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We introduce a strong-disorder renormalization groRf®) approach suitable for investigating the quasi-
particle excitations of disordered superconductors in which the quasiparticle spin is not conserved. We analyze
one-dimensional models with this RG and with elementary transfer matrix methods. We find that such models
with broken spin rotation invarianaggenericallylie in one of two topologically distinct localized phases. Close
enough to the critical point separating the two phases, the system has a power-law divergent low-energy
density of stategwith a nonuniversal continuously varying power lawm either phase, due to quantum
Griffiths singularities. This critical point belongs to the same infinite-disorder universality class as the one-
dimensional particle-hole symmetric Anderson localization problem, while the Griffiths phases in the vicinity
of the transition are controlled by lines of strofigut not infinite disorder fixed points terminating in the

critical point.
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[. INTRODUCTION at least in one-dimensional models with either triplet pairing,

or strong spin-orbit effects, or spin-flip scattering off frozen

Recently, there has been considerable theoretical activitnagnetic impurities. More specifically, we show that such
concerning the effect of disorder on the quasiparticle specmodels with broken spin rotatioi®R) invariancegenerically
trum in dirty superconductors with different pairing lie in one of two distinct localized phases. These two phases
symmetries-?> The basic philosophy underlying most of are distinguished by a topological propettgflected in the
these developments is to start with a weakly disordered prolpresence or absence of zero-energy end states in a large but
lem and investigate the fafén some renormalization group finite wire) that makes it impossible to go smoothly from one
(RG) sensg of disorder at large length scales using field phase to the other. At the phase transition separating the two,
theoretic method3.An analysis of this sort depends most the effective disorder grows without bound when viewed on
crucially on the possible symmetries of the gquasiparticleever-smaller energy scales, and the low-energy density of
Hamiltonian, and it is the corresponding universal propertiestates behaves ag €)~ 1/e|In%¢ (Dysorf singularity. The
that have received most attention thus far. These include tHecalized phases near this transition, on both sidesGaife
leading effects of disorder on the conductivity and density offiths phase$iaving a power-law singularitgwith a nonuni-
states in the delocalized regime, as well as the universal scatersal exponentin the low-energy density of states; these
ing properties of the localization transition. Griffiths phases are themselves characterized by stfioug

Our focus in this article is quite different: We ask if Grif- not infinite) effective disorder in the limit of low energies.
fiths effects, whereby rare configurations of the disorder pofNote that a recent weak-disorder analysis, Refs. 5 and 6, of
tential over large regions of space give risentinuniversal this problem has been carried out only at criticality. The
contributions that dominate some low-energy property, mayesults of Refs. 5,6 for the thermal conductance and the den-
be important in dirty superconductors. In particular, are theresity of states are consistent with the predictions of our RG
situations in which such Griffiths effects lead to a singularapproach at such a critical point—however, as we show here,
enhancement in the quasiparticle density of states near thbe generic behavior of the system is localized rather than
Fermi energy? Unfortunately, this intriguing possibility has critical.’]
not attracted much attention in previous work. The detailed scaling properties of the low-energy strong-

Such issues are difficult to address within the weak-disorder critical point and the nearby Griffiths phases are, of
disorder framework mentioned above. Instead, we introduceourse, specific to our one-dimensiondD) examples.
a RG approach that is suitable for situations in which theHowever, our RG approach is well suited for studying pos-
effective value of disorder becomes large at low energiessible Griffiths effects in two or more dimensions as well, and
Our basic result is simply stated: It is indeed possible forsome speculations along these lines are briefly discussed to-
such Griffiths effects to dominate the low-energy propertieswards the end of this article.
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Il. PHYSICAL PICTURE AND MOTIVATION of our wire, such disorder configurations will give a non-
zero contribution in the thermodynamic limit to the density

Before plunging into the details of our analysis, it is Use- " ctates. This contribution can be estimated asq(€)

ful to have a heuristic picture of the basic physics of our 1D s ol 141 _
problems. To this end, we consider a simple toy model for & JdL d(e—e"“ " )e " ~e , where we have intro-
disorderedspinless(more physically, spin-polarized triplet duced the dynamical exponemt=c’/c. This serves as a
superconducting “wire” with a single transverse mode lower bound on the actual low-energy density of states in our
(channel active. We model our system by a lattice disordered problem—thus, wgenericallyhave a power-law

Bogoliubov—de GenneBdG) Hamiltonian behavior (with a nonuniversal continuously varying expo-
nend of the density of low-energy excitations in our toy

model. Although this model is admittedly crude, the picture
A= (tcic,, 1 +Aciel j+H.c)+> eclc,. (1)  of rare configurations of disorder over large regions of space
n n leading to singular low-energy behavior is at the heart of the
more precise strong-disorder RG analysis of Sec. VI.

We conclude this section with some comments on our
choice of toy model and, more generally, on the results ob-
tained in this article. First, note that we completely ignored
the self-consistency condition that, in principle, determines
A in terms of the other parametéfst! This is not expected
=2|t]. o . ) _ to matter; in fact, the precise choices made for various pa-

The significance of the critical valué. is readily seen by ameter values are not very important for our conclusion—
solving the pure problem with fixed,=V, i.e., with the s it important that our toy model has time reversal sym-
chemical potential equal te V. One easily finds that there is metry. As far as this model is concerned, the only important
a gap in the quasiparticle excitation spectrum around th?ning is the existence of two different gapped phases, with
Fermi energy for botV|>V, and|V|<V. However, at  gne of them supporting zero-energy end stafdte that
the critical point|V|=V,, the system is gapless. Thus, therehjs is the main distinction of our models without SR invari-
are two different gapped phases for our pure syst#/e  5nce from the models with SR invariance: When the quasi-
phase withV|>V simply corresponds, in the absence of theparticle spin is a good quantum number, there are no such

pairing term, to a situation in which the Fermi level has gonegng states in any finite open chain, and we expect no Grif-
below the bottom of the band or above the top of the bandjiths effects in this case—this will also become clear from

thus, it is essentially a “band insulator.”For our purposes yr more detailed RG analysjs.
here,_the important distinction between the two phases has to another concern is that we are treating a one-dimensional
do with low-energy bound states at the ends of a long bugperconductor with the BAG equations, which ignore quan-
finite wire of lengthL with free boundary conditions. In the {,m fluctuations of the condensate order param&taihen
“gapped superconductor” phase with'| <V, such awire  the superconductor is in more than one dimensibrgoes
has a single quasiparticle state below the gap with an exchaye a nonvanishing static component at zero temperature,
tation energy that is exponentially small in the lengttthe 1t in a strictly one-dimensional system, divergent quantum
corresponding wave function has weight only in the vicinity f,ctyations mean that the superconducting state does not
of the two ends of the chaifin the language of Ref. 8, inthe paye true long range order or a gap. However, in highly
L— o limit, we thus have two zero-energy Majorana fermi- gnisotropic quasi-one-dimensional superconductysiand
ons, one at each end of the chailm the other gapped phase, the gap can, in principle, be large compared to the inter-
V>V, there is no such low-energy quasiparticle sfate. chain hopping energy, and our approach should then apply in
Now, imagine a disorder realization in which the potentiali,e range between these two energy scékdsle no such
has valuev, throughout the region between, say, sites 0 andegime appears to exist in quasi-one-dimensional supercon-
L, and valueV, out to a distancd on either side of this  gyuctors known so fam priori, there are no physical reasons
central segment. The value of the potential is left unspecifieghat would prevent this from happening in some cXes
in the rest of the system. The probability of this happening isanother possible physical realizatiois that of a vortex in a
p-(1—p)* =e"°", with c appropriately defined. Now, the three-dimensional gapped superconductor in the presence of
central region can be thought of, for largeas a finite wire  frozen magnetic impurities or spin-orbit scattering. In such a
in the phase withV|<V, surrounded byvacuum(this is  sjtuation, the effect of disorder on the quasiparticle states
reasonable since the long segments on either side can B@nfined to the vortex core can be analyzed by a 1D BdG
roughly thought of as regions with no particle because thequation approach such as the one we employ. Naturally, the
Fermi energy—V; has gone below the bottom of the band; choice of probability distributions for various quenched ran-
effective couplings of the central region with the rest of thedom variables will be different depending on the physical
system, mediated through such isolating segments, are expgealization one is interested ifor instance, it is more natural
nentia”y small in L) Such a situation will lead to a low- to use a quenched random with zero mean when consid-
energy quasiparticle state with excitation eneegy- e oL ering the vortex probleim However, as will be clear from
with somec’ of order one. Since such low-energy statesour later analysis, the precise form of the probability distri-
living on “domain walls” between large regions in “oppo- bution for various bare couplings in the problem does not
site” phases can happen anywhere along the entire lengthlay an important role in determining the nature of the low-

In this toy model, the nearest neighbor hopping amplitude
and the ‘p-wave” pairing amplitudeA are real constants,
while the impurity potentiak, can take on valueg, andV,
with some probabilitiep and 1-p, respectively. Further-
more, we stipulate thatv,|<V. and |V,|>V,, whereV,
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energy physics. Finally, note that the effects of the residual i Im(t+A)

) . . 4
guasiparticle interactions are beyond the scope of our o 18 4':
analysis.

i€q, IR
I1l. FORMALISM, SYMMETRY CLASSES,
AND OUR 1D MODELS @
It is useful to set up notation and review some basits o 1B '@

before proceeding to our actual calculations. To this end, 1@ >
consider a general lattice BAG Hamiltonian 2) b)

N + 1 . L . .

HSCZE haBCaCﬁ+—Aa,BCaCﬁ“L_AzBCBCa , (2 FIG. 1. (a) General pure imaginary representation of hopping

af 2 2 (t) and pairing Q) couplings between two fermion orbitads and

where we use a composite labek={i,u} for the site and 8- (0) In the T-invariant case, it is more conveniefsee text to
spin indices of fermion orbitals. Hopping amplitudes, theWork with block sites and block couplings shown here.

effects of spin-orbit interaction on the hopping amp"tUdeS’random hoppingImRH) problem on adoublediattice. Each
spin-flip scattering from frozen magnetic impurities, and ran'original fermion orbitala={i,x} is “represented” by two
dom potential terms corresponding to nonmagnetic impuri"‘copies” la and lla: the en,ergy of an orbitad is repre-
ties are now all included ih‘MV’. .vv.hile pair-ing amplitlides sented by an imagir;ary hopping amplitude betweerahd
are represented by, ,. Hermiticity requireshg,=his, |1 while hopping and pairing amplitudes between two or-
and we choosé g, = — A, consistent with the fermion an- a5 o and 8 are represented by imaginary hopping ampli-

ticommutation relations. Additional restriction$o be re- ; ;
tudes between the two paifba, lla} and{13,1l see Fig.
viewed below arise wherT invariance is a good symmetry 1a)]. paif a BB} d

(we will not consider cases with SR invariance in this ar- In the presence oF invariance.h andA satisfy o,h* o,

ticle). o S ~ =handeyA*o,=A, whereo,=o,® 1y ando, acts on the
The spectrum of quasiparticle excitations kb is speci-  spin degree of freedom at each site. The corresponding re-

fied by the spectrum of eéHermitian matrix strictions onH,,, are best stated as follows: Group the dif-
h A ferent spin states on the same lattice si@d with the same
H= ( ) (3)  copy indexK into a block paifKi,Ki|}. Tinvariance then

—A*  —h* implies that there are no internal couplings within such

acting in an en|arged “partic'e_ho|e” Hilbert Space_ blocks. Moreover, the CouplingS between two blocks with

A particle/hole mixing unitary transformation the same copy index have a form
1 /1 —i R ia ib cosf  sind ) :

= t =. .=
Yo \/§< 1 @l bock™lip —ia sind —cosh ©

(whereN is the number of lattice sitgswhich acts indepen- With real a and b (r=ya“+b%), while the couplings
dently on states corresponding to eaghtransformsH into between two blocks with different copy indices have a form

an antisymmetrigure imaginaryform ic —id
iIm(h+A) iReg—h+A) ( )
i Rgh+A) ilm(h—A)

id ic
with realc andd. Simply relabeling the spin states of copy |l

This representation is well suited for a discussion of heaf"ings all block couplings to the same form Eg), and we
vill find it convenient to discuss th&-invariant case using

transport properties of the quasiparticles. Indeed, the quasYV_ ; . .
particle thermal conductivity is simply proportionalkgTer, NS Picture of block sites connected by block couplifigse

: _ g Fig. 1(b) where each fat arrow represents the corresponding
where o is the T=0 conductivity of a(norma) system of . o ;
noninteracting fermions described by the lattice Sdhrger blq{Ck coupling Eq(s)h}/wt_h(;ndepznd?ntfl andr?, iﬂgtg'ffler'
cauaton coresponding s 5ee Rel. 2 and references T 2Tots % L Paspeneer o e i 3
therein. (Note thfltH'm may also be obtained, as in Ref. 2, is obtained® byFE)erforming a particle-hole and spin—ub—down
from the originalH s by writing everything in terms of Ma-

) > ) _mixing unitary transformatiot) .= (1/1/2)(1,® 7,+ oy® 7,)
Jﬁran? fermlons“and theg d?;"l;“?g the IS)E)stlemh, %r.‘f‘;' we W'l[églN (here,1, and the Pauli matrixr, act on the spi)h label,
therefore use a “copy indexK below to label the different ,ie yhe payli matrices act on the particle-hole label
blocks of H,,.)

Most of our discussion will use this pure imaginary form. 0 hoy—A
In the absence of both SR invariance anhéhvariance, the HT=U;1’HU = N
different matrix elements oH,,, take on roughly indepen- oyh+A 0
dent imaginary value&part from the requirements imposed H, thus has aipartite complex hopping form, which will
by hermiticity). Thus, we have a generglure imaginary prove useful for our transfer matrix analygisote however

7‘flm:UolHUoz<

(6)
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that strong correlations among matrix elements-oflimit ~ general systems that we study here is in fact surprisingly

its usefulness in other contexts close, as will become apparent from our transfer matrix and
Finally, in the spinless case with Moinvariance, we sim- RG analyses. . -

ply drop the spin label altogether and do not have any con- F|'nally, it is worth empha3|2|ng at this point that our fo-

straints on the bonds of the corresponding ImRH problemCUs in all these cases is on the low-energy physics: The sys-

[Here and elsewhere in this article, we use the designatiofg™s mentioned above will all differ from each other at

“spinless” to also refer to all situations in which the spin igher energy scales, particularly in the initial “diffusive

label of the electron can be dropped—such as spin-polarize igcs)rsgevreez rer%gl]smthlitov\(/veo\?;? gteeg;(?s?enst t;glo?/:/“;hivsv ece:lc()lsys_-
triplet superconductors. Also, in the rest of this article, we do b X ' 9

' . ; : over scale, the effective value of disorder becomes large and
not consider specifically the spinless case Witimvariance,

! _all th t be d ibed b ified physical pic-
but only mention the relevant results as we go along. Th'%re ese systems can be described by a unified pnysicat p!

case is very specfahnd maps onto a class of bipartite hop-
ping problems that have been studied both in'daed twd®
dimensions. In one dimension, our RG approach yields re-
sults consistent with what is known from Ref. 14 and can In order to go beyond the heuristic ideas of Sec. II, we
provide more details about the low-energy properties of anyieed acontrolled approach that works in situations with
particular system in this universality class, while some two-strong Griffiths effectg[such thatz, defined by the low-
dimensional systems in this universality class will be dis-energy behaviop(e)~ e 1112 of the density of states, is
cussed separate1§9] largel. Such situations are expected to correspond to large
In this paper, we consider three one-dimensional systemgalues of effective disorder in the low-energy lirtiit fact, a
the spinless superconductor withduinvariance, the “spin- ~ Simple scaling argument indicates that the width of the dis-
ful” T-invariant superconductor, and the ‘spinful’ Supercon_tribution of the Iogant_hms of the effectl\_/e couplings is ex-
ductor withoutT invariance. In all three examples, the bulk Pected to be of ordezin the low-energy limit. We are thus

of our discussion is for the case with a single transvers+Ed to formulate a strong-disorder RG approach to this prob-
mode(channel present. However, as will become clear from "M I e
( 'p Consider the ImRH Hamiltoniart,=2;;t;;|i)(j| with

our analysis of the “spinful” superconductor withowitin- " . . . .
variance, our basic conclusions regarding the Iow-energitlii:tii.:_t”' The eigenstates G\ occur in pairs with
physics apply equally well for the multichannel case of allSnergies=e, and the strong-randomness RG pr'oceeds k_)y
three problems, eliminating, at each step, such a pair of states with energies
We model these systems by the appropriate BdG Hamilat the top and at the bottom of the band: One finds the largest

tonians with only nearest neighbor hopping and pairing am{in absolute valugcoupling in the system, sdy, connecting

: . - . : ; ites 1 and 2; this defines the bandwidth of the problem
plitudes, in addition to same-lattice-site terftise restric- "o ’ TS o
tion to such nearest neighbor models is not at all crucial fo2=2maxX]t[}. If the distribution of the couplings is broad,
any of our conclusions The ImMRH problem corresponding

the eigenfunctions of the two-site probleH),,[ 1,2] will be

to the single-channel spinless case is a two-leg ladder wit§0°d approximations to the eigenstates with energiés,

all couplings pure imaginary and roughly independent, bufince the couplings,; andty; of the pair to the rest of the
no other restrictions—in particular, couplings along theSyStém will typically be much smaller. These couplings can
rungs of the ladder are allowed. Such “rung-couplings” then be treate'd' perturbatl\{ely, and ellmllnatlng the high-
[which we will sometimes refer to as “vertical” couplings— ©€Neray states living on the sites 1 and 2 gives us the follow-
see Fig. 18)] correspond to any on-site terms in the original N9 €ffective couplings between the remaining sites:

lattice BAG Hamiltonian; in the spinless case, these can only ~ - -

be random potential terms, but more generally, one can also b=t —tia(tip) "t~ tia(ta) "ty @)
have “s-wave” pairing amplitudes and spin-flip scattering . L~ .
potentials(the latter due to frozen magnetic impuritiesor Clearly, the renormall_zed Hamﬂ;omaﬁmm agan corre-
the single-channel “spinful” T-invariant case, the corre- sponds to a pure imaginary hopping problem, but with two

sponding IMRH problem is an analogous two-leg ladder ofewer sites; in particular, the matri¥, has no diagonal
block sites with pure imaginary block couplings that areterms’*8t;=0.

roughly independent of one another—in other words, we Some remarks on the proposed RG approach are in order
have a four-leg ladder with this special block structure. Fi-here. Note that our RG rule E€}) is anexacttransformation
nally, the single-channel “spinful” case withodk invari-  for the zero-energy wave function, and as such provides in-
ance is a pure-imaginary four-leg ladder with no other reformation on the zero-energy localization properties. From a
strictions. These ladder problems are related to the bipartitaumerical point of view, it can be viewed as a construction
random hoppindRH) ladder problem¥ in which rung cou-  of the zero-energy wave function in @npriori stable man-
plings are disallowed but the other hopping amplitudes dmer. Moreover, this transformation can also be viewed as an
not have to be pure imaginary—as mentioned earlier, thesapproximate but accurate scheme for evaluating the “Sturm
are in the same universality class as spinless superconductisgquence,” i.e., the integrated density at very low energies,
wires with T invariance.(The connection between this spe- with the approximations involved being well-controlled
cial class of models with sublattice symmetry and the morevhen the low-energy effective couplings are broadly distrib-

IV. STRONG-RANDOMNESS RG APPROACH
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the absence of strong correlations between different cou-
plings, the right hand-side of E¢¢) can be replaced with the
“max” (in absolute valueof the three terms. R
So far, we have ignored the restrictions that would bethis defines elementary transfer matfix.
imposed on the couplings of the ImRH problem in a “spin-
ful” (i.e., when both spin species need to be considered A. The bipartite ladder problems:
T-invariant situation. In this case, it is more natural to work L . N .
with the block sites and block couplings defined earliég. To begin with, consider the bipartite problem mentioned
1(b)]. To begin with, note that the eigenstates now occur i2P0Ve; in which one hadt coupled chains with no rung
doubly degeneratpairs with energies- e. Thinking in terms ~ couplings, u,=0. This system was studied by Brouwer
of blocks automatically incorporates this degeneracy, sinc€t al* who found that for both real or complex hopping
the eigenstates of a two—block-site problefnf 1,2] come in ~ amplitudes there ar +1 localized phases separated My
such doubly degenerate pairs with energiesr,= dimerization driven delocalized critical points; each critical
+ \JaZ,+ bZ,. Our RG approach now eliminates four states atP0int exhibits a sgrong Dyson singularity in the density of
each step, two at the top and two at the bottom of the bangtatesp(e)~1/e[In¢. Here, we rederive by completely el-
with energies* (), whereQ =maxr;}. The resulting effec- ementary means the ems@ence of delgcqllzed cnycal
tive block couplings among the remaining block-sites arg?OINts, .and also characterize theé+1 distinct localized
again given by Eq(7), but now eacﬁij is a 2% 2 matrix of phases; the ideas introduced in the process will generalize

. . . naturally to our superconductor systems.
the form (5). The effective problem is agam an ImRH prob Being bipartite, the two sublattices decouples&atO:
lem in the same block-form, and no block-diagonal terms are
generated. For the RG rule E(), the flows of bond ener- s_q ot
—thiatn 0
1
n

uted. Lastly, note that in the limit of strong disorder and in (lz +1) (f—l(e_an) _’f—l)( b )
n n n n
= )

~p = ~ ~t >
tnlﬂn tl 0 tn—llﬂn—l

giesr and bond angle® do not separate. However, for FoF -

strong disorder and in the absence of strong correlations n+1tn— 0 _if i
roughly, when the “max” RG rule appligghe energy vari- "
lab|93f flow eX%Cﬂ){[ as if?t:]hemlmRH -represen;ﬁtiot?] of a SI|3in'We are thus led to study the Lyapunov spectrum of the ma-
ess superconductor withodt invariance, while the angle . 2121 2-13t o 3-1 -1
variablez simply randomize. Thus, we expect essegtiallggnx pr(')duc.tstzlkt%k,l-~-t3 ! ahdFZKtz"*%mt?tl A
identical results for this “spinful” problem withT invari-  2ere dimerization (o andtyy., distributed identically the
ance and the corresponding spinless problem witFoirt- Lyapunov spectra of both produdtsonsisting ofM distinct

variance whenever both flow to strong disorder sufficientlyLyapunoy exponents in the general caaee identical and
rapidly symmetric around zero, and the full Lyapunov spectiiafn

the full transfer matrix produttis doubly degenerate. Thus,
for evenM the smallestin absolute valueLyapunov expo-
nent is nonzero and the zero-energy modes are localized,
while for oddM there is always a zero Lyapunov exponent.
(The actual values of these exponents are not of much con-

Before we go on to our more detailed RG analysis of thecern here, only the fact that they are all distin®ow, con-
low-energy properties, it is useful to have a picture of thesider adding dimerization by simply multiplying every odd
phase diagram in each case. We use an elementary transfg;ndf2k +1 by a scale factoe ° and every even bOﬂAt!zk by
matrix analysis to develop such a picture in terms of they factore™°. Clearly, the whole Lyapunov spectrum for one
zero-energy localization properties of the system. The goaleduced(sublatticé problem is shifted rigidly bys (and by
here is to show by direct means thygnericallyall our mod-  the exactly opposite amount for the other sublajtidéus,
els are localized, and to demonstrate that there are criticals we scar from — o to +, there will be exactlM points
points representing transitions between distinct localizegyhere two of these exponents of the full transfer matrix cross
phases; of course, these critical points can only be accessedro. For the given sublattice, if we label each noncritical
by fine-tuning the disorder distributions. region by &,M —k) with k growing modes and —k de-

In general terms, we are looking at the zero-energy localzaying modes, these critical points represent consecutive
ization properties ofM-leg ladder systems governed by a “delocalization” transitions k M —k)— (k+1,M—k—1).
Schralinger equation Of course, this can also be restated in terms of the number of

zero-energy states localized at each end in a finite odd-length
.. . . chain with free boundary conditions, and provides a ‘topo-
€= tnthns 1+ 1011+ Unthy, (8)  logical' distinction between the different localized phases;
each transition corresponds to a single zero-energy state be-

- . _ ~ coming delocalized and migrating from one end of the chain
wheret,, andu, areM XM matrices, and the wavefunction tg the other.

(10

V. CRITICAL POINTS AND GRIFFITHS EFFECTS IN 1D:
TRANSFER MATRIX ANALYSIS

i, is an M-dimensional vector defined at each rumgWe In a bulk system, at any of these critical points, one has
find it convenient to work with the following transfer matrix two zero-energy delocalized/apunov modefinear combi-
formulation: nations of which can roughly be interpreted as a “left-
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moving” and a “right-moving” slow modes Since any de- TR

scription of the low-energy properties of the critical system No zero—energy end states
in terms of such “slow” modes has to respect the bipartite
nature of the original problem, it is natural to expect that
such a low-energy effective theory is in the same universality
class as the bipartite single chain RH probfnThis pro-
vides a clear rationale for the critical low-energy density of
states to be of the Dyson form. Similarly, we expect that the 0 3
localized phases in the vicinity of any critical point look, at

. - . . e FIG. 2. Schematic phase diagram in #«R plane for both the
low energies, similar to the dimerized Griffiths phases Ob'general spinless case withodt invariance, and the “spinful”

tained by introducing a small amount of dimerization in the nqqe| with T invariance. We us® to denote some measure of the
single chain problem—in particular, we expect Griffiths sin-gyrength of the rung couplings which correspond to the random
gularities in the density of states consistent with the resultgn-site terms of the original superconductor probléy., for a

Zero—energy end states

of Ref. 14. symmetric distribution of random rung couplings, we can deRne
to be a root mean square of this distribudiomhe vicinity of the
B. Single-channel spinless superconductor without T phase boundary is expected to exhibit strong Griffiths effects.
invariance

Returning to the dirty superconductor problems considei:jlnd the _Iocalized phase; on .either side of the critical point
' can again be characterized in terms of such almost—zero-

first the spinless fermion system with fianvariance in the d states. Consid ) dd-lenath chai
ImMRH language. In this case, the rung coupling is of the forn\e/\?ﬁrgy en_ States. _on5| eragain an open odd-length chain.
- . enu,=0 (and §=0), there are two zero-energy states,
Un=unoy With some reaju, (o acts on the copy lab#), e ¢ each end of the chain. Turning on the rung couplings
while the hopping term is a general pure imaginar¥2  gnaples the two to mix, but since they are separated by the
matrix t, . Because of the identity,a 'oy=a'/deta valid  entire length of the chain, the splitting is exponentially small
for any 2x2 matrix a, the zero-energy transfer matrices in the length of the chain—as long &<R.. Thus, in this

“decouple:” phase, there will be two sucdtessentially zero-energy end
states. In terms of the quasiparticle spectrum of the original

. 1 0 ,untgloy tn‘lay 1 0 superconductor sc, there is asinglequasiparticle state with
Th=— 0 o -1 0 0 o ( an exponentially small energy and a wave function with
YEA Tt Ty y weight only at the two ends of the chain. On the other hand,

wherer,=dett,. Thus, Lyapunov exponents of the product in the phase witlR>R;, there are no such end states with
- . . o nearly zero energy, as may be argued by starting with the
of T, are given by a superpAosmon of the Lyapunov ex- |yt of large w,. Thus, we have two different localized
ponents of the product of| r[t, ‘o, and of the product of  phases distinguished by this topological property; if we think
in terms of a more general “dimerization—rung coupling”
,U«n/\/m Um (6—R) parameter plane, we have a phase diagram shown
sgn( Tn)m 0 schematically i_n Fi_g. 2. M_ore_over, we agair_w expect the low-
energy properties in the vicinity of the transition between the
The former product is very similar to the product phases to be in the universality class of the single chain
IT, i, 5, , studied earlier(note, however, the particular bipartite RH problem in the vicinity of its zero-dimerization
“normalization” used herg the Lyapunov spectrum con- Cfitical point. In particular, we again expect Griffiths singu-
sists of two exponents v, , with 7y, of order one. The latter larities in the density of states of either localized phase in the
product is essentially the transfer matrix productato for  Vicinity of the critical point—our expectations will be borne
a 1D Anderson problem with random energies., (de- out by the more detailed RG analysis in the next section.
pending on the sign of,) and random hopping amplitudes
\/m; the two corresponding exponents arey, . The full C. Single-channel spinful T-invariant superconductor
Lyapunov spectrum thus consists of the four exponents
* v~ v, . As we increase the strength of the rung couplings(
u, (e.g., by increasing the root mean square strerigth

Consider now the “spinful” system withl invariance
but no SR invariande In the bipartite representation, Eq.
i _ (6), the rung couplindi,, and the hopping terriy, are
ERME\/; with ©=0 kept fixed from O to «, y, also

increases from O tec. Thus, at some critical strengtR 0wy, 0 a,
=R of the rung couplings,y, will equal y;, and two an( N ) n—(A );
Lyapunov exponents will be zero corresponding to an iso- Wp oy 0 b, O

lated delocalized critical point along thRaxis. R

Now, in the superconductor problem, there are no eigenherew,, is somec-number,b,=—4a%, anda, is some gen-
states at precisely zero energy in any system—this is due teral complex X 2 matrix. From the transfer matrix, E(P),
the presence of the rung couplings. Nevertheless, there make sublattice decoupling at zero energy is seen immediately;
be states with exponentially smdih system sizeenergy, on one sublattice, we need only consider the product of
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21 A1
. a, Wyo, a
Q=—| " ] (12) 10*
a, 0
. I 810°F w ¢ 1
Lyapunov exponents of this product together with their nega- < 140 21 —=
tives(from the other sublattiodorm the full Lyapunov spec- UE 5| 150 3.4 —
trum of the system. But this product further “decouples” 3 10°[ 183 - x-
precisely as in Eq(11) into the product Of\/|an|é.n_lay and %u 1.70 5.4 v
the product of 10 180 26 o~
A/F _________
L iz
Wo/Vlan|  1W]anl| ! . i
agNlay| 0 ) ! 10

Te=In(Qy/E)

here a,,=det én_ Lyapunov exponents of the former prod- FIG. 3. Numerical check of the Dyson singularity in the “spin-
uct are =y, with some y, of order 1. However, the 1D ful” T-invariant case. Number of states with energies between 0

Anderson localization problem corresponding to the latte"dE for an open chain of length=10°, averaged over five dis-
product is non-Hermitian: while the hopping amplitudes can?'de" realizations, is plotted vs the log-energy sdade-In(1/E).
Independent intersite couplingeeal and imaginary parts, of inde-

be Cnﬁ]sen real ?nd etcr]]u?rll (0 ﬁ”|’ the hon'_SIte ente_rgl?s pendent hopping and pairing amplituglese chosen from a uniform
|W“|e are compiex wi e phases);, having contribu distribution overf —1,1], while independent on-site coupling=al
tions from the phases_of bot\i_v and a. Nevertheless, the chemical potential and real singlet pairing amplitudee chosen
Lyapunov spectrum still consists of two exponemsyy .  from a uniform distribution overf —W,W]. Critical W,=1.630
The spectrum of the product of th@, is thus = y,* y,,, +0.001 was found accurately from numerical transfer matrix analy-
and the other sublattice merely duplicates this to make theis. At this point, we clearly havl~ 12 (which is shown dis-
full Lyapunov spectrum doubly degenerate. Now, all weplaced from the data for clarityWe also show several off-critical
need to know is that for small values of rung couplings thepoints and give rough estimates of the corresponding dynamical
correspondingy,, is also small, while for large values of exponents from the Griffiths fitsNg~E%* over 4<Ng<1000.

rung couplingsy,, is large. Then, as in the spinless case,

there is an isolated delocalized critical point along the D. Single-channel spinful superconductor
R=R,= Vw? axis for some critical strengtR. of the rung without T invariance
coupling terms(at which y,,= y,). Note that at this critical Finally, we turn to the “spinful” case with neitheF in-

point, a total of four Lyapunov exponents will simulta- yariance nor SR-invariand@gain, with only a single trans-
neously cross zero; the corresponding two pairs of critical/erse channgl (Note that a quasi-1D spinless fermion super-
modes are related to each other bynvariance. Again, the  conductor with two transverse channels would also be
phase withR<R. is characterized by the presence of endmodeled by the same BdG problem, with a somewhat differ-
states with exponentially small energies. The only differencesnt interpretation for the various couplings. Thus, analysis of
from the spinless case is that there are now four of them—this case is of value in demonstrating that our basic conclu-
this corresponds, in terms ¢lgc, to two T-symmetry re-  sions are not special to the single-channel case in any of the
lated quasiparticle states, each with an exponentially smafroblems we consider.
energy and a wave function having weight only at the two In this case, we have been unable to come up with any
ends of the chain. The phase wig®» R, again has no such simple decoupling scheme that maps the corresponding
nearly zero-energy end states. In the #4R plane, we thus transfer matrix to that of some problem with sublattice
have the schematic phase diagram shown in Fig. 2. Agairgymmetry—the exact mapping we have used earlier is thus
the critical point and the phases in its vicinity are expected tepecial to the two single-channel cases considered above.
look, at low energies, similar to those in the single chain RHHowever, when the rung couplings are all zero, we do know
problem, with an additional degeneracy introducedTbiyn-  that the corresponding bipartite four-leg ladder has five
variance. A direct numerical check of the Dyson form for thephases as we scan the dimerization paramétethese are
critical density of states in this “spinful'T-invariant case is labeled k,4—k) with k=0,1,2,3,4 corresponding to-4k
shown in Fig. 3, while the RG results of the next sectionzero-energy states localized at one end ksthtes localized
confirm the underlying physical picture in detail. at the other end for a finite ladder with an odd number of
Parenthetically, we also note that these Lyapunov exporungs and free boundary conditions. In particular, in the vi-
nent crossing arguments imply that in all cases considered sonity of §=0 one has two such states at each end. Now,
far, the inverse of the smallest Lyapunov exponent divergeturning on some weak rung couplings allows these two states
as|g—g.| ! whereg is some tuning parameter that drives (at each engto mix amongst themselves, and there will thus
the system through the critical point@t. This implies that be no states with exponentially small energies in this regime.
the exponent for the typical localization length is=1 at  On the other hand, the same is clearly true for very large
all these transitions. values of the rung couplings. Thus, the phases obtained in
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In another scan, we take the most random such system
(i.e., with all allowed couplings present and indepengent
and boost the strength of all théndependentrung cou-
plings by the same amount on average, while keeping distri-
bution of the interrung couplings fixed. As we increase the
C 0 0 typical magnitudes of the rung couplings from zero in this
manner, we again see strong Griffiths singularities in the

| density of states developing, and, possibly, critical behavior.
0 5 However, near such a tentative critical point the two

FIG. 4. Possible phase diagrams in th® plane for the “spin-  Lyapunov exponents that come close to zero seem to have a
ful” case withoutT symmetry. We us® to represent some measure mutual “level repulsion” and the Lyapunov spectrum seems
of the strength of the rung couplings. On the diagrams, we denoté0 exhibit the analog of an “avoided level crossing;” this
the phases with zero-energy end states by 1 and the phases with results in huge localization lengths and strong near-critical
such states by 0. A and B represent two simple possibilities, whildehavior in large regions around the tentative critical point.
a more complicated case with a multicritical point is shown in C.A more detailed investigation away frofi+ 0 yields a phase
Our numerical transfer matrix studies tentatively suggest that in theliagram of the type shown in Fig. 4(C). Thus, to within our
most “random” such superconductofi.e., with all couplings numerical accuracy, there seems to be a multicritical point in
present and independgrihe phase diagram is very nearly that of the 5-R phase diagram af=0. However, we can not ex-
the panel C. In many other casg@sg., when we allow only on-site  clude the possibility that we are seeing a case with no tran-
chemical potentials in the original superconductor problem, bussition along theR axis (but phase boundaries coming very
completely general intersite couplingsve observe the phase dia- close to this axisor an almost-degenerate case with two very
gram A. We have not found realizations that would clearly exhibitc|ose|y spaced transitions. Crossing the phase boundaries
the phase diagram B; however, we do not have arguments thgjway from the putative multicritical point again gives a lo-
would rule out this possibility. calization length exponent of=1. However, we are unable

to make any reliable statements in the vicinity of the multi-
either case in the vicinity of=0 are expected to “look” the ~ critical point. S
same (this is made more precise later using our RG ap- We have scanned along several other directions in the
proach. parameter spadeorresponding to different interpretations of

The question then arises: Is there a single intervening® rung-coupling parametd®), but have not clearly seen
phaseat 6=0) which is topologically different? This would wo distinct transitions as in Fig.(B); however, behavior of

result intwo phase transitions as we scan the magnitude o?het t);ﬁetstzown ink':c::q'(ﬁ) is thelm(_)st ;:gmfrnsorc(il_-éc;\'/veaver':[. |
the rung couplings. Another simple possibility is that there jgote that the weak-disorder analysis ol Ret. 5 did find critica

no transition at all as a function of increasing rung couphng.mh""vIor n the co.nducFance at:o with interrung and in
. trarung couplings identically distributed and chosen from a

Of course, there can also be other more complicated scex ? A . : .
aussian distribution. Moreover, their result is consistent

narios (some _pOSS|b|I|t|es for t.he full phase d'agfa”? areyith our predictions for critical behavior at “ordinary” criti-
sketched in Fig. # Moreover, since j[here are severall inde- points, as opposed to multicritical points.
pendent rung couplings corresponding to each physical 1at- thege numerical results thus confirm our suspicion that
tice site, there are many different ways of “increasing thee structure of the full phase diagram in this general “spin-
rung coupling” and the possible phases and transitions eng,» case (or in multichannel versions of all the casds
countered along the way will most likely depend on how wequite complicated. The specific phase diagram obtained by
scan. tuning the parameters of a particular physical syst@m

To get a more detailed picture, we performed an extensivevhich some subset of the allowed couplings may be identi-
numerical transfer matrix analysi® obtain accurate results, cally zerg can thus be very different from case to cdae
we used the technique of Ref.)2@s well as exact diagonal- similar observation in related 2D models has been made in
ization studies, for particular choices of scan. In one choicdrefs. 20 and 21 However, it is clear that there can be, in
of scan, we include all possible interrung couplings, but algeneral, two kinds of localized phases. Moreover, whenever
low only those(intra)rung couplings that correspond to ran- both phases are present in the phase diagram of a particular
dom on-site chemical potentials in the original superconsystem, we again expe¢analogous to the single-channel
ductor problem. In this case, we can clearly delineate theases considered abgvihe system in the vicinity of the
phase boundaries to conclude that we have a phase diagrgshase boundary to “look” at low-energies similar to a
of the type shown in Fig. (@), with no transition along th®  single-chain random hopping problem with weak dimeriza-
axis at6=0 (with R now a measure of the strength of the tion (note that the numerical estimate=1 that we obtain
on-site potentials If we scan across the phase boundary at eaway from any special “multicritical” points supports this
fixed nonzero value of dimerizatiofso that we start in the picture, and our RG results provide further confirmation of
phase with zero-energy end states and leave it by increasirtpe samg

the mean-square strength of the random potentials find This is as far as we can go with an elementary transfer
that the typical localization length defined by the inversematrix analysis. For a more detailed characterization of the
Lyapunov exponent again diverges with an exponentl,  low-energy properties, we now turn to the strong disorder

and the critical density of states is again of the Dyson formRG analysis.
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VI. CRITICAL POINTS AND GRIFFITHS EFFECTS IN 1D:
RG ANALYSIS

To test the above picture in detail, we have implemented
the RG numerically in all three single-channel cases. Since

the single-channel spinful problem withotitinvariance is

essentially identical to the corresponding two-channel spin-

less problem, this last example also serves to establish th

our conclusions do not depend on any special properties of 5
the single-channel case. In the single-channel spinless caseg0.10 |

without T symmetry (and the corresponding spinful case
with T invariance, we focus mainly on the vicinity of the
phase transition af=0 (see Fig. 2 In the “spinful” case
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without T invariance, we consider the two different realiza-

10°

10*

N

10°

“9“5 described in the preV|0_us _sectlor_1—th_ese have phase FIG. 5. Fraction of isolated sites among the remaining sites for
diagrams of the types shown in FigA) (in which we scan  the two-leg ImRH ladder representing spinless fermion supercon-
across the phase boundary at nonzero dimerization so that W@cting wire. Criticalg.~0.95 is clearly identified. Inset shows the
leave the phase having end-states by increasing the strengthction of cluster decimation@ee text for details
of the onsite potentiaJsand in Fig. 4C) (in this case, we
focus on the immediate vicinity of the putative multicritical
point). (For completeness, we have also studied the trans
tions as a function of dimerization in the bipartite ladder
problems of Sec. VA.

For the 5= 0 spinless cas@nd the “spinful” T-invariant
case we consider systems with lengths as largelLas?2
X 10°. The initial conditions used have randdinterrung
hoppings chosen from a uniform distribution oJer 1,1],
and random(intra)rung couplingsu chosen from a symmet-

expect that new couplings which contribute, upon their sub-
Iéequent decimation at a lower energy, to the density of states
at that lower scale, are formed continually over all energy
scales in a scale-invariant way. The fraction of isolated sites
at criticality is therefore expected to saturate to some con-
stant at low energies. In the case of a single critical RH
chain, a quarter of the remaining sites is notionally isolated
at each stage of the RG: each site has a bond to the right and
. a e , @ Sy to the left, and the bond strengths are uncorrelated; since
ric (with either S|gln (le/qually probabl@ower-law distribution o h bond has a 50% chance of being “weak,” the site is
P(u_)=(1/29)|u| 8, Jul=1. Npte that the RG tran.sfor-- “isolated” with probability 1/4. This gives us a very direct
mation(7) can be formulated entirely in terms of the imagi- o4t for the location and nature of the critical point.

nary parts of the couplings, and this is the language that we  pegits of such a search for our spinless case are shown
use here. For the “spinful” case Withomsymmgtry, Weare  on Fig. 5. We clearly identify a criticai,~0.95, and note
restricted toL <5x 10°. When we scan at finite dimeriza- 4 the fraction of isolated sites at this critical point remains
tion, we enforce this dimerization by choosing the even an ssentially 0.25, which is evidence that the low-energy be-
odd interrung couplings from the power-law distribution payior is that of a single one-dimensional “backbone” that

P(u), but with different fixed valueSJever# Joud fOr the 456 critical. Note that it is also possible to further probe the
power-law exponents. The strength of the rung couplings 'geometry associated with the low-energy theory, as is done,
again tuned by varying the corresponding power-l_aw expo-e.g” below in our “order-parameter” studies, and even more
nentgyng: We use the “full” RG rule(7) rather than its less o, b4 stively by looking in detail at probability distributions

accgrate “max” v_ersior) since we are primarily interested_inof the various couplingévhich we have not pursued fully—
testing our physical picture for the low-energy properties

starting with a system with moderate values of the bare dis-
order.

Apart from the immediate vicinity of the putative multi-
critical point of Fig. 4C) (which we comment upon sepa-
rately), our results are equally reliable and essentially iden-
tical in all the cases studied. In the interests of brevity, below
we display in detail only the results obtained in the spinless
case at5=0 (see Fig. 2

We search for the critical point by looking at the fraction
of “isolated” sites among the remaining sites in the system:
If there areN sites left, we find all the sites that are “cov-
ered” by theN/2 strongest remaining bonds. Roughly speak-
ing, the fate of these covered sites is clear—they will be
frozen dynamically at rougly this log-energy scale. The rest
of the sites are still dynamically free at this scale, and we call
them “isolated.” In a localized phase, this fraction quickly  FIG. 6. Number of remaining sited vs log-energy scald’.
approaches zero. On the other hand, at a critical point, walso shown is the fit of the criticaN| to the formA/T'2.

1 10
r

224204-9



OLEXEI MOTRUNICH, KEDAR DAMLE, AND DAVID A. HUSE PHYSICAL REVIEW B 63 224204

the RG results shown here already confirm our basic picture 35 - - : ' ' - ' —

of the low-energy physigs N/2-width —— o
At the critical point, the number of sites remaining at the 30 1 dec error width - ,r"“*ngﬁw'

log-energy scal& =In(Q,/Q) is Np~ 1/I"?, as can be readily o5 | Né-width, inter dist - el

seen from Fig. 6. Sinchly- is essentially the integrated den- N/4-wicith, field dist e~ ga”

sity of states, this is consistent with the Dysqgi{e) 22+ .

~ 1/e|In®¢. Moreover, ag=g_., the distributions of all cou- £ e ViVl el Ve ”

plings become broader and broader onldgarithmic scale, 18 ¢ A ]
with the characteristic widths growing linearly with. This '

is shown on Fig. 7. In conjunction with our result for the 10} xxx***x

fraction of isolated sites at low energies at criticality, this 5L o et

indicates that the critical point is in the same universality g

class as the single chain RH problefhlote that since the 0¥ :

system effectively reduces to a single RH chain “backbone” 0 5 10 15 20 25 30 35 40 45

in the low-energy limit, we expeathe critical average ther- FIG. 7. At the critical point(determined from Fig. bdifferent
mal conductancec(L) of the original superconductor 10 measures of the widths of the log-coupling distributions all scale

scale akgT/ L, whereL is the length of the wire—this is linearly with T". We plotted theN/2 width of the distribution of all
consistent with the weak disorder result of Ref. 5. As mentonds, the “decimation error’ widtlidefined as the average loga-

tioned earlier, this leads us to believe that their analysis wagthm of the ratio of the decimated bond to the strongest nearby

performed only at such a critical point and does not represeriond, and also theN/4-widths of the interaction and field distribu-

the generic behavior of the systgm. tions with respect to the vertical reference coysee text for de-
Consider now the two different localized Griffiths phases.tails).

As expected, we fintll~e !/ with a continuously varying

dynamical exponenz which diverges ag~|g—g. ! (to  Pictorially, a reference dimer cover specifies some connec-

within our numerical accuragyas we tune across the critical tivity rules for the RG-formed dimers, with natural notions

point. Within our strong-disorder approach, the two Griffiths Of clusters and percolation with respect to such connectivity

phases are distinguished by the character of the correspontiles, while the RG rules prescribe the dynaniis a func-

ing RG-generated dimer patterns. To discuss this intuitivdion of increasingl’) obeyed by the clusters. Such connec-

distinction more precisely, we compare such RG-generatetivity properties can be used to distinguish between different

dimer covers against some fixed reference dimer cover. RG-generated dimer covers, and, thus, to characterize the

natural choice of the reference cover for the spinless problerdifferent phase&? Within the strong-disorder RG, this is the

at hand is a “vertical” cover with reference dimers covering distinction that captures the different “topological” charac-

the rungs of the ladder, i.e., joining the two copies of each ofer of the two Griffiths phases. _ _

the original fermions ofisc. We use this specific reference G0ing back to our numerical RG studies, we find that,

cover in our numerical studies presented below; the followWith respect to the vertical reference cover, in the phase

ing discussion, however, is fairly generéilve use the same Which obtains for strong rung couplingsmall values of)
“vertical” reference cover in the other two superconductor there are only small clusters and no connectedness across the

problems we study with the RE. whole system, while for weak rung couplingarge values

We call two sites connected by such a reference bond gf 9) there is an infinite percolating cluster that forms in the
cluster and the corresponding coupling between the twdlimit o_f large I'. This development of top_ological order for
sites afield on the cluster. Couplings that connect sites in9>Jc iS characterized by an exponghidefined by the scal-
different clusters are callddteractionsbetween the clusters. ing of the average magetization density(I'—)~(g
This terminology is borrowed from the 1D random trans- —9c)”. At criticality, the average moment of the surviving
verse field Ising modelRTFIM), but we emphasize that the clusters scales gg~T'?, which defines the exponest; in
correspondence isot exact although we do expect that the Complete analogy to the RTFI#, the exponentg for the
critical behavior, characterized with respect to a well-choseriopological order parametdf'magnetization”) can be ob-
cover, is essentially that of the RTFIlve expect this to be tained from¢ via the scaling relatiorB=2—¢. Figure 8
true because a similar analysis for the dimerized single chaighows our numerical result for tHé dependence of the av-
random hopping problem using the natural reference covegrage moment of the surviving clusters at the critical point.
consisting of alternate bonds gives an exact mapping to th&€he numerical value obtained for the exponehtis very
1D RTFIM). When a coupling connecting two sites in the close to that of the 1D RTFIM. The valyg~0.41 we infer
same cluster is decimatéfield decimation, the correspond- using the scaling relation is then very close to the corre-
ing cluster iskilled. When a coupling connecting two sites in sponding exact result for the single dimerized chauich
different clusters is decimateinteraction decimation the has ap exactly equd’ to the magnetization exponent (3
two clusters argoined into one new cluster, which is now — \/5)/2 of the 1D RTFIM?®]. We also note that, similarly to
specified by the two othgremaining end points of the two the quantum Ising model, the critical point is the point of
original clusters. The number of original sites that belong tobalance between the cluster fields and cluster interactions;
a cluster defines its “magnetic moment,” and it then makesthis is shown in the inset of Fig. 5, and provides alternative
sense to talk of a magnetization densityfor the system. means for identifying the critical point. This completes our
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l
FIG. 9. Griffiths generation of low-energy states.

pair of low-energy states is formed if there are two “iso-
lated” sites separated by a region in which all the other sites
are locked into short-rangedimen pairs. Griffiths effects
are a consequence of such isolated sites being generated suf-
ficiently often. An example of a pair of such sites is shown in
Fig. 9. The isolated sites are very weakly coupled to each
. other—the coupling is of ordee~e ¢! wherel is the
1 r 10 length of the region. In a disordered system, there is always

FIG. 8. Average moment of the remaining clusters with respecf':1 p.mbab”'j[y O,f ordeip ', with somep<'1, (.)f flnﬁjm‘? .
to the vertical reference cover. Also shown is the fit at the criticall©9ion—this gives a power-law contributione ™ P to the
point for the exponents. From this fit we obtainp~1.59, which  integrated density of states from such regions. Thusalve
can be compared with the corresponding exponent for the quantuiyaysexpect a variable power-laiGriffiths) density of states

May

Ising modelgrrem=(1+/5)/2~1.62. in such random hopping problems in which no on-site ener-
gies(i.e., diagonal termsare allowed; we conclude that Grif-
RG description of the spinless case. fiths phases are generic. The specific example shown in the

Essentially the same results are obtained for the correfigure is expected to be relevant to Griffiths effects in the
sponding spinful problem witil symmetry—this is consis- phase in which the rung couplings dominate on average. The
tent with our general argument in Sec. IV. We also repeate#egions to the left and right of the pair are intended to be a
this analysis for the specific realization of the spinful prob-caricature of thetypical regions in this regime, while the
lem without T symmetry corresponding to Fig(A4). All the ~ region in the middle is comparativelre. Decreasing the
results obtained for this case in the vicinity of the transitionstrength of the rung couplings would increase the probability
at fixed finite dimerizatiorias a function of increasing) are ~ of having such regions, corresponding to the observed in-
essentially identical to the results shown above for the spincrease in the dynamical exponent as one approaches the tran-
less case(Entirely analogous results are also obtained in alisition to the other phase. The critical point is then character-
cases for the dimerization driven transitions of the bipartitdzed by a proliferation of such Griffiths regions on all energy
ladder problems. Thus, our general picture for the low- Scales.
energy physics appears to be validated by the RG results so The picture that emerges is thus very similar to that in our
long as we are not in the vicinity of any special multicritical toy model of Sec. Il in which the low-energy states are

points. closely associated with “domain walls” between the two
Finally, a brief comment on the RG results in the vicinity different gapped phases of the pure system.
of the putative multicritical point, Fig.(&). As we scarR at It is useful, at this point, to recast some of this in terms of

5=0, strong Griffiths effects again show up clearly over athe original superconductor Hamiltoni&hsc. This will give
wide region in the vicinity of the putative multicritical point. us a somewhat different perspective on the origin of these
Moreover, the phases at large and sniaboth look “para-  low-energy states. For simplicity, we restrict the discussion
magnetic” in terms of clusters defined with respect to thebelow to the spinless case. We first examine the basic RG
vertical reference coveiand also many other reference cov- rule Eq.(7). Consider a two-site problem

ers. This is consistent with our arguments in the previous

section. However, our RG results are also inconclusive when H[«a,B8]= EaCLCa-F eﬁcgclﬁ (tcf,c[pL Aczc}ﬁ H.c.).

it comes to pinning dowp t_h_e structure of the phase diagra_rq_his can be diagonalized by an appropriate Bogoliubov
near this apparent multicritical point—again the analysis is

plagued by near-critical behavior over a wide region. Thetransformatlon to givé

corresponding long crossovers do not allow us to make any
definitive statements regarding either the presence or the uni-
versality class of such multicritical points. This remains the 1
principal unresolved question in our entire analysis of the €= |V(eat €p) 2+ A[AP= (e,— €5) 2+ 4[t[Y.
one-dimensional examples. 2

Hla,Bl=€. yl y++e_yly_+const,

From this solution, it is clear that states at bathand B
VII. HOW ARE THE LOW-ENERGY STATES simultaneously contribute to either eigenstate only if either
GENERATED? |[t|=]e,—€g| or [A|=]€,+ €g. When this happens, we can
po longer think of the two sites in isolation and need to
; 2
gecount for theresonancebetween them. Now, if| |
~|A|*~€,e5, e_ for such a resonance can be very small.

We now consider precisely how the states in the singula
low-energy tail of the density of states are generated, an
identify the corresponding Griffiths regions in the ImRH lan-
guage. As is already implicit in the above discussion, such & order to obtain a good low-energy description in such a
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situation, we would eliminate the high-energy+” state  couplings between rungs equal one another, then we would
and keep only the " state by introducing a singleffec- be forced to decimate several of them simultaneously—for
tive site with site energy_ . In our IMRH RG language, this €xample, we could be forced to eliminate only complete fer-

corresponds to a situation in which a single bond connectingion states. Within the RG approach, this could then rule out

sites on two different rungs is decimated, leaving behind on e po;sibili_ty of Griffith; effgcts. It is easy to see that t_he
site on each rung; these two remaining sites are coupled byr strictions imposed by invariance are not enough for this

; ; . to happen. On the other hanith the SR-invariant casea
weak t_)ond prgmsely _equal in magnitudesfo. On. the other simple analysis of the symmetry constraints for the corre-
hand, if there is no mixing of the stateseataindg, i.e., when

: : sponding ImRH problem shows that this is precisely what
one of the local potentials, sag,, dominates, we would han56ng8 | the strong disorder limit, this, then, is the true

eliminate the stater completely; in the IMRH RG this cor- gjgnificance of the absence or presence of SR invariance for
responds to decimating the corresponding rung. Thus, oWjuasiparticles of a superconductor.

RG procedure either eliminates a full fermion state because it
is frozen out by a strong local potential, or eliminates “half
of a fermion” from each of the two sites in resonance and
recombines the remaining halves to create a new effective In this article, we have established the existence of strong
fermion with site energy equal to the new coupling intro- Griffiths effects in one-dimensional superconducting wires in
duced(our RG is thus really defined on the correspondingwhich the quasiparticle spin is not a good quantum number.
Majorana fermion states We associated these singularities with quasiparticle states

Now, consider for concreteness the Griffiths phase irthat live on “domain walls” between adjacent large regions
which the on-site potentials dominate. At low enough enerin two different phases, one phase that supports zero modes
gies, a description in terms of isolated effective sit@#th localized near the ends of a finite system, and another that
negligible mixing between theymwith some renormalized does not support such modes.
distribution of effective site energies is clearly appropriate. An obvious question now arises: Do such effects exist in
However, to arrive at such a description, one has to firstwo or more dimensions? Thinking in terms of the ImRH
account for all the resonances at higher energy scales thRG, it does seem that such effects could exist in cases with-
arise from any anomalous regions in which hopping andbut SR invariance, particularly in the insulating phases. It is
pairing amplitudes are large compared to local potentials. A®f course nota priori clear if “isolated sites” would be
a specific example of such anomalies, consider the centr@roduced sufficiently often in the RG for this to happen.
region of Fig. 9. In the original superconductor language However, in the insulating phases, we can indeed point out a
this region corresponds to bothandt being relatively large  mechanism that is capable of generating power-law contri-
and comparable in magnitude, in addition to having a somebutions to the low-energy density of states: Since there is an
what definite relationship between their phases throughouhsulating background to start with, to produce a pair of iso-
this region. Eliminating all the resonances between the sitelated sites distancé apart (with the corresponding low-
in this region finally gives a low-energy description in termsenergy~e°e') one only needs to “break” the background
of a single effective site with an exponentially small energy.insulating pattern along a string joining the two sites—i.e.,
This effective site in the original superconductor languageone needs of orderspecific events, with the resulting occur-
clearly corresponds, in the ImRH language, to the pair ofence rate~e %' high enough to give a power-law contri-
isolated sites shown in Fig. 9. The ImMRH RG thus providespution. Note that this “string” mechanism does not require
the natural language for capturing the important low-energyinding a(rare) droplet of some other phase—in this respect,
physics. Crudely speaking, the “effective site-energies” init is fairly different from the usual Griffiths effects. Note also
the original superconductor language correspond to thehat this mechanism is operative in any dimension. Of
“cluster field couplings™ with respect to the natural vertical course, there are also other mechanisms for “filling the gap”
reference dimer cover in the IMRH RG language. Note alsén the insulating phases, but we believe there are situations
that an important ingredient of the physical picture thatwhere this “string” mechanism is the dominant one in de-
emerges is the spatial character of the quasiparticle diates termining the low-energy density of statg®©ne example
particular, note that wavefunction of a low-energy quasiparthat we have studied in detfiland where this indeed hap-
ticle in the phase with zero-energy end states is split into twens is the localized phases of a closely related 2D bipartite
spatially separated piegesSuch spatial information is also random hopping problem.
kept most naturally in the ImMRH RG; in particular, the de-
velopment of the “topological order” is seen most naturally
in this language.

Finally, we can now go back and ask what is the precise We would like to thank F. D. M. Haldane, B. I. Halperin,
role played by the various symmetry restrictions. As dis-M. Hastings, I. Gruzberg, R. Moessner, and A. Vishwanath
cussed above, Griffiths effects in the INRH RG language aréor valuable discussions, and C. Mudry and T. Senthil for
associated with situations in which we repeatedly eliminataiseful comments on the manuscript. One of(KD.) was
only a subset of the couplings connecting two rurifygs  supported by NSF Grant No. DMR-9809483 while at Princ-
instance, onlyone of the couplings in the spinless example eton and by NSF Grant No. DMR-9981283 at Harvard. The
above, thus splitting the original fermion states. Now, if others acknowledge support of NSF Grant No. DMR-
some symmetry restrictions require that some of the origina9802468.
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