied along thec axis and the critical fieldHc is estimated to be
58 kG for gi52.13.
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24A. Klümper, Z. Phys. B: Condens. Matter91, 507 ~1993!.
6-9


