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Nuclear spin relaxation for higher spin
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We study the relaxation of a spinI that is weakly coupled to a quantum mechanical environment. Starting
from the microscopic description, we derive a system of coupled relaxation equations within the adiabatic
approximation. These are valid for arbitraryI and also for a general stationary nonequilibrium state of the
environment. In the case of equilibrium, the stationary solution of the equations becomes the correct Boltz-
mannian equilibrium distribution for given spinI. The relaxation towards the stationary solution is character-
ized by a set of relaxation times, the longest of which can be shorter, by a factor of up to 2I , than the relaxation
time in the corresponding Bloch equations calculated in the standard perturbative way.
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I. INTRODUCTION

Nuclear magnetic resonance is a well-established me
for testing electronic properties in solids.1 In recent years, it
became possible to apply this technique not only in th
dimensions, but also to a two-dimensional electron syst
the quantum Hall ferromagnet that is realized in semicond
tor heterostructures in a strong magnetic field. The exp
mental work lead to the unexpected conclusion that a n
kind of low-energy states, Skyrmions, can be formed and
determine the nuclear relaxation processes in these sys
when one Landau sub-level of one spin direction is filled.2–11

As a theoretical description of spin relaxation, Bloch
equations have been successfully used for about fifty y
now. While these phenomenological equations are applic
in a wide range of cases, their microscopic derivation reve
two main restrictions. First, as was already discussed in
original work,12 the derivation becomes strictly valid if th
spin is I 51/2 or if the temperature of the bath is large co
pared to the resonance frequency. But the spin in the sys
under study can beI 53/2 ~for 69Ga,71Ga, and75As; see Ref.
2!, or higher in the case of magnetic impurities. Further,
progress in the experimental techniques now lets a regim
temperatures and magnetic fields come into reach, in wh
the temperature of the bath may be of the same order as
nuclear resonance energy~nuclear Zeeman energy!. The sec-
ond restriction in the derivation of the phenomenologi
equations demands that the environment~bath! causing the
spin relaxation be in thermodynamic equilibrium. But in t
case of the quantum Hall ferromagnet, the role of the bat
played by a two-dimensional electron gas in a strong m
netic field where all single particle states are degenerate
a single Landau level, and, hence, the electron-electron
teraction is crucial. Such a system, dominated by Skyrm
states, is not necessarily in equilibrium. Thus, we
strongly motivated to reconsider the derivation of the Blo
equations for the relaxation of a spin, in an attempt to g
eralize these equations.

II. MODEL AND METHOD

In this work, we investigate the general case of~i! an
arbitrary spinI and ~ii ! also an arbitrary stationary state
0163-1829/2001/63~22!/224405~5!/$20.00 63 2244
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the environment that is responsible for the relaxation. W
refrain from studying a specific mechanism and consider
stead the general case of a magnetic moment coupled
bath of other quantum degrees of freedom. This magn
moment can be a nuclear spin, or also a magnetic impu
In the following, we use the terms ‘‘nuclear spin’’ for th
magnetic moment and ‘‘electrons’’ for the bath—usually t
latter is called ‘‘lattice.’’ Then, the contribution of the
nuclear spin to the Hamiltonian is

H52g Î•B01V̂. ~1!

Below, we shall study a linear coupling between the ma
netic momentg Î ~whereÎ is the spin! and an effective mag-
netic field generated by the electrons

V̂52g Î•B̂. ~2!

It is well known that forI .1/2, there is an additional term
causing relaxation, the electric quadrupole moment of
nucleus coupled to an inhomogeneous external electric fi
Here, we concentrate on the linear coupling term in Eq.~2!,
since this model already suffices for the demonstration of
method; an inclusion of a quadrupolar coupling is straig
forward. One can picture the electronic operatorB̂ in Eq. ~2!
as being proportional to the electrons’ spin. Its longitudin
component,B̂z , modifies the eigenvalues of the nuclear sp
system, while the transverse components cause transi
between eigenstates. There is also a fixed part of the m
netic field in thez direction, B05B0êz , which acts as an
external field. The coupling beween nuclear spin and e
trons is supposed to be weak in the sense that we can us
adiabatic approximation as discussed below. We do
make any assumptions about the electronic subsyste
Hamiltonian or the electronic subsystem’s state. This Ham
tonian may contain electron-electron interactions and
subsystem may be in an arbitrary stationary state, equ
rium or nonequilibrium.

We want to derive kinetic equations for the expectati
value of the spin vectorÎ @ Î25I (I 11)#. Now, for the z
component, e.g., it appears one should derive, separatel
each case ofI, equations for the 2I 11 diagonal elements in
spinspace. But, as shall be seen below, it becomes possib
study the case of a general value ofI by using spherical
©2001 The American Physical Society05-1
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tensor operatorsT̂LM as a complete basis in the space
operators acting on the state of a spinI. The T̂LM are irre-
ducible tensor operators in the spherical coordin
representation,13 and are generally defined by their transfo
mation properties. For actual calculations, however, the
lowing specific definition using the spherical harmonicsYLM
proves very helpful:

T̂LMªNIL~ Î•¹!Lr LYLM~ r̂ !. ~3!

T̂LM is a polynomial in the components of the spin operat
It is independent of the auxiliary variabler used in the defi-
nition, since there areL derivatives acting on a polynomial o
orderL. r̂ 5r /r denotes the unit vector; we use the conve
tions of Ref. 13 for the spherical harmonicsYLM . Then, we
haveT̂LM

† 5(21)MT̂L,2M . For a spinI, the (2I 11)2 opera-

tors T̂LM with L50•••2I and M52L•••L form a com-
plete system of operators acting in the spin space. The
dition of normalization

Tr$T̂LM
† T̂L8 M8%5dLL8dMM8 ~4!

determines

NIL52LA4p~2I 2L !!/ ~2I 1L11!!/L!. ~5!

Explicit expressions for the operatorsT̂L,M ~for L50•••4)
can be found in Table IV of Ref. 14.

After having established the basic notation, we proce
now to describe the derivation of the kinetic equation for
averageTLM(t)5^T̂LM&, to find the stationary solution an
to study finally the relaxation towards the stationary soluti
Here and below, the angle brackets stand for the state o
combined system of spin and electrons. We use the fra
work of the Keldysh method15 in order to derive the kinetic
equation. As in our earlier work on the electron sp
relaxation,16 we shall employ the adiabatic approximatio
the coupling between spin and electrons is supposed to b
small that in the equation of motion, its effect can be n
glected beyond the first order in the spin’s eigenenergies
can also be neglected beyond the second order in the re
ation times, see Ref. 17. The unperturbed motion of the s
is a precession with the frequencyv05gB0. Then, we have
up to the second order of the perturbation theory in the c
pling V̂:

~ i ] t2Mv0!TLM~ t !

5^@ T̂LM~ t !,V̂~ t !#&

2 i E
2`

t

dt1^†@ T̂LM~ t !,V̂~ t !#,V̂~ t1!‡&1O~V̂3!.

~6!

In the spirit of the adiabatic approximation, we now consid
the terms of the perturbation series in higher than sec
order as giving rise to an additional~weak! time dependence
of the spin operators due to the relaxation process, and
decouple the expectation values of spin and electron op
tors. The first order term̂@ T̂LM , Î #(t)&•^B̂(t)& describes the
Knight shift, the shift of the nuclear resonance frequency d
22440
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to the coupling to the electrons. Since we want to focus
the relaxation, we disregard this correction of the spi
eigenfrequency in the following. The second order term c
tains

^†@ T̂LM~ t !,V̂~ t !#,V̂~ t1!‡&

5g2^@ T̂LM~ t !, Î ~ t !#•B̂~ t !B̂~ t1!• Î ~ t1!

2 Î ~ t1!•B̂~ t1!B̂~ t !•@ T̂LM~ t !, Î ~ t !#&.
~7!

SinceB̂ is an operator, one gets both, commutator and a
commutator after the decoupling of the expectation value
Î and B̂:

~ i ] t2Mv0!TLM~ t !

52 i (
m;m850,61

~^†@ T̂LM , Î m#, Î m8‡~ t !&C2m;2m8

1^$@ T̂LM , Î m#, Î m8%~ t !&R2m;2m8). ~8!

In deriving Eq.~8!, we wrote~see the definition ofCm;m8 and
Rm;m8 below!

Î m8~ t1!' Î m8~ t !eim8v0(t2t1), ~9!

i.e., took the unperturbed time dependence of the oper
Î (t1) into account, but neglected in the differencet2t1 in its
time dependence the term arising due to the relaxation
Eq. ~8!, all equal-time commutators (@ ,#) and anticommuta-
tors ($,%) can be evaluated, and the expectation values
again be expressed byTLM(t) as we shall see below. Thi
remains true in the presence of a quadrupolar coupling
addition toV̂; the inclusion of such a coupling is a straigh
forward generalization of our approach. Thus, it is the use
the spherical tensor operators that greatly simplifies the d
vation of closed coupled equations for the relaxation of
spin for arbitrary I. Most crucial are the averages of th
electronic subsystem that enter Eq.~8!. Since we do not as-
sume thermodynamic equilibrium for the electronic su
system, we get both, a correlation function and a respo
function that are independent, and which we denoted
Cm;m8 andRm;m8 , respectively. They are defined by

Cm;m85
g2

2 E
2`

0

dt8eim8v0t8^$B̂m~ t !,B̂m8~ t1t8!%&, ~10!

Rm;m85
g2

2 E
2`

0

dt8eim8v0t8^@B̂m~ t !,B̂m8~ t1t8!#&. ~11!

Due to the stationarity of the state of the environment,
averages are independent of the timet. Cm;m8 and Rm;m8
depend on the nuclear resonance frequencyv0 and on the
state of the environment, i.e., the temperature, if the envir
ment is in equilibrium. Our convention for the vector com
ponents ofÎ and B̂ is Î 615 Î x6 i Î y , Î 05 Î z and B̂615(B̂x

6 iB̂y)/2, B̂05B̂z .
Commutators and anticommutators in Eq.~8! can be cal-

culated either directly from the definition Eq.~3!, or with the
aid of the theory of spherical tensors~see Ref. 18!. The an-
5-2
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ticommutators can be expanded inT̂LM ; specializing the
general result containing Racah coefficients@see Eq.~17! of
Ref. 18# to our case, we get form50,61:

$T̂LM , Î m%5aL11;M
(m) T̂L11,M1m1bL;M

(m) T̂L21,M1m ~12!

with the coefficients

aL;M
(0) 5bL;M

(0) 5AL22M2cL , ~13!

aL;M
(61)5bL;M61

(71) 57A~L116M !~L6M !cL , ~14!

where

cL5A@~2I 11!22L2#/@~2L !221#. ~15!

The commutators are well–known and express the beha
of the T̂LM under rotations

@ T̂LM , Î m#52dL;M
(m) T̂L,M1m , ~16!

wheredL;M
(0) 5M anddL;M

(61)5AL(L11)2M (M61).
Inserting relations~16! and ~12! into Eq. ~8! solves our

task of deriving a closed set of relaxation equations for a
trary nuclear spinI. The equations are linear in the expec
tion values of the spherical tensor operatorsT̂LM . The prop-
erties of the electronic system enter the equati
parametrically in the form of correlation functions and r
sponse functions. Since the spin vector is given by theT̂1M ,
a relaxation equation for̂Î & can be extracted from the sys
tem of equations~8!. In the case ofI 51/2, we simply re-
cover the Bloch equations.

In its general form, Eq.~8! is still not very transparent
Therefore, we now make additional assumptions regard
the correlation and response functions entering Eq.~8!. The
term Î z B̂z in the perturbationV̂ @corresponding tom,m8
50 in Eq. ~8!# just changes the spin’s resonance freque
v0. Since we already omitted the Knight shift, the first ord
correction term to this frequency, we now also omit cons
tently the second order contributions resulting fromm50 or
m850 in Eq.~8!. Next, the terms withm5m8 in Eq. ~8! are
neglected too. InCm;m8 and Rm;m8 , they would correspond
to a twofold application of, e.g.,B̂x1 iB̂y , and that would
give a total change of thez component of the electrons’ spi
by 2; if the electrons’ state is a strict eigenstate toz compo-
nent of their spin, such expectation values vanish. Un
these assumptions, both correlation and response func
Cm;m8 andRm;m8 , now become ‘‘diagonal’’ in the indexm,
Cm;m85dm;2m8Cm and Rm;m85dm;2m8Rm . Now, from the
general structure of Eq.~8!, it is obvious that the equation
do not coupleTLM(t) for differentM. So finally, we arrive at
our general result, valid for arbitrary spinI and for a non-
equilibrium state of the electrons

~] t1 iM v0!TLM~ t !

52
1

2t1
@L~L11!2M2#TLM~ t !

2
1

2t2
$LA~L11!22M2cL11TL11,M~ t !

2~L11!AL22M2cLTL21,M~ t !%. ~17!
22440
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III. DISCUSSION AND CONCLUSIONS

We see thattwo unrelated time scalesenter these relax-
ation equations

1

t1
ª2~C11C21! and

1

t2
ª2~R12R21!. ~18!

These times are independent, as long as we consider a
equilibrium state of the electronic system. We havet1>0.
In the following, we shall frequently make use of the cruc
parameterq which describes the ratiot1 /t2 of these times
as

t1

t2
5

12q

11q
, ~19!

q>0 andut1 /t2u<1. If the electrons are in equilibrium a
temperatureT, the fluctuation-dissipation theorem results
q5exp(2v0 /T).

We want to stress that the relaxation equations Eq.~17!
are valid ~under the assumptions stated above!, no matter
which specific relaxation mechanism one wants to consid
The special mechanism enters the equations in the form
two time scalest1 and t2 . In the case of thermodynami
equilibrium in the electron system at temperatureT, their
ratio t1 /t2 is fixed byT, and only the timet1—which then
also depends on the temperatureT—is specific for the relax-
ation mechanism.

Relaxation equations generally serve two purposes. F
they determine a stationary state. Second, they describe
relaxation towards this state. We now want to discuss bot
these points.

Stationary solution.The study of the stationary solutio
of Eq. ~17! serves as an important test of our procedu
since, in the case of equilibrium in the electronic system,
result is obvious. With the ansatzTLM(t)5dM ;0TL , one de-
rives a recursion relation

cL11TL1152
t2

t1
TL1cLTL21 , L51•••2I , ~20!

whereT05(2I 11)21/2, T2I 1150. Then, the solution for a
general nonequilibrium state of the electrons is the follow
stationary distribution for thez component of the spin vecto

I z5 (
m52I

I

mq2mY (
m52I

I

q2m. ~21!

If we assume now that the electronic system is in equilibri
at temperatureT, we find thatI z is given by the Brillouin
function, the well-known correct equilibrium distribution fo
a spinI. If, on the other hand, the electronic system is driv
far from equilibrium, for example into an ‘‘inverted state
where higher energies correspond to higher probabilitiesq
.1), then that is reflected in a corresponding inverted s
of the z component of the spin vectorI z .

Relaxation.The general solution of the coupled relaxatio
equations Eq.~17! is a superposition of exponentially deca
ing terms. We are mostly interested in the relaxation of
spin componentsÎ z}T̂10 and (Î x1 i Î y)}T̂11, which are de-
scribed by the partM50 and M51 of the full system of
equations. ForM50 andM51, there are 2I different relax-
5-3
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W. APEL AND YU. A. BYCHKOV PHYSICAL REVIEW B 63 224405
ation times, forM52 there are 2I 21 times; in total we have
I (2I 13) times. Here, each case ofI needs to be discusse
separately.

In the case of spin 1/2, Eq.~17! immediately gives the
usual Bloch equations.1 More interesting for us here, becau
of its experimental relevance,2 is the case of spin 3/2. Th
relaxation equations forM50 couple the expectation value
of three operatorsT̂10, T̂20, andT̂30:

] tT10~ t !52
1

t1
T10~ t !2

1

t2
S 2

A5
T20~ t !2

A5

2 D ,

] tT20~ t !52
3

t1
T20~ t !2

3

t2
S 1

A5
T30~ t !2

2

A5
T10~ t !D ,

] tT30~ t !52
6

t1
T30~ t !1

6

t2

1

A5
T20~ t !. ~22!

These equations are easily solved. In Fig. 1, we show
solution for two values of the ratiot1 /t2 for an initial
condition ofT10(0)5T20(0)5T30(0)50 which corresponds
to a completely unpolarized state of the spin. The quanti
TL0(t) relax exponentially towards their equilibrium value
For t1 /t250.1, the higher momentsT20 and T30 are still
insignificant;T30,0.5 1023 is too small to be shown in Fig
1. On the other hand, fort1 /t250.7, all the moments
clearly become important.

The relaxation in Eqs.~22! is described by three eigenva
ues, three inverse time scales,l, which can be simply deter
mined from the equations as functions ofq. For the case of
equilibrium in the electron system, these eigenvalues of b
the longitudinal (lL ,M50) and the transverse equatio
(lT ,M51) are shown in Fig. 2 in units of 1/t1 as functions
of the temperature. Between the high-temperature limiT
@v0 and the low-temperature limitT!v0, both the largest
longitudinal and the largest transverse relaxation time
crease by a factor of three as compared to the relaxation
in Bloch approximation calculated in the usual perturbat
way.

For generalI, we determine both the longitudinal and th
transverse relaxation times in the following limiting case

FIG. 1. Spin I 53/2: Solution of the relaxation equations fo
M50 with t1 /t250.1 and 0.7, respectively. The magnetization
given by I z(t)5A5T10(t). For t1 /t250.7, the higher moments
become significant.
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For t1 /t2;0 ~in case of equilibrium,T@v0), the longitu-
dinal relaxation time ist1 and the transverse 2t1 as in the
Bloch equations. In the opposite case,t1 /t2→1 (T!v0),

all the operatorsT̂LM become equally important in Eq.~17!.
Then, the 2I relaxation times are as follows (n
50,1, . . . ,2I 21): In the longitudinal equationsM50 we
get t1 /@2(n11)I 2n(n11)# and the longest relaxation
time (n50) is always twofold degenerate; in the transve
equationsM51 we gett1 /@(2n11)I 2n2# and here, the
longest relaxation time (n50) is always nondegenerate
These explicit expressions are a conjecture based on
evaluation of the relaxation equations for spinI up to 7/2.

Starting from the microscopic description, we have d
rived coupled relaxation equations valid for an arbitrary s
I in a nonequilibrium quantum environment. These equati
generalize Bloch’s phenomenological equations for spin
laxation. They contain two independent time scales. Th
solution shows that, compared to the Bloch equations, th
is an additional temperature dependence in the relaxa
time which can decrease the relaxation time by a factor of
to 2I .

These considerations allow us to draw the following co
clusions for relaxation experiments. The relaxation times
pend on the state of the electronic system. The electrons
be driven out of equilibrium by, e.g., optical pumping.
such a nonequilibrium case, the relaxation timesT1 andT2

can be shorter by a factor of up to 2I compared with the
corresponding times in the case of equilibrium. If the ele
tronic system is in equilibrium, the experimental data m
be divided by an explicit temperature dependence as i
shown in Fig. 2 when one wants to determine the relaxat
time t1(T) which intrinsically characterizes the electron
system.
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FIG. 2. SpinI 53/2: Inverse relaxation times in the longitudin
~solid line! and transverse~dashed line! relaxation equations in
units of 1/t1 .
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