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Ising models of quantum frustration

R. Moessner and S. L. Sondhi
Department of Physics, Princeton University, Princeton, New Jersey 08544

~Received 14 November 2000; published 4 May 2001!

We report on a systematic study of two-dimensional, periodic, frustrated Ising models with quantum dy-
namics introduced via a transverse magnetic field. The systems studied are the triangular andkagome´ lattice
antiferromagnets, fully frustrated models on the square and hexagonal~honeycomb! lattices, a planar analog of
the pyrochlore antiferromagnet, a pentagonal lattice antiferromagnet, as well as two quasi-one-dimensional
lattices that have considerable pedagogical value. All of these exhibit a macroscopic degeneracy atT50 in the
absence of the transverse field, which enters as a singular perturbation. We analyze these systems with a
combination of a variational method at weak fields, a perturbative Landau-Ginzburg-Wilson approach from
large fields, as well as quantum Monte Carlo simulations utilizing a cluster algorithm. Our results include
instances of quantum order arising from classical criticality~triangular lattice! or classical disorder~pentagonal
and probably hexagonal! as well as notable instances of quantum disorder arising from classical disorder
~kagome´!. We also discuss the effect of finite temperature, as well as the interplay between longitudinal and
transverse fields—in thekagome´ problem the latter gives rise to a nontrivial phase diagram with bond-ordered
and bond-critical phases in addition to the disordered phase. We also note connections to quantum-dimer
models and thereby to the physics of Heisenberg antiferromagnets in short-ranged resonating valence-bond
phases that have been invoked in discussions of high-temperature superconductivity.

DOI: 10.1103/PhysRevB.63.224401 PACS number~s!: 75.10.2b, 05.50.1q, 75.10.Jm, 75.30.Kz
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I. INTRODUCTION

The study of frustrated magnetic systems began ha
century ago with the realization by Wannier1 and Houtappel2

that the antiferromagnetic Ising model on a two-dimensio
triangular lattice does not order down to the lowest tempe
tures and exhibits a finite entropy density even atT50, in
contrast to the naive expectation from the third law of th
modynamics. These two observations are related, and ca
traced to the frustrated nature of the couplings even at
level of a single plaquette~Fig. 1! where one sees that it i
not possible to minimize the energy of all three bonds sim
taneously leading to six~instead of the two for ferromagnets!
minimum-energy configurations. From this we may infer
macroscopic entropy density for the triangular lattice atT
50 and rationalize the absence of any ordering by the e
accessibility of a large number of configurations at
temperatures.3

The twin observations, of a nonvanishing entropy a
lack of order, when contrasted with the ordering transit
and small number~two! of ground states in the ferromagnet
Ising model on the same lattice, typify the striking behav
of such ‘‘maximally’’ frustrated classical models whos
catalog, by now, includes also models with continuous sp
such as the Heisenberg magnet on the three-dimensiona
rochlore lattice.5,6 Other, by definition less frustrated, mode
exhibit nonobvious phase transitions7 at finite temperatures
These may involve a singular privileging of the ground-st
manifold as a whole as in the case of theXY magnet on the
kagome´ lattice8 or, more typically, the elegant phenomen
of ‘‘order by disorder’’9,10 in which ground states that perm
especially soft fluctuations about themselves are selected
tropically at finite temperatures.

This paper is concerned with the fate of such frustra
models, especially the maximally frustrated ones, when t
0163-1829/2001/63~22!/224401~19!/$20.00 63 2244
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are endowed with quantum dynamics atT50. The canonical
problems of this kind areS5 1

2 antiferromagnetic quantum
Heisenberg models on triangular11 and kagome´ lattices,12

which have both attracted a considerable amount of inter
While one can think of these as quantized versions of c
sical Heisenberg models,it is instructive instead to follo
Anderson and Fazekas13 and think of them as perturbed var
ants of their Ising limits, which are manifestly frustrated.
these particular cases, the perturbation is theXY exchange
and as it does not commute with the Ising pieces, it int
duces quantum~two-spin! dynamics into the frustrated prob
lem. This perspective, in turn, suggests consideration o
more general class of models with alternative perturbati
introducing quantum dynamics instead.

In this paper we report on a systematic study of frustra
Ising models perturbed by transverse fields—as these in
duce single-spin dynamics, they are evidently the simp
models in the extended class.14 A short, partial, account of
this work has appeared previously.16 This paper covers a
broader range of issues~and lattices! and supplies many o
the details left out in the short account. It also provides
compendium of results we have obtained in the course of
work, which we hope will be of some use to people und

FIG. 1. Two frustrated plaquettes with Ising spins. In the c
nonical example of the antiferromagnetic triangle, antialigning t
spins leaves the direction of the third undetermined. Similarly
square can be frustrated by choosing an odd number of bonds
antiferromagnetic. For such mixed-bond models, we repres
~anti-! ferromagnetic bonds by~dashed! solid lines.
©2001 The American Physical Society01-1



g
le
n
ca
h
u
u

ca
p
e

os
is
e
e

of
c

at
e
i

o
o

em
te

re
a

ub
te
f
e
s
o
g

w
b
a
th
s
n

io
ca
ct
e
o

d
tu
n

ha
th
ed
n

gs

rate
-
e
t be
um.
er
as
so-

am-
re is
d at

-
of
on-

gs

ld
on:
der,

tion
ette

R. MOESSNER AND S. L. SONDHI PHYSICAL REVIEW B63 224401
taking further study in this field. It is perhaps worth notin
that this simplicity does make the models more tractab
which is generally true for transverse-field Ising models a
accounts for their ubiquity in quantum statistical mechani
contexts. Much of this work is reviewed in Ref. 17, whic
also includes some previous work on one-dimensional fr
trated chains. More recent studies include the use of the
frustrated model as a paradigm of quantum criti
behavior18 and the treatment of random versions by asym
totically exact real-space renormalization techniques n
infinite-disorder fixed points.19

A second motivation for studying these models is the p
sibility of direct experimental realization. Ising systems ex
and in the case of LiHoF4 and its kin, transverse fields hav
been used to tune between phases in clean and disord
systems.20 A second family of Ising systems consists
stacked triangular lattices, strongly coupled along the sta
reviewed at length in Ref. 11. While these have an intim
connection to the single triangular lattice in a transverse fi
via its Euclidean representation, it would be interesting
future work to consider the effect of a transverse field
them. Meanwhile we would encourage our experimental c
leagues to search for a triangular orkagome´ Ising antiferro-
magnet that are both, as we shall show in this paper, ex
plars of very different physics that can arise in frustra
quantum systems.

Finally, there is the possibility of finding systems whe
there is a local Ising degree of freedom that is not itself
Ising spin. One such connection, which is currently the s
ject of intense interest, is an exact mapping from frustra
transverse-field Ising models16 to quantum-dimer models o
the short-range resonating valence-bond state conjectur
while back by Anderson21 and oft mentioned in discussion
of the cuprate superconductors; in this context the Ising m
els appear more naturally as their dual, Ising-gau
theories.22–28

Turning now to the physics of the models themselves,
note that the introduction of quantum fluctuations can
expected to lead to a variety of behaviors much as in the c
of thermal fluctuations catalogued above. Indeed, in
quantum case, the singular character of the fluctuation
manifest, in that, even infinitesimal strength perturbatio
lead to a nontrivial problem of degenerate perturbat
theory in a macroscopically degenerate manifold and
therefore be expected to lift the degeneracy and sele
much smaller number of ground states. Consequently th
must be a discontinuity in the entropy and ground-state c
relations at zero quantum coupling andT50. We should
emphasize that degenerate perturbation-theory problems
not themselves perturbative, especially for macroscopic
generacies. The most notable example of this is the quan
Hall problem where the degeneracy of a partially filled La
dau level is lifted by the interaction and disorder in ways t
lead to an incredibly complex phase diagram. Part of
interest of studying a diversity of perturbations of frustrat
magnets is the prospect of generating at least a fractio
this complexity.

Two possibilities are generic at small quantum couplin
~a! a quantum version of order by disorder9,10 in which a
22440
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broken symmetry state constructed out of the degene
manifold is selected and~b! a quantum version of the disor
dered or~cooperative! paramagnetic possibility in which th
ground-state correlations remain short ranged and migh
expected to lead to the opening of a gap in the spectr
This latter possibility, which we have christened ‘‘disord
by disorder,’’ was first suggested by Anderson and Fazek13

as a mechanism for obtaining spin-liquid states of the re
nating valence-bond~RVB! kind. Further singularities can
emerge at large quantum couplings. For single-spin dyn
ics, such as the transverse-field problems we study, the
necessarily a paramagnetic phase at large couplings an
least one phase transitionen routein cases of order by dis
order. The nature of such phase transitions, which will be
some interest to us in this paper, can indeed be very unc
ventional.

Specifically, we study Hamiltonians of the form

H5(̂
i j &

Ji j Si
zSj

z1G(
i

Si
x1h(

i
Si

z ~1.1!

on a variety of one- and two-dimensional lattices~see Fig.
2!. Here theJi j are nearest-neighbor exchange couplin

FIG. 2. The lattices on which fully frustrated transverse-fie
Ising models are discussed in this paper. Clockwise from no
kagome´, hexagonal, pentagonal, sawtooth chain, three-leg lad
square lattice with crossings~‘‘two-dimensional pyrochlore’’!,
square, and triangular. For normally unfrustrated lattices, frustra
is introduced by choosing an odd number of bonds in each plaqu
to be antiferromagnetic~see Fig. 1!.
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ISING MODELS OF QUANTUM FRUSTRATION PHYSICAL REVIEW B63 224401
with uJi j u5J and Pplaquette(2Ji j /J)521, G is the strength
of the transverse field, theSa are the Pauli spin operators
and h is the strength of a~classical! longitudinal, Ising
symmetry-breaking field.

The structure of this paper is as follows. We first intr
duce concepts and methods we have found useful in stud
the model under consideration~Secs. II and III!. These we
apply in the remainder of the paper to a number of frustra
Ising models on different lattices, which, between them,
alize a wide range of classical and quantum properties.
conclude by discussing possible realizations of such mod

In detail, in Sec. II, we use a mapping of th
d-dimensional quantum model to a (d11)-dimensional clas-
sical model to derive a general criterion for the existence
a quantum-ordering transition, and we use this mapping
obtain a quantum Monte Carlo algorithm. This algorithm
free of any sign problems and is one of the attractions
studying this class of models—augmented by a clus
method appropriate for our problems, we have used i
several points in this work.

In Sec. III, we consider a three-leg ladder that has con
erable pedagogical value and allows us to introduce a we
coupling (G/J!1) variational analysis and a strong
coupling Landau-Ginzburg-Wilson analysis, which will b
our principal analytic tools in the remainder of the pap
Section IV reports results on the somewhat baroque pent
nal lattice antiferromagnet that turns out to have an intim
connection with the ladder described previously. Its clas
cally disordered state gives way to quantum order. In
next three sections~Secs. V, VI, and VII! we discuss three
models: the triangular lattice antiferromagnet, the fully fru
trated square lattice, and the ‘‘two-dimensional pyrochlor
lattice ~see Fig. 2!, respectively. These exhibit critical clas
sical correlations in their ground-state manifolds, and
dergo ordering transitions in accordance with the order
criterion derived in Sec. II. The latter also exhibits two u
conventional critical phases.

Next we turn to classically strongly disordered system
Section VIII deals with thekagome´ lattice antiferromagnet
which is a notable instance of disorder by disorder and a
exhibits a highly nontrivial phase diagram when both tra
verse and longitudinal fields are present. Section IX de
with a one-dimensional Ising quantum-disordered mag
the sawtooth chain, the classical version of which is the
timate cooperative paramagnet. Finally, Sec. X analyzes
fully frustrated honeycomb lattice that appears to exhib
fairly complex pattern of ordering driven by quantum flu
tuations as well as a nontrivial,O(4) phase transition.

At various places in the paper we discuss connection
quantum-height or -dimer models. Via the latter, we find
connection to frustrated, valence-bond, phases ofHeisenberg
magnets that has been of interest starting from the oppo
end23–25 and more recently starting fromd-wave
superconductors.27,26 As noted before, we are hopeful th
this represents a more general possibility of realizing
models we study here in other contexts where frustratio
present and it is possible to focus on a local Ising degre
freedom. We close with a brief recapitulation of our them
in the summary section.
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II. A CRITERION FOR ORDERING AND A METHOD
FOR QUANTUM MONTE CARLO

In this section we map ourd-dimensional quantum mag
net onto a (d11)-dimensional, ferromagnetically stacke
classical magnet. This mapping allows use to derive so
qualitative features of the quantum-ordering process,
also to make contact with the existing literature on stack
magnets. In addition, it enables us to devise a quan
Monte Carlo code free of the sign problem for general cl
sical terms in the Hamiltonian.

A. Mapping onto the stacked magnet

We proceed by using the Suzuki-Trotter formalism,29,30to
determine the precise correspondence between the qua
d- and classical (d11)-dimensional models. Specifically
the partition function of the transverse-field Ising model i

Z5Tr e2bH5Tr expH2bS vV~$Si
z%!1G(

i
Si

xD J,
~2.1!

whereb[1/kBT. For generality, we have introduced the n
tationV($Si

z%) for the ‘‘classical’’ part of the Hamiltonian of
strengthv, i.e., @V,Si

z#50 for all i; in the simplest case,V
only consists of the exchange part ofH, yV5S ( i j )Ji j Si

zSj
z .

We now use a path-integral representation of Eq.~2.1!
where the insertion of a complete set of states effectiv
introduces an additional dimension of sizeb, we follow Su-
zuki’s approach:29

Z5(
$Si %

^$Si%u@exp~2atH !#Nu$Si%&

5 )
n51

b/ar

(
$Si ,n%

^$Si ,n%uexp~2atH !u$Si ,n11%& ~2.2!

5 )
n51

b/ar

(
$Si ,n%

exp@2atvV~$Si ,n%!#

3$d$Si ,n%,$Si ,n11%
~0! 1 1

2 atGd$Si ,n%,$Si ,n11%
~1! 1O~@atG#2!%.

~2.3!

Here, we have introduced the imaginary time stepat andn
labels the coordinate of the extra dimension. The funct
d (k) is defined to be one if its arguments, the two~ordered!
sets of spin configurations differ byk entries, and zero oth
erwise.

We now establish an equivalence between the transve
field model and the classical Hamiltonian

Hd115 (
^ i j &,n

KV
s V~$Si ,n%!1(

i ,n
KtSi ,nSi ,n11 ~2.4!
1-3
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R. MOESSNER AND S. L. SONDHI PHYSICAL REVIEW B63 224401
by expressing the partition sum for the latter in terms o
transfer matrixTZ ,

TZ5exp@2Kv
sV~$Si ,n%!#

3$d$Si ,n%,$Si ,n11%
~0! 1exp~2Kt/2!d$Si ,n%,$Si ,n11%

~1!

1O~exp@2Kt# !% ~2.5!

The first term on the right-hand side of the previous equa
is to be understood as an exponentiated diagonal matrix

From this, one can read off that the two partition fun
tions will be equivalent if one choosesatG/25exp(2Kt/2)
and KV

s 5atv. We note that continuous quantum evolutio
corresponds to the scaling limitKV

s }at→0, Kt→`, while
maintaining

2e2Kt/2/at5G, Kv
s exp~Kt/2!/25v/G. ~2.6!

With the classical HamiltonianHd11 @Eq. ~2.4!#, the Ising
spins interact in the spatial layers as they do in the analog
d-dimensional classical problem, but they are also coup
ferromagneticallyin the additional~imaginary-time! dimen-
sion. The dimensionless inverse of the quantum tempera
bG, is given by the extentLt of the system in the time
direction,bG5atGLt52 exp(2Kt/2)Lt.

B. A criterion for order by disorder

We can look at the possibility of quantum ordering in
transverse field by studying the discretized partition funct
Z`(Kt)[Z(Ks→`,Kt) as an expansion in powers ofKt. In
this limit, we force the spin configurations in each plane
be classical ground states. Taking the trace Trgs over these
ground states gives

Z`~Kt!5TrgsexpS Kt(
i ,n

Si ,nSi ,n11D , ~2.7!

where the sum is over all ground states for each layer.
panding in smallKt, we obtain

Z`~Kt!5TrgsH 11 1
2 ~Kt!2

3(
i ,n

(
j ,n8

Si ,nSi ,n11Sj ,n8Sj ,n8111O~@Kt#4!J
~2.8!

where the linear term inKt is absent due to Ising symmetry
We can further express Eq.~2.8! as

Z`~Kt!5Z~L !LtH 11 1
2 ~Kt!2(

i ,n
^Si ,nSi ,n11&

21¯J ,

~2.9!

where the prefactor refers to the number of classical state
each layer of areaL2 andLt[b/at is the number of layers
Then
22440
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Z}~Kt!5exp~L2LtS!

3H 11 1
2 ~Kt!2~L2Lt!(

i
^Si ,0S0,0&

21¯J
~2.10!

whereS is the classical ground-state entropy density. The
fore the effective free energyF`52 ln Z` /b as a function of
small Kt is

2bF`5~L2Lt!H S1
~Kt!2

2 (
i

^Si ,0S0,0&
21¯J

~2.11!

where the term (L2Lt) is a volume in space time.
This yields the following powerful result. If the sumI

5S i^Si ,0S0,0&
2 of theclassicalcorrelation function diverges

the free energy above isnonanalyticasKt→0 implying that
the Ki j

s 5` is in a different phase from the disordered po
Kt50 for any Kt.0; this is indeed the case for the Isin
triangular antiferromagnet whereI tri contains a leading di-
vergence of the form4 *d2t(1/Ar )2. In this case, one doe
indeed find quantum order by disorder~see Sec. V!.

However the situation is inconclusive for classically d
ordered antiferromagnets with exponentially decaying s
correlations atT50; even though no single term in the seri
expansion~2.11! becomes unbounded, the whole series m
diverge because it is beyond its radius of convergence. Th
is therefore no clear link between classical and quantum
order.

C. Quantum Monte Carlo

By simulating the stackedclassicalmagnet, it is thus pos-
sible to gain information on the properties of the quantu
system. We note that, thanks to the simplicity of our qua
tum dynamics, there is no sign problem to cope with for t
class of models.

However, the scaling limitKt→` does pose some tech
nical problems. At largeKt, domain walls in the time direc-
tion become very rare, which leads to a divergent timesc
in the Monte Carlo simulations. This problem can be re
edied by employing a cluster algorithm, in which the a
tempted Monte Carlo moves consist not of flipping a sin
spin but rather rods of spins in the time direction. These r
can be chosen in a way that exactly cancels the inclem
Boltzmann factor exp(2Kt/2).31 It is with this method that
we have carried out the simulations presented here, with
additional feature for the fully frustrated hexagonal lattic
which is described there~see Sec. X!.

It however turns out that the dominant source of error c
be the remaining discretization error. To see this, cons
the case of a quantum-ordered state at zero quantum
perature, 1/b50, which corresponds to an infinite extensio
of the stacked model in the time direction. One can n
imagine starting at an effectively infinite classical coupli
Kt. As Kt is reduced, within the framework of the abov
mapping, one retains 1/b50 but a discretization error is
introduced—which for sufficiently smallKt will be serious
1-4
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ISING MODELS OF QUANTUM FRUSTRATION PHYSICAL REVIEW B63 224401
enough to make the quantum order disappear as the clas
magnet goes through its transition at a criticalKt. In prac-
tice, when considering a fixed system size and a lowb, one
has to trade off the discretization error against reaching a
quantum temperature. Minimizing the error requires la
Kt, while the quantum temperature nominally decreases w
increasingKt.

To quantify the discretization error, we quote the para
eter l[exp(kKt/2), ~wherek is the multiplicity of the spin
flip, being 1 for single-spin dynamics!, a length-scale char
acteristic of an isolated ferromagnetically coupled rod—
larger thel, keepingl/Lt fixed, the better. For fixedLt,
however, the optimal value ofl depends on the correlatio
length in the time direction, which varies from system
system and which is larger for a small quantum gap.

In addition, the time for building up the clusters also b
comes large at low temperature. This reflects the fact that
stacked classical magnet represents a rather inefficient
of doing the bookkeeping for the spin state. In the prese
of only a few domain walls, it is probably superior to kee
track of the domain walls themselves. This can be done
the framework of a continuous time algorithm, recom
mended for future use, which is described, for example
Ref. 32.

III. METHODS USED AND THE FULLY FRUSTRATED
THREE-LEG LADDER

To introduce some of the concepts used repeatedly in
paper, let us first consider the toy model of the fully fru
trated three-leg ladder depicted in Fig. 3. The interacti
along the rungs are ferromagnetic as are those along
outer two legs. The antiferromagnetic interactions along
middle leg make the ladder fully frustrated.

The classical ground states are those states that mini
the number of frustrated bonds. Since the bonds on the o
two legs belong to only one plaquette, it is not favorable
frustrate these. By contrast, frustrating one inner bond
put the two plaquettes it belongs to into the ground sta
One finds that there are three sectors33 of ground states and
their Ising reversed counterparts, depicted in Fig. 3. In
these states, the top and bottom legs are ordered ferrom
netically. The staggered sectors, with the spins on the
and bottom legs of opposite sign, contain only one grou
state each; by contrast, the columnar sector has an exte
zero-temperature entropy per rung ofS[S0 /(NkB)5G,
whereG5(A511)/2 is the golden mean, which can be o
tained by a transfer-matrix approach.

Since each plaquette has exactly one frustrated bo

FIG. 3. The fully frustrated three-leg ladder. Solid lines cor
spond to ferromagnetic bonds, dashed lines to antiferromagn
ones. Dimer representations of the columnar~right! and one of the
two staggered~left! configurations.
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which is shared with a neighboring plaquette, one can rep
sent the ground states by placing dimers onto the frustra
bonds. This gives rise to a hardcore dimer covering of
dual lattice, which in this case is a two-leg ladder. Note t
such a mapping is possible for all fully frustrated models
which the elementary plaquettes are arranged to share bo
It does not, however, exist for all lattices, for instance, if t
plaquettes share sites rather than bonds, as is the case fo
kagome´ lattice, the hardcore nature of the dimer model
lost. The advantage of this mapping is that, up to a glo
spin reversal, there is a one-to-one correspondence betw
the ground states and the hardcore dimer coverings. Th
fore, restricting the full Hilbert space to that of the dim
coverings yields a natural implementation of the project
onto the ground state. Below, we will present a derivation
the transverse-field Hamiltonian restricted to the dim
~ground-state! manifold.

A. The action of the transverse field—mapping onto a
quantum-dimer Hamiltonian

In theSz basis, the transverse-field operatorGSz is a spin-
flip operator, (G/2)(1 0

0 1). Leading-order quantum dynamic
within the ground-state manifold is therefore that of sing
spin flips connecting different ground states—we need
consider multiple-spin flips only in cases where single-s
flips are nowhere possible, as will be the case in some of
examples discussed later.

Flipping a spin without leaving the ground-state manifo
is possible only if the spin is part of the same number
satisfied bonds as frustrated ones, or, in other words,
experiences zero net exchange field. We refer to such s
as flippable spins. In dimer language, such a spin is at
center of a dimer plaquette of the form

d

d

d

d or d
d d

d , and flip-
ping the spin exchanges the frustrated and the satisfied b
and thus corresponds to the elementary dimer m
d

d

d

d ↔ d
d d

d .

The two staggered sectors of the ground state contain
the two staggered dimer states. The states in the colum
sector can be obtained starting from the columnar dimer s
by repeated application of the elementary plaquette m
d

d

d

d → d
d d

d .

Therefore, in the staggered ground-state sectors the tr
verse field has no effect since no elementary dimer mo
are possible—indeed, there are no degenerate states t
can mix at T50 at any finite order of the perturbatio
theory. This is different in the main sector, where the tra
verse field lifts the macroscopic degeneracy and promot
particular linear combination of the classical ground state
the true, quantum ground state.

In fact, it is now apparent that the transverse-field Ham
tonian, restricted to the classical ground-state manifold
dimer language can be written as

HQDM52t~ u d
d d

d &^ d

d

d

d u1H.c.1v~ u d
d d

d &^ d
d d

d u1u
d

d

d

d &^ d

d

d

d u!.
~3.1!

where the kinetic term witht5G/2 is generated by the trans
verse field. We have added a diagonal term with coeffici

-
tic
1-5
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v, which is zero for the transverse-field problem but whi
will be useful later on.

Note that this Hamiltonian has only nonpositive o
diagonal matrix elements, so that the Perron-Frobenius th
rem can be used to predict a nodeless quantum ground s
which means that in it, the amplitudes of all the configu
tions can be chosen to be real and non-negative.

Since a ground state and its Ising-reversed counter
both get mapped onto the same dimer states, we hav
show that the dimer ground state is in fact the same as
transverse-field ground state.34 First we split the ground-stat
manifold into two submanifolds, namely, those containi
symmetric and antisymmetric combinations of Ising-rever
pairs of states. The transverse-field Ising Hamiltonian d
not connect these submanifolds, so that it is block diago

All entries in the symmetric block continue to be of th
same~negative! sign so that the ground state in this blo
continues to be nodeless. Since the full Hamiltonian is blo
diagonal, the state obtained by combining this ground s
with a null state in the antisymmetric block continues to b
nodeless eigenstate of the full problem. Since there is o
one nodeless eigenstate, the state obtained by translatin
dimer ground state into the spin ground state isthe ground
state of the transverse-field problem.

The entries in the antisymmetric sector have the sa
modulus as in the symmetric one; however, they all need
have the same sign. If we pick one spin state for each di
state and collect those in the up manifold, and their sp
reversed counterparts into the down manifold, an entry w
be negative when the transverse field connects membe
the up and down manifolds. The states can be sorted
way, e.g., by magnetization, that the fraction of negative
tries vanishes in the thermodynamic limit. Whether t
ground states in the two sectors in the thermodynamic li
are degenerate then depends on whether the wave fun
has substantial support on the states at zero magnetizatio
which case they are not, or whether it is localized away fr
them, in which case they are. The example of the three
ladder is special in that the up and down sectors can
chosen to be entirely disconnected so that an exact de
eracy trivially arises.

The connection between the transverse-field Ising mo
and the quantum-dimer model we have established is us
for several reasons. It affords some insight into the struc
of the problem we are studying in that it provides a natu
deformation of the transverse-field Ising model by switch
on the potential term, i.e., by choosing a nonzerov. The
casesuvu@t are easily solved and can therefore provide t
anchors of the phase diagram containing the point we
interested in.

Moreover, there is the special pointv5t, known as the
Rokhsar-Kivelson~RK! point, after the inventors of the
model,22 where the~nodeless! quantum ground state is a
equal-amplitude superposition of all classical ground sta
Therefore, operators that are diagonal in the dimer basis
vide precisely the expectation values of the correspond
classicaloperators. In this spirit, switching on an infinites
mal transverse field implies jumping the finite distance fro
v5t to v50 in the Rokhsar-Kivelson model~Fig. 4!, a
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manifestation of the fact that the transverse-field perturba
is nonanalytic. Deciding the ordering pattern of th
transverse-field problem can therefore be accomplishe
one can show that the RK and the transverse-field points
in the same phase.

In addition, the transverse-field problem in itself provid
a new perspective on the Rokhsar-Kivelson quantum-dim
model, which was proposed as a model of Anderson’s~short-
range! RVB physics.21 It can be derived for aHeisenberg
antiferromagnet: the perturbative derivation uses the nonz
overlap between different dimer configurations as an exp
sion parameter. This model is useful in a regime where
Heisenberg model is in a phase dominated by valence bo
The study of a transverse-field Ising model on a frustra
lattice can thus be used to gain insight into the behavior
Heisenberg magnets on the dual lattice. This fact has b
used by the present authors to identify a bonafide short-ra
RVB phase on the triangular lattice,28 a goal that had proven
to be elusive on the square lattice for which the model w
originally formulated.

Finally, we note parenthetically that for the mixed-bon
models, the application of a longitudinal field is somewh
arbitrary as there is a~gauge/Mattis! freedom of which bonds
to call antiferromagnetic and which ferromagnetic as long
the odd condition is met. Thus any state in the gau
invariant dimer representation can~up to topological restric-
tions! be represented by a maximally polarized~long-range-
ordered! spin configuration, irrespective of the nature of t
dimer correlations. In the models where all bonds can
chosen to be antiferromagnetic, this choice defines the n
ral gauge and thus makes the application of a longitud
magnetic field unambiguous.

B. Maximally flippable states

We now present a heuristic argument that is variationa
spirit to generate a candidate state for selection by the tr
verse field. This state is the one that can gain the most en
from the transverse field on account of being compo
around a backbone configuration having the strongest fl
tuations possible.

To start, we note that in order to gain energy from t
transverse field, spins have to have a component pointin
the x direction, which in theSz basis goes along with the
component of the form@ u↑&1u↓&]/&. Those states in which

FIG. 4. The phase diagram of the Rokhsar-Kivelson quantu
dimer model for the fully frustrated Ising magnet on the three-
ladder. The diagonal correlations atv5t are those of the classical
dimer model. The infinitesimal transverse-field problem,G501,
maps to the pointv50 and thus corresponds to a finite jump ofv.
1-6
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most of the spins can be flipped and hence put in a supe
sition of up and down states thus stand to gain most ene
from the fluctuations induced by the transverse field. W
therefore identify the configuration with the largest numb
of flippable spins~‘‘maximally flippable state’’! as the back-
bone of our candidate ground state. The actual ground s
naturally includes fluctuations around the maximally fli
pable configuration, since it is these that lead to the ene
gain in the first place.35 The energy gain due to alignment o
the spins along the transverse field in the quantum mod
an entropic contribution to the free energy in the class
stacked model.

As an aside, we note that the classical correlations prov
the simplest first guess at the maximally flippable configu
tions and hence at the ordering pattern. This is because
figurations with many flippable spins have a large numbe
neighboring configurations that differ only by a few sp
flips. The correlations they incorporate, even when not le
ing to long-range order, can thus already be visible in
classical average where all ground states are accorded e
weight.

For our three-leg ladder, the maximally flippable config
ration is the columnar one depicted in Fig. 3, since thereall
spins on the middle row~all of which point up! are flippable.
We therefore expect to find a state that has a ferromagn
moment even in thez direction in addition to the polarization
in the x direction.

The selected state can incorporate structure in additio
that apparent from the maximally flippable configuratio
This follows from the fact that although the backbone co
figuration maximizes the number of flippable spins, in fa
not all the spins areindependentlyflippable. In the three-leg
ladder, for example, flipping a spin on the middle leg p
cludes flipping its neighbors so that in effect only half t
spins are independently flippable. One can therefore give
different recipes for constructing the quantum state.

To construct the first type of state, we take all the fl
pable spins and polarize them in thex direction disregarding
the ground-state constraint. Next, we reinstate the grou
state condition by projecting out those components of
state that are not contained in the classical ground-s
manifold. We call this state the uniform state since it tre
all the flippable spins on the same footing.

The second type of state is obtained by identifying
largest set of independently flippable spins and polariz
those in thex direction. Since, starting from a maximall
flippable configuration, there are typically several choices
which set of flippable spins to polarize, we call this state
hierarchical state. It will have a lower symmetry than t
maximally flippable configuration unless all flippable spi
are independently flippable.

The distinction between the uniform and the hierarchi
states will turn up several times in this article, and it aris
quite naturally in other approaches. Note that this appro
suggests yet another class of alternative candidate config
tions, namely, those that do not have the maximum num
of flippable spins but nonetheless maximize the numbe
spins that are flippable independently.
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The variational states thus obtained have the shortcom
that all their component configurations are allocated eq
weight. This is clearly not optimal since the ground state w
in any case place maximal weight on the individual, ma
mally flippable configurations. Within a more elabora
variational framework, weights could be accorded to the c
figurations depending on their number of flippable spins.

In summary, the flippability approach suggested h
identifies a ‘‘saddle point’’—the maximally flippable
configuration—that will be favored due to the fluctuatio
around it, which are ‘‘softer’’ than those around other co
figurations. We expect it to work as long as the actual qu
tum wave function is concentrated on the maximally fli
pable and nearby configurations. It will break down if th
wave function has the bulk of its support elsewhere, i.e.,
configurations unrelated to the maximally flippable one.

This point can be made more intuitively by consideri
the degenerate perturbation theory as a hopping prob
Each classical ground-state configuration defines a poin
the ground-state manifold. The transverse field, by flipp
spins, connects different configurations, thus endowing
ground-state manifold with a graph structure. The pertur
tion theory can be thought of as a hopping problem on
graph thus defined. The large weight of maximally flippab
configurations follows from their high coordination, and th
magnetic-ordering transition corresponds to a localizat
transition in the hopping problem.36

These ways of thinking are in close correspondence to
case of thermal order by disorder.6 There, thermal fluctua-
tions ~out of the ground-state manifold! provide a large en-
tropic weighting to the states allowing the softest fluctu
tions. These states are then selected asT→01 provided their
enhanced weight is not swamped by the combined fluc
tional and configurational entropy of the less-favor
states.37 However, when the thermal fluctuations increase
strength with increasing temperature, they destroy the o
that they were instrumental in establishing in the first pla
as happens forG large in our problem, as discussed in th
following paragraphs.

C. The opposite limit: Landau-Ginzburg analysis for GšJ

In addition to doing the~hard! degenerate perturbatio
theory for small transverse fields, we can use an alterna
approach for determining the state of the quantum mag
that is made tractable by virtue of the simplicity of th
transverse-field term. Consider the problem where the r
tive sizes of exchange and transverse field are inver
namely, whereG@J. In the limit J/G50, the ground state is
a simple paramagnet in theSz basis: all spins are polarize
along the positivex direction explicitly selected by the field
In addition, it is gapped: the lowest excitations are spin fl
that each cost an energy ofG; this makes it possible to per
turb about this state by switching on a weak exchange. T
contrasts to the case where the transverse field is replace
an XY exchange. Here, the largeJXY problem is not exactly
soluble and so it is not possible to perturb about it—inde
it may even be gapless.

As the perturbingJ is switched on in addition to the trans
verse field, the excitations acquire a dispersion, typically
1-7
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but not always—already to first order inJ/G. The dispersion
to first order is simply given by the Fourier transform of t
interaction matrix of the lattice. For sufficiently largeJ, there
can be an ordering transition, which corresponds to a m
roscopic occupation of the softest mode~s!.

To generate the state to which the leading transition ta
place, one has to combine the knowledge of the soft mo
with lattice symmetry considerations to construct a Land
Ginzburg-Wilson action. This program is carried out in det
for the fully frustrated hexagonal magnet below and follo
the work on layered magnets by Blankschtein a
co-workers.38,39

The combinations of the soft modes dictated by symme
considerations yield the ordering pattern that is establis
as J/G is increased. In addition, by also analyzing t
Landau-Ginzburg-Wilson action with standard methods
the renormalization group, one can obtain information on
nature of the transition into the ordered configuration, an
turns out that these transitions are generally not Ising tra
tions, as the most naive guess would suggest. By analy
the potential presence of dangerously irrelevant terms in
action, one can even guess at further symmetry breaking

This analysis of course has the usual limits associa
with mean-field theories. Most important in this context
the possibility of further phase transitions out of the orde
phase before we reach the regime of infinitesimal transv
fields, where the ‘‘small’’ parameterJ/G→`. Another sce-
nario is the absence of any phase transition, so that the m
net remains disordered at all couplings. Although the exc
tion dispersion may soften at particular points in t
Brioullin zone, fluctuations may be sufficiently strong to pr
vent ordering at any coupling. However, even in this situ
tion, the large-G approach may be used successfully if t
expansion in powers ofJ/G is carried to a sufficiently high
order and combined with a nonperturbative analysis suc
that given by the use of Pade approximants. In Ref. 40,
program has been carried out for the sawtooth chain~see Fig.
2!.

It is worth pointing out that this approach presents, u
mately, a soft-spin analysis in that the size of the orde
moment can vary from site to site so that, as the mode
plitude increases, nonlinearities become important. Howe
even for our hard Ising spins, a difference in the size of
ordered moment does have a meaning. As an illustrat
consider the uniform state of the three-leg ladder defi
above. Here, every spin on the middle row is fluctuating a
thus hasu^Sz&u,

1
2 , whereas the remaining spins have^Sz&

5 1
2 , being fully polarized along thez axis. This difference is

indeed found in the large-G analysis and can thus be inte
preted as being due to the fluctuations induced by the tr
verse field.

In detail, for the three-leg ladder, the Fourier transform
the interaction matrix is~labeling the sites on the rung 1 to
from top to bottom!

J

2 S 2 cos~k! 1 0

1 22 cos~k! 1

0 1 2 cos~k!
D , ~3.2!
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from which we obtain a degeneracy in the dispersion re
tion. One minimal mode, with wavevectorq50, has eigen-
vector (1,221A6,1); the other hasq5p and eigenvector
(1,222A6,1). Here,q is the wavevector along the ladde
and the entries in the eigenvector denote the amplitude
the top, middle, and bottom sites (A6.2.45).

This degeneracy is accidental in that the states are
related by any symmetry operations and we have not enco
tered this effect in any of the more regular lattices we
studying. Quite generally, however, in lattices with sites
different coordination, the soft-mode analysis might sugg
states that fare very poorly under the hard-spin constrain
is the case for theq5p mode in this example~see below!. A
more appropriate ordering pattern may nonetheless show
as an alternative, possibly only local minimum in the disp
sion relation.

The q50 mode can easily be identified as the actual
dering pattern~see below, Sec. III D! with a moment on the
middle row reduced by the fluctuations. One reason the c
peting state loses out eventually is because it has a red
moment on the sites that are in fact not allowed to fluctu
in the small-G limit: there, the leading term in the perturba
tion theory flips spins with an equal number of frustrated a
satisfied bonds, and the reduced-moment sites in this s
have odd coordination and are thus never flippable.

D. Exact diagonalization

For the three-leg ladder, one can attack the transve
field problem by exact diagonalization of the degenerate p
turbation theory. Systems with up to 14 rungs are easily
cessible numerically. The results are depicted in Fig. 5.
do indeed find a state with ferromagnetic order along
center row, as predicted by the flippability analysis. The
lected state is the uniform columnar one, as the gap extra
lates to a finite value for large system sizes and hence
breaking of translational symmetry accompanying the h
archical state is absent.

The infinitesimal transverse field generates a nonzero
larization in thex direction, corresponding to a ground-sta

FIG. 5. Ground-state energy~proportional to^Sx&!, energy gap,
and ^Sz& for the three-leg lader in the limitG→01 from exact
diagonalization.
1-8
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ISING MODELS OF QUANTUM FRUSTRATION PHYSICAL REVIEW B63 224401
energy per spin ofE052(0.30260.001)uGu in excess of the
classical value. The finite moment^Sz& already present in the
classical ground-state average„where it equals 1/@2(2G
21)#.0.224…, is discontinuously enhanced asG is switched
on. As the system size is increased, the maximally flippa
state and its neighbors rapidly gain in weight, whereas at
other extreme, those states without flippable spins have
amplitude in the ground-state wave function.

These results tie in with the picture provided by the ma
ping onto a quantum-dimer model. The selected colum
dimer phase, which extends all the way tov52`, termi-
nates at the RK point, beyond which it gives way to t
staggered dimer phase, as depicted in Fig. 4.41,42

E. Relation to XY perturbations

Whereas the transverse field induces single-spin flips
XYexchange flips neighboring pairs of antialigned spins.
lattices with even coordination and all bonds antiferrom
netic, theXYflips are a subset of the two spin flips genera
by two successive operations of the transverse field.

For lattices with odd coordination, however, the tran
verse field can never flip a spin without leaving the groun
state manifold, so that theXY moves can show up as th
leading terms, in orderG2/J, in the degenerate perturbatio
theory. These matrix elements are negative, correspondin
a ferromagneticXYexchange. This will be of importance fo
the fully frustrated hexagonal lattice. Moreover, in the ca
of the pentagonal lattice, where inequivalent sites with e
and odd coordination exist, the moves generated by anXY
perturbation are entirely distinct from those generated by
transverse field.

IV. THE PENTAGONAL LATTICE

The pentagonal lattice, depicted in Fig. 6, tiles the pla
with ~irregular! pentagons. It can be obtained from the he
agonal lattice by cutting each hexagon in half with a set
parallel lines~‘‘cuts’’ !. Classically, the Ising antiferromagne

FIG. 6. The pentagonal lattice with its maximally flippable co
figuration. The three spins in the unit cell are labeled by~0,1,2!, and
thex- andy-lattice translation vectors are given by the arrows. T
leading-order perturbation theory reduces to studying the cen
horizontal ladder, which is equivalent to the three-leg lad
of Fig. 3.
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on this lattice is disordered and has a finite ground-state
tropy per spin ofS/kB50.234.44 The ground states can b
represented by a hardcore dimer model as described ab

The flippability analysis for this magnet is straightfo
ward. To lowest order inG, only the spins along the cuts ca
be flipped since only they have even coordination. Therefo
the spins along the sawtooths follow an antiferromagne
pattern, since the maximally flippable configuration~de-
picted in Fig. 6! has all frustrated bonds associated w
spins on the cuts. This configuration is closely related to
fully frustrated three-leg ladder in that the spins along
cuts are effectively decoupled from the other spins in
system and the transverse field generates the same H
tonian as for the ladder. Thence, the ordering pattern al
the cuts will be theq50 pattern described above, with aq
5p modulation transverse to the cuts.

For completeness, we now perform the soft-mode anal
for this problem. The interaction matrix is

J

2 S 2 cosqx 1 e2 iqy

1 0 11e2 iqx

eiqy 11eiqx 0
D .

There is a line where the eigenvalues attain the glo
minimum 2J(11))/2 at wave vectors (p,y). The eigen-
vectors (@212)#e2 iqy,e2 iqy,1) correspond to states wit
frustrated bonds on the sawtooths. As mentioned abo
these do not lead to flippable spin arrangements to low
order in the degenerate perturbation theory inG, and this
state is therefore not competitive in the small-G limit. There
is, in addition, one further local minimum2JA6/2 at
wavevector~0, p!. The eigenvector (221A6,21,1) corre-
sponds to the maximally flippable state~and agrees with the
one given by the three-leg ladder!. We therefore expect a
phase diagram with at least three transitions coming fr
largeG, namely, first from the disordered into the ‘‘sawtoo
state’’ followed by a transition into the maximally flippabl
state, which finally terminates in the disordered classi
phase atG50. There may be a separate transition that sele
one or a combination of the sawtooth states—we have
investigated this. The complicated structure of this phase
gram is of course to a large degree a consequence of
presence of inequivalent sites.

V. THE TRIANGULAR ANTIFERROMAGNET

The two-dimensional Ising antiferromagnet on the tria
gular lattice has power-law spin correlations and an ext
sive entropy (S/kB50.323) atT50.1,2,4 We first describe
a number of useful mappings and then discuss th
implications.

A. Mappings to height and dimer models

In Fig. 7, we have displayed a particular spin configu
tion. The corresponding dimer configuration~also shown! is
constructed as in Sec. III. The effect of the transverse fi
can easily be stated in terms of the dimer mapping in a m
general setting than the one discussed in Sec. III. If

al
r

1-9
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choose a closed loop of bonds on the dual lattice that
alternately empty and occupied by a dimer and exchange
occupied with the empty bonds, this corresponds to flipp
all the spins inside the closed loop. The leading-order ef
of the transverse field is therefore to produce such a r
rangement for the loop enclosing the smallest number
sites, and the relevant order in perturbation theory is gi
by the number of enclosed spins. The loop in question
typically the shortest closed loop of even length on the d
lattice. In this case, this is a loop of length 6 enclosing o
site ~see Fig. 7!, but we will encounter the case of more tha
one enclosed site later on.

Next, we turn our attention to the mapping to a heig
model. The height configuration is given by the numbers
Fig. 7. The height variables are defined on the sites of
lattice.45 Height differences are determined as follows. If o
crosses a~no! dimer when going along a bond in a clockwis
direction around a triangle pointing up, the height chan
by 2 (21). If one goes the opposite direction, the heig
change is22 (11). One can easily check that this prescr
tion has the property that the height change around the t
sides of any triangle is zero. Moreover, any closed path

FIG. 7. The maximally flippable spin state~arrows! and its cor-
responding height and dimer configurations on the triangular lat
The result of a single spin flip for the dimer and height configu
tions is also shown. See the text for details.
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be decomposed into a sum of paths around individual
angles, and thus the height change between any two sit
independent of the path chosen to go between them.

The existence of the height model has important ram
cations for the classical model. Under a set of reasona
assumptions,45 the result follows that the ground-state corr
lations are algebraic. Combined with our criterion for qua
tum ordering~Sec. II B!, one expects all magnets allowing
height mapping to order. The ordering correlations are th
determined by the configuration that is as flat~in height
space! as possible.

This raises the question that, under which conditions d
a height mapping exist? A set of sufficient~but not neces-
sary! conditions is that, first, the lattice be composed
bond-sharing frustrated units~allowing a dimer model! and
second, its dual lattice be bipartite. This is required for g
ing a set of consistent rules for computing height differenc
In several of the cases we encounter below where these
ditions are not met, a height mapping is absent, consis
with their disordered classical correlations.

B. Ordering behavior of the triangular Ising antiferromagnet

We first study this problem for a small transverse fie
with h50. The maximally flippable configuration is the on
depicted in Fig. 7. It has a unit cell of three sites~two spins
pointing up and one down!. This is also the flat~height!
configuration, as well as being the state encountered atv5
2` in the appropriate quantum-dimer model:46,47,43

FIG. 8. The phase diagram of the triangular TFIM. The patte
of the ordered phase is depicted in Fig. 7.

e.
-

~5.1!
W

eld

l-
k-
In fact, this state has a net magnetization since its th
sublattice structure is~1, 1, 21!, with all spins pointing up
being flippable. The uniform state will thus have a sublatt
structure of the form (a,a,2b), with b.a, whereas the
hierarchical one will have (c,0,2c).

All the evidence therefore points towards a thre
sublattice quantum-ordering pattern, with details to be de
mined. Such correlations were previously found by
Landau-Ginzburg-Wilson~LGW! analysis of ferromagneti
cally stacked triangular lattices,38 applicable to our problem
e-

e

-
r-

by virtue of the mapping presented in Sec. II A. This LG
analysis funds an action that isXYsymmetric up to the sixth
order, where anXY symmetry breaking, sixfold clock term
appears.

The resulting phase diagram in the temperature-fi
(T-G) plane, depicted in Fig. 8, is quite remarkable. AtT
50, the triangular transverse field Ising model~TFIM! un-
dergoes a quantum phase transition that is in the 3DXY uni-
versality class,38 where the clock term is dangerously irre
evant, so that the transition is into a phase with cloc
1-10
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symmetry breaking as well.
At finite temperature, however, the transverse-field Is

model maps onto a classical stacked magnet offinite size, Lt,
in the imaginary time direction, so that its behavior cros
over to being two-dimensional as the correlation length
comes comparable toLt; in this regime, we thus have t
consider the properties of a two-dimensionalXY model with
a clock term. Here one finds48 two finite-temperature
Kosterlitz-Thouless transitions bordering an extended crit
phase. The phase diagram in Fig. 8 is reliable in the reg
near the three-dimensionalXY transition, where the orde
parameters are small.

Depending on the sign of the sixfold clock term, th
quantum-ordered state is predicted to have the subla
structure of either the uniform or the hierarchical state.
order to confirm the predicted ordering pattern and to fi
out the precise sublattice structure, we have carried out q
tum Monte Carlo simulations on the triangular TFIM. Th
results are depicted in Figs. 9 and 10. A Bragg peak
clearly visible atqx52p/3 as expected. The sublattice stru
ture of the form~1, 0,21! is also clearly borne out, showin
that the hierarchical state without a net moment is selec
Since the quantum-dimer state atv52` is the uniform
magnetized state, this implies a transition forv,0. Prelimi-
nary studies by us indicate that such a transition is ind
present close tov50. Finally, we note that a finite longitu
dinal field (uhu,6J) on its own selects the same unifor
state.

VI. VILLAIN’S ODD MODEL: THE FULLY
FRUSTRATED SQUARE LATTICE

A great deal is known about the square fully frustrat
Ising magnet ~FFIM! especially when we combine th
knowledge about the different models it is equivalent to
virtue of the mappings presented above. It turns out
shadow the triangular IAFM in practically all importan

FIG. 9. The absolute value of the Fourier transform of the sp
spin correlation function along thex direction, ^S(x)S(0)& ~arbi-
trary units, at low temperature!, as a function ofqx ranging from 0
to p. Note the growing and narrowing Bragg peak.
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qualitative respects. Its classical ground-state entropyS
5C/p.0.241,49 whereC is Catalan’s constant. Since it con
sists of bond-sharing squares with a bipartite dual lattice,
critical at T50. The corresponding dimer-model Hami
tonian is given by Eq.~3.1! and has a phase diagram like th
pictured in Fig. 4. The columnar phase corresponds to
maximally flippable state that, in dimer language, is obtain
by covering the square lattice with infinite dimer ladde
with the configuration depicted on the right panel of Fig.
An LGW analysis39 again finds anXY action with anXY
symmetry-breaking clock anisotropy at higher order, whi
depending on its sign, selects either the uniform or the h
archical~also known as plaquette! state.

This makes it clear that there is quantum ordering in
FFIM on the square lattice into a state with translation
symmetry breaking. We have not studied this problem
merically ourselves but we refer the reader to the literat
on the ferromagnetically stacked magnet39,50 and the
quantum-dimer model.51,52

VII. PYROCHLORE IN TWO DIMENSIONS: THE
SQUARE LATTICE WITH CROSSINGS

This lattice, also known as the checkerboard or tw
dimensional pyrochlore lattice, is made up of a square lat
with nearest-neighbor interactions that has, in additi
crossing next-nearest neighbor interactions on altern
plaquettes as depicted in Fig. 11. The plaquettes with cr
ing are equivalent to tetrahedra in that they contain four s
all interacting equally with one another. These tetrahedra
arranged to share sites as is the case in the pyrochlore la
in three dimensions, from which it can in fact be obtained
a projection in â111& direction; for a picture, see Ref. 37~b!.

The ground-state condition for the classical Ising mode
that each tetrahedron has zero magnetization. There ar
such states for each tetrahedron, each with two spins up
two down. The Ising model on the pyrochlore lattice

-

FIG. 10. The correlation matrix̂MiM j&5^M jMi& of sublattice
magnetizationsMi for a three-sublattice state as a function of t
quantum temperature for a system with 729 spins. The sublatt
are labeled by the size of their magnetization so thatM1.M2

.M3 . ^M2
2&.0 implies that one sublattice has zero root-mea

square magnetization.̂M1
2&.^M3

2&.2^M1M3& implies that the
other two sublattices have equal and opposite magnetization.
1-11
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equivalent to the ice model,53 the ground-state entropy o
which was calculated exactly in two dimensions by Lieb54

S/kB5 3
4 ln 4

3'0.216. This model can be mapped onto a s
vertex model ~each vertex encoding one of the singl
tetrahedron ground states!, and hence onto a nonintersectin
loop model, which in two dimensions guarantees the e
tence of a height model. As discussed above, this quite g
erally implies classically critical ground-state correlation
which have indeed been found.55

Here, we present a short derivation of the height mo
that we then use to determine the quantum-ordering be
ior, refer to Fig. 11. We define a set of one-dimensio
heights that reside on the vertices of the square lattice du
the plaquettes without crossing interactions. Next, we as
an orientation~clockwise or anticlockwise! to each tetrahe-
dron so that neighboring tetrahedra have opposite orie
tions. Since the lattice dual to the tetrahedra is bipartite,
can be done consistently. The rule for the height differen
is as follows. If going from one site of the height lattice
another one passes over an up~down! spin, one increase
~decreases! the height by 1 provided the spin was crossed
the direction given by the orientation of the tetrahedra
belongs to. In the opposite direction, one decreases~in-
creases! the height by 1. This generates a consistent ass
ment of the heights since going around a unit cell of
height lattice generates zero height difference by virtue
the ground-state two-up two-down condition, and beca
each closed path on the height lattice can be decomp
into a combination of such elementary loops.56

We next consider the action of a longitudinal field
strengthh in the absence of a transverse field. Forh,2J, all
ground states remain degenerate since they have zero
moment. At h52J, the applied field is strong enough t
surmount the exchange field and it generates a spin-flop t
sition to a manifold of states with three spins up and o
down in each tetrahedron. These states continue to hav
extensive entropy but one that is reduced compared to
low-field value. In addition, the classical correlations in th
regime to which we allocate the name IMF~intermediate-
field! regime, continue to be critical. This result follows fro
another mapping of those states onto a dimer model tha

FIG. 11. The square lattice with crossings or two-dimensio
pyrochlore. A spin and the resulting height configuration are sho
Other features are explained in the text.
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turn generates a height model.
This mapping is obtained as follows. Consider a dim

model on the square lattice dual to the tetrahedra. For e
spin pointing down place a dimer, centred on this spin, w
its ends located at the points of the dual lattice denoting
centres of the tetrahedra the down spin belongs to. S
each tetrahedron has exactly one down spin, and since
spin is shared by two tetrahedra, each classical IMF gro
state generates a hardcore dimer covering of the~dual!
square lattice and vice versa. Such a square-lattice di
model can be mapped onto a height model, from which
criticality of the correlations in this regime follows. In th
IMF-phase, the entropy per spin is a quarter of the va
found in the Villain model, as now there are four spins p
dimer rather than one:S/kB50.073.

We emphasize that the field leaves the entropy unchan
for a finite range ofh and then reduces to a lower valu
without eliminating it completely, while inducing a transitio
between two critical states; this again persists over a fi
range of fields. Ath56J, there finally occurs a transition to
the fully polarized state.

Next, consider tilting the field such thatG!h; this en-
ables us to generate a perturbation theory controlled by
small parameterG/h. The transverse field induces matr
elements between the states corresponding to the clas
ground-state configurations. Both in the low-field and t
IMF regime, the degeneracy is not lifted until fourth order
perturbation theory. The reason is that connecting t
ground states requires flipping a closed loop of alternat
spins that passes through an even number of sites of
tetrahedron. The shortest such loop has length 4 and is
generated at fourth order in perturbation theory. The low
order terms induce only a diagonal shift in the energies
this shift is the same for all states.

The short flappable loop, depicted in Fig. 11, has differ
interpretations in the two phases. For the low-field phase
corresponds to changing the height of a plaquette whose
neighboring heights are equal. In a manner analogous to
ground-state selection on the triangular lattice, this lead
the selection of the flat state in height language. In spin l
guage, the flat state is a Neel state on the square lattice
derlying the square-lattice with crossings.

In the IMF phase, the quadruple spin flip again leads
the RK model atv50 and t}G4/J3 @see Eq.~3.1!#. This
move connects different ground states since the total ma
tization of each tetrahedron remains unchanged and the
fect of flipping the four spins is to generate the famili
dimer plaquette move

d

d

d

d ↔ d
d d

d .

Carrying over the results from the fully frustrated squa
lattice, we expect the system to order into a flat~height!
phase that corresponds to a columnar dimer phase. In
language, this phase differs from the Neel low-field pha
from which it can be obtained by flipping half of the dow
spins, e.g., those that are located on the top left-hand co
of one sublattice of tetrahedra.

The complete phase diagram for this magnet in theh-G
plane can be constructed from this. The simplest phase
gram incorpoating our results is displayed in Fig. 12.

l
n.
1-12



or
e,
ra
e
-

e
th
se
a

a

ht
re
d
he
fo

e

i-
up
by
ha
un
l la
te
in

m
o
th

tin

al

the
of

nd
re

on,
rent

of
ff-

nce
p,
al.
ing
er

itant
und
oes

ex-

e
u-
at-
nd-
of
n-

rn
e-
y
e in
ing
tly,

the

ro

rked
ry

ISING MODELS OF QUANTUM FRUSTRATION PHYSICAL REVIEW B63 224401
VIII. THE kagoméLATTICE

In the kagome´ Ising antiferromagnet~IAFM ! depicted in
Fig. 2, the nearest-neighbor exchange couplings are unif
and antiferromagnetic. The ground-state entropy is finit57

Skag50.502. and is more than half of the maximum pa
magnetic value (Spara5 ln 2) in contrast to the triangular cas
(Stri50.323). Furthermore,Skag is close in value to that ob
tained by the Pauling approximation,55,58 SPauling5 ln 2
12

3 ln 3
4'0.501, where the triangles are considered indep

dently; this suggests that spin-spin correlations in
kagome´ IAFM are extremely weak. This is indeed the ca
and the model remains classically disordered at
temperatures.57

An important feature of thekagome´ lattice is that the frus-
trated units~triangles! are arranged to share sites rather th
bonds. This precludes the mapping of thekagome´ ground
states to a hardcore dimer model on the dual lattice~known
as the diced lattice!; there also is no mapping to a heig
model. It is thus an excellent candidate for a disorde
quantum magnet. The physics of this model has been
cussed in moderate detail in Ref. 16; here, we fill in t
missing detail, repeating some material telegraphically
coherence and convenience.

Application of a longitudinal field,uhu,4J, to this mag-
net leads to the development of a ferromagnetic mom
coexisting with a reduced but extensive entropy andcritical
spin correlations. The result follows in a way formally sim
lar to theG50 phases in Sec. VII. Each triangle has two
spins and one down spin, and denoting each down spin
dimer with end points on the centres of the triangles t
share it, we obtain a bijective mapping between the gro
states and the hardcore dimer covering of the hexagona
tice, see Fig. 13. This implies, by virtue of the associa
height mapping, critical correlations. The entropy per sp
while still nonzero, is reduced to the value ofS5Stri/3
50.108; the difference to the triangular lattice arises fro
the fact that the number of spins per dimer is different
account of the inequivalent mappings used to arrive at
dimer model.

We emphasize that this result is rather unusual. Star
from a disordered magnet, we obtain acritical state with
nonzero moment and extensive entropy upon application
an infinitesimal field; these properties, including the critic
ity, persist for a finite range of field strengths.

Next, consider applying a small transverse field,G!uhu,

FIG. 12. The phase diagram in theh-G plane for the square
lattice with crossings. The precise extent of either phase away f
G/h!1 is unknown.
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in addition to the longitudinal one (0,uhu,4J). The result-
ing perturbation theory, controlled by the parameteruG/hu,
has the following structure. The ground-state condition of
exchange term of the Hamiltonian imposes the restriction
having either one or two down spins~‘‘dimers’’ ! per tri-
angle. Starting from a configuration that is also a grou
state of the longitudinal-field part of the Hamiltonian, we a
thus allowed to add dimers violating the hardcore conditi
as long as three never meet in one site. To connect diffe
ground states requires relocating three dimers~denoted by
crosses in Fig. 13!, since the shortest closed loop of bonds
the hexagonal lattice has length 6. The lowest-order o
diagonal matrix elements thus arise toO(@G/h#6), and are
precisely those described by the quantum-dimer resona
term in Eq.~5.1!. This being the unique shortest closed loo
all other terms up to and including sixth order are diagon
These terms correspond to putting down and then remov
up to three dimers. Due to the local structure of the dim
states, the number of such operations and the concom
energy denominators are found to be the same for all gro
states. Hence, the diagonal energy shift is uniform and d
not generate a lifting of the classical degeneracy.

The ordering pattern is therefore determined by the h
agonal QDM@Eq. ~5.1!# at v50 andt}G(G/h)5. In dimer
language, it is the one depicted in Fig. 7.

Next, consider thekagome´ IAFM in a transverse fieldG
with h50. Following our previously described strategy, w
look for a symmetry-breaking pattern within a Landa
Ginzburg-Wilson analysis. However, this mean-field tre
ment predicts an infinite number of zero modes, correspo
ing to the simultaneous softening of an entire branch
excitations.59 For Ising spins, high-temperature series expa
sion studies of thekagome´ IAFM indicate that thermal fluc-
tuations fail to select a wavevector to any order.60,8

The variational, maximally flippable configurations tu
out to be the maximally polarized dimer configuration d
fined above forh.G50, of which there is an exponentiall
large number. The resulting hierarchical states are thos
which each triangle has one spin pointing up, one point
down, and one pointing along the transverse field. Eviden
these states map onto the three-state Potts model on

m

FIG. 13. Phase diagram for thekagome´ Ising antiferromagnet in
a field. Inset: Mapping of thekagome´ IAFM in a longitudinal field
onto the hexagonal-lattice dimer model. The down spins are ma
by dimers. The nontrivial move to sixth order in perturbation theo
corresponds to flipping all the spins marked by crosses.
1-13
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R. MOESSNER AND S. L. SONDHI PHYSICAL REVIEW B63 224401
kagome´ lattice, which is also known to have a nonzero e
tropy S.

All these arguments portray thekagome´ TFIM as a sys-
tem extremely reluctant to order. We have checked this
plicitly by quantum Monte Carlo simulations and found th
the TFIM mirrors the classical model, with correlation
somewhat enhanced compared to the classical ones, bu
rapidly, exponentially decaying~see Fig. 3 of Ref. 16!. Here,
we supplement these data by displaying, in Fig. 14, that
simulated correlation functions have settled down with
spect to both quantum temperature and discretization e
Note that in both cases the correlations are extremely s
in magnitude below the first few neighbors, in marked co
trast to the situation in models known to order; for examp
in the triangular IAFM the saturated correlation function r
mains above 0.5 in these units at the largest distances.

In Fig. 15, we also show that, for a small longitudin

FIG. 14. The angularly averaged spin-spin correlation funct
for different quantum temperatures and discretizations,l
5exp(Kt/2). Note the rapid decay and the enlarged scale.
quantum curves lie almost on top of one another.

FIG. 15. The angularly averaged spin-spin correlation funct
for the kagome´ TFIM in a longitudinal field. The correlations cor
responding the dimer crystal~Fig. 13!, scaled down by a factor o
10, are also shown. Note that the high-field curve starts mov
towards the crystal correlations at small distances. Inset: The m
netization per spin~ordinate! is linear in field~h/G, abscissa!.
22440
-

x-
t

till

e
-
r.

all
-
,

-

field applied in addition to the transverse one, the rapid
cay of the correlation functions remains unaffected, the m
effect being the appearance of a net moment visible in
correlations at large distances. The size of this momen
close to linear inh as one expects for a quantum paramagn
At short distances, we observe the emergence of weak
relations reminiscent of the dimer crystal described abo
We therefore conjecture that further field-tilting results in
continuous quantum phase transition to the ordered-di
phase. We have not been able to confirm this numerically
our simulations fail to equilibrate before the critical value
h is reached.

In Fig. 13 we display the simplest phase diagram for
kagome´ IAFM in longitudinal and transverse fields consi
tent with the discussion here, noting that details associa
with the tilted-field phase line remains a topic for futu
study. We close this section by restating its main res
namely, the fact that thekagome´ TFIM is a quantum-
disordered magnet.

IX. THE SAWTOOTH CHAIN

An extreme and amusing example of a quantum-spin
uid is provided by the sawtooth chain~Fig. 16!. It is the
ultimate cooperative paramagnet: the locations of the fr
trated bonds on each triangle are entirely independent,
viding a ground-state entropyS5(ln 3)/2 per spin. This is a
result of the absence of closed loops of triangles and the
that, as in the case of thekagome´ lattice, they are arranged t
share corners.

This chain has been studied in detail by Priour, Gelfa
and Sondhi40 using a high-order series expansion inJ/G,
which compared favorably with exact diagonalizations. Th
found no phase transition at any value ofJ/G, implying that
the chain is in a quantum paramagnetic state.

It has been suggested that the ground-state topology p
an important role in determining the ordering properties o
magnet.61 It therefore may be of interest to note that th
chain has a completely connected ground-state manif
The proof proceeds by explicit construction of a path fro
any ground-state configuration to a reference ground-s
configuration pictured in Fig. 16. First, one picks any dow
spin on a bottom row~if there are none, any one can b
flipped!. The remaining two spins of the triangle can b
made to agree with the reference state by one of the th
operations depicted below the reference configuration; th
then repeated for the neighboring triangle. In the case of
operation pictured on the left, nothing has to be done.

n

e

n

g
g-

FIG. 16. The sawtooth chain with the reference ground state
the three operations needed for proving ground-state connected
~see text!.
1-14
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ISING MODELS OF QUANTUM FRUSTRATION PHYSICAL REVIEW B63 224401
question mark means that the spin can have either orienta
and can thus be made to agree with the reference orienta
immediately. Once this has been done, the spins enclose
the ellipse can be oriented appropriately.

X. THE FULLY FRUSTRATED HEXAGONAL LATTICE

A. The classical model

The fully frustrated hexagonal Ising magnet is obtain
from the ferromagnetic Ising model on that lattice by chan
ing the sign of one interaction in each hexagon, as depic
in Fig. 17. Since the lattice is bond sharing, the class
ground states can again be represented by hardcore d
coverings of the dual lattice, which is the triangular lattic
Unlike the triangular lattice, the fully frustrated hexagon
lattice does not admit a height model of the types enco
tered for other lattices we discuss. Although it is possible
give a rule to assign heights to the sites of the hexago
plaquette, these rules cannot be consistently given for
plaquettes of the full lattice since they involve assigning o
posite orientations to neighboring plaquettes, which is
possible as the dual triangular lattice is not bipartite.

It is found that the classical correlations of the hexago
FFIM are disordered rather than critical, and the ground-s
entropy of the magnet has been evaluated to giveS
50.214.62

B. Action of the transverse field and flippability analysis

Let us now consider the dynamics induced by the tra
verse field. Note that the odd coordination of the lattice p
cludes any spin from being flippable individually since
cannot have an equal number of frustrated and satis
bonds. The shortest allowed dimer move consists of mov
two occupied dimers and implies flipping a pair of neighb
ing spins. Not absolutely all local moves within the groun
state manifold, however, can be generated with these p
spin flips. In fact, one particular~‘‘staggered’’! configuration
exists that does not allow any two spin flips but that inste
permits the four-dimer move as depicted in Fig. 17.

For infinitesimalG, the ground-state degeneracy is th
lifted to second order inG/J and the relevant spin flips ar
the pair flips. To identify the maximally flippable configura

FIG. 17. The fully frustrated hexagonal lattice. The basis sp
of the lattice are numbered 0–3 and the rectangular-lattice tran
tion vector in thex(y) direction is given by the horizontal~vertical!
arrow. The pair-spin flip and a nontrivial multiple spin flip a
indicated with their corresponding dimer moves. Maximally fli
pable states are generated from the columnar seed state by
changing occupied and empty dimers along horizontal lines~A! or
in a sawtooth pattern~B!.
22440
on
ion
by

d
-
d
l
er

.
l
-

o
al
ll
-
-

l
te

-
-

d
g
-
-
ir-

d

tions, we note that each dimer can be part of at most
flippable pairs. Since the total number of dimers is fixed,
maximally flippable configurations are those in which ea
dimer belongs to two pairs.

All maximally flippable configurations can be obtained b
carrying out any number ofeither operation Aor B ~right
panel of Fig. 17! on a particular, maximally flippable~‘‘co-
lumnar’’! configuration, in addition to the symmetry oper
tions of global rotations and global inversion. These ope
tions involve exchanging empty and occupied dimers on
infinite alternating sequence, along a string~A! or a sawtooth
~B!. They generate, for a system containingL2 spins, a num-
ber of configurations exponential inL rather thanL2. The
configurations generated by operation A all incorporate lo
range order in one special direction.

C. Large-G analysis

Next, we carry out the large-G analysis for this lattice. We
first identify the soft modes, then construct the Landa
Ginzburg-Wilson action that we minimize in order to obta
spin configurations and correlation functions.

Since the hexagonal FFIM has four sublattices~labeled as
in Fig. 17!, the Fourier transform of the interaction matrix
of size 434, and is given by~omitting an overall factor of
J/2!

S 0 12eiqx 2eiqy 0

12e2 iqx 0 0 2e2 iqx

2e2 iqy 0 0 212e2 iqx

0 2eiqx 212eiqx 0

D .

~10.1!

The square of the eigenvaluesl is

36A612 cos~2qx!22 cos~qx1qy!12 cos~qx2qy!.

The four extremal eigenvalues of interest areA6, which oc-
cur at wavevectors6(p/6,p/2),6(5p/6,p/2). The corre-
sponding eigenvectors occur in complex conjugate pairs

v15v3* 5S exp~5p i /12!/F
exp~2p i /6!/F
exp~2p i /12!

1
D expS p i

6
x1

p i

2
yD ,

~10.2!

v25v4* 5S exp~p i /12!

exp~25p i /6!

exp~25p i /12!/F
1/F

D expS p i

6
x1

p i

2
yD ,

~10.3!

whereF52 sin(5p/12).
In order to determine the terms in the LGW Hamiltonia

one determines how these modes transform among th
selves under the symmetry operations@translations (Tx ,Ty),
reflection (R8) and rotation (R9)# of the underlying lattice.
Each of these symmetry operations comes with a ga
transformation since the unit cell of the lattice and the u

s
la-

ter-
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R. MOESSNER AND S. L. SONDHI PHYSICAL REVIEW B63 224401
cell of the interactions are unequal. These are shown in
18. The transformation matrices for the amplitudes of th
modes under the above-mentioned symmetry operations
thus

Tx5S eip/6 0 0 0

0 e5ip/6 0 0

0 0 e2 ip/6 0

0 0 0 e25ip/6

D ,

Ty5S 0 0 0 e2 ip/12

0 0 e25ip/12 0

0 eip/12 0 0

e5ip/12 0 0 0

D ,

R85
1

& S 0 i eip/4 0

2 i 0 0 eip/4

e2 ip/4 0 0 2 i

0 e2 ip/4 i 0

D ,

R95
1

& S 0 eip/12 e2 ip/6 0

e27p/12 0 0 eip/6

eip/6 0 0 e2 ip/12

0 e2 ip/6 e7ip/12 0

D .

To find the eventual action, one has to determine
terms at each order that remain invariant under these tr
formations. One obtains

L~r 1q2!~ca
21cb

2!1u4~ca
21cb

2!21u6~ca
21cb

2!3

1v6@cacb
5 cos~ua25ub!1ca

5cb cos~5ua2ub!#.

Here we have transformed the four mode amplitud
$ai u i 51 . . . 4% into complex numbersca,b exp(iua,b) with
ca exp(iua)5a11ia3 andcb exp(iub)5a21ia4.

The terms that survive areO(4) symmetric up to sixth
order, where in addition a symmetry-breaking term appe

FIG. 18. The symmetry transformations and concomitant ga
transformations for the Landau-Ginzburg-Wilson action. Trans
tion in thex direction~arrow in left panel! requires no gauge trans
formation. Reflections about the dot-dashed line go along with
version of the spins marked by crosses; translations by the o
hexagonal-lattice vector~arrow in the right panel! require flipping
the circled spins, and rotations byp/3 ~circle with arrow! involve
flipping the spins denoted by tick marks.
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To minimize this action, we use theO(4)-symmetric terms
to determineca

21cb
2 and the radiusR of the O(4) sphere,

which sets the overall amplitude of the spin pattern. T
symmetry-breakingv6 term then selects 48 points on th
sphere. One finds thatca5c1 and ca5c1 /F; ua,b50
(6p/6) for v6,(.)0. The other 47 solutions are generat
by the operationsca↔cb and $ua→ua1p/12,ub→ub

15p/12%. The 48 solutions for a given sign ofv6 are related
by simple symmetry operations. Note the large unit cell
the ordering pattern, which contains 48 spins. This can
part be attributed to the nonuniform pattern of bonds. In
gauge-invariant dimer language, the unit cell could
smaller; an example of this is given further down.

The correlation functions obtained from the above expr
sions are for soft spins so that they will certainly not
quantitatively found in the real system at low temperatur
However their qualitative features, if the ordering pattern
correctly predicted, should survive. These are peaks at
appropriate wavevectors in Fourier space; due to the fac
of 1/F for the amplitudesca,b , these peaks are not expecte
to have equal heights for correlation functions for spins
the same sublattice. It turns out that the calculated corr
tion functions when, averaged over all 48 minima, are
same as those averaged over the entireO(4) sphere.

We have looked for this ordering pattern by quantu
Monte Carlo. There are several features complicating
search. One arises from the quantum dynamics which ta
the form of double spin flips. Luckily, one is saved here
the fact that the cluster algorithm can be generalized to
case. The most simple-minded extension to double spin fl
would have been to generate two neighboring clusters~rods
in the imaginary time direction! separately—by design, th
cluster algorithm would cancel the problematic Boltzma
factor exp(2Kt/2) in each of the two clusters separate
However, clusters of unequal height, which become ov
whelmingly probably for largeKt, cannot be flipped becaus
permissible moves must be double spin flips in any and
planes. The way around this is to construct a cluster as a
of rods. This works because the cluster can either termin
when encountering zero, one, or two domain walls in
time direction. The case of zero and two can be taken car
by working with an effectively doubled coupling in the tim
direction; the case of one domain wall takes care of itself
there is no Boltzmann factor to be canceled in the first pla
This prescription can therefore not be generalized to ot
multiple-spin flips in a straightforward manner.

Another problem is the very large unit cell of the orderin
pattern, which is 48 spins but only fits into periodic bounda
conditions for system sizes multiples of 192 spins. We ha
thus not attempted to do a complete finite-size scaling st
and have contented ourselves with displaying the presenc
peaks at the wavevectors predicted above.

In Fig. 19 we have displayed the correlation function f
spins on sublattice 4 along thex and y directions~also see
Fig. 17!. A peak at the expected location is clearly visib
This suggests that there is at least significant short-range
der of the predicted nature present in this regime. We c
tion, however, that we have not been able to do a comp
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numerical analysis of this problem that would unambig
ously establish this ordering pattern.

To rationalize the above results, we finally presen
dimer pattern that corresponds to a spin pattern of
correct-size unit cell~Fig. 20!.34 We have not found a way o
relating the spin-spin correlations precisely to those of

FIG. 19. The Fourier transform of the absolute value of
autocorrelation function of a spin on sublattice 4 in bothx and y
directions for a system of 4608 spins. Results for the classical
the quantum (G501) cases are shown, with a quantum temperat
TQ /G50.028 nominally, but the discretization error is rather larg
l54.5.

FIG. 20. Cartoon of a dimer pattern with a maximal number
independently flippable pairs of spins. To obtain the correspond
spin pattern, one has to choose a gauge, i.e., one has to m
choice of which bonds are antiferromagnetic. Figure 17 shows
such choice. For this choice, the spin pattern has a 48-site unit
~two plaquettes on the left!, whereas the gauge-invariant dimer d
scription only has 24 sites in a unit cell~any single plaquette!. A
rhombus stands for a pair of dimers~frustrated bonds! resonating
between two configurations, so that the two spins enclosed by it
be thought of as flipping together to take advantage of the tra
verse field. This pattern cannot be derived from a uniform ma
mally flippable state but has extensive ‘‘configurational’’ entrop
as there are two distinct ways~shown in the left and right pairs o
plaquettes, respectively! of pairing up the spins in each plaquette
22440
-

a
e

e

solutions of the LGW theory found above, but one can s
rather nicely how the periodicity of 12 and 4 in thex andy
directions comes about from a smaller-size unit cell in
gauge-invariant description. The state pictured is favora
because each spin fluctuates in a pair gaining energy f
the transverse field, and because there are many equiv
such configurations, as explained in the caption.

XI. SUMMARY

In this paper we have described our analysis of a num
of frustrated Ising systems with quantum dynamics int
duced by a magnetic field applied transverse to the Is
axis. We have argued that these models are of theore
interest as the simplest settings in which quantum dynam
interacts with classical frustration. They can represent eff
tive theories of systems, such as short-ranged RVB magn
where the low-energy dynamics contains a frustrated Is
degree of freedom and are likely of experimental inter
when suitable materials are probed by the application o
transverse magnetic field.

We have been able to make considerable progress in
cidating the phase structure of these systems that sheds m
light on the interplay between the structure of the mac
scopic degeneracy and the quantum dynamics. Our res
include instances of ‘‘order by disorder’’ and of ‘‘disorde
by disorder’’ ~i.e., Ising-spin liquids!. In arriving at these we
have used two systematic approaches: a variational appr
that builds on the local entropy of different classical config
rations, that is, the Ising analog of semiclassical analyse
magnets with continuous symmetry, and an LGW analy
that attempts to guess at the large order structure of an
pansion about the large transverse-field paramagnet.
have also made use of quantum Monte Carlo simulation
well as of mappings to height and dimer models with t
latter allowing a connection to RVB physics.

There appear to be several directions that can be purs
further. Along the lines of the questions addressed in t
paper, the analysis of thekagome´ system in tilted fields and
a definitive analysis of the hexagonal-lattice problem
needed. Further, the structure and energetics of the l
energy excitations needs to be worked out to have an un
standing of the dynamics at low temperatures. Beyond th
would be interesting to include the dynamics of the tra
verse exchange and see what happens both in the approa
the Heisenberg limit and when a transverse field is a
present. We expect such work to be both fruitful and instr
tive.
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