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Nuclear spin relaxation for higher spin
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We study the relaxation of a spinthat is weakly coupled to a quantum mechanical environment. Starting
from the microscopic description, we derive a system of coupled relaxation equations within the adiabatic
approximation. These are valid for arbitranand also for a general stationary nonequilibrium state of the
environment. In the case of equilibrium, the stationary solution of the equations becomes the correct Boltz-
mannian equilibrium distribution for given spin The relaxation towards the stationary solution is character-
ized by a set of relaxation times, the longest of which can be shorter, by a factor of upth@a2 the relaxation
time in the corresponding Bloch equations calculated in the standard perturbative way.

DOI: 10.1103/PhysRevB.63.224405 PACS nuniber76.60—k, 73.43-f, 76.20+q

[. INTRODUCTION the environment that is responsible for the relaxation. We
refrain from studying a specific mechanism and consider in-
Nuclear magnetic resonance is a well-established methostead the general case of a magnetic moment coupled to a
for testing electronic properties in solid$n recent years, it bath of other quantum degrees of freedom. This magnetic
became possible to apply this technique not only in threenoment can be a nuclear spin, or also a magnetic impurity.
dimensions, but also to a two-dimensional electron systermn the following, we use the terms “nuclear spin” for the
the quantum Hall ferromagnet that is realized in semiconducmagnetic moment and “electrons” for the bath—usually the
tor heterostructures in a strong magnetic field. The experilatter is called “lattice.” Then, the contribution of the
mental work lead to the unexpected conclusion that a newuclear spin to the Hamiltonian is
kind of low-energy states, Skyrmions, can be formed and can - A
determine the nuclear relaxation processes in these systems H==y1-Bo+V. @
when one Landau sub-level of one spin direction is fiieth.  Below, we shall study a linear coupling between the mag-
As a theoretical description of spin relaxation, Bloch’s netic momentyi (wherei is the spin and an effective mag-
equations have been successfully used for about fifty yeansetic field generated by the electrons
now. While these phenomenological equations are applicable ) L
in a wide range of cases, their microscopic derivation reveals V=—yl-B. 2
two main restrictions. First, as was already discussed in thg is well known that forl ~1/2, there is an additional term

original work;“ the derivation becomes strictly valid if the causing relaxation, the electric quadrupole moment of the

spin isl=1/2 or if the temperature of the bath is large com-,cjeys coupled to an inhomogeneous external electric field.
pared to the resonance frequency. But the spin in the systemere, we concentrate on the linear coupling term in @g.

69, 7 75 .
under study can be=3/2 (for *Ga,"Ga, and™As; see Ref.  gince this model already suffices for the demonstration of our

2), or higher in the case of magnetic impurities. Further, theyneihod: an inclusion of a quadrupolar coupling is straight-
progress in the experimental techniques now lets a regime Qf

temperatures and magnetic fields come into reach, in whic OFW""FO'- One can picture the electrom? op.er:Bon Eq._(2) .
the temperature of the bath may be of the same order as e being prE)portlonf’;l_I to the (—?‘Iectrons spin. lts Iongltudln_al
nuclear resonance energyuclear Zeeman energyThe sec- componentB,, modifies the eigenvalues of the nuclear spin
ond restriction in the derivation of the phenomenologicalSystem, while the transverse components cause transitions
equations demands that the environmégth causing the between eigenstates. There is aIsoAa fixed part of the mag-
spin relaxation be in thermodynamic equilibrium. But in the netic field in thez direction, Bo=Bge,, which acts as an
case of the quantum Hall ferromagnet, the role of the bath isxternal field. The coupling beween nuclear spin and elec-
played by a two-dimensional electron gas in a strong magtrons is supposed to be weak in the sense that we can use the
netic field where all single particle states are degenerate intadiabatic approximation as discussed below. We do not
a single Landau level, and, hence, the electron-electron inrmake any assumptions about the electronic subsystem’s
teraction is crucial. Such a system, dominated by SkyrmiorHamiltonian or the electronic subsystem’s state. This Hamil-
states, is not necessarily in equilibrium. Thus, we argonian may contain electron-electron interactions and the
strongly motivated to reconsider the derivation of the Blochsubsystem may be in an arbitrary stationary state, equilib-
equations for the relaxation of a spin, in an attempt to genfium or nonequilibrium.
eralize these equations. We want to derive kinetic equations for the expectation
value of the spin vectof [12=1(1+1)]. Now, for thez
component, e.g., it appears one should derive, separately for
each case of, equations for the 2+ 1 diagonal elements in

In this work, we investigate the general case(ffan  spinspace. But, as shall be seen below, it becomes possible to
arbitrary spinl and (ii) also an arbitrary stationary state of study the case of a general value loby using spherical

II. MODEL AND METHOD
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tensor Operatoré'LM as a Comp|ete basis in the space oftO the COUpling to the eleCtronS..Since We- want to fOCUS. on
operators acting on the state of a spirThe T, are irre- the relaxation, we dlsregar_d this correction of the spin’s
ducible tensor operators in the spherical Coordinateel.genfrequency in the following. The second order term con-

representation® and are generally defined by their transfor-

mation properties. For actual calculations, however, the fol- ([T, V(T V()]

lowing specific definition using the spherical harmonigs A . o A

proves very helpful: = yX([Tum(0),1(D]-BOB(ty) - 1(ty)
Toms=N (- )Ry (). 3

. —1(ty) - B(t)B)-[TLm(t),1(D)]).
T_m is a polynomial in the components of the spin operator. (7)

It is independent of the auxiliary variabteused in the defi-  gihceB is an operator, one gets both, commutator and anti-

nition, since there are derivatives acting on a polynomial of - ¢ommuytator after the decoupling of the expectation values of
orderL. r=r/r denotes the unit vector; we use the conven-{ o 4&-

tions of Ref. 13 for the spherical harmoni¥gy, . Then, we
haveT],,=(—1)MT_ _y . For a spinl, the (2 +1)? opera-
tors Ty with L=0---21 andM=—L---L form a com-

(idi—=Mawg) Ty (t)

plete system of operators acting in the spin space. The con- =-i 2 CLTim Tl T JOYC -y —
dition of normalization m;m’=0,x1
Tr{:i_EM:I\_Lr M’}: 5LL'5MM' (4) +<{[:|\—LM rim]aim’}(t)>R—m;—m’)- (8)
determines In deriving Eq.(8), we wrote(see the definition o€,y and
Rm:m' below
Ny =2Jam(2l—L)/ (21 +L+1)!/L!. (5) R R -

ici i : i (1) ~ T (€M 001, C)
Explicit expressions for the operatofs  (for L=0---4) . )
can be found in Table IV of Ref. 14. i.e., took the unperturbed time dependence of the operator

After having established the basic notation, we proceed(t:) into account, but neglected in the differerteet, in its
now to describe the derivation of the kinetic equation for thetime dependence the term arising due to the relaxation. In

averageTLM(t)=<'T'LM>, to find the stationary solution and Eq. (8), all equal-time commutatorg (]) and anticommuta-

to study finally the relaxation towards the stationary solution{°rS ({,}) can be evaluated, and the expectation values can

Here and below, the angle brackets stand for the state of tHid&in be expressed by y(t) as we shall see below. This
combined system of spin and electrons. We use the framd€mains true in the presence of a quadrupolar coupling in
work of the Keldysh methdd in order to derive the kinetic addition toV; the inclusion of such a coupling is a straight-
equation. As in our earlier work on the electron spinforward generalization of our approach. Thus, it is the use of
relaxatiom;® we shall employ the adiabatic approximation: the spherical tensor operators that greatly simplifies the deri-
the coupling between spin and electrons is supposed to be ¥ation of closed coupled equations for the relaxation of the
small that in the equation of motion, its effect can be ne-spin for arbitraryl. Most crucial are the averages of the
glected beyond the first order in the spin’s eigenenergies anglectronic subsystem that enter Ef). Since we do not as-
can also be neglected beyond the second order in the relagume thermodynamic equilibrium for the electronic sub-
ation times, see Ref. 17. The unperturbed motion of the spigystem, we get both, a correlation function and a response
is a precession with the frequeney= yB,. Then, we have function that are independent, and which we denoted by
up to the second order of the perturbation theory in the couCm:m' andRp,., respectively. They are defined by

pling V:

c _’yzfo dt’ im’ wot’ é é ’ 10
(i&t_MwO)TLM(t) m;m’_? o t'e <{ m(t)v m’(t+t )}>1 ( )

A - 2 0 o A
=([Tm(D, V(O] Rm;m,=%f dt’em wot’ ([B,(t), By (t+1)]). (11)

—j ft dt1<[[-’|\—LM(t) \7(t)] \A/(tl)])+(’)(\73). Due to the stationarity of the state of the environment, the
— ’ ’ averages are independent of the timeC ., and Ry,

(6) depend on the nuclear resonance frequesgyand on the
In the spirit of the adiabatic approximation, we now considerstate of the environment, i.e., the temperature, if the environ-
the terms of the perturbation series in higher than seconfent is in equilibrium. Our convention for the vector com-
order as giving rise to an additionaleak time dependence ponents ofl andB is I.;=I,*il, lo=1, and B.;=(By
of the spin operators due to the relaxation process, and ngéy)/Z. By=B,.
decouple the expectation values of spin and electron opera- commutators and anticommutators in E8) can be cal-
tors. The first order terrﬁ['T’LM ,f](t))~<l§(t)) describes the culated either directly from the definition E@), or with the
Knight shift, the shift of the nuclear resonance frequency duaid of the theory of spherical tensaoisee Ref. 18 The an-
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. o T I1l. DISCUSSION AND CONCLUSIONS
ticommutators can be expanded T, ; specializing the

general result containing Racah coefficiefgse Eq.(17) of We see thatwo unrelated time scalesnter these relax-
Ref. 18 to our case, we get fan=0,+1: ation equations
Tomodm=alm T +b{™ T, _ 12 1 1
. {Tim m} LramTLeimemtPEGTL-1mem (12 ~=2(C;+C_ ;) and —:=2(R,~R_,). (18
with the coefficients Ty T
a(L?Kﬁb(L?KA: JLZ=M2c, (13) These times are independent, as long as we consider a non-

equilibrium state of the electronic system. We have=0.
a(L,id): b(L?,\%Ll: FTYL+1EM)(L=M)c,, (14 In the following, we shall frequently make use of the crucial
’ T parametelq which describes the ratio, /7_ of these times

where
as
c=v[(21+1)2=L?)/[(2L)*~1]. (15 r. 1-q
The commutators are well-known and express the behavior T—+: irq’ (19
of the T,y under rotations -
M o ) q=0 and|7, /7_|<1. If the electrons are in equilibrium at
[Tim Iml= —d(LT,Q,,TL’Mer, (16)  temperatureT, the fluctuation-dissipation theorem results in
whered(®,=M andd)=JL(L+1)-M(M=1). 9= exp(-wo/T).

We want to stress that the relaxation equations (&)

Inserting relationg16) and (12) into Eg. (8) solves our . i
task of deriving a closed set of relaxation equations for arbid'® valid (under the assumptions stated abowe matter

trary nuclear spirl. The equations are linear in the expecta-Wh'Ch specific relaxation mechanism one wants to consider.

. ) A The special mechanism enters the equations in the form of
tion values of the spherical tensor operat®; . The prop- g time scalesr, andr_ . In the case of thermodynamic
erties of the electronic system enter

. . _ the equationgilibrium in the electron system at temperatdtetheir
parametrically in the form of correlation functions and re- ratio 7, /7_ is fixed byT, and only the timer, —which then

sponse functions. Since the spin vector is given byTthg,  also depends on the temperatilre-is specific for the relax-

a relaxation equation fofl) can be extracted from the sys- ation mechanism.

tem of equationg8). In the case of =1/2, we simply re- Relaxation equations generally serve two purposes. First,
cover the Bloch equations. they determine a stationary state. Second, they describe the

In its general form, Eq(8) is still not very transparent. relaxation towards this state. We now want to discuss both of
Therefore, we now make additional assumptions regardinghese points.
the correlation and response functions entering (Bg.The Stationary solutionThe study of the stationary solution
term 1,8, in the perturbationV [corresponding tom,m’  ©Of Ed. (17) serves as an important test of our procedure,
=0 in Eq. (8)] just changes the spin’s resonance frequency#ince, in the_case of_ equilibrium in the electronic system, the
wo. Since we already omitted the Knight shift, the first order"@sult is obvious. With the ansalz y (t) = éy;oT., one de-
correction term to this frequency, we now also omit consis/iVes a recursion relation
tently the second order contributions resulting froms0 or T
m’ =0 in Eq.(8). Next, the terms wittm=m’ in Eq. (8) are CLitTLi1=— T—TL+CLTL_1, L=1---21, (20
neglected too. IrCy,..,, andRy,..,/, they would correspond 71/2+ .
to a twofold application of, e.gB,+iB,, and that would whereTo=(21+1)" ™, T5.,=0. Then, the solution for a
give a total change of thecomponent of the electrons’ spin gen_eral non_eql_JlIlb_rlum state of the electrons is the following
by 2; if the electrons’ state is a strict eigenstate tompo- stationary distribution for the component of the spin vector

nent of their spin, such expectation values vanish. Under ' '
these assumptions, both correlation and response functions l,= E mqgq " E q ™ (21
Ciym @nd Ry, , NOW become “diagonal” in the indern, m=-1 m=-1
Crim' = Om;—m'Cm and Ry = 8. —m'Rmy . Now, from the  If we assume now that the electronic system is in equilibrium
general structure of Eq8), it is obvious that the equations at temperaturel, we find thatl, is given by the Brillouin
do not coupleT (1) for differentM. So finally, we arrive at  function, the well-known correct equilibrium distribution for
our general result, valid for arbitrary spinand for a non- a spinl. If, on the other hand, the electronic system is driven
equilibrium state of the electrons far from equilibrium, for example into an “inverted state”
(94 iM wg) Ty (D) where higher epergies corrgspond to highe_r pr_obabiliuips (
t 0/ LM >1), then that is reflected in a corresponding inverted state
5 of the z component of the spin vectady.
= o [L(L+1)=M“]Tm(t) Relaxation.The general solution of the coupled relaxation
equations Eq(17) is a superposition of exponentially decay-

1 ing terms. We are mostly interested in the relaxation of the
~ o ALV(LED)T=MTCL T (D) spin components, T and (,+il,)T;, which are de-
scribed by the parM=0 andM =1 of the full system of
—(L+1)yL2—M?c, T, 1 m(D)}. (17)  equations. FoM =0 andM =1, there are R different relax-
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FIG. 2. Spinl =3/2: Inverse relaxation times in the longitudinal
FIG. 1. Spinl=3/2: Solution of the relaxation equations for (solid line) and transversédashed ling relaxation equations in
M =0 with 7, /7_=0.1 and 0.7, respectively. The magnetization is units of 1/, .
given bylz(t)=\/§T10(t). For 7, /7_=0.7, the higher moments

become significant. For 7, /7_~0 (in case of equilibriumT> w,), the longitu-

dinal relaxation time is-, and the transverse7r2 as in the
Bloch equations. In the opposite case,/7-—1 (T<w,),

ation times, foriM = 2 there are 2— 1 times; in total we have o _ _
all the operatorg |\, become equally important in EGL7).

(21 +3) times. Here, each case bheeds to be discussed
separately. Then, the 2 relaxation times are as follows n(
In the case of spin 1/2, Eq17) immediately gives the =0,1,...,2—1): In the longitudinal equation® =0 we
usual Bloch equationsMore interesting for us here, because get 7. /[2(n+1)l—n(n+1)] and the longest relaxation
of its experimental relevanceis the case of spin 3/2. The time (n=0) is always twofold degenerate; in the transverse
relaxation equations fdvl =0 couple the expectation values equationsM =1 we getr, /[(2n+ 1)l —n?] and here, the
of three operator§ gy, To, andTsy: longest relaxation time (=0) is always nondegenerate.
These explicit expressions are a conjecture based on an
evaluation of the relaxation equations for spinp to 7/2.
Starting from the microscopic description, we have de-
rived coupled relaxation equations valid for an arbitrary spin
| in a nonequilibrium quantum environment. These equations
; generalize Bloch’s phenomenological equations for spin re-
laxation. They contain two independent time scales. Their
solution shows that, compared to the Bloch equations, there
is an additional temperature dependence in the relaxation
time which can decrease the relaxation time by a factor of up

1 1/ 2
atTlo(t) = - ZTlo(t) - T_

Fro)

Too(t) — -

1 2
ETgo(t)_ ETlo(t)

3 3
I To(t)=— ETzo(t)_ -

6 6 1
I Ta(t)=— :Tso(t) + - —5T20(t)- (22

These equations are easily solved. In Fig. 1, we show thi® 2.

solution for two values of the ratio, /7_ for an initial
condition of T1o(0)=T,(0)=T34(0)=0 which corresponds

These considerations allow us to draw the following con-
clusions for relaxation experiments. The relaxation times de-

to a completely unpolarized state of the spin. The quantitieQe”d on the state of the electronic system. The electrons can

T o(t) relax exponentially towards their equilibrium values.
For 7. /7_=0.1, the higher moment§,, and T3, are still
insignificant; T3,<<0.5 102 is too small to be shown in Fig.
1. On the other hand, for,./7_=0.7, all the moments
clearly become important.

The relaxation in Eq922) is described by three eigenval-
ues, three inverse time scal@s,which can be simply deter-
mined from the equations as functionsgfFor the case of

be driven out of equilibrium by, e.g., optical pumping. In
such a nonequilibrium case, the relaxation timigsand T,

can be shorter by a factor of up td Zompared with the
corresponding times in the case of equilibrium. If the elec-
tronic system is in equilibrium, the experimental data must
be divided by an explicit temperature dependence as it is
shown in Fig. 2 when one wants to determine the relaxation
time 7, (T) which intrinsically characterizes the electronic

equilibrium in the electron system, these eigenvalues of botgystem.

the longitudinal {, ,M=0) and the transverse equations

(A1,M=1) are shown in Fig. 2 in units of 2/ as functions
of the temperature. Between the high-temperature limit
> wg and the low-temperature limk<wg, both the largest
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