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We report on a systematic study of two-dimensional, periodic, frustrated Ising models with quantum dy-
namics introduced via a transverse magnetic field. The systems studied are the triangktagamelattice
antiferromagnets, fully frustrated models on the square and hexa@mmeycomblattices, a planar analog of
the pyrochlore antiferromagnet, a pentagonal lattice antiferromagnet, as well as two quasi-one-dimensional
lattices that have considerable pedagogical value. All of these exhibit a macroscopic degen€rafyimthe
absence of the transverse field, which enters as a singular perturbation. We analyze these systems with a
combination of a variational method at weak fields, a perturbative Landau-Ginzburg-Wilson approach from
large fields, as well as quantum Monte Carlo simulations utilizing a cluster algorithm. Our results include
instances of quantum order arising from classical criticdtiiangular latticé or classical disordeipentagonal
and probably hexagonahs well as notable instances of quantum disorder arising from classical disorder
(kagomeg. We also discuss the effect of finite temperature, as well as the interplay between longitudinal and
transverse fields—in thikeagomeproblem the latter gives rise to a nontrivial phase diagram with bond-ordered
and bond-critical phases in addition to the disordered phase. We also note connections to quantum-dimer
models and thereby to the physics of Heisenberg antiferromagnets in short-ranged resonating valence-bond
phases that have been invoked in discussions of high-temperature superconductivity.
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[. INTRODUCTION are endowed with quantum dynamicsTat 0. The canonical
problems of this kind aré&&=3 antiferromagnetic quantum
The study of frustrated magnetic systems began half &leisenberg models on triangutarand kagomnie lattices’?
century ago with the realization by Wanrfiend Houtappél ~ which have both attracted a considerable amount of interest.
that the antiferromagnetic Ising model on a two-dimensionalhile one can think of these as quantized versions of clas-
triangular lattice does not order down to the lowest temperasical Heisenberg models,it is instructive instead to follow
tures and exhibits a finite entropy density everiTat0, in  Anderson and Fazekasand think of them as perturbed vari-
contrast to the naive expectation from the third law of ther-ants of their Ising limits, which are manifestly frustrated. In
modynamics. These two observations are related, and can lfgese particular cases, the perturbation is Xheexchange
traced to the frustrated nature of the couplings even at thand as it does not commute with the Ising pieces, it intro-
level of a single plaquettéFig. 1) where one sees that it is duces quantunitwo-spin dynamics into the frustrated prob-
not possible to minimize the energy of all three bonds simuldem. This perspective, in turn, suggests consideration of a
taneously leading to sitinstead of the two for ferromagngts more general class of models with alternative perturbations
minimum-energy configurations. From this we may infer aintroducing quantum dynamics instead.
macroscopic entropy density for the triangular latticeTat In this paper we report on a systematic study of frustrated
=0 and rationalize the absence of any ordering by the ea5§ing models perturbEd by transverse fields—as these intro-
accessibility of a large number of configurations at allduce single-spin dynamics, they are evidently the simplest
temperatures. models in the extended cla¥sA short, partial, account of
The twin observations, of a nonvanishing entropy andthis work has appeared previousfyThis paper covers a
lack of order, when contrasted with the ordering transitionProader range of issugand lattice and supplies many of
and small numbe(two) of ground states in the ferromagnetic the details left out in the short account. It also provides a
Ising model on the same lattice, typify the striking behaviorcompendium of results we have obtained in the course of our
of such “maximally” frustrated classical models whose Work, which we hope will be of some use to people under-
catalog, by now, includes also models with continuous spins
such as the Heisenberg magnet on the three-dimensionalpy- & & """ )
rochlore lattice’® Other, by definition less frustrated, models
exhibit nonobvious phase transitidrat finite temperatures.
These may involve a singular privileging of the ground-state
manifold as a whole as in the case of ¥ magnet on the

kagorﬁdattice? or, mogtleo'gypicglly, the elegant phenomenon  fiG. 1. Two frustrated plaquettes with Ising spins. In the ca-
of “order by disorder’~"in which ground states that permit nonical example of the antiferromagnetic triangle, antialigning two

especially soft fluctuations about themselves are selected egpins leaves the direction of the third undetermined. Similarly, a
tropically at finite temperatures. square can be frustrated by choosing an odd number of bonds to be

This paper is concerned with the fate of such frustratedntiferromagnetic. For such mixed-bond models, we represent
models, especially the maximally frustrated ones, when theyanti-) ferromagnetic bonds bfdashedl solid lines.
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taking further study in this field. It is perhaps worth noting

that this simplicity does make the models more tractable, /\/\/\/\/
which is generally true for transverse-field Ising models and \/\/\/\/\
accounts for their ubiquity in quantum statistical mechanical >< >< >< ><
contexts. Much of this work is reviewed in Ref. 17, which /V\/\/V
also includes some previous work on one-dimensional frus- W\/\/\
trated chains. More recent studies include the use of the un
frustrated model as a paradigm of quantum critical
behaviol® and the treatment of random versions by asymp-
totically exact real-space renormalization techniques neat
infinite-disorder fixed point&®

A second motivation for studying these models is the pos-
sibility of direct experimental realization. Ising systems exist
and in the case of LiHgfand its kin, transverse fields have
been used to tune between phases in clean and disordere
systems$® A second family of Ising systems consists of
stacked triangular lattices, strongly coupled along the stack
reviewed at length in Ref. 11. While these have an intimate
connection to the single triangular lattice in a transverse field
via its Euclidean representation, it would be interesting in
future work to consider the effect of a transverse field on
them. Meanwhile we would encourage our experimental col-
leagues to search for a triangularkagomelsing antiferro-
magnet that are both, as we shall show in this paper, exem
plars of very different physics that can arise in frustrated

guantum systems.
Finally, there is the possibility of finding systems where -4-1-7-T-7-T7"~ AAAMA

there is a local Ising degree of freedom that is not itself an
Ising spin. One such connection, which is currently the sub-
ject of intense interest, is an exact mapping from frustrate(iisi
transverse-field Ising modéfsto quantum-dimer models of
the short-range resonating valence-bond state _Conjec_turedsauare lattice with crossing$ ‘two-dimensional pyrochlorey,
while back by Andersft and Oﬁ_ mentloned In dlscu_ssmns square, and triangular. For normally unfrustrated lattices, frustration
of the cuprate superconductors; in this context the Ising Mot introduced by choosing an odd number of bonds in each plaquette
els appear more naturally as their dual, Ising-gauggg pe antiferromagnetitsee Fig. 1
theories?? 28

Turning now to the physics of the models themselves, Weyroken symmetry state constructed out of the degenerate
note that the introduction of quantum fluctuations can benanifold is selected antb) a quantum version of the disor-
expected to lead to a variety of behaviors much as in the casgered or(cooperative paramagnetic possibility in which the
of thermal fluctuations catalogued above. Indeed, in thgyround-state correlations remain short ranged and might be
quantum case, the singular character of the fluctuations igxpected to lead to the opening of a gap in the spectrum.
manifest, in that, even infinitesimal strength perturbationsrhis |atter possibility, which we have christened “disorder
lead to a nontrivial problem of degenerate perturbationyy disorder,” was first suggested by Anderson and FaZékas
theory in a macroscopically degenerate manifold and cags a mechanism for obtaining spin-liquid states of the reso-
therefore be expected to lift the degeneracy and select gating valence-bondRVB) kind. Further singularities can
much smaller number of ground states. Consequently theigmerge at large quantum couplings. For single-spin dynam-
must be a discontinuity in the entropy and ground-state corics such as the transverse-field problems we study, there is
relations at zero quantum coupling afic=0. We should  necessarily a paramagnetic phase at large couplings and at
emphasize that degenerate perturbation-theory problems aggst one phase transiti@n routein cases of order by dis-
not themselves perturbative, especially for macroscopic degrder. The nature of such phase transitions, which will be of

generacies. The most notable example of thi§ is th'e quantugbme interest to us in this paper, can indeed be very uncon-
Hall problem where the degeneracy of a partially filled Lan-yentional.

dau level is lifted by the interaction and disorder in ways that  gpecifically, we study Hamiltonians of the form
lead to an incredibly complex phase diagram. Part of the
interest of studying a diversity of perturbations of frustrated - « ,
magnets is the prospect of generating at least a fraction of H=2> J;SS+TX S+hY S (1.9)
this complexity. i) ' '
Two possibilities are generic at small quantum couplingson a variety of one- and two-dimensional lattiosge Fig.
(a) a quantum version of order by disordé? in which a  2). Here theJ;; are nearest-neighbor exchange couplings

FIG. 2. The lattices on which fully frustrated transverse-field
ng models are discussed in this paper. Clockwise from noon:
kagome hexagonal, pentagonal, sawtooth chain, three-leg ladder,
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with 3] =J and Il aqueak — Ji; /9)=— 1, T'is the strength !l A CRITERION FOR ORDERING AND A METHOD
of the transverse field, th8* are the Pauli spin operators, FOR QUANTUM MONTE CARLO

and h is the strength of aclassical longitudinal, Ising In this section we map owl-dimensional quantum mag-
symmetry-breaking field. net onto a @+ 1)-dimensional, ferromagnetically stacked,

The structure of this paper is as follows. We f|_rst INtro- classical magnet. This mapping allows use to derive some
duce concepts and methods we have found useful in studyingajitative features of the quantum-ordering process, and
the model under consideratidSecs. Il and I). These we  ajso to make contact with the existing literature on stacked
apply in the remainder of the paper to a number of frustrateghagnets. In addition, it enables us to devise a quantum

Ising models on different lattices, which, between them, réyionte Carlo code free of the sign problem for general clas-
alize a wide range of classical and quantum properties. Wgjcal terms in the Hamiltonian.

conclude by discussing possible realizations of such models.
In detail, in Sec. Il, we use a mapping of the
d-dimensional quantum model to d+ 1)-dimensional clas- A. Mapping onto the stacked magnet
sical model to derive a general criterion for the existence of /e proceed by using the Suzuki-Trotter formali&hi°to
a quantum-ordering transition, and we use this mapping tQetermine the precise correspondence between the quantum
obtain a quantum Monte Carlo algorithm. This algorithm isy. 5nd classical d+1)-dimensional models. Specifically,

free of any sign problems and is one of the attractions Ofne partition function of the transverse-field Ising model is
studying this class of models—augmented by a cluster

method appropriate for our problems, we have used it at
several points in this work. e - BH_ B z X

In Sec. lll, we consider a three-leg ladder that has consid- Z=Tre "M=Trexp - B| vV({S}) +F2 Sl
erable pedagogical value and allows us to introduce a weak- (2.2
coupling ('/J<1) variational analysis and a strong-

coupling Landau-Ginzburg-Wilson analysis, which will be where8=1/kgT. For generality, we have introduced the no-

our principal analytic tools in the remainder of the paper'tationV({SZ}) for the “classical” part of the Hamiltonian of
Section IV reports results on the somewhat baroque pentago- !

. , o .
nal lattice antiferromagnet that turns out to have an intimatetrengthe, i.e., [V,S7]=0 for all i; in the simplest czas;é\/
connection with the ladder described previously. Its classiONy consists of the exchange partiéf vV =2 ;)J; 'S}

cally disordered state gives way to quantum order. In the We now use a path-integral representation of E4l)
next three sectionéSecs. V, VI, and VIl we discuss three yvhere the insertion of a _compl_ete set_of states effectively
models: the triangular lattice antiferromagnet, the fully frus_lntr(_),duces an additional dimension of sigewe follow Su-
trated square lattice, and the “two-dimensional pyrochlore”2Uki's approact’

lattice (see Fig. 2, respectively. These exhibit critical clas-

sical correlations in their ground-state manifolds, and un-

dergo ordering transitions in accordance with the ordering7_=2} {SHiexp—a,H)IN{S})

criterion derived in Sec. II. The latter also exhibits two un- S
conventional critical phases. Bla,

Next we turn to classically strongly disordered systems. =[] > ({S }exp—a,H)|{S ni1}) (2.2
Section VIII deals with thekagomelattice antiferromagnet, n=1{S n ' '

which is a notable instance of disorder by disorder and also
exhibits a highly nontrivial phase diagram when both trans-
verse and longitudinal fields are present. Section IX deals
with a one-dimensional Ising quantum-disordered magnet, _nl;[l {%} exi —apV({S n}]

the sawtooth chain, the classical version of which is the ul- '

timate cooperative paramagnet. Finally, Sec. X analyzes the x{&g , s \+3a,l'8/g s 1+0([a,l'])}.

fully frustrated honeycomb lattice that appears to exhibit a T o

fairly complex pattern of ordering driven by quantum fluc- 23
tuations as well as a nontriviaD(4) phase transition.

At various places in the paper we discuss connections télere, we have introduced the imaginary time séepandn
guantum-height or -dimer models. Via the latter, we find alabels the coordinate of the extra dimension. The function
connection to frustrated, valence-bond, phasedaiéenberg 5 is defined to be one if its arguments, the t¢eodered
magnets that has been of interest starting from the oppositets of spin configurations differ byentries, and zero oth-
end®? and more recently starting fromd-wave erwise.
superconductor¥?® As noted before, we are hopeful that We now establish an equivalence between the transverse-
this represents a more general possibility of realizing theield model and the classical Hamiltonian
models we study here in other contexts where frustration is
present and it is possible to focus on a local Ising degree of
freedom. We close vy|th a brief recapitulation of our themes Hos1= K?/V({S,n})Jrz K'SnSni1 (24
in the summary section. ({jy.n in

Bla;
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by expressing the partition sum for the latter in terms of a 7 (K")=expL°L"S)
transfer matrixT,,

1 ™nN2(| 2| T 24 ...
T,=exi] ~KSV({S o)) X{”z(K PLAD 2 (105097 }

(0) wT (1) .
X{Ois s pen TR K25 s (210

s whereSis the classical ground-state entropy density. There-
TO(exd KD} @9 fore the effective free enerdy..= —InZ,/8 as a function of
The first term on the right-hand side of the previous equatiosmall K™ is
is to be understood as an exponentiated diagonal matrix. (K72
From this, one can read off that the two partition func- ,

tions will be equivalent if one choosesI'/2= epxp(—KTIZ) —BF.=(LL )[S+ 2 Z <3,080,0>2+---}
andK{=a,v. We note that continuous quantum evolution (2.11
corresponds to the scaling limit{~a,—0, K™—o, while
maintaining

where the term (L") is a volume in space time.

This yields the following powerful result. If the suin
=Ei<&,050,0)2 of the classicalcorrelation function diverges,
the free energy above inanalyticasK™— 0 implying that
the Kisj = is in a different phase from the disordered point

J$=0 for any K™>0; this is indeed the case for the Ising
ariangular antiferromagnet wheilg; contains a leading di-

2e "ja =T, KSexpK72)/2=v/l. (2.6

With the classical Hamiltoniak 4, ; [Eq. (2.4)], the Ising
spins interact in the spatial layers as they do in the analogo

d-dimensional classical problem, but they are also couple i
ferromagneticallyin the additionalimaginary-time dimen-  vergence of the forthfd?7(1/JF)2 In this case, one does
deed find quantum order by disordesee Sec. V.

sion. The dimensionless inverse of the quantum temperatur¥! S IR - i ,

8T, is given by the extent.” of the system in the time However'the situation is |_nc0nclu5|ve for cIassquIy dIS'-

direction, BT =a,I'L"=2 exp(—K72)L". ordered_ antiferromagnets with exponentlally d_ecaymg spin

i correlations af=0; even though no single term in the series

expansion(2.11) becomes unbounded, the whole series may

diverge because it is beyond its radius of convergence. There
We can look at the possibility of quantum ordering in ais therefore no clear link between classical and quantum dis-

transverse field by studying the discretized partition functiororder.

Z.(KT)=Z(K5—x,K") as an expansion in powers f. In

this limit, we force the spin configurations in each plane to C. Quantum Monte Carlo

be classical ground states. Taking the tracg ®ver these

ground states gives

B. A criterion for order by disorder

By simulating the stackedassicalmagnet, it is thus pos-
sible to gain information on the properties of the quantum
system. We note that, thanks to the simplicity of our quan-
Zm(KT)zTrgsexp< KTZ Si,nSi,nH), (2.7 tum dynamics, there is no sign problem to cope with for this
LN class of models.
where the sum is over all ground states for each layer. Ex- However, the scaling 1'm'KT_’_°O does_pose some _tech-
panding in smalK”, we obtain mcal problems. At larg&”, .domaln walls |n.the time Q|rec-
tion become very rare, which leads to a divergent timescale
in the Monte Carlo simulations. This problem can be rem-
ZOC(KT)ZTrgS|1+%(KT)2 edied by employing a cluster algorithm, in which the at-
tempted Monte Carlo moves consist not of flipping a single
spin but rather rods of spins in the time direction. These rods
XE 2 SinSin+1Sin St O([K™% can be chosen in a way that exactly cancels the inclement
T T Boltzmann factor exp¢K72).3! It is with this method that
2.9 we have carried out the simulations presented here, with an
' additional feature for the fully frustrated hexagonal lattice,
where the linear term iK" is absent due to Ising symmetry. Which is described theresee Sec. X
We can further express E(R.8) as It however turns out that the dominant source of error can
be the remaining discretization error. To see this, consider
. the case of a quantum-ordered state at zero quantum tem-
Z(KD)=Z(L)" 1+ 5(KD2X (S nSnsn)?+ 1, perature, 18=0, which corresponds to an infinite extension
o (2.9 of the stacked model in the time direction. One can now
imagine starting at an effectively infinite classical coupling
where the prefactor refers to the number of classical states iIK”. As K" is reduced, within the framework of the above
each layer of areh? andL"=p/a, is the number of layers. mapping, one retains @0 but a discretization error is
Then introduced—which for sufficiently smaK” will be serious
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which is shared with a neighboring plaquette, one can repre-
oo L L sent the ground states by placing dimers onto the frustrated
Sl e Rk il afie s ol nlid il I bonds. This gives rise to a hardcore dimer covering of the
dual lattice, which in this case is a two-leg ladder. Note that
such a mapping is possible for all fully frustrated models in
- which the elementary plaguettes are arranged to share bonds.
FIG. 3. The fully m.‘Strated three-leg 'e.‘dder' SO"d. lines COIe" 1t does not, however, exist for all lattices, for instance, if the
spond to ferromagnetic bonds, dashed lines to antn‘erromagnetlcI tt h it ther than bond is th for th
ones. Dimer representations of the columraght) and one of the plaquettes share sites rather than bonds, as 1s the case for the
- ; kagomelattice, the hardcore nature of the dimer model is
two staggeredleft) configurations. . R
lost. The advantage of this mapping is that, up to a global
enough to make the quantum order disappear as the classiGRin reversal, there is a one-to-one correspondence between
magnet goes through its transition at a critigdl In prac- the grounq ;tates and the_ hardcore dimer coverings. _There—
tice, when considering a fixed system size and a Bwne fore, restricting the full H|Il_)ert space to that of the _dmgr
has to trade off the discretization error against reaching a lo©Verings yields a natural implementation of the projection
quantum temperature. Minimizing the error requires largePt0 the ground state. Below, we will present a derivation of
K, while the quantum temperature nominally decreases witlﬁhe transverse-field Hamiltonian restricted to the dimer
inc’reasmgKT ground-statgmanifold.
To quantify the discretization error, we quote the param-
eter \=expkK"/2), (wherek is the multiplicity of the spin A. The action of the transverse field—mapping onto a
flip, being 1 for single-spin dynamigsa length-scale char- quantum-dimer Hamiltonian

acteristic of an isolated ferromagnetically coupled rod—the | the S? pasis. the transverse-field operal® is a spin-

larger the\, keeping\/L" fixed, the better. For fixed.”, fli 01 - .

X i p operator, {/2)(7 ). Leading-order quantum dynamics
however, the optimal value of depends on the correlation \uhin the ground-state manifold is therefore that of single-
length in the time direction, which varies from system 10 g flins connecting different ground states—we need to
system and which is larger for a small quantum gap. consider multiple-spin flips only in cases where single-spin

In addition, the time for building up the clusters also be- i s a0 nowhere possible, as will be the case in some of the
comes large at low temperature. This reflects the fact that th@xamples discussed later

stack_ed classical magnet represents a rather inefficient way Flipping a spin without leaving the ground-state manifold
of doing the bookke_epmg for. the Spin state. In t_he PreSenCy nossible only if the spin is part of the same number of
of only a few domain walls, it is probably superior to keep satisfied bonds as frustrated ones, or, in other words, if it

tLaCkf of the dimafin walls t.hemselv.es. Thlis C.""R be done Ir(‘-preriences zero net exchange field. We refer to such spins
the framework of a contl_nuo'us tlme' algorithm, recom- g flippable spins. In dimer language, such a spin is at the
mended for future use, which is described, for example, ingtar of a dimer plaquette of the forgng or 5%, and flip-

Ref. 32. ping the spin exchanges the frustrated and the satisfied bonds

and thus corresponds to the elementary dimer move
IIl. METHODS USED AND THE FULLY FRUSTRATED 1 o .

THREE-LEG LADDER

The two staggered sectors of the ground state contain only

To introduce some of the concepts used repeatedly in thithe two staggered dimer states. The states in the columnar

paper, let us first consider the toy model of the fully frus-sector can be obtained starting from the columnar dimer state

trated three-leg ladder depicted in Fig. 3. The interactiondy repeated application of the elementary plaquette move
along the rungs are ferromagnetic as are those along thpg — e« .

outer two legs. The antiferromagnetic interactions along the Therefore, in the staggered ground-state sectors the trans-

middle leg make the ladder fully frustrated. . verse field has no effect since no elementary dimer moves

The classical ground states are those states that minim|z§re possible—indeed, there are no degenerate states that it
the number of frustrated bonds. Since the bonds on the out%r

wo | bel i I | tte it i i f ble t an mix atT=0 at any finite order of the perturbation
WO legs belong 1o only one plaquette, it IS not favorable 0theory. This is different in the main sector, where the trans-
frustrate these. By contrast, frustrating one inner bond ca

Oerse field lifts the macroscopic degeneracy and promotes a

gut t?.e dtw?h ptlziﬂuettes |tthbelong?ﬁt60 mlnto th% g;o;md St(e;teparticular linear combination of the classical ground states to
ne finds that there are three se ground states and 0 e quantum ground state.

their Ising reversed counterparts, depicted in Fig. 3. In all’ fact, it is now apparent that the transverse-field Hamil-

thefs,e states, the top and bottom Iegs are ordered ferroma@)’nian, restricted to the classical ground-state manifold, in

netically. The staggered sectors, with the spins on the to imer language can be written as

and bottom legs of opposite sign, contain only one groun

state each; by contrast, the columnar sector has an extensi)qa _ oo oo o0

’ : =—t(]ss +H.cHv(]|es )(oe |+ .

zero-temperature entropy per rung 8&Sy/(Nkg)=G, QbM (Je= )1 1l UUSPISI R R AT (I3|_)1)

whereG=(/5+1)/2 is the golden mean, which can be ob-

tained by a transfer-matrix approach. where the kinetic term with=1"/2 is generated by the trans-
Since each plaquette has exactly one frustrated bonderse field. We have added a diagonal term with coefficient
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v, which is zero for the transverse-field problem but which

I
will be useful later on. columnar phase | staggered phase
Note that this Hamiltonian has only nonpositive off- T 7
diagonal matrix elements, so that the Perron-Frobenius theo- 0 1 v/t
rem can be used to predict a nodeless quantum ground state classical point
which means that in it, the amplitudes of all the configura-
tions can be chosen to be real and non-negative. transverse field point

Since a ground state and its Ising-reversed counterpart
both get mapped onto the same dimer states, we have to FIG. 4. The phase diagram of the Rokhsar-Kivelson quantum-
show that the dimer ground state is in fact the same as thdimer model for the fully frustrated Ising magnet on the three-leg
transverse-field ground stateFirst we split the ground-state Igdder. The diagona_ll (_:o_rrel_ations&kt are thgse of the classical-
manifold into two submanifolds, namely, those containingdimer model. The infinitesimal transverse-field probleiy 07,
symmetric and antisymmetric combinations of Ising-reversed"aPs t0 the point =0 and thus corresponds to a finite jumpof
pairs of states. The transverse-field Ising Hamiltonian does
not connect these submanifolds, so that it is block diagonamanifestation of the fact that the transverse-field perturbation

All entries in the symmetric block continue to be of the is nonanalytic. Deciding the ordering pattern of the
same(negative sign so that the ground state in this block transverse-field problem can therefore be accomplished if
continues to be nodeless. Since the full Hamiltonian is blockone can show that the RK and the transverse-field points are
diagonal, the state obtained by combining this ground stat# the same phase.
with a null state in the antisymmetric block continues to be a In addition, the transverse-field problem in itself provides
nodeless eigenstate of the full problem. Since there is onlp new perspective on the Rokhsar-Kivelson quantum-dimer
one nodeless eigenstate, the state obtained by translating th@del, which was proposed as a model of Anders¢stisrt-
dimer ground state into the spin ground stat¢hisground ~ range RVB physics? It can be derived for aeisenberg
state of the transverse-field problem. antiferromagnet: the perturbative derivation uses the nonzero

The entries in the antisymmetric sector have the sameverlap between different dimer configurations as an expan-
modulus as in the symmetric one; however, they all need nation parameter. This model is useful in a regime where the
have the same sign. If we pick one spin state for each dimereisenberg model is in a phase dominated by valence bonds.
state and collect those in the up manifold, and their spinThe study of a transverse-field Ising model on a frustrated
reversed counterparts into the down manifold, an entry willlattice can thus be used to gain insight into the behavior of
be negative when the transverse field connects members bfeisenberg magnets on the dual lattice. This fact has been
the up and down manifolds. The states can be sorted in ased by the present authors to identify a bonafide short-range
way, e.g., by magnetization, that the fraction of negative enRVB phase on the triangular lattié&a goal that had proven
tries vanishes in the thermodynamic limit. Whether theto be elusive on the square lattice for which the model was
ground states in the two sectors in the thermodynamic limipriginally formulated.
are degenerate then depends on whether the wave function Finally, we note parenthetically that for the mixed-bond
has substantial support on the states at zero magnetization, imodels, the application of a longitudinal field is somewhat
which case they are not, or whether it is localized away fronarbitrary as there is @auge/Mattis freedom of which bonds
them, in which case they are. The example of the three-letp call antiferromagnetic and which ferromagnetic as long as
ladder is special in that the up and down sectors can bthe odd condition is met. Thus any state in the gauge-
chosen to be entirely disconnected so that an exact degeimvariant dimer representation cémp to topological restric-
eracy trivially arises. tions) be represented by a maximally polarizéang-range-

The connection between the transverse-field Ising modedrdered spin configuration, irrespective of the nature of the
and the quantum-dimer model we have established is usefaglimer correlations. In the models where all bonds can be
for several reasons. It affords some insight into the structurehosen to be antiferromagnetic, this choice defines the natu-
of the problem we are studying in that it provides a naturalral gauge and thus makes the application of a longitudinal
deformation of the transverse-field Ising model by switchingmagnetic field unambiguous.
on the potential term, i.e., by choosing a nonzeroThe
casedv|>t are easily solved and can therefore provide two
anchors of the phase diagram containing the point we are
interested in. We now present a heuristic argument that is variational in

Moreover, there is the special point=t, known as the spirit to generate a candidate state for selection by the trans-
Rokhsar-Kivelson(RK) point, after the inventors of the verse field. This state is the one that can gain the most energy
model?? where the(nodeless quantum ground state is an from the transverse field on account of being composed
equal-amplitude superposition of all classical ground statesaround a backbone configuration having the strongest fluc-
Therefore, operators that are diagonal in the dimer basis prduations possible.
vide precisely the expectation values of the corresponding To start, we note that in order to gain energy from the
classicaloperators. In this spirit, switching on an infinitesi- transverse field, spins have to have a component pointing in
mal transverse field implies jumping the finite distance fromthe x direction, which in theS* basis goes along with the
v=t to v=0 in the Rokhsar-Kivelson modeFig. 4, a  component of the forri|1)+||)]/v2. Those states in which

B. Maximally flippable states
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most of the spins can be flipped and hence put in a superpo- The variational states thus obtained have the shortcoming
sition of up and down states thus stand to gain most energthat all their component configurations are allocated equal
from the fluctuations induced by the transverse field. Weweight. This is clearly not optimal since the ground state will
therefore identify the configuration with the largest numberin any case place maximal weight on the individual, maxi-
of flippable sping“maximally flippable state’) as the back- mally flippable configurations. Within a more elaborate
bone of our candidate ground state. The actual ground staM@riational framework, weights could be accorded to the con-
naturally includes fluctuations around the maximally flip- figurations depending on their number of flippable spins.
pable configuration, since it is these that lead to the energy N summary, the flippability approach suggested here
gain in the first plac&® The energy gain due to alignment of identifies a “saddle point’—the maximally flippable
the spins along the transverse field in the quantum model igonfiguration—that will be favored due to the fluctuations
an entropic contribution to the free energy in the classica _rouno_l it, which are spfter than those around other con-
stacked model. igurations. We expect it to work as long as the actual quan-

As an aside, we note that the classical correlations rovidtum wave function is concentrated on the maximally flip-
. ! . : P Sable and nearby configurations. It will break down if the
the simplest first guess at the maximally flippable configuras;

. dh h deri This is b wave function has the bulk of its support elsewhere, i.e., on
tions and hence at the ordering pattern. This Is because COEE)nfigurations unrelated to the maximally flippable one.

figurations with many flippable spins have a large number of - rhig nint can be made more intuitively by considering
neighboring configurations that differ only by a few spin (he degenerate perturbation theory as a hopping problem.
flips. The correlations they incorporate, even when not leadgach classical ground-state configuration defines a point in
ing to long-range order, can thus already be visible in thghe ground-state manifold. The transverse field, by flipping
classical average where all ground states are accorded equglins, connects different configurations, thus endowing the
weight. ground-state manifold with a graph structure. The perturba-
For our three-leg ladder, the maximally flippable configu-tion theory can be thought of as a hopping problem on the
ration is the columnar one depicted in Fig. 3, since tl@re graph thus defined. The large weight of maximally flippable
spins on the middle rowall of which point up are flippable.  configurations follows from their high coordination, and the
We therefore expect to find a state that has a ferromagnetimagnetic-ordering transition corresponds to a localization
moment even in the direction in addition to the polarization transition in the hopping probler.
in the x direction. These ways of thinking are in close correspondence to the
The selected state can incorporate structure in addition t6ase of thermal order by disordehere, thermal fluctua-
that apparent from the maximally flippable configuration.tions (out of the ground-state manifgigrovide a large en-
This follows from the fact that although the backbone con-{ropic weighting to the states allowing t+he softest fluctua-
figuration maximizes the number of flippable spins, in factlions. These states are then selecte@i-a€)" provided their
not all the spins aréndependentlylippable. In the three-leg €nhanced weight is not swamped by the combined fluctua-
ladder, for example, flipping a spin on the middle leg pre_tlonal 7and configurational entropy of th_e Igss-favorgd
cludes flipping its neighbors so that in effect only half thestates? Ho_vveyer, Wh_en the thermal fluctuations increase in
spins are independently flippable. One can therefore give twg"€Ngth with increasing temperature, they destroy the order
different recipes for constructing the quantum state. that they were mstrumgntal in establishing in the flrst_place,
To construct the first type of state, we take all the flip-2S happens foF" large in our problem, as discussed in the

pable spins and polarize them in thelirection disregarding 0lowWing paragraphs.
the ground-state constraint. Next, we reinstate the ground-
state condition by projecting out those components of the
state that are not contained in the classical ground-state In addition to doing the(hard degenerate perturbation
manifold. We call this state the uniform state since it treatgheory for small transverse fields, we can use an alternative
all the flippable spins on the same footing. approach for determining the state of the quantum magnet
The second type of state is obtained by identifying thethat is made tractable by virtue of the simplicity of the
largest set of independently flippable spins and polarizingransverse-field term. Consider the problem where the rela-
those in thex direction. Since, starting from a maximally tive sizes of exchange and transverse field are inverted,
flippable configuration, there are typically several choices fonamely, wherd'>J. In the limit J/T"=0, the ground state is
which set of flippable spins to polarize, we call this state thea simple paramagnet in tHg# basis: all spins are polarized
hierarchical state. It will have a lower symmetry than thealong the positivex direction explicitly selected by the field.
maximally flippable configuration unless all flippable spinsin addition, it is gapped: the lowest excitations are spin flips
are independently flippable. that each cost an energy bf this makes it possible to per-
The distinction between the uniform and the hierarchicalurb about this state by switching on a weak exchange. This
states will turn up several times in this article, and it arisescontrasts to the case where the transverse field is replaced by
quite naturally in other approaches. Note that this approachn XY exchange. Here, the largky problem is not exactly
suggests yet another class of alternative candidate configuraeluble and so it is not possible to perturb about it—indeed,
tions, namely, those that do not have the maximum numbeit may even be gapless.
of flippable spins but nonetheless maximize the number of As the perturbingl is switched on in addition to the trans-
spins that are flippable independently. verse field, the excitations acquire a dispersion, typically—

C. The opposite limit: Landau-Ginzburg analysis for I'>J

224401-7



R. MOESSNER AND S. L. SONDHI PHYSICAL REVIEW B3 224401

but not always—already to first order #I". The dispersion 1.0 ' '
to first order is simply given by the Fourier transform of the
interaction matrix of the lattice. For sufficiently lardethere

can be an ordering transition, which corresponds to a mac-

roscopic occupation of the softest mégle 05
To generate the state to which the leading transition takes \
place, one has to combine the knowledge of the soft modes I

with lattice symmetry considerations to construct a Landau- —eFE,T
Ginzburg-Wilson action. This program is carried out in detail 0.0 L =—=a gap/T
for the fully frustrated hexagonal magnet below and follows A—4<S>

the work on layered magnets by Blankschtein and
co-workers>8-39

The combinations of the soft modes dictated by symmetry . . .
considerations yield the ordering pattern that is established ) 5 10 15
as J/T" is increased. In addition, by also analyzing the number of rungs
Landau-Ginzburg-Wilson action with standard methods of .
the renormalization group, one can obtain information on the F'G: 5. Ground-state enerdproportional to(S,), energy gap,
nature of the transition into the ordered configuration, and if’md (S,) for the three-leg lader in the limil—0" from exact

turns out that these transitions are generally not Ising transE'agonahzat'on'

tions, as the most naive guess would suggest. By ana!yzmgom which we obtain a degeneracy in the dispersion rela-
the potential presence of dangerously irrelevant terms in thﬁon One minimal mode, with wavevecter=0, has eigen-

action, one can even guess at further symmetry breaking. ector (1-2+6,1); the other hag= and eigenvector

This analysis of course has the usual limits associate .
Y 1,—2—6,1). Here,q is the wavevector along the ladder,

with mean-field theories. Most important in this context is 4 th tries in the ei tor denote th litud f
the possibility of further phase transitions out of the ordered"” € entries in the eigenvector denote the ampiitudes o
middle, and bottom sites/§=2.45).

phase before we reach the regime of infinitesimal transvers&€ 1P, \ _ .
fields, where the “small” parametel/T'—oc. Another sce- This degeneracy is accidental in that the states are not

nario is the absence of any phase transition, so that the ma _Iatedhpy a;y symmetry c;p(ra]ratlons and vvle hlavg not encoun-
net remains disordered at all couplings. Although the excital®r€d this effect in any of the more regular lattices we are
tion dispersion may soften at particular points in theStudying. Quite generally, however, in lattices with sites of

Brioullin zone, fluctuations may be sufficiently strong to pre- different coordination, the soft-mode analysis might suggest

vent ordering at any coupling. However, even in this situa-_States that fare very poorly under the hard-spin constraint, as

tion, the largeF approach may be used successfully if theS the case for thg= mode in this examplesee below A
expansion in powers of/T is carried to a sufficiently high MOre appropriate ordering pattern may nonetheless show up

order and combined with a nonperturbative analysis such & an altermative, possibly only local minimum in the disper-

that given by the use of Pade approximants. In Ref. 40, thi§ion relation.

program has been carried out for the sawtooth ctege Fig. The =0 mode can easily be identified as the actual or-
2). dering pattern(see below, Sec. Ill Dwith a moment on the

It is worth pointing out that this approach presents, ulti-middle row reduced by the fluctuations. One reason the com-

mately, a soft-spin analysis in that the size of the ordered€ting state loses out eventually is because it has a reduced

moment can vary from site to site so that, as the mode arrfhoment on the sites that are in fact not allowed to fluctuate

plitude increases, nonlinearities become important. Howevel?! the smallt” limit: there, the leading term in the perturba-
even for our hard Ising spins, a difference in the size of thdion theory flips spins with an equal number of frustrated and

ordered moment does have a meaning. As an iIIustratiorgatiSﬁed bonds, and the reduced-moment sites in this state
consider the uniform state of the three-leg ladder definedi@ve odd coordination and are thus never flippable.

above. Here, every spin on the middle row is fluctuating and . o

thus hasl(S,)| <3, whereas the remaining spins ha{&@,) D. Exact diagonalization

=3, being fully polarized along theaxis. This differenceis  For the three-leg ladder, one can attack the transverse-
indeed found in the largE-analysis and can thus be inter- fie|d problem by exact diagonalization of the degenerate per-
preted .aS being due to the ﬂuctuations induced by the tran$urbati0n theory_ Systems W|th up to 14 rungs are eas"y ac-
verse field. cessible numerically. The results are depicted in Fig. 5. We

In detail, for the three-leg ladder, the Fourier transform ofqq indeed find a state with ferromagnetic order along the
the interaction matrix iglabeling the sites on the rung 1to 3 center row, as predicted by the flippability analysis. The se-

from top to bottom lected state is the uniform columnar one, as the gap extrapo-
lates to a finite value for large system sizes and hence the
2 cogk) 1 0 breaking of translational symmetry accompanying the hier-
J archical state is absent.
> 1 —2 cogk) 1 : 3.2 The infinitesimal transverse field generates a nonzero po-

0 1 2 cogk) larization in thex direction, corresponding to a ground-state

224401-8



ISING MODELS OF QUANTUM FRUSTRATION PHYSICAL REVIEW B53 224401

on this lattice is disordered and has a finite ground-state en-
tropy per spin ofS/kg=0.234% The ground states can be
represented by a hardcore dimer model as described above.
The flippability analysis for this magnet is straightfor-
ward. To lowest order ith’, only the spins along the cuts can
T T /ﬁ T T be flipped since only they have even coordination. Therefore,

the spins along the sawtooths follow an antiferromagnetic
pattern, since the maximally flippable configuratiode-
picted in Fig. § has all frustrated bonds associated with
spins on the cuts. This configuration is closely related to the
fully frustrated three-leg ladder in that the spins along the
cuts are effectively decoupled from the other spins in the
system and the transverse field generates the same Hamil-
tonian as for the ladder. Thence, the ordering pattern along
the cuts will be theg=0 pattern described above, withga

FIG. 6. The pentagonal lattice with its maximally flippable con-
figuration. The three spins in the unit cell are labeled®{,2, and .
the x- andy-lattice translation vectors are given by the arrows. The™ 7 modulation transverse to the cuts. .
leading-order perturbation theory reduces to studying the central Fo_r completeness, \_Ne nOW_ perform_th_e soft-mode analysis
horizontal ladder, which is equivalent to the three-leg ladderOF this problem. The interaction matrix is
of Fig. 3.

] 2 cosqy, 1 e ldy
energy per spin oE,=—(0.302-0.001)I'| in excess of the > 1 0 1+e 19
classical value. The finite mome(t,) already present in the eldy 1+ eldx 0
classical ground-state averadgwhere it equals 12(2G
—1)]=0.2249, is discontinuously enhanced Hss switched There is a line where the eigenvalues attain the global

on. As the system size is increased, the maximally flippableninimum —J(1+v3)/2 at wave vectors4,y). The eigen-
state and its neighbors rapidly gain in weight, whereas at th@ectors (—1—-v3]e %,e"9,1) correspond to states with
other extreme, those states without flippable spins have zefgystrated bonds on the sawtooths. As mentioned above,
amplitude in the ground-state wave function. these do not lead to flippable spin arrangements to lowest
~ These results tie in with the picture provided by the map-prder in the degenerate perturbation theorylinand this
ping onto a quantum-dimer model. The selected columnagtate is therefore not competitive in the sniallimit. There
dimer phase, which extends all the wayue: —, termi- s in addition, one further local minimum-J\6/2 at
nates at theT RK point, beyond' Whlqh |t_ gll/es way to thewavevector(o, ). The eigenvector€ 2+ \6,—1,1) corre-
staggered dimer phase, as depicted in Fif. . sponds to the maximally flippable sta@nd agrees with the
one given by the three-leg laddeiWe therefore expect a
E. Relation to XY perturbations phase diagram with at least three transitions coming from
Wrgel‘, namely, first from the disordered into the “sawtooth

Whereas the transverse field induces single-spin flips, a tate” followed by a transition into the maximally flippable
XY exchange flips neighboring pairs of antialigned spins. I:ostate, which finally terminates in the disordered classical

lattices with even coordination and all bonds antiferromag- hase af' = 0. Th b te transition that select
netic, theXY flips are a subset of the two spin flips generatedp aseal =b. bi ert(_e ma); tﬁ a septaratr? rtar:5| lon ‘1 Selec St
by two successive operations of the transverse field. one or a combination of theé sawtooth stales—we have no

For lattices with odd coordination. however. the trans_investigated this. The complicated structure of this phase dia-
verse field can never flip a spin without leaving the ground-gram is of course to a large degree a consequence of the

state manifold, so that thXY moves can show up as the presence of inequivalent sites.

leadingterms, in orded™?/J, in the degenerate perturbation

theory. These matrix elements are negative, correspondingto V- THE TRIANGULAR ANTIFERROMAGNET
a ferromagnetiY exchange. This will be of importance for
the fully frustrated hexagonal lattice. Moreover, in the cas
of the pentagonal lattice, where inequivalent sites with eveer‘g
and odd coordination exist, the moves generated byCén
perturbation are entirely distinct from those generated by th
transverse field.

The two-dimensional Ising antiferromagnet on the trian-
ular lattice has power-law spin correlations and an exten-
ive entropy &kg=0.323) atT=0.12% We first describe
a number of useful mappings and then discuss their
?mplications.

A. Mappings to height and dimer models
IV. THE PENTAGONAL LATTICE . . . . ,
In Fig. 7, we have displayed a particular spin configura-

The pentagonal lattice, depicted in Fig. 6, tiles the plandion. The corresponding dimer configuratitaso showi is
with (irregulap pentagons. It can be obtained from the hex-constructed as in Sec. lll. The effect of the transverse field
agonal lattice by cutting each hexagon in half with a set ofcan easily be stated in terms of the dimer mapping in a more
parallel lines(“cuts™). Classically, the Ising antiferromagnet general setting than the one discussed in Sec. Ill. If we
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T/
disordered
KT-
phase
bond-
ordered /)
A 3.dXY

FIG. 8. The phase diagram of the triangular TFIM. The pattern
of the ordered phase is depicted in Fig. 7.

be decomposed into a sum of paths around individual tri-

. . . _ angles, and thus the height change between any two sites is
FIG. 7. The maximally flippable spin statarrows and its cor- independent of the path chosen to go between them.

responding height and dimer configurations on the triangular lattice. The existence of the height model has important ramifi-

The result of a single spin flip for the dimer and height configura-cations for the classical model. Under a set of reasonable

tions is also shown. See the text for details. assumptioné’® the result follows that the ground-state corre-

. lations are algebraic. Combined with our criterion for n-
choose a closed loop of bonds on the dual lattice that ara ons are algebraic. Combined our criterion for qua

. . m ordering(Sec. Il B), one expects all magnets allowing a
alternately gmpty and occupied by a dimer and exchar_lge_ ﬂWeight mapping to order. The ordering correlations are then
occupied with the empty bonds, this corresponds to flippin etermined by the configuration that is as flat height
all the spins inside the closed loop. The leading-order effec pace as possible
of the transverse field is therefore to produce such a rear- This raises the -question that, under which conditions does
rangement for the loop enclosing the smallest number o(Ii ’

- ; . L height mapping exist? A set of sufficiefitut not neces-
sites, and the relevant order in perturbation theory is g've.r%ary) S3:onditi§r|[1)s ?s that, first, the lattice be composed of

by _the number of enclosed spins. The loop in question | ond-sharing frustrated unitallowing a dimer modgland

typ!cally the_shortest cllos_ed loop of even length on t.he dua) econd, its dual lattice be bipartite. This is required for giv-

L,ailttg(éséénFtthSTCEEE[a;/\/tgI\?villfei(l:oo?ﬁ tzfr Itir;gégfe %?CrLOoSrIQ%hgrﬁng a set of consistent rules for computing height differences.
9- In several of the cases we encounter below where these con-

On?\lSQtCI(\)/\/SeeC:uSrIr:e()lﬁ:e;t(t);ﬁtion to the mapoind to a hei htditions are not met, a height mapping is absent, consistent
’ . X AR pping 9Mith their disordered classical correlations.
model. The height configuration is given by the numbers in

Fig. 7. The height variables are defined on the sites of the , , , , ,

lattice %5 Height differences are determined as follows. If one B Ordering behavior of the triangular Ising antiferromagnet
crosses &no) dimer when going along a bond in a clockwise ~ We first study this problem for a small transverse field
direction around a triangle pointing up, the height changesvith h=0. The maximally flippable configuration is the one
by 2 (—1). If one goes the opposite direction, the heightdepicted in Fig. 7. It has a unit cell of three si{@so spins
change is—=2 (+1). One can easily check that this prescrip- pointing up and one down This is also the flatheigh)
tion has the property that the height change around the thremnfiguration, as well as being the state encounteraed=at
sides of any triangle is zero. Moreover, any closed path car- o in the appropriate quantum-dimer modef’3

Hopw = —t (|9)(8] +He.) + v (19)(9] + [2)(2]) . 5.2

In fact, this state has a net magnetization since its threddy virtue of the mapping presented in Sec. Il A. This LGW
sublattice structure i€l, 1, —1), with all spins pointing up analysis funds an action thatX¥ symmetric up to the sixth
being flippable. The uniform state will thus have a sublatticeorder, where arKY symmetry breaking, sixfold clock term
structure of the form 4,a,—b), with b>a, whereas the appears.
hierarchical one will have,0,—c). The resulting phase diagram in the temperature-field

All the evidence therefore points towards a three-(T-T') plane, depicted in Fig. 8, is quite remarkable. At
sublattice quantum-ordering pattern, with details to be deter=0, the triangular transverse field Ising mod&FIM) un-
mined. Such correlations were previously found by adergoes a quantum phase transition that is in th¥ 8Dini-
Landau-Ginzburg-WilsoLGW) analysis of ferromagneti- Versality class? where the clock term is dangerously irrel-
cally stacked triangular latticé8,applicable to our problem evant, so that the transition is into a phase with clock-
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(&-—©) classical, 2304 spins
[5—F12304 spins

&—< 1296 spins

/5~—— 576 spins
<+——<1225 spins

V— 81 spins

sublattice correlation, <MM>/S*

] 1 2

TT
0 R FIG. 10. The correlation matrigV;M;)=(M;M;) of sublattice
q, magnetizationsVl; for a three-sublattice state as a function of the

) ~quantum temperature for a system with 729 spins. The sublattices
FIG. 9. The absolute value of the Fourier transform of the spin-4;e |apeled by the size of their magnetization so thiat>M.,
spin correlation function along the direction, (S(x)S(0)) (arbi- -\, (M2)=0 implies that one sublattice has zero root-mean-
trary units, at low temperatureas a function ofj, ranging from 0 square magnetizationM §>:<M§>:_<M1M3> implies that the

to 7. Note the growing and narrowing Bragg peak. other two sublattices have equal and opposite magnetization.

symmetry breaking as well. _ . qualitative respects. Its classical ground-state entr&py
At finite temperature, however, the transverse-field Ising_ ~;..~ 0 2414° whereC is Catalan’s constant. Since it con-

model maps onto a classical stacked magnénde sizeL”,  gists of hond-sharing squares with a bipartite dual lattice, it is
in the imaginary t|m_e dlre_ctlon, so that its behawor Crossegyitical at T=0. The corresponding dimer-model Hamil-
over to being two-dmenspna_l as the correlation length beignian is given by Eq(3.1) and has a phase diagram like that
comes comparable tb”; in this regime, we thus have 10 pictyred in Fig. 4. The columnar phase corresponds to the
consider the properties of a two-dimensiodad model with 1 5yimally flippable state that, in dimer language, is obtained
a clock term. Here one findfs two finite-temperature  p covering the square lattice with infinite dimer ladders
Kosterlitz-Thouless transitions bordering an extended criticalyity the configuration depicted on the right panel of Fig. 3.
phase. The phasg dlagram in Fig. 8 is reliable in the region, | gw analysi€® again finds arXY action with anXY
near the three-dimension¥Y transition, where the order symmetry-breaking clock anisotropy at higher order, which,

parameters are small. , depending on its sign, selects either the uniform or the hier-
Depending on the sign of the sixfold clock term, the archical(also known as plaquettstate.

quantum-ordered state is predicted to have the sublattice This makes it clear that there is quantum ordering in the
structure of either the uniform or the hierarchical state. Incgim on the square lattice into a state with translational

order to cor_wfirm the predicted ordering pattern.and to ﬁ”dsymmetry breaking. We have not studied this problem nu-
out the precise sublattice structure, we have carried out quaRierically ourselves but we refer the reader to the literature

tum Monte Carlo simulations on the triangular TFIM. The 5, the ferromagnetically stacked magié? and the
results are depicted in Figs. 9 and 10. A Bragg peak i'ﬁuantum-dimer modét52

clearly visible atg,=2#/3 as expected. The sublattice struc-
ture of the form(1, 0, —1) is also clearly borne out, showing
that the hierarchical state without a net moment is selected. V!l PYROCHLORE IN TWO DIMENSIONS:  THE
Since the quantum-dimer state at —o is the uniform SQUARE LATTICE WITH CROSSINGS
magnetized state, this implies a transition e 0. Prelimi- This lattice, also known as the checkerboard or two-
nary studies by us indicate that such a transition is indeedimensional pyrochlore lattice, is made up of a square lattice
present close to =0. Finally, we note that a finite longitu- ith nearest-neighbor interactions that has, in addition,
dinal field (h|<6J) on its own selects the same uniform ¢rossing next-nearest neighbor interactions on alternate
state. plaquettes as depicted in Fig. 11. The plaquettes with cross-
ing are equivalent to tetrahedra in that they contain four sites
V. VILLAIN'S ODD MODEL: THE FULLY all interacting equall_y with one another_. These tetrahedra are
FRUSTRATED SQUARE LATTICE f'irranged to shgre sites as is _the_case in the pyrochlqre lattice
in three dimensions, from which it can in fact be obtained by
A great deal is known about the square fully frustrateda projection in §111) direction; for a picture, see Ref. @¥.
Ising magnet(FFIM) especially when we combine the  The ground-state condition for the classical Ising model is
knowledge about the different models it is equivalent to bythat each tetrahedron has zero magnetization. There are six
virtue of the mappings presented above. It turns out tesuch states for each tetrahedron, each with two spins up and
shadow the triangular IAFM in practically all important two down. The Ising model on the pyrochlore lattice is
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each tetrahedron has exactly one down spin, and since each

PORNT.
spin is shared by two tetrahedra, each classical IMF ground
0 M 0 state generates a hardcore dimer covering of (itheal
0 square lattice and vice versa. Such a square-lattice dimer
model can be mapped onto a height model, from which the
-1 1 1 criticality of the correlations in this regime follows. In the
IMF-phase, the entropy per spin is a quarter of the value
found in the Villain model, as now there are four spins per
FIG. 11. The square lattice with crossings or two-dimensionaldgimer rather than oneS/kg=0.073.
pyrochlore. A spin and thg resglting height configuration are shown. /e emphasize that the field leaves the entropy unchanged
Other features are explained in the text. for a finite range ofh and then reduces to a lower value
without eliminating it completely, while inducing a transition
between two critical states; this again persists over a finite
range of fields. Ah=6J, there finally occurs a transition to
the fully polarized state.

turn generates a height model.

This mapping is obtained as follows. Consider a dimer
model on the square lattice dual to the tetrahedra. For each
spin pointing down place a dimer, centred on this spin, with
its ends located at the points of the dual lattice denoting the
centres of the tetrahedra the down spin belongs to. Since

equivalent to the ice modef, the ground-state entropy of
which was calculated exactly in two dimensions by Lb:
S/kg=2 In $~0.216. This model can be mapped onto a six-
vertex model (each vertex encoding one of the single-

tetrahedron ground stajesnd hence onto a nonintersecting Next, consider tilting the f'eld.SUCh thit<h; this en-
loop model, which in two dimensions guarantees the exisf"bles us to generate a perturbation theory controlled by the
: r?,_mall parametel’/h. The transverse field induces matrix

elements between the states corresponding to the classical
which have indeed been fours ground-state configurations. Both in the low-field and the

Here, we present a short derivation of the height modelMF regime, the degeneracy is not lifted until fourth order in

that we then use to determine the quantum-ordering beha€iurbation theory. The reason is that connecting two

ior, refer to Fig. 11. We define a set of one-dimensionalgr(.)und states requires flipping a closed loop of alternating

heights that reside on the vertices of the square lattice dual t%o'n‘?] tgat pe};?es hthrough anh (laven f?umlber (r)]f45|tez .Of ?]ny
the plaquettes without crossing interactions. Next, we assig trahedron. The shortest such loop has length 4 and is thus
an orientation(clockwise or anticlockwiseto each tetrahe- generated at fourth order in perturbation theory. The lower-

dron so that neighboring tetrahedra have opposite orienta{)-rder terms induce only a diagonal shift in the energies but

tions. Since the lattice dual to the tetrahedra is bipartite, thidiS Shift is the same for all states.

can be done consistently. The rule for the height differences The shc_)rt flappable loop, depicted in Fig. 11, _has differen.t
is as follows. If going from one site of the height lattice to Interpretations in the two phases. For the low-field phase, it

another one passes over an (dowr) spin, one increases co_rrequnds to'changing the height of a plaquette whose four
(decreasesthe height by 1 provided the spin was crossed innelghborlng helghts_ are equal. I_n a manner_analogous to the
the direction given by the orientation of the tetrahedra jt3round-state selection on the triangular lattice, this leads to
belongs to. In the opposite direction, one decreaes the selection of the flat state in height language. In spin lan-

creasepthe height by 1. This generates a consistent assigr‘guag.e' the flat state is a Negl state on the square lattice un-
derlying the square-lattice with crossings.

ment of the heights since going around a unit cell of the In the IME bh h drunl i in lead
height lattice generates zero height difference by virtue of n the phase, the quadruple spin flip again leads to

— 4713 H
the ground-state two-up two-down condition, and becausd'® RK model atv=0 andte=I"/J" [see Eq.(3.1)]. This

each closed path on the height lattice can be decomposéHOV_e connects different ground states since the total magne-
into a combination of such elementary loGBs tization of each tetrahedron remains unchanged and the ef-

We next consider the action of a longitudinal field of féct Of flipping the four spins is to generate the familiar

strengthh in the absence of a transverse field. Fer2J, all ~ dimer plaquette movg p « .

ground states remain degenerate since they have zero netCarrying over the results from the fully frustrated square
moment. Ath=2J, the applied field is strong enough to lattice, we expect the system to order into a flaeigh
surmount the exchange field and it generates a spin-flop traphase that corresponds to a columnar dimer phase. In spin
sition to a manifold of states with three spins up and ondanguage, this phase differs from the Neel low-field phase,
down in each tetrahedron. These states continue to have &mm which it can be obtained by flipping half of the down
extensive entropy but one that is reduced compared to thgpins, e.g., those that are located on the top left-hand corner
low-field value. In addition, the classical correlations in thisof one sublattice of tetrahedra.

regime to which we allocate the name IMmtermediate- The complete phase diagram for this magnet in HhE

field) regime, continue to be critical. This result follows from plane can be constructed from this. The simplest phase dia-
another mapping of those states onto a dimer model that igram incorpoating our results is displayed in Fig. 12.

erally implies classically critical ground-state correlations,
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v critical N

bond-ordered

— critical N

FIG. 12. The phase diagram in thel’ plane for the square
lattice with crossings. The precise extent of either phase away from
I'/h<1 is unknown.

disordered T

FIG. 13. Phase diagram for thkagomelsing antiferromagnet in
a field. Inset: Mapping of thkagomelAFM in a longitudinal field
onto the hexagonal-lattice dimer model. The down spins are marked
In the kagomelsing antiferromagnetiAFM) depicted in by dimers. The nc_)nt_rivial move to_sixth order in perturbation theory
Fig. 2, the nearest-neighbor exchange couplings are uniforifPrresponds to flipping all the spins marked by crosses.
and antiferromagnetic. The ground-state entropy is fiite,
Skag=0.502. and is more than half of the maximum para-in addition to the longitudinal one (@|h|<4J). The result-
magnetic value §,.=In 2) in contrast to the triangular case ing perturbation theory, controlled by the paramdféth|,
(S4i=0.323). Furthermore$,,q is close in value to that ob- has the following structure. The ground-state condition of the
tained by the Pauling approximation?® Spauing=IN2  exchange term of the Hamiltonian imposes the restriction of
+%In $~0.501, where the triangles are considered indepenhaving either one or two down spir§dimers”) per tri-
dently; this suggests that spin-spin correlations in theangle. Starting from a configuration that is also a ground
kagomelAFM are extremely weak. This is indeed the casestate of the longitudinal-field part of the Hamiltonian, we are
and the model remains classically disordered at althus allowed to add dimers violating the hardcore condition,
temperatures’ as long as three never meet in one site. To connect different
An important feature of thkagomédattice is that the frus- ground states requires relocating three dimeisnoted by
trated units(triangles are arranged to share sites rather tharcrosses in Fig. 3 since the shortest closed loop of bonds of
bonds. This precludes the mapping of tkegomeground the hexagonal lattice has length 6. The lowest-order off-
states to a hardcore dimer model on the dual laticewn  diagonal matrix elements thus arise @{[I'/h]°), and are
as the diced lattige there also is no mapping to a height precisely those described by the quantum-dimer resonance
model. It is thus an excellent candidate for a disorderederm in Eq.(5.1). This being the unique shortest closed loop,
quantum magnet. The physics of this model has been disll other terms up to and including sixth order are diagonal.
cussed in moderate detail in Ref. 16; here, we fill in theThese terms correspond to putting down and then removing
missing detail, repeating some material telegraphically foup to three dimers. Due to the local structure of the dimer
coherence and convenience. states, the number of such operations and the concomitant
Application of a longitudinal field|h|<4J, to this mag- energy denominators are found to be the same for all ground
net leads to the development of a ferromagnetic momergtates. Hence, the diagonal energy shift is uniform and does
coexisting with a reduced but extensive entropy aritical not generate a lifting of the classical degeneracy.
spin correlations. The result follows in a way formally simi-  The ordering pattern is therefore determined by the hex-
lar to thel’=0 phases in Sec. VII. Each triangle has two upagonal QDM[Eg. (5.1)] atv=0 andt=I'(I'/h)°. In dimer
spins and one down spin, and denoting each down spin by language, it is the one depicted in Fig. 7.
dimer with end points on the centres of the triangles that Next, consider thé&kagomelAFM in a transverse field’
share it, we obtain a bijective mapping between the groundvith h=0. Following our previously described strategy, we
states and the hardcore dimer covering of the hexagonal laleok for a symmetry-breaking pattern within a Landau-
tice, see Fig. 13. This implies, by virtue of the associatedSinzburg-Wilson analysis. However, this mean-field treat-
height mapping, critical correlations. The entropy per spinment predicts an infinite number of zero modes, correspond-
while still nonzero, is reduced to the value 8=S;/3 ing to the simultaneous softening of an entire branch of
=0.108; the difference to the triangular lattice arises fromexcitations>® For Ising spins, high-temperature series expan-
the fact that the number of spins per dimer is different onsion studies of th&agomelAFM indicate that thermal fluc-
account of the inequivalent mappings used to arrive at théuations fail to select a wavevector to any ortft.
dimer model. The variational, maximally flippable configurations turn
We emphasize that this result is rather unusual. Startingut to be the maximally polarized dimer configuration de-
from a disordered magnet, we obtaincdtical state with  fined above foh>1"=0, of which there is an exponentially
nonzero moment and extensive entropy upon application darge number. The resulting hierarchical states are those in
an infinitesimal field; these properties, including the critical-which each triangle has one spin pointing up, one pointing
ity, persist for a finite range of field strengths. down, and one pointing along the transverse field. Evidently,
Next, consider applying a small transverse fidldg|h|, these states map onto the three-state Potts model on the

VIII. THE kagomelLATTICE
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-=-=-- classical
T/T=0.094; A=96.7
—-— T/T=0.053; A=54.6
---- T/r=0.034; A=35.0
rrrrrrrrrr T/r=0.014; A=14.4
%y 01 ——- TIr=0.007;A=7.2 1
S~
2 M 15@&' %
=)
L4
% A FIG. 16. The sawtooth chain with the reference ground state and
\ 0 -~ AN i the three operations needed for proving ground-state connectedness
(see text
field applied in addition to the transverse one, the rapid de-
-0.1

r cay of the correlation functions remains unaffected, the main
r effect being the appearance of a net moment visible in the
correlations at large distances. The size of this moment is
FIG. 14. The angularly averaged spin-spin correlation functiong|gse to linear irh as one expects for a quantum paramagnet.
for different quantum temperatures and discretizations, At short distances, we observe the emergence of weak cor-
=expK72). Note the rapid decay and the enlarged scale. Thgg|ations reminiscent of the dimer crystal described above.
guantum curves lie almost on top of one another. We therefore conjecture that further field-tilting results in a
, . L continuous quantum phase transition to the ordered-dimer
kagomelattice, which is also known to have a nonzero en-phase We have not been able to confirm this numerically as

tropy S , our simulations fail to equilibrate before the critical value of
All these arguments portray tHeagomeTFIM as a sys- | is reached.

tem extremely reluctant to order. We have checked this ex- |, Fig. 13 we display the simplest phase diagram for the

plicitly by quantum Monte Carlo simulations and found thaty,qonielAFM in longitudinal and transverse fields consis-
the TFIM mirrors the classical model, with correlatlonst

; _T:nt with the discussion here, noting that details associated
somewhat enhanced compared to the classical ones, but s

, ) ) X Wth the tilted-field phase line remains a topic for future
rapidly, exponentially decayingee Fig. 3 of Ref. 16Here, g4y e close this section by restating its main result,

we supplement these data by displaying, in Fig. 14, that th?lamely, the fact that the&agome TFIM is a quantum-
simulated correlation functions have settled down with re-gisordered magnet.

spect to both quantum temperature and discretization error.
Note that in both cases the correlations are extremely small
in magnitude below the first few neighbors, in marked con- IX. THE SAWTOOTH CHAIN
trast to the situation in models known to order; for example,
in the triangular IAFM the saturated correlation function re-
mains above 0.5 in these units at the largest distances.

In Fig. 15, we also show that, for a small longitudinal

An extreme and amusing example of a quantum-spin lig-
uid is provided by the sawtooth chaifrig. 16). It is the
ultimate cooperative paramagnet: the locations of the frus-
trated bonds on each triangle are entirely independent, pro-
viding a ground-state entropy=(In 3)/2 per spin. This is a
result of the absence of closed loops of triangles and the fact

o | that, as in the case of thegomdattice, they are arranged to
s share corners.
_—e el This chain has been studied in detail by Priour, Gelfand,
S —torystal and SondHP using a high-order series expansion Jfi",
which compared favorably with exact diagonalizations. They
0% 0 found no phase transition at any valueJéf’, implying that
T Tt the chain is in a quantum paramagnetic state.

nho o It has been suggested that the ground-state topology plays
an important role in determining the ordering properties of a
magnef? It therefore may be of interest to note that this
chain has a completely connected ground-state manifold.
The proof proceeds by explicit construction of a path from
any ground-state configuration to a reference ground-state
configuration pictured in Fig. 16. First, one picks any down

FIG. 15. The angularly averaged spin-spin correlation functionSPiN 0N a bottom row(if there are none, any one can be
for the kagomeTFIM in a longitudinal field. The correlations cor- flipped. The remaining two spins of the triangle can be
responding the dimer crystéFig. 13, scaled down by a factor of Mmade to agree with the reference state by one of the three
10, are also shown. Note that the high-field curve starts movingperations depicted below the reference configuration,; this is
towards the crystal correlations at small distances. Inset: The maghen repeated for the neighboring triangle. In the case of the
netization per spirfordinate is linear in field(h/T", abscissa operation pictured on the left, nothing has to be done. A

o
o
T

<S(r)S(0)>/S°

/
0.0 .
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tions, we note that each dimer can be part of at most two
flippable pairs. Since the total number of dimers is fixed, the
maximally flippable configurations are those in which each
dimer belongs to two pairs.

All maximally flippable configurations can be obtained by
carrying out any number ogither operation Aor B (right
panel of Fig. 17 on a particular, maximally flippablé‘co-

FIG. 17. The fully frustrated hexagonal lattice. The basis spindumnar”) configuration, in addition to the symmetry opera-
of the lattice are numbered 0-3 and the rectangular-lattice transldions of global rotations and global inversion. These opera-
tion vector in thex(y) direction is given by the horizont&vertica) tions involve exchanging empty and occupied dimers on an
arrow. The pair-spin flip and a nontrivial multiple spin flip are infinite alternating sequence, along a strig or a sawtooth
indicated with their corresponding dimer moves. Maximally flip- (B). They generate, for a system containlrgspins, a num-
pable states are generated from the columnar seed state by intéyer of configurations exponential in rather thanL?2. The
changing occupied and empty dimers along horizontal li#gsor  configurations generated by operation A all incorporate long-
in a sawtooth patter(B). range order in one special direction.

question mark means that the spin can have either orientation C. Large-T analysis
and can thus be made to agree with the reference orientation

immediately. Once this has been done, the spins enclosed by N€Xt, e carry out the largg-analysis for this lattice. We
the ellipse can be oriented appropriately. first identify the soft modes, then construct the Landau-

Ginzburg-Wilson action that we minimize in order to obtain
spin configurations and correlation functions.
X. THE FULLY FRUSTRATED HEXAGONAL LATTICE Since the hexagonal FFIM has four sublattilebeled as
in Fig. 17), the Fourier transform of the interaction matrix is

of size 4xX4, and is given byomitting an overall factor of
The fully frustrated hexagonal Ising magnet is obtained;/2)

from the ferromagnetic Ising model on that lattice by chang-

A. The classical model

ing the sign of one interaction in each hexagon, as depicted 0 1-e'% —e'dy 0

in Fig. 17. Since the lattice is bond sharing, the classical 1— e idx 0 0 _eidx

ground states can again be represented by hardcore dimer . _
coverings of the dual lattice, which is the triangular lattice. —e 'Y 0 0 —1l-e 'K

Unlike the triangular lattice, the fully frustrated hexagonal 0 —eldx 17— gl 0

lattice does not admit a height model of the types encoun- (10.1

tered for other lattices we discuss. Although it is possible t
give a rule to assign heights to the sites of the hexagon
plaquette, these rules cannot be consistently given for all 4 — —
plaquettes of the full lattice since they involve assigning op- 3 6:+2 c0320,) ~ 2 COS G+ Gy) + 2 COS G 0.
posite orientations to neighboring plaquettes, which is im-The four extremal eigenvalues of interest ai@, which oc-
possible as the dual triangular lattice is not bipartite. cur at wavevectorst (7/6,7/2),+ (57/6,7/2). The corre-

It is found that the classical correlations of the hexagonakponding eigenvectors occur in complex conjugate pairs,
FFIM are disordered rather than critical, and the ground-state

(;The square of the eigenvalukrss

entropy of the magnet has been evaluated to gfe exp(5mi/12)/F
=0.214% .| exp(—mil6)/F mi i
ViTVa =\ exp—minng | R e XY

B. Action of the transverse field and flippability analysis 1 (102

Let us now consider the dynamics induced by the trans- '
verse field. Note that the odd coordination of the lattice pre- exp(i/12)
cludes any spin from being flippable individually since it exp(— 5i/6) i i
cannot have an equal number of frustrated and satisfied V,=V} = exp —5i/12)/F ex%gx+ 7y) '
bonds. The shortest allowed dimer move consists of moving 1F
two occupied dimers and implies flipping a pair of neighbor- (10.3
ing spins. Not absolutely all local moves within the ground- '
state manifold, however, can be generated with these paiwhereF =2 sin(5m/12).
spin flips. In fact, one particuldf'staggered”) configuration In order to determine the terms in the LGW Hamiltonian,
exists that does not allow any two spin flips but that insteacbne determines how these modes transform among them-
permits the four-dimer move as depicted in Fig. 17. selves under the symmetry operatigtranslations Ty, Ty),

For infinitesimall’, the ground-state degeneracy is thusreflection R’) and rotation R”)] of the underlying lattice.
lifted to second order if'/J and the relevant spin flips are Each of these symmetry operations comes with a gauge
the pair flips. To identify the maximally flippable configura- transformation since the unit cell of the lattice and the unit
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To minimize this action, we use th8(4)-symmetric terms

to determiney+ ¢ and the radiuR of the O(4) sphere,

which sets the overall amplitude of the spin pattern. The

symmetry-breaking g term then selects 48 points on this

sphere. One finds thay,=, and Y=, IF; 6,,=0

(£ m/6) for vg<<(>)0. The other 47 solutions are generated

by the operationsy,« ¢, and {6,— 0+ 7/12,6,— 6,

+5m/12}. The 48 solutions for a given sign of are related
FIG. 18. The symmetry transformations and concomitant gaugeéyy simple symmetry operations. Note the large unit cell of

transformations for the Landau-Ginzburg-Wilson action. Translathe ordering pattern, which contains 48 spins. This can in

tion in thex direction(arrow in left panel requires no gauge trans- pat he attributed to the nonuniform pattern of bonds. In the
formation. Reflections about the dot-dashed line go along with in-

auge-invariant dimer language, the unit cell could be
version of the spins marked by crosses; translations by the othtg g guag

. ) . P Smaller; an example of this is given further down.
hexagonal-lattice vectaarrow in the right panglrequire flipping Th lation f . btained f he ab
the circled spins, and rotations by3 (circle with arrow involve e correlation functions obtained from the above expres-

flipping the spins denoted by tick marks. sions are for soft spins so that they will certainly not be
quantitatively found in the real system at low temperatures.

cell of the interactions are unequal. These are shown in Figiowever their qualitative features, if the ordering pattern is
18. The transformation matrices for the amplitudes of thesg€orrectly predicted, should survive. These are peaks at the
modes under the above-mentioned symmetry operations agppropriate wavevectors in Fourier space; due to the factors
thus of 1/F for the amplitudes), ,,, these peaks are not expected
_ to have equal heights for correlation functions for spins on
e 0 0 0 the same sublattice. It turns out that the calculated correla-
0 ed e 0 0 tion functions when, averaged over all 48 minima, are the
Ty= IR , same as those averaged over the er@li(d) sphere.
_ We have looked for this ordering pattern by quantum
0 0 0 e Monte Carlo. There are several features complicating this
_ search. One arises from the quantum dynamics which takes
0 0 0 RS the form of double spin flips. Luckily, one is saved here by
0 0 e 5imi2 0 the fact that the cluster algorithm can be generalized to this
Ty= i w12 0 o | case. The most simple-minded extension to double spin flips
would have been to generate two neighboring clusterds
el 2 0 0 in the imaginary time directionseparately—by design, the
cluster algorithm would cancel the problematic Boltzmann
0 i el 0 factor exp(-K72) in each of the two clusters separately.
1 i 0 0 e However, clusters of unequal height, which become over-
R =— . whelmingly probably for larg&”, cannot be flipped because
21 e’™ 0 o —il permissible moves must be double spin flips in any and all
0 e imld 0 planes. The way around this is to construct a cluster as a pair
of rods. This works because the cluster can either terminate
0 g2 g-iml6 0 when encountering zero, one, or two domain walls in the
—7mi12 il time direction. The case of zero and two can be taken care of
R/ = i e 0 0 e by working with an effectively doubled coupling in the time
/| e 0 0 e ™2 direction; the case of one domain wall takes care of itself as
0 e-iml6  Timl2 0 there is no Boltzmann factor to be canceled in the first place.
This prescription can therefore not be generalized to other

To find the eventual action, one has to determine thdnultiple-spin flips in a straightforward manner.

terms at each order that remain invariant under these trans- Another problem is the very large unit cell of the ordering
formations. One obtains pattern, which is 48 spins but only fits into periodic boundary

conditions for system sizes multiples of 192 spins. We have

L(r + Q) (24 92) + U2+ D)2+ ug(2+ yd)° thus not attempted to do a complete finite-size scaling study
and have contented ourselves with displaying the presence of
+ugl wawg cog 6,—56,)+ wgwb cog560,—0y)]. peaks at the wavevectors predicted above.

In Fig. 19 we have displayed the correlation function for
Here we have transformed the four mode amplitudespins on sublattice 4 along theandy directions(also see
{ali=1...4} into complex numbersy, , expf,p) with Fig. 17. A peak at the expected location is clearly visible.
Paexplib)=a;+iaz and ¢, explb,)=a,+ia,. This suggests that there is at least significant short-range or-
The terms that survive ar®(4) symmetric up to sixth der of the predicted nature present in this regime. We cau-
order, where in addition a symmetry-breaking term appeargion, however, that we have not been able to do a complete
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solutions of the LGW theory found above, but one can see
®—6 x, classical rather nicely how the periodicity of 12 and 4 in tkeandy
[=—=1y, classical directions comes about from a smaller-size unit cell in the

&—&x, quantum gauge-invariant description. The state pictured is favorable
B— y, quantum

because each spin fluctuates in a pair gaining energy from
the transverse field, and because there are many equivalent
such configurations, as explained in the caption.

Xl. SUMMARY

In this paper we have described our analysis of a number
of frustrated Ising systems with quantum dynamics intro-
duced by a magnetic field applied transverse to the lIsing
axis. We have argued that these models are of theoretical
interest as the simplest settings in which quantum dynamics
interacts with classical frustration. They can represent effec-
tive theories of systems, such as short-ranged RVB magnets,
) where the low-energy dynamics contains a frustrated Ising

FIG. 19. The Fourier transform of the absolute value of thegegree of freedom and are likely of experimental interest
autocorrelation function of a spin on sublattice 4 in batandy when suitable materials are probed by the application of a
directions for a system of 4608 spins. Results for the classical an ansverse magnetic field.
the quantum(=0") cases are shown, with a quantum temperature\yo pave heen able to make considerable progress in elu-
IZIAI:ETO.OZS nominally, but the discretization error is rather Iarge.Cidating the phase structure of these systems that sheds much

e light on the interplay between the structure of the macro-
scopic degeneracy and the quantum dynamics. Our results
include instances of “order by disorder” and of “disorder

numerical analysis of this problem that would unambigu-

oui_l)(; erifc?(?r?il?ztehI?hgrdaebr:)nv%p?ettsirl?é we finallv present by disorder” (i.e., Ising-spin liquids In arriving at these we
dimer pattern that corresponds to'a spin pgttgrn of thahave u_sed two systematic approaches: avariatipnal app_roach
correct-size unit celiFig. 20,3 We have not found a way of ?ha_t builds on the Iocql entropy of dlffere_nt cla_ssmal configu-

. : A ) rations, that is, the Ising analog of semiclassical analyses of
relating the spin-spin correlations precisely to those of th%agnets with continuous symmetry, and an LGW analysis
that attempts to guess at the large order structure of an ex-
pansion about the large transverse-field paramagnet. We
have also made use of quantum Monte Carlo simulations as
well as of mappings to height and dimer models with the
latter allowing a connection to RVB physics.

There appear to be several directions that can be pursued
further. Along the lines of the questions addressed in this
paper, the analysis of tHeagomesystem in tilted fields and
a definitive analysis of the hexagonal-lattice problem are
needed. Further, the structure and energetics of the low-
energy excitations needs to be worked out to have an under-
standing of the dynamics at low temperatures. Beyond this it
would be interesting to include the dynamics of the trans-
verse exchange and see what happens both in the approach to
the Heisenberg limit and when a transverse field is also

~ FIG. 20. Cartoon of a dimer pattern with a maximal number of present. We expect such work to be both fruitful and instruc-
independently flippable pairs of spins. To obtain the correspondingjjye

spin pattern, one has to choose a gauge, i.e., one has to make a
choice of which bonds are antiferromagnetic. Figure 17 shows one
such choice. For this choice, the spin pattern has a 48-site unit cell ACKNOWLEDGMENTS
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