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We present an accurate transfer matrix renormalization group calculation of the thermodynamics in a
guantum spin-1 planar ferromagnetic chain. We also calculate the field dependence of the magnon gap and
confirm the accuracy of the magnon dispersion derived earlier through expansion. We are thus able to
examine the validity of a number of previous calculations and further analyze a wide range of experiments on
CsNiF; concerning the magnon dispersion, magnetization, susceptibility, and specific heat. Although it is not
possible to account for all data with a single set of parameters, the overall qualitative agreement is good and the
remaining discrepancies may reflect a departure from ideal quasi-one-dimensional model behavior. Finally, we
present some indirect evidence to the effect that the popular interpretation of the excess specific heat in terms
of sine-Gordon solitons may not be appropriate.
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[. INTRODUCTION thus provide a safe basis for the discussion of various issues
that have been raised during the long history of this subject.
The magnetic compound CsNiFundergoes three- In Sec. I, experimental data on the magnon dispersion are

dimensional(3D) ordering at very low temperaturds<T,  analyzed in terms of an unconventionaln 1éxpar_15ioﬁ )
=2.7 K, but exhibits essentially one-dimensioriaD) be- which is shown to contain the Lindgard-Kowalska dispersion
havior forT>Ty . A number of experimental investigatidns @S @ Special case. The accuracy of the leadingapproxi-

suggest that an appropriate 1D model is described by th ation is confirmed by an independent_ calculation of the
spins=1 Hamiltonian ield dependence of the magnon gap using a density matrix

renormalization groupDMRG) method’ while a discussion
of anharmonic corrections within the conventionas &k-
) pansion is also included for comparison. Thermodynamic
WZE [=JSh St tAS) —gueH-S 1, (1.2) quantities are calculated in Sec. lll by a powerful transfer
i matrix renormalization grougTMRG) algorithn?~° which
) ) ) ) ) addresses directly the infinite-chain limit. We are thus in a
which contains a ferromagnetid%0) isotropic exchange position to appreciate the relative accuracy of earlier calcu-
interaction and an easy-plan&% 0) single-ion anisotropy, |ations, analyze all available data, and anticipate the results
in addition to the usual Zeeman term produced by an appliedf possible future experiments, as well as challenge popular
field H. interpretations in terms of sine-Gordon solitons. A brief sum-
The derivation of accurate theoretical predictions basednary of the main conclusions is given in Sec. IV.
on Hamiltonian(1.1) turned out to be more difficult than
anticipated thanks to the strong quantum fluctuations that Il. MAGNON DISPERSION

occur in this quasi-1D system. In particular, the leading- g standard spin-wave theory is a method for calculating
order magnon dispersion derived within the usualépan-  quantum corrections around the classical minimum of
sion is too crude an approximation fe=1. As a result, Hamijltonian (1.1) by a systematic &/ expansion. The B/
inelastic neutron scattering experiments were anaF}’Ze‘jexpansion developed in Ref. 6 is of a similar nature, except
mostly on the basis of an alternative dispersion derived byhat the corresponding “classical” minimum is a variational
Lindgard and Kowalskausing a self-consistent approach Hartree-like ground state that is more sensitive to the nature
that is designed to properly account for single-ion anisotof single-ion anisotropy and thus provides a more sensible
ropy. Similarly, a large body of experimental data becamestarting point. Hence one obtains an accurate magnon disper-

available for thermodynamic quantities such as magnetizasion even if the I series is restricted to the harmonic ap-
tion, susceptibility, and specific heat, but a correspondingyroximation.

theoretical calculation proceeded slowly. To the best of our For a field applied in a direction perpendicular to the
knowledge, the most accurate calculation of thermodynamicgyis, e.g.H=(H,0,0), the magnon energy at crystal momen-
was provided by Delicat al* based on a quantum transfer tym q is given by
matrix, while comparable success was claimed more recently
by Cuccoliet al® through a sophisticated semiclassical ap-
proach. The above two papers also contain an extensive list
of references to earlier work.

It is the aim of the present paper to derive theoretical
predictions that are accurate to within the line thickness and
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Here and in the rest of the paper we employ rationalized

parameters for the anisotropy and field,

a=AlJ, h=g, ugH/J,

(2.2

while the energy and temperature may be measured in units
of the exchange constadt The notation employed for the
gyromagnetic ratigy, implies that the corresponding ratyp

for a field parallel to the axis may be different. Finally, the
dimensionless parameter in Eqg. (2.1) is determined in

terms of @ andh by the algebraic equation

a(l— 82)1/2

e=———————.
2h+4(1-2%)1?

2.3

One should add that derivation of systematie d¢brrections
to the harmonic approximatiof2.1) is possiblé but unnec-
essary in the parameter range of current inter@gt<<0.5.
At zero field, the root of Eq(2.3) is e=al/4 which is
inserted into Eq(2.1) to provide a completely explicit ex-
pression for magnon dispersion. For nonzero field, B®)
may be solved by simple iteration starting witk 0. In fact,

the result of a single iteration,

(64
" 2h+4’

>

(2.9

is practically indistinguishable from the exact root of Eq.
(2.3 for parameters such thath<<0.5. The last remark be-
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comes especially important if one notes that the dispersion q/m

obtained by inserting the approximate ra@4) into Eqg.
(2_'1) is precisely the maagnon_ dISpeI’SI_OH den_ved earllgr bymomenturrq calculated from Eq(2.1) for two values of the applied

Lindgard and Kowalsk ’app“ed fors—ll, which was in . field, H=0 andH=41 kG, and two different sets of parameters.
turn employed for an analysis of experimental data from in—ne jnsets illustrate the corresponding field dependence ofjthe

elastic neutron scatt.erir?g. _ . =0 magnon ga® calculated from Eq(2.7). Solid circles represent
The latter analysis provided what is often referred to asxperimental data from Ref. 2 taken Bt 4.2 K.

the standard set of parameters for CsNiF

FIG. 1. The magnon energ=w, as a function of crystal

2.5 quently obtained by a one-parameter least-squares fit of the
' H=41 kG data. The resulting new set of parameters
The corresponding theoretical predictions of the magnon dis-
persion(2.1) are compared to experimental daitathe upper
panel of Fig. 1. The agreement is obviously very good for the
field H=41 kG, while a slight but systematic deviation is restores agreement with experiment for both field values, as
observed folH=0. This conclusion is somewhat surprising is shown in the lower panel of Fig. 1. A notable feature of
in view of the claim in Ref. 2 that nearly perfect agreement isEgs. (2.5 and (2.6) is that the exchange constant has re-
obtained for both field values, even though the Lindgard-mained unchanged. Indeed, throughout our analysis, we
Kowalska dispersion employed in the above reference igound no evidence for a departure of the exchange constant
practically identical to Eq(2.1) for the set of parameters from the valueJ=23.6 K which will thus be adopted in the
(2.5). The systematic nature of this discrepancy makes it unfollowing without further questioning.
likely that the data communicated to us by Stethetiffer In contrast, the observed significant fluctuations in the
from the data actually used in the analysis of Ref. 2. A moreanisotropy constarm and gyromagnetic ratig, simply re-
likely explanation is that the Lindgard-Kowalska dispersionflect the fact that the magnon dispersion is not especially
was further approximated by the authors of Ref. 2, as isensitive to those parameters. Therefore, their values given
evident in the expression for the magnon gap given in theiin either Eq.(2.5 or (2.6) cannot be considered as estab-
Eq. (5). lished without further corroboration. Now, the reduced value
Although the observed discrepancy appears to be minor, f the gyromagnetic ratio given in Eq2.6) is consistent
nonetheless leads to a substantial redefinition of parametensith g, =2.1+0.05 obtained independently by measuring
Thus we have redetermined the exchange constand an-  the saturation magnetization at strong fiéldad is also sup-
isotropy A by a least-squares fit of the zero-field data toported by the analysis of the zero-field susceptibility in Sec.
dispersion(2.1), while the gyromagnetic ratio was subse- lll. But a proper choice of the anisotropy constaénwill be

J=236 K, A=9 K, g, =24.

J=23.6 K, A=11 K, g¢,=2.18 (2.6)
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TABLE I. Magnon gap in units of], for a typical anisotropy in agreement with the DMRG calculation. Since the relative
a=A/J=0.38, and a fielh=g, ugH/J applied in a direction per- accuracy is expected to further improve at nonzero crystal

pendicular to thes axis. momenturmg, one must conclude that the magnon dispersion
(2.1) is sufficiently accurate for all practical purposes. There-
Magnon gapG fore, any disagreement between theory and experiment
h 1n DMRG 15 should be attributed to other reasons. In particular, one
0.000 0.000 0.000 0.000 should note in Table | that theritesults slightly underesti-
0.025 0105 0106 0.109 mate the DMRG df_:\tc_':l and henc_e the latter cannot be used_to
0.050 0.152 0155 0.160 eliminate the remaining small dlsagre_ement with the experi-
0.075 0.192 0.195 0.201 mental data shown in the insets pf F|g._1_.
0.100 0.227 0,230 . Ngxt we comment on the relative valldlt'y of the standard
' ' ' : semiclassical theory based on & Bxpansion. The corre-
0.150 0.290 0295 0304 sponding harmonic approximation of the magnon dispersion
0.200 0.350 0.354 0.365 is clearly inaccurate, as is apparent in the estimate of anisot-
0.250 0.406 0.411 0.422 ropy A=4.5 K encountered in the early literaturédow-
0.300 0.461 0.466 0.478 ever, the semiclassical prediction can be significantly im-
0.400 0.568 0.573 0.586 proved by including the firstanharmonig 1/s correction. At
0.500 0.673 0.677 0.691 zero field, a completely analytical calculation is possible and

may be found in Ref. 14. For nonzero field, the anharmonic

correction is expressed in terms of complicated integrals that

a matter of debate throughout this paper. In this respect, ong, o+ he computed analvtically. Therefore. for simplicit
should keep in mind that the neutron data displayed in Fig. 1. 1, qin point ?s made hg:e b;/considering’ only mso Y
were taken at helium temperatufe=4.2 K, which is rela- magnon gap which can be written as

tively high but not too distant from the 3D-ordering transi-

tion temperatureTy=2.7 K. Hence, finite-temperature ef- G=Gy[1+ 8/s+0(1/%)],
fects as well as deviations from ideal 1D behavior may
already be present. a /1
An important special case of the magnon dispersim) Go=sJh(h+2a)]*? 6= 2 E_I)’
is the zero-momentum gap= wy—q Or
G [ ’ A 1+s)1’2 }1’2 27 | 1J’wd 1—cosq+h/2+ ald
= +A[ — , . =— ,
Gikel) Oike 1-¢ mJo C'[(l—coqurh/2)(1—cosq+h/2+a)]1’2

where we have made use of the algebraic equafc?) to (2.8
simplify the expressioA.A comparison of the predictions of where the rationalized field is now defined ds
Eq. (2.7) with the measured field dependence of the magnor=g, ugH/sJ which differs from the definition given in Eq.
gag*is shown in the insets of Fig. 1 for both sets of pa-(2.2) by a factor that becomes unimportant ¢ 1. Here
rameters. Although the overall agreement is reasonable, sy&, is the (harmonig classical approximation anél provides
tematic deviations are present at relatively low field values irnthe first anharmonic correction which amounts to about
both cases. An attempt to redetermine the parameters by 1&—20% of the total answer. Numerical values for the gap
least-squares fit of thg=0 data to Eq(2.7) yields values calculated from Eq(2.8), applied fors=1, are listed in the
for Aandg, that would significantly compromise the agree- fourth column of Table |. These values overestimate the
ment obtained at nonzero crystal momentgm DMRG data by a wider margin than thermonic1/n ap-
Implicit in the preceding discussion is the presumptionproximation underestimates the same data. Therefore, we
that the magnon dispersi@@.1) and its special cag@.7) are  again conclude that the magnon dispersi@il) and the
sufficiently accurate and there is no need to proceed with thehagnon gafd2.7) provide the most accurate description.
calculation of anharmonic d/corrections. We now test this Finally, we mention that a fi/expansion is also possible
assumption by a completely independent calculation of thén the case of a field parallel to theaxis, along the lines
field dependence of the magnon gap based on a density maatlined in the Appendix of Ref. 6. Such a possibility will
trix renormalization group algorithhAn early effort? to  not be pursued further in the present paper, except for a
apply a renormalization group technique was restricted teninor application in Sec. Ill B, mainly because we do not
short chaing16 sites and thus provided reasonable but notknow of an experimental measurement of the magnon dis-
especially accurate estimates of the magnon gap. The DMRgersion for this field orientation.
algorithm allowed us to calculate the gap on long chains up
to 400 sites. We have also tested the stability of our results
through Shanks or Richardson extrapolaticend believe to Ml THERMODYRAMICS
have calculated the gap to an accuracy greater than the three The most straightforward method for calculating the par-
figures actually displayed in the third column of Table I.  tition function is a complete numerical diagonalization of the
It is then important that the corresponding results obtainedHamiltonian on finite chains. The size of the resulting matri-
through Eq(2.7), listed in the second column of Table I, are ces is 3'x 3N and grows exponentially with the total number
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of sitesN. Therefore, a calculation is possible only on short 8 — '

chains while a reliable extrapolation to larger valuesNas ‘

difficult. J=208K. 97218
More powerful numerical methods proceed with the con- 6| . |

struction of a quantum transfer mat(i® TM) obtained by an
M-step Trotter decomposition. An explicit calculation was
initially performed via quantum Monte Carlo sampliignd

was also limited to short chaindNE16) and a relatively
small number of Trotter stepsv(=12). This procedure led

to reasonable results for the magnetization and susceptibility,
but the calculation of the specific heat was plagued by large
statistical errors.

A more systematic QTM calculation was later J=236K, A=9K
accomplisheti on long chains l~150) by limiting the %5 5 10 15
number of Trotter stepsM <6) which allows an accurate T [K]
diagonalization of the matrices involved in the Trotter de-
composition. At first sight, a smalfl limits the calculation to FIG. 2. Comparison of TMRG predictions for the temperature
high temperatures. However, Delieaal* extrapolate their dependence of the zero-field transverse susceptibilityvith ex-
results forM=4, 5, and 6 to higher values & and thus perimental data from Ref. 1Golid circles. The dashed line cor_re-
obtain thermodynamic quantities that are expected to be aGPonds to the standard set of parameters of(E4) and the solid
curate to within a few percent in the temperature region "¢ [0 @ lower value of the gyromagnetic ratig,(=2.18). The
~0.16)=4 K. This restriction is not crucial for application inset illustrates the cglcglated susceptibility for two values_ of an-
to CsNiF; in view of the 3D-ordering transition belovy :2(;2(1?\%:5' ﬁdésni:gjalhpee;ui!dA:ll K (dotted ling, which
=2.7 K which limits the validity of the 1D model anyway. Y '

Our calculation is based on the recently developed trans- . . .
fer matrix renormalization group algorittim® which con- that a reasonable agreement with the data is achieved for the

centrates on the largest eigenvalue of the QTM and thuS@Me valuey, =2.18 obtained by our spin-wave analysis of

addresses directly the infinite-chain limit. Furthermore, the>€C: Il; @ shown by the solid line in the main frame of Fig.

number of Trotter steps can be chosen to be larye ( 2. The remaining systematic departure from the data ob-

~160) if the resulting huge matrices are diagonalized by gerved forT=5 K could be due to a gradual onset of 3D

judicious truncation to a finite number of important statesorder:ing at low Lempera]:tures. i« ratio is further chal
chosen in a manner analogous to that employed in the earlier The above choice of gyromagnetic ratio is further chal-
DMRG calculation of ground-state propertfeghe explicit ~€nged by comparing, in Fig. 3, the TMRG prediction for the

; eereId dependence of the magnetization with experimental
were stabilized to an accuracy better than line thickness‘,ja'[a tak_en at sel.ected.temperathré'd;le specific value oA
down 1o a temperature as low &s-0,02J=0.5 K, which is _ chosen in Fig. 3 is not important because the transverse mag-

one order of magnitude lower than the lowest temperatur@etization is also not particularly sensitive to the strength of
reached in earlier calculations. We find that the results ofNiSOtropy. But the relatively low valug, =2.18 was again

Delica et al* are reliable, within the anticipated limits of
accuracy, whereas the more recent elaborate semiclassical 1
calculation of Cuccoliet al® is not very accurate over the
temperature region of current interest.

¥ [emu/mol]

L

---- g=24
2 —— g=218

A. Field perpendicular to ¢

We begin with the discussion of the temperature depen- 05
dence of the zero-field transverse susceptibjlitymeasured
sometime ago by Dupas and Ren&t@he TMRG result for
the standard set of parameté®sb) is depicted by a dashed
line in Fig. 2 and is seen to systematically deviate from the
experimental data. The agreement with experiment for this
set of parameters claimed by Cuccetial® is due to inac- 0
curacies in their calculation, a point that will be made more

explicit in our subsequent discussion of the specific heat.

Now, the transverse susceptibility, is found to be FIG. 3. Comparison of TMRG predictions for the field depen-
largely insensitive to the specific strength of anisotropy, agience of the magnetizatiovl at selected temperatures with experi-
demonstrated in the inset of Fig. 2. On the other hand, mental data from Ref. 4solid circles. M is the saturation magne-
depends quadratically on the gyromagnetic rafioand is tization, and the specific choice of parameters is discussed in the
thus very sensitive to its specific value. It is then importanttext.

M/M

J=236K,A=9K, g=2.18

0 10 20 30 40 50
H [kG]
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FIG. 4. Comparison of TMRG predictions for the excess spe- FIG. 5. Comparison of TMRG predictions for the excess spe-
cific heat(solid lineg with experimental data from Ref. 1(&olid cific heat for two different sets of parameters, with experimental
circles for two typical values of temperature. The dashed linesdata from Ref. 14solid circles.
depict the corresponding theoretical results of Ref. 5 for the same

set of parameters given by E.5). of the temperature. We were thus surprised to note that the
theoretical results of Cuccokt al>*8 for the same set of
important to improve agreement with the data. Yet a Signiﬁ'parameterS’ depicted by dashed lines in F|g 4, are in agree-
cant disagreement between theory and experiment is appajrent with the data for the specific temperatlire 7.1 K. On
entin Fig. 3, even at relatively high temperatures. The lowetne other hand, our results agree with those given by Delica
value g, =2.1 employed in Ref. 4 reduces but does notet |2 for the same set of parameters, except for some minor
eliminate the discrepancy. An attempt to remedy this situa¢a few percent differences anticipated by the introductory
tion by incorporating a phenomenological interchain interacyemarks of this section. As mentioned already, a similar criti-
tion leads to a deterioration of the corresponding theoreticatism applies to the calculation of the transverse susceptibility
prediction for the zero-field transverse susceptibfity. by Cuccoliet al® We must thus conclude that the semiclas-
We next discuss the specific he@t=C(T,H) which was  sjcal nature of their method does not allow a completely
measured experimentally by Ramirez and WOln fact,  accurate calculation in this temperature range and the
most of the attention was concentrated onélkeesspecific  ¢laimed agreement with experiment is fortuitous.
heat It is now interesting to examine whether or not the alter-
native set of parameters given in EQ.6) may be used to
AC=C(T,H)-C(T,0 (3.)  eliminate the observed differences. In fact, our results quoted
) ] ) -~ in Fig. 5, together with those given in Fig. 4 of Ref. 4 for yet
viewed as a function of fielth at some specified temperature gnother set of parameters, suggest that an accurate fit of the
T. An elementary argument based on the dilute-magnon apyata is not possible for any reasonable choice of parameters.
proximation suggests thatC is negative and decreases with  Nevertheless, the main qualitative features of the experi-
increasing field, because the magnon dispersion discussed jflental data are reproduced by the theoretical calculation.
Sec. Il increases monotonically with for all values of the  Tnerefore, it is important to examine further within the 1D
crystal momentuny. Nevertheless, the experiment revealedmode| the mechanism by which the simple spin-wave argu-
that AC rises to a positive maximum at some fietthax  ment given earlier in the text is reconciled with a positive

~T2 before it begins to decrease anq eventually rgach negaxcess specific heat. We first consider the quantity
tive values for stronger fields. A possible explanation of this

unexpected behavior could be that the dilute-magnon ap- 3 )

proximation breaks down in the actual temperature range of —TIn(T*?C)=G+G,T+G,T?+ -+, 3.2

the experiment or “nonlinear modes” are activated in addi-

tion to magnons, whence the beginning of a long debatevhere the expansion in the right-hand side presumes that the

concerning the possible relevance of sine-Gordon kinks, dbw-temperature thermodynamics is dominated by magnons

least in some approximate serise. with a q=0 energy gap equal t&. A detailed TMRG cal-
One of the advantages of an accurate numerical algorithraulation of the left-hand side of E@3.2) for low tempera-

such as TMRG is that potential nonlinear effects are autotures down toT=0.02] reveals a behavior that is indeed

matically taken into account. Our results for the excess spezonsistent with the right-hand side of the same equation. Put-

cific heat calculated for the standard choice of parametering it in more practical terms, an extrapolationTe-0 us-

given in Eq.(2.5) are depicted in Fig. 4 for two characteristic ing a second-degree polynomial to fit the low-temperature

values of temperature actually employed in the experirhent. numerical data yields estimates of the magnon Gaphich

In spite of the overall qualitative agreement, significantare in agreement with the direct DMRG calculation given in

quantitative differences are apparent in Fig. 4 for both valueJable I. A curious fact is that the present calculation gives
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0.10 , ments. Therefore, the explanation of a positfe at low
©=02 a=0 fields is equivalent to ascertaining the robust enhancement of
the absolute specific heatwith increasing field, in spite of

its initial depression by the field dependent magnon gap.

At this point one could invoke the popular sine-Gordon
approximation to argue that the crossing mechanism de-
scribed in the preceding paragraph is due to the activation of
kinks or other nonlinear modes in addition to magnons. We
think that such an interpretation is dubious simply because
the same mechanism occurs also in id@ropic Heisenberg
0 : chain, as illustrated by the=0 line in Fig. 6. In fact, the

T effect is strongly pronounced in the isotropic limit, even
0 0.05 0.10 though a sine-Gordon approximation is clearly out of ques-
h tion.
) - Therefore, we return to the described crossing mechanism
FIG. 6. TMRG calculation of the excess specific héatfor a 5.4 attempt to explain it by more elementary me&riEhe

typical anisotropy &=0.5) and for the isotropic spin-1 ferromag- ,pqqjte specific heat satisfies the obvious identity
netic chain @=0). The inset depicts the temperature dependence

of the absolute specific heatfor two field valuesh=0 and 0.1, w
and anisotropyr=0.5. All quantities shown in this figure are ex- f d7rc(7,h)=u(e,h)—u(0h), (3.3
pressed in rationalized units. 0

values for the gap that are even closer to the ribsults of ~Whereu(r,h) is the internal energy at temperatureand
Table |, but this may be an artifact of the Specific Second_ﬁeld h. A Corresponding |dent|ty for the excess SpeCiﬁC heat
order interpolation scheme. is obtained by applying Eq3.3) twice:

The implied normal spin-wave behavior of this easy-plane .
ferromagnetic chain should be contrasted with the low- _ _ _
temperature anomalies discovered by Johnson and BShner dréc(n.h)=[u(>.h)=u(=0)]1+[u0.0 ~uOn].
in an easy-axis ferromagnetic chain and recently confirmed (3.9

by a TMRG calculatiorf’ The absence of such anomalies in

the present model reinforces the need for explaining the e>¢(; ﬁgﬂgcﬁgiilTﬁgif:]C?gfr\:Vﬂfcchurtién ftigf d“g:;t Z:]zgr']i%trgf'&e
cess specific heat in simple terms. 9 P

In the remainder of this subsection we find it convenientenerf]y Levels is simply a Imear_Zeeman shith, with m
to work exclusively with the rationalized parametersndh =0.x 1‘_.2’ Lo Therefore th? field dependence averages
of Eq. (2.2) whereas the temperature=T/J is measured in _out of the infinite-temperature internal enengfye,h), which
units of the exchange constahtThe corresponding absolute is the sum of all energy levels, aMw,h)—u(w,O)zo. I
specific heat per lattice site is denoteddyc(r,h) and the V€ further recall thag(h)=u(0.h) is the ground-state en-
excess specific heat byc=c(r,h) —c(r,0). ergy at fieldh, we obtain the elementary sum rule

The inset of Fig. 6 illustrates the calculated temperature "
dependence of the specific heafor a typical anisotropyx f dréc(r,h)=e(0)—e(h)=h, (3.5
=0.5 and two field valuei=0 and 0.1. It is clear that a 0
nonzero field causes a depression of the specific heat at |OW
temperatures thanks to the opening of a finite magnon ga
This is the expected normal spin-wave behavior, as predicte
by the usual dilute-magnon approximation. What is not ac
counted for by dilute magnons is the crossing of the0
andh=0.1 curves at a poir® that corresponds to a specific
temperaturer which depends oh. In particular,P is located
near the origin for smal and moves outward with increas-
ing h. This crossing is precisely the origin of the positive
excess specific heat at loly as demonstrated again by the
a=0.5 solid curve in the main frame of Fig. 6 for the spe-
cific temperaturer=7,=0.2.

Indeed, for any fixedry, the crossing poinP occurs at
some 7<7q for sufficiently weak fields and thus leads to

06

2 0.05 |

here we have also invoked the known energy of the fully
olarized ferromagnetic ground state.

The obvious consequence of E§.5) is that positive val-
‘ues oféc are the rule rather than the exception. In particular,
the initial depression of the specific heatc0) at low
temperatures, due to the opening of a magnon gap at finite
field, is overwhelmed by positive values 6t attained at
higher temperatures also thanks to the applied field. This
explains the gross features of the crossing mechanism de-
scribed earlier in the text and concludes our discussion of the
excess specific heat.

B. Field parallel to ¢

positive 8¢ at 7= 7. With increasing field the poir® moves The case of a field parallel to theaxis is equally inter-
to the right and the corresponding temperatdreventually — esting but the corresponding experimental work has not been
overtakesry, thus leading to negativéc at 7= 7y for suffi-  as extensive. We begin with a discussion of the temperature

ciently strong fields. The picture described is valid for anydependence of the zero-field longitudinal susceptibility. A
choice ofr and is confirmed by all of our numerical experi- notable feature ofy|(T) is that it must approach a finite
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TIKI FIG. 8. Comparison of TMRG predictions for the field depen-
FIG. 7. Comparison of TMRG predictions for the temperaturedence of the magnetizatiovl at selected temperatures with experi-

dependence of the zero-field longitudinal susceptibjfifyith ex- mental data from Ref. 4solid circles. The field is applied along
perimental data from Ref. 1Golid circles. the c axis andMy is the saturation magnetization.

value in the limitT—0. A simple estimate of this value is OUS reasonable choices éf The experimental datd are

obtained by a straightforward classical argument. In the pres¥ell reproduced for the set of parameters
ence of a fieldH=(0,0H) the classical ground state is such
that all spins form an anglé with the c axis calculated from J=236 K, A=825 K, gj=213, 3.8
cos¥=gjugH/2A. Therefore, th& =0 magnetization is given which is closer to the set employed by Delieaal? In ad-
by M =Ng ugcos and the susceptibility by dition, the field dependence of the magnetization measured at
L selected temperatufesigrees with our TMRG calculation
| 5 2 without further fit of parameters, as demonstrated in Fig. 8.
X[ (T=0)= ﬂ(NgH M), (3.6 Incidentally, for this choice the classical res(@t6) yields
0.10 emu/mol and the leadingnlapproximation(3.7) gives
whereN is the total number of magnetic sites agdis the  0.19 emu/mol. These values should be compared with
gyromagnetic ratio for a field applied along tbhexis. x|(T=0)=0.175 emu/mol extracted by a visual extrapola-
Of course, numerical estimates based on the above clagon of the solid curve in Fig. 7 td=0. Including the I
sical result are not expected to be accurate, for reasons simgorrection produced by zero-point fluctuations in E8.7)
lar to those explained in Sec. Il. However, a more accurateyill bring its prediction to the same level of accuracy with
prediction may again be obtained through the éxpansion. the magnon gap discussed in Table I.
To leading order, th& =0 magnetization is calculated as the It is now interesting to take this calculation into the region
expected value of the azimuthal spin in the Hartree variaof strong fields where the ground state becomes completely
tional ground state given in the Appendix of Ref. 6. Restrict-ordered along the axis. Such a ferromagnetic state is actu-
ing that calculation to weak fields one may extract the ally an exact eigenstate of the Hamiltonian for any strength

=0 longitudinal susceptibility of the fieldH. But the corresponding magnon gap
1 A G=gjugH—-A (3.9
1/in 2 2
X (T=0)=—<1——)(N9 M) (3.7
” A 4J 17 is positive only forH>H_ where

The main difference from Ed3.6) is an overall factor of 2, _
which is essentially the same factor that caused the low es- Ho=Algjus (3.10
timateA=4.5 K in the early literaturé,in addition to some is the critical field beyond which the fully ordered state is the
mild dependence on the exchange constant. In any case, thbsolute ground state. The gap vanishes foHallH. be-
main conclusion is thag, is more sensitive to the value of cause the corresponding magnon is a Goldstone mode asso-
the anisotropy constart than to the exchange constalita  ciated with the axial symmetry for this field orientation.
situation that is reverse to the one encountered in Sec. lll A. For the set of parameter§3.8) one finds thatH,
Therefore, the longitudinal susceptibility is an ideal physi-=58 kG, in reasonable agreement with the value 62.5 kG
cal quantity to yield a sensible estimate of the anisotropyestimated from an experiment of A. Miedan which is quoted
constantA, provided that an accurate value fgy is also in Ref. 16 but is apparently unpublished. According to the
available. The latter is fixed here by appealing to a theoretidescription of Dupas and RendfdMiedan measured the
cal estimat&® of the differenceg, —gj=5X 10"2 which  field dependence of the magnetizationTat4.2 K and ex-
leads tog;=2.13 if we adopt our earlier value for the trans- tractedH. from the observed bending of thd(H) curve.
verse gyromagnetic ratiog, =2.18. The corresponding Although we do not know the details of this experiment, we
TMRG calculation ofy(T) is illustrated in Fig. 7 for vari- have calculated thé1(H) curve atT=4.2 K for a wide
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FIG. 10. TMRG calculation of the excess specific heat for a
wide field range and two typical values of temperature. The field is
pplied along the axis and the critical fieldH is estimated to be
8 kG forgy=2.13.

FIG. 9. TMRG calculation of the field dependence of the mag-
netizationM for a wide field range and two typical values of tem-
perature. The inset displays the corresponding results for the fiela
dependence of the susceptibility. The field is applied alongcthe
axis and the critical fieldH. is estimated to be 58 kG fog;  prediction of the dilute-magnon approximatforand could
=2.13. eventually be observed in CsNiFAn unfortunate feature of

Fig. 10 is that a strongly pronounced double peak is pre-

field range and the result is depicted by a dashed line in Figyicted to occur in the low-temperature region where the 1D
9. Interestingly, the bending of th (H) curve is not pre-  mgdel is no longer applicable.

dicted to be especially sharp at this temperature, as is appar-
ent in the corresponding susceptibility displayed also by a IV. CONCLUSION

dashed line in the inset of Fig. 9. In other words, if the h d | | lculati ¢
location of the maximum of the susceptibility were taken as V& have presented a more or less complete calculation o
an estimate of the critical fielti,, the latter would have e dynamics and the thermodynamics associated with the

been severely underestimated. The situation improves slowlzpin'l_ Hamiltonian(1.1). TheT=O dynamics i_s efficiently
at lower temperatures, as indicated by the solid lines in Figdeéscribed by a Vexpansion whose full potential has not yet

9 which correspond td=2.4 K; i.e., to a temperature that been eXplpred' For example, an accurate calc.ule}tion of the
is already below the 3D-transition temperatiiig=2.7 K. magnon dispersion for a field parallel to t.beaX|s Is also

It is clear that we cannot go further with our theoretical POSSIPIe but has not been carried out mainly because there
arguments without explicit knowledge of detailed experi-S€€MS to have been no experimental ef_fort_ in that direction.
mental data oM (H) in this field region. We thus conclude On the other hand, the thermodynamms Is calculated bY a
the discussion of magnetization with a comment concernin owerful TMRG method Wh'.Ch has oper!ed the way to obtain
an apparent contradiction between the results of Fig. 9 an ccuratg theo'retlcal pr ed|pt|ons for a wide class of quar]tum
those given earlier in Fig. 8 for lower field strengths. Indeed,rnagnetIC chains. Suffice it to say that our present algorithm

Fig. 8 suggests that the magnetizatid{H) for any given & be wivially adjusted to handle spin-1 Haldane-gap
field H decreases with increasing temperature, as expecte ntiferromagnets in the presence of anisotropy and external

while Fig. 9 indicates that a relative crossing occurs betweef{c!dS: Even in the case of completely integrable spin-
any twoM(H) curves. The resolution of this apparent para-ChamS’ for which the Bethe ansatz applies, the calculation of

dox lies in the fact that the values of temperature employe hl\(letgermogynam|l_cs q IS fart ffomf tnwé‘(fj. Neverthgless,
in Fig. 8 are all greater than the temperatire 7.5 K, at can be applied in a straightiorward manner irrespec-

. . e i . - tive of complete integrability®
g:éﬁ?sthv?/hrns);mg;n;f;?; ge;?eﬂgﬁa?fé srcepnblllty of Fig. 7 The extent to which the 1D Hamiltoniafl.1l) may de-
Finally, we discuss the specific heat in a field parallel toScribe the magnetic properties of Cshlifas been debated

the c axis. It appears that no measurements have been magé sevgral occasions. Our calculations confirm the general
for this field orientation but could prove to be feasible in theconclusnon that the 1D model accounts for the main features

future?2 Our TMRG calculation of the excess specific heat iSof all available experimental data. But it is also clear that
illustrated in Fig. 10 for the two values of temperature em_departures from ideal model behavior are present, especially

ployed in our preceding discussion of the magnetization. Thét low temperatures approaching the 3D-ordering transition

characteristic double peak near the critical fieldwas an-  (€mperaturely=2.7 K.
ticipated in earlier work! based on a classical transfer matrix
calculation and on the known exact solution for a spiK-Y
chain, as well as on an accurate numerical solution for a X.W. and X.Z. acknowledge financial support by the
spin$ XXZ chain based on the Bethe ansatz. The calculate@wiss National Fund, the University of Fribourg, and the
double peak is also a clear departure from the correspondingniversity of Neuchtel.
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