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Griffiths effects and quantum critical points in dirty superconductors without spin-rotation
invariance: One-dimensional examples
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We introduce a strong-disorder renormalization group~RG! approach suitable for investigating the quasi-
particle excitations of disordered superconductors in which the quasiparticle spin is not conserved. We analyze
one-dimensional models with this RG and with elementary transfer matrix methods. We find that such models
with broken spin rotation invariancegenericallylie in one of two topologically distinct localized phases. Close
enough to the critical point separating the two phases, the system has a power-law divergent low-energy
density of states~with a nonuniversal continuously varying power law! in either phase, due to quantum
Griffiths singularities. This critical point belongs to the same infinite-disorder universality class as the one-
dimensional particle-hole symmetric Anderson localization problem, while the Griffiths phases in the vicinity
of the transition are controlled by lines of strong~but not infinite! disorder fixed points terminating in the
critical point.
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I. INTRODUCTION

Recently, there has been considerable theoretical act
concerning the effect of disorder on the quasiparticle sp
trum in dirty superconductors with different pairin
symmetries.1,2 The basic philosophy underlying most o
these developments is to start with a weakly disordered p
lem and investigate the fate@in some renormalization grou
~RG! sense# of disorder at large length scales using fie
theoretic methods.3 An analysis of this sort depends mo
crucially on the possible symmetries of the quasiparti
Hamiltonian, and it is the corresponding universal proper
that have received most attention thus far. These include
leading effects of disorder on the conductivity and density
states in the delocalized regime, as well as the universal s
ing properties of the localization transition.

Our focus in this article is quite different: We ask if Gri
fiths effects, whereby rare configurations of the disorder
tential over large regions of space give rise tononuniversal
contributions that dominate some low-energy property, m
be important in dirty superconductors. In particular, are th
situations in which such Griffiths effects lead to a singu
enhancement in the quasiparticle density of states near
Fermi energy? Unfortunately, this intriguing possibility h
not attracted much attention in previous work.

Such issues are difficult to address within the we
disorder framework mentioned above. Instead, we introd
a RG approach that is suitable for situations in which
effective value of disorder becomes large at low energ
Our basic result is simply stated: It is indeed possible
such Griffiths effects to dominate the low-energy properti
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at least in one-dimensional models with either triplet pairin
or strong spin-orbit effects, or spin-flip scattering off froze
magnetic impurities. More specifically, we show that su
models with broken spin rotation~SR! invariancegenerically
lie in one of two distinct localized phases. These two pha
are distinguished by a topological property~reflected in the
presence or absence of zero-energy end states in a larg
finite wire! that makes it impossible to go smoothly from on
phase to the other. At the phase transition separating the
the effective disorder grows without bound when viewed
ever-smaller energy scales, and the low-energy density
states behaves asr(e);1/eu ln3eu ~Dyson4 singularity!. The
localized phases near this transition, on both sides, areGrif-
fiths phaseshaving a power-law singularity~with a nonuni-
versal exponent! in the low-energy density of states; the
Griffiths phases are themselves characterized by strong~but
not infinite! effective disorder in the limit of low energies
@Note that a recent weak-disorder analysis, Refs. 5 and 6
this problem has been carried out only at criticality. T
results of Refs. 5,6 for the thermal conductance and the d
sity of states are consistent with the predictions of our R
approach at such a critical point—however, as we show h
the generic behavior of the system is localized rather t
critical.7#

The detailed scaling properties of the low-energy stro
disorder critical point and the nearby Griffiths phases are
course, specific to our one-dimensional~1D! examples.
However, our RG approach is well suited for studying po
sible Griffiths effects in two or more dimensions as well, a
some speculations along these lines are briefly discusse
wards the end of this article.
©2001 The American Physical Society04-1
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II. PHYSICAL PICTURE AND MOTIVATION

Before plunging into the details of our analysis, it is us
ful to have a heuristic picture of the basic physics of our
problems. To this end, we consider a simple toy model fo
disorderedspinless~more physically, spin-polarized triplet!
superconducting ‘‘wire’’ with a single transverse mod
~channel! active. We model our system by a lattic
Bogoliubov–de Gennes~BdG! Hamiltonian

Ĥ5(
n

~ tcn
†cn111Dcn

†cn11
† 1H.c.!1(

n
encn

†cn . ~1!

In this toy model, the nearest neighbor hopping amplitudt
and the ‘‘p-wave’’ pairing amplitudeD are real constants
while the impurity potentialen can take on valuesV1 andV2
with some probabilitiesp and 12p, respectively. Further-
more, we stipulate thatuV1u,Vc and uV2u.Vc , whereVc
[2utu.

The significance of the critical valueVc is readily seen by
solving the pure problem with fixeden5V, i.e., with the
chemical potential equal to2V. One easily finds that there i
a gap in the quasiparticle excitation spectrum around
Fermi energy for bothuVu.Vc and uVu,Vc . However, at
the critical pointuVu5Vc , the system is gapless. Thus, the
are two different gapped phases for our pure system~the
phase withuVu.Vc simply corresponds, in the absence of t
pairing term, to a situation in which the Fermi level has go
below the bottom of the band or above the top of the ba
thus, it is essentially a ‘‘band insulator’’!. For our purposes
here, the important distinction between the two phases ha
do with low-energy bound states at the ends of a long
finite wire of lengthL with free boundary conditions. In th
‘‘gapped superconductor’’ phase withuVu,Vc , such a wire
has a single quasiparticle state below the gap with an e
tation energy that is exponentially small in the lengthL; the
corresponding wave function has weight only in the vicin
of the two ends of the chain~in the language of Ref. 8, in th
L→` limit, we thus have two zero-energy Majorana ferm
ons, one at each end of the chain!. In the other gapped phas
uVu.Vc , there is no such low-energy quasiparticle state.9

Now, imagine a disorder realization in which the potent
has valueV1 throughout the region between, say, sites 0 a
L, and valueV2 out to a distanceL on either side of this
central segment. The value of the potential is left unspeci
in the rest of the system. The probability of this happening
pL(12p)2L5e2cL, with c appropriately defined. Now, th
central region can be thought of, for largeL, as a finite wire
in the phase withuVu,Vc surrounded byvacuum~this is
reasonable since the long segments on either side ca
roughly thought of as regions with no particle because
Fermi energy2V2 has gone below the bottom of the ban
effective couplings of the central region with the rest of t
system, mediated through such isolating segments, are e
nentially small inL). Such a situation will lead to a low
energy quasiparticle state with excitation energyeL;e2c8L,
with some c8 of order one. Since such low-energy stat
living on ‘‘domain walls’’ between large regions in ‘‘oppo
site’’ phases can happen anywhere along the entire le
22420
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of our wire, such disorder configurations will give a no
zero contribution in the thermodynamic limit to the dens
of states. This contribution can be estimated asrGriff(e)
5*dL d(e2e2c8L)e2cL;e2111/z, where we have intro-
duced the dynamical exponentz5c8/c. This serves as a
lower bound on the actual low-energy density of states in
disordered problem—thus, wegenericallyhave a power-law
behavior ~with a nonuniversal continuously varying expo
nent! of the density of low-energy excitations in our to
model. Although this model is admittedly crude, the pictu
of rare configurations of disorder over large regions of sp
leading to singular low-energy behavior is at the heart of
more precise strong-disorder RG analysis of Sec. VI.

We conclude this section with some comments on
choice of toy model and, more generally, on the results
tained in this article. First, note that we completely ignor
the self-consistency condition that, in principle, determin
D in terms of the other parameters.10,11 This is not expected
to matter; in fact, the precise choices made for various
rameter values are not very important for our conclusion
nor is it important that our toy model has time reversal sy
metry. As far as this model is concerned, the only import
thing is the existence of two different gapped phases, w
one of them supporting zero-energy end states.@Note that
this is the main distinction of our models without SR inva
ance from the models with SR invariance: When the qua
particle spin is a good quantum number, there are no s
end states in any finite open chain, and we expect no G
fiths effects in this case—this will also become clear fro
our more detailed RG analysis.#

Another concern is that we are treating a one-dimensio
superconductor with the BdG equations, which ignore qu
tum fluctuations of the condensate order parameterD. When
the superconductor is in more than one dimension,D does
have a nonvanishing static component at zero tempera
but in a strictly one-dimensional system, divergent quant
fluctuations mean that the superconducting state does
have true long range order or a gap. However, in hig
anisotropic quasi-one-dimensional superconductors,Tc ~and
the gap! can, in principle, be large compared to the inte
chain hopping energy, and our approach should then app
the range between these two energy scales~while no such
regime appears to exist in quasi-one-dimensional super
ductors known so far,a priori, there are no physical reason
that would prevent this from happening in some cases12!.
Another possible physical realization1 is that of a vortex in a
three-dimensional gapped superconductor in the presenc
frozen magnetic impurities or spin-orbit scattering. In suc
situation, the effect of disorder on the quasiparticle sta
confined to the vortex core can be analyzed by a 1D B
equation approach such as the one we employ. Naturally
choice of probability distributions for various quenched ra
dom variables will be different depending on the physic
realization one is interested in~for instance, it is more natura
to use a quenched randomD with zero mean when consid
ering the vortex problem!. However, as will be clear from
our later analysis, the precise form of the probability dist
bution for various bare couplings in the problem does
play an important role in determining the nature of the lo
4-2
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energy physics. Finally, note that the effects of the resid
quasiparticle interactions are beyond the scope of
analysis.

III. FORMALISM, SYMMETRY CLASSES,
AND OUR 1D MODELS

It is useful to set up notation and review some basics13,2

before proceeding to our actual calculations. To this e
consider a general lattice BdG Hamiltonian

ĤSC5(
ab

S habca
†cb1

1

2
Dabca

†cb
†1

1

2
Dab* cbcaD , ~2!

where we use a composite labela5$ i ,m% for the site and
spin indices of fermion orbitals. Hopping amplitudes, t
effects of spin-orbit interaction on the hopping amplitud
spin-flip scattering from frozen magnetic impurities, and ra
dom potential terms corresponding to nonmagnetic imp
ties are now all included inhim, j n , while pairing amplitudes
are represented byD im, j n . Hermiticity requireshba5hab* ,
and we chooseDba52Dab consistent with the fermion an
ticommutation relations. Additional restrictions~to be re-
viewed below! arise whenT invariance is a good symmetr
~we will not consider cases with SR invariance in this a
ticle!.

The spectrum of quasiparticle excitations forĤSC is speci-
fied by the spectrum of a~Hermitian! matrix

H5S h D

2D* 2h* D ~3!

acting in an enlarged ‘‘particle-hole’’ Hilbert space
A particle/hole mixing unitary transformation

U05
1

A2
S 1 2 i

1 i D ^ 12N

~whereN is the number of lattice sites!, which acts indepen-
dently on states corresponding to eacha, transformsH into
an antisymmetricpure imaginaryform

HIm5U0
21HU05S i Im~h1D! i Re~2h1D!

i Re~h1D! i Im~h2D!
D . ~4!

This representation is well suited for a discussion of h
transport properties of the quasiparticles. Indeed, the qu
particle thermal conductivity is simply proportional tokBTs,
wheres is the T50 conductivity of a~normal! system of
noninteracting fermions described by the lattice Schro¨dinger
equation corresponding toHIm ~see Ref. 2, and reference
therein!. ~Note thatHIm may also be obtained, as in Ref.
from the originalĤSC by writing everything in terms of Ma-
jorana fermions and then doubling the system, and we
therefore use a ‘‘copy index’’K below to label the different
blocks ofHIm .)

Most of our discussion will use this pure imaginary form
In the absence of both SR invariance andT invariance, the
different matrix elements ofHIm take on roughly indepen
dent imaginary values~apart from the requirements impose
by hermiticity!. Thus, we have a generalpure imaginary
22420
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random hopping~ImRH! problem on adoubledlattice. Each
original fermion orbitala5$ i ,m% is ‘‘represented’’ by two
‘‘copies’’ I a and IIa; the energy of an orbitala is repre-
sented by an imaginary hopping amplitude between Ia and
IIa, while hopping and pairing amplitudes between two o
bitals a andb are represented by imaginary hopping amp
tudes between the two pairs$Ia,IIa% and$Ib,IIb% @see Fig.
1~a!#.

In the presence ofT invariance,h andD satisfysyh* sy
5h andsyD* sy5D, wheresy5sy^ 1N andsy acts on the
spin degree of freedom at each site. The corresponding
strictions onHIm are best stated as follows: Group the d
ferent spin states on the same lattice sitei and with the same
copy indexK into a block pair$Ki↑,Ki↓%. T invariance then
implies that there are no internal couplings within su
blocks. Moreover, the couplings between two blocks w
the same copy index have a form

t̂block5S i a i b

i b 2 i a D 5 ir S cosu sinu

sinu 2cosu D ~5!

with real a and b (r 5Aa21b2), while the couplings
between two blocks with different copy indices have a fo

S ic 2 id

id ic D
with realc andd. Simply relabeling the spin states of copy
brings all block couplings to the same form Eq.~5!, and we
will find it convenient to discuss theT-invariant case using
this picture of block sites connected by block couplings@see
Fig. 1~b! where each fat arrow represents the correspond
block coupling Eq.~5! with independenta andb, and differ-
ent arrows are roughly independent of each other#. We also
use another representation ofH in theT-invariant case: This
is obtained13 by performing a particle-hole and spin-up-dow
mixing unitary transformationUt5(1/A2)„12^ tz1sy^ tx…

^ 1N ~here,12 and the Pauli matrixsy act on the spin label,
while the Pauli matricest act on the particle-hole label!:

Ht5Ut
21HUt5S 0 hsy2D

syh1D* 0 D . ~6!

Ht thus has abipartite complex hopping form, which will
prove useful for our transfer matrix analysis~note however

FIG. 1. ~a! General pure imaginary representation of hoppi
(t) and pairing (D) couplings between two fermion orbitalsa and
b. ~b! In the T-invariant case, it is more convenient~see text! to
work with block sites and block couplings shown here.
4-3
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that strong correlations among matrix elements ofHt limit
its usefulness in other contexts!.

Finally, in the spinless case with noT invariance, we sim-
ply drop the spin label altogether and do not have any c
straints on the bonds of the corresponding ImRH proble
@Here and elsewhere in this article, we use the designa
‘‘spinless’’ to also refer to all situations in which the sp
label of the electron can be dropped—such as spin-polar
triplet superconductors. Also, in the rest of this article, we
not consider specifically the spinless case withT invariance,
but only mention the relevant results as we go along. T
case is very special2 and maps onto a class of bipartite ho
ping problems that have been studied both in one14 and two15

dimensions. In one dimension, our RG approach yields
sults consistent with what is known from Ref. 14 and c
provide more details about the low-energy properties of
particular system in this universality class, while some tw
dimensional systems in this universality class will be d
cussed separately.16#

In this paper, we consider three one-dimensional syste
the spinless superconductor withoutT invariance, the ‘‘spin-
ful’’ T-invariant superconductor, and the ‘spinful’ superco
ductor withoutT invariance. In all three examples, the bu
of our discussion is for the case with a single transve
mode~channel! present. However, as will become clear fro
our analysis of the ‘‘spinful’’ superconductor withoutT in-
variance, our basic conclusions regarding the low-ene
physics apply equally well for the multichannel case of
three problems.

We model these systems by the appropriate BdG Ha
tonians with only nearest neighbor hopping and pairing a
plitudes, in addition to same–lattice-site terms~the restric-
tion to such nearest neighbor models is not at all crucial
any of our conclusions!. The ImRH problem correspondin
to the single-channel spinless case is a two-leg ladder
all couplings pure imaginary and roughly independent,
no other restrictions—in particular, couplings along t
rungs of the ladder are allowed. Such ‘‘rung-coupling
@which we will sometimes refer to as ‘‘vertical’’ couplings—
see Fig. 1~a!# correspond to any on-site terms in the origin
lattice BdG Hamiltonian; in the spinless case, these can o
be random potential terms, but more generally, one can
have ‘‘s-wave’’ pairing amplitudes and spin-flip scatterin
potentials~the latter due to frozen magnetic impurities!. For
the single-channel ‘‘spinful’’T-invariant case, the corre
sponding ImRH problem is an analogous two-leg ladder
block sites with pure imaginary block couplings that a
roughly independent of one another—in other words,
have a four-leg ladder with this special block structure.
nally, the single-channel ‘‘spinful’’ case withoutT invari-
ance is a pure-imaginary four-leg ladder with no other
strictions. These ladder problems are related to the bipa
random hopping~RH! ladder problems14 in which rung cou-
plings are disallowed but the other hopping amplitudes
not have to be pure imaginary—as mentioned earlier, th
are in the same universality class as spinless supercondu
wires with T invariance.~The connection between this sp
cial class of models with sublattice symmetry and the m
22420
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general systems that we study here is in fact surprisin
close, as will become apparent from our transfer matrix a
RG analyses.!

Finally, it is worth emphasizing at this point that our fo
cus in all these cases is on the low-energy physics: The
tems mentioned above will all differ from each other
higher energy scales, particularly in the initial ‘‘diffusive
crossover regime that would be present in any weak
disordered problem. However, at energies below this cro
over scale, the effective value of disorder becomes large
all these systems can be described by a unified physical
ture.

IV. STRONG-RANDOMNESS RG APPROACH

In order to go beyond the heuristic ideas of Sec. II,
need acontrolled approach that works in situations wit
strong Griffiths effects@such thatz, defined by the low-
energy behaviorr(e);e2111/z of the density of states, is
large#. Such situations are expected to correspond to la
values of effective disorder in the low-energy limit~in fact, a
simple scaling argument indicates that the width of the d
tribution of the logarithms of the effective couplings is e
pected to be of orderz in the low-energy limit!. We are thus
led to formulate a strong-disorder RG approach to this pr
lem.

Consider the ImRH HamiltonianHIm5( i j t i j u i &^ j u with
t j i 5t i j* 52t i j . The eigenstates ofHIm occur in pairs with
energies6e, and the strong-randomness RG proceeds
eliminating, at each step, such a pair of states with ener
at the top and at the bottom of the band: One finds the lar
~in absolute value! coupling in the system, sayt12 connecting
sites 1 and 2; this defines the bandwidth of the probl
2V52max$utij u%. If the distribution of the couplings is broad
the eigenfunctions of the two-site problemHIm@1,2# will be
good approximations to the eigenstates with energies6V,
since the couplingst1 j and t2 j of the pair to the rest of the
system will typically be much smaller. These couplings c
then be treated perturbatively, and eliminating the hig
energy states living on the sites 1 and 2 gives us the follo
ing effective couplings between the remaining sites:

t̃ i j 5t i j 2t i1~ t12
† !21t2 j2t i2~ t21

† !21t1 j . ~7!

Clearly, the renormalized HamiltonianH̃Im again corre-
sponds to a pure imaginary hopping problem, but with t
fewer sites; in particular, the matrixH̃Im has no diagonal
terms,17,18 t̃ i i [0.

Some remarks on the proposed RG approach are in o
here. Note that our RG rule Eq.~7! is anexacttransformation
for the zero-energy wave function, and as such provides
formation on the zero-energy localization properties. From
numerical point of view, it can be viewed as a constructi
of the zero-energy wave function in ana priori stable man-
ner. Moreover, this transformation can also be viewed as
approximate but accurate scheme for evaluating the ‘‘Stu
sequence,’’ i.e., the integrated density at very low energ
with the approximations involved being well-controlle
when the low-energy effective couplings are broadly distr
4-4
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uted. Lastly, note that in the limit of strong disorder and
the absence of strong correlations between different c
plings, the right hand-side of Eq.~7! can be replaced with the
‘‘max’’ ~in absolute value! of the three terms.

So far, we have ignored the restrictions that would
imposed on the couplings of the ImRH problem in a ‘‘spi
ful’’ ~i.e., when both spin species need to be conside!
T-invariant situation. In this case, it is more natural to wo
with the block sites and block couplings defined earlier@Fig.
1~b!#. To begin with, note that the eigenstates now occu
doubly degeneratepairs with energies6e. Thinking in terms
of blocks automatically incorporates this degeneracy, si
the eigenstates of a two–block-site problemHt@1,2# come in
such doubly degenerate pairs with energies6r 125

6Aa12
2 1b12

2 . Our RG approach now eliminates four states
each step, two at the top and two at the bottom of the b
with energies6V, whereV[max$r ij %. The resulting effec-
tive block couplings among the remaining block-sites
again given by Eq.~7!, but now eacht̂ ij is a 232 matrix of
the form~5!. The effective problem is again an ImRH pro
lem in the same block-form, and no block-diagonal terms
generated. For the RG rule Eq.~7!, the flows of bond ener-
gies r and bond anglesu do not separate. However, fo
strong disorder and in the absence of strong correlations~i.e.,
roughly, when the ‘‘max’’ RG rule applies! the energy vari-
ablesr flow exactly as in the ImRH representation of a sp
less superconductor withoutT invariance, while the angle
variables simply randomize. Thus, we expect essenti
identical results for this ‘‘spinful’’ problem withT invari-
ance and the corresponding spinless problem withoutT in-
variance whenever both flow to strong disorder sufficien
rapidly.

V. CRITICAL POINTS AND GRIFFITHS EFFECTS IN 1D:
TRANSFER MATRIX ANALYSIS

Before we go on to our more detailed RG analysis of
low-energy properties, it is useful to have a picture of t
phase diagram in each case. We use an elementary tra
matrix analysis to develop such a picture in terms of
zero-energy localization properties of the system. The g
here is to show by direct means thatgenericallyall our mod-
els are localized, and to demonstrate that there are cri
points representing transitions between distinct locali
phases; of course, these critical points can only be acce
by fine-tuning the disorder distributions.

In general terms, we are looking at the zero-energy loc
ization properties ofM-leg ladder systems governed by
Schrödinger equation

ecW n5 t̂ ncW n111 t̂ n21
† cW n211ûncW n , ~8!

where t̂ n and ûn areM3M matrices, and the wavefunctio
cW n is an M-dimensional vector defined at each rungn. We
find it convenient to work with the following transfer matri
formulation:
22420
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S cW n11

t̂ n
†cW n

D 5S t̂ n
21~e2ûn! 2 t̂ n

21

t̂ n
† 0

D S cW n

t̂ n21
† cW n21

D ; ~9!

this defines elementary transfer matrixT̂n .

A. The bipartite ladder problems:

To begin with, consider the bipartite problem mention
above, in which one hasM coupled chains with no rung
couplings, ûn[0. This system was studied by Brouwe
et al.14 who found that for both real or complex hoppin
amplitudes there areM11 localized phases separated byM
dimerization driven delocalized critical points; each critic
point exhibits a strong Dyson singularity in the density
statesr(e);1/eu ln3eu. Here, we rederive by completely e
ementary means the existence ofM delocalized critical
points, and also characterize theM11 distinct localized
phases; the ideas introduced in the process will genera
naturally to our superconductor systems.

Being bipartite, the two sublattices decouple ate50:

T̂n11T̂n5S 2 t̂ n11
21 t̂ n

† 0

0 2 t̂ n11
† t̂ n

21D . ~10!

We are thus led to study the Lyapunov spectrum of the m
trix products t̂2k

21 t̂2k21
†

••• t̂2
21 t̂1

† and t̂2k
† t̂2k21

21
••• t̂2

† t̂1
21. At

zero dimerization (t̂2k and t̂2k11 distributed identically! the
Lyapunov spectra of both products~consisting ofM distinct
Lyapunov exponents in the general case! are identical and
symmetric around zero, and the full Lyapunov spectrum~of
the full transfer matrix product! is doubly degenerate. Thus
for evenM the smallest~in absolute value! Lyapunov expo-
nent is nonzero and the zero-energy modes are locali
while for oddM there is always a zero Lyapunov expone
~The actual values of these exponents are not of much c
cern here, only the fact that they are all distinct.! Now, con-
sider adding dimerization by simply multiplying every od
bond t̂2k11 by a scale factore d and every even bondt̂2k by
a factore2d. Clearly, the whole Lyapunov spectrum for on
reduced~sublattice! problem is shifted rigidly byd ~and by
the exactly opposite amount for the other sublattice!. Thus,
as we scand from 2` to 1`, there will be exactlyM points
where two of these exponents of the full transfer matrix cr
zero. For the given sublattice, if we label each noncriti
region by (k,M2k) with k growing modes andM2k de-
caying modes, these critical points represent consecu
‘‘delocalization’’ transitions (k,M2k)→(k11,M2k21).
Of course, this can also be restated in terms of the numbe
zero-energy states localized at each end in a finite odd-le
chain with free boundary conditions, and provides a ‘top
logical’ distinction between the different localized phase
each transition corresponds to a single zero-energy state
coming delocalized and migrating from one end of the ch
to the other.

In a bulk system, at any of these critical points, one h
two zero-energy delocalizedLyapunov modes~linear combi-
nations of which can roughly be interpreted as a ‘‘le
4-5
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moving’’ and a ‘‘right-moving’’ slow modes!. Since any de-
scription of the low-energy properties of the critical syste
in terms of such ‘‘slow’’ modes has to respect the bipart
nature of the original problem, it is natural to expect th
such a low-energy effective theory is in the same universa
class as the bipartite single chain RH problem.19 This pro-
vides a clear rationale for the critical low-energy density
states to be of the Dyson form. Similarly, we expect that
localized phases in the vicinity of any critical point look,
low energies, similar to the dimerized Griffiths phases o
tained by introducing a small amount of dimerization in t
single chain problem—in particular, we expect Griffiths s
gularities in the density of states consistent with the res
of Ref. 14.

B. Single-channel spinless superconductor without T
invariance

Returning to the dirty superconductor problems, consi
first the spinless fermion system with noT invariance in the
ImRH language. In this case, the rung coupling is of the fo
ûn5mnsy with some realmn (sy acts on the copy labelK),
while the hopping term is a general pure imaginary 232
matrix t̂ n . Because of the identitysyâ

21sy5âT/det â valid
for any 232 matrix â, the zero-energy transfer matrice
‘‘decouple:’’

T̂n52S 1 0

0 sy
D S mnt̂ n

21sy t̂ n
21sy

tnt̂ n
21sy 0

D S 1 0

0 sy
D , ~11!

wheretn5det t̂ n . Thus, Lyapunov exponents of the produ
of T̂n are given by a ‘‘superposition’’ of the Lyapunov ex
ponents of the product ofAutnu t̂ n

21sy and of the product of

S mn /Autnu 1/Autnu

sgn~tn!Autnu 0
D .

The former product is very similar to the produ
Pkt̂2k

21 t̂2k21
† studied earlier~note, however, the particula

‘‘normalization’’ used here!; the Lyapunov spectrum con
sists of two exponents6g t , with g t of order one. The latter
product is essentially the transfer matrix product ate50 for
a 1D Anderson problem with random energies6mn ~de-
pending on the sign oftn) and random hopping amplitude
Autnu; the two corresponding exponents are6gm . The full
Lyapunov spectrum thus consists of the four expone
6g t6gm . As we increase the strength of the rung couplin
mn ~e.g., by increasing the root mean square strengthR

[Rm[Am2 with m̄50 kept fixed! from 0 to `, gm also
increases from 0 tò . Thus, at some critical strengthR
5Rc of the rung couplings,gm will equal g t , and two
Lyapunov exponents will be zero corresponding to an i
lated delocalized critical point along theR axis.

Now, in the superconductor problem, there are no eig
states at precisely zero energy in any system—this is du
the presence of the rung couplings. Nevertheless, there
be states with exponentially small~in system size! energy,
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and the localized phases on either side of the critical po
can again be characterized in terms of such almost–z
energy end states. Consider again an open odd-length c
When mn[0 ~and d[0), there are two zero-energy state
one at each end of the chain. Turning on the rung coupli
enables the two to mix, but since they are separated by
entire length of the chain, the splitting is exponentially sm
in the length of the chain—as long asR,Rc . Thus, in this
phase, there will be two such~essentially! zero-energy end
states. In terms of the quasiparticle spectrum of the orig
superconductorĤSC, there is asinglequasiparticle state with
an exponentially small energy and a wave function w
weight only at the two ends of the chain. On the other ha
in the phase withR.Rc , there are no such end states wi
nearly zero energy, as may be argued by starting with
limit of large mn . Thus, we have two different localize
phases distinguished by this topological property; if we th
in terms of a more general ‘‘dimerization–rung coupling
(d2R) parameter plane, we have a phase diagram sh
schematically in Fig. 2. Moreover, we again expect the lo
energy properties in the vicinity of the transition between
phases to be in the universality class of the single ch
bipartite RH problem in the vicinity of its zero-dimerizatio
critical point. In particular, we again expect Griffiths sing
larities in the density of states of either localized phase in
vicinity of the critical point—our expectations will be born
out by the more detailed RG analysis in the next section

C. Single-channel spinful T-invariant superconductor

Consider now the ‘‘spinful’’ system withT invariance
~but no SR invariance!. In the bipartite representation, Eq
~6!, the rung couplingûn and the hopping termt̂ n are

ûn5S 0 wnsy

wn* sy 0 D , t̂ n5S 0 ân

b̂n 0 D ;

herewn is somec-number,b̂n52ân* , and ân is some gen-
eral complex 232 matrix. From the transfer matrix, Eq.~9!,
the sublattice decoupling at zero energy is seen immedia
on one sublattice, we need only consider the product of

FIG. 2. Schematic phase diagram in thed-R plane for both the
general spinless case withoutT invariance, and the ‘‘spinful’’
model withT invariance. We useR to denote some measure of th
strength of the rung couplings which correspond to the rand
on-site terms of the original superconductor problem~e.g., for a
symmetric distribution of random rung couplings, we can defineR
to be a root mean square of this distribution!. The vicinity of the
phase boundary is expected to exhibit strong Griffiths effects.
4-6
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Q̂n52S ân
21wnsy ân

21

ân
T 0

D . ~12!

Lyapunov exponents of this product together with their ne
tives~from the other sublattice! form the full Lyapunov spec-
trum of the system. But this product further ‘‘decouples
precisely as in Eq.~11! into the product ofAuanuân

21sy and
the product of

S wn /Auanu 1/Auanu

an /Auanu 0
D ;

herean5det ân . Lyapunov exponents of the former prod
uct are 6ga with some ga of order 1. However, the 1D
Anderson localization problem corresponding to the la
product is non-Hermitian: while the hopping amplitudes c
be chosen real and equal toAuanu, the on-site energies
uwnueicn are complex, with the phasescn having contribu-
tions from the phases of bothw and a. Nevertheless, the
Lyapunov spectrum still consists of two exponents6gw .
The spectrum of the product of theQ̂n is thus 6ga6gw ,
and the other sublattice merely duplicates this to make
full Lyapunov spectrum doubly degenerate. Now, all w
need to know is that for small values of rung couplings
correspondinggw is also small, while for large values o
rung couplingsgw is large. Then, as in the spinless cas
there is an isolated delocalized critical point along t

R[Rw[Aw2 axis for some critical strengthRc of the rung
coupling terms~at whichgw5ga). Note that at this critical
point, a total of four Lyapunov exponents will simulta
neously cross zero; the corresponding two pairs of crit
modes are related to each other byT invariance. Again, the
phase withR,Rc is characterized by the presence of e
states with exponentially small energies. The only differen
from the spinless case is that there are now four of them
this corresponds, in terms ofĤSC, to two T-symmetry re-
lated quasiparticle states, each with an exponentially sm
energy and a wave function having weight only at the t
ends of the chain. The phase withR.Rc again has no such
nearly zero-energy end states. In the fulld-R plane, we thus
have the schematic phase diagram shown in Fig. 2. Ag
the critical point and the phases in its vicinity are expected
look, at low energies, similar to those in the single chain R
problem, with an additional degeneracy introduced byT in-
variance. A direct numerical check of the Dyson form for t
critical density of states in this ‘‘spinful’’T-invariant case is
shown in Fig. 3, while the RG results of the next secti
confirm the underlying physical picture in detail.

Parenthetically, we also note that these Lyapunov ex
nent crossing arguments imply that in all cases considere
far, the inverse of the smallest Lyapunov exponent diver
as ug2gcu21 whereg is some tuning parameter that drive
the system through the critical point atgc . This implies that
the exponentn for the typical localization length isn51 at
all these transitions.
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D. Single-channel spinful superconductor
without T invariance

Finally, we turn to the ‘‘spinful’’ case with neitherT in-
variance nor SR-invariance~again, with only a single trans
verse channel!. ~Note that a quasi-1D spinless fermion supe
conductor with two transverse channels would also b
modeled by the same BdG problem, with a somewhat diff
ent interpretation for the various couplings. Thus, analysis
this case is of value in demonstrating that our basic con
sions are not special to the single-channel case in any of
problems we consider.!

In this case, we have been unable to come up with
simple decoupling scheme that maps the correspond
transfer matrix to that of some problem with sublatti
symmetry—the exact mapping we have used earlier is t
special to the two single-channel cases considered ab
However, when the rung couplings are all zero, we do kn
that the corresponding bipartite four-leg ladder has fi
phases as we scan the dimerization parameterd—these are
labeled (k,42k) with k50,1,2,3,4 corresponding to 42k
zero-energy states localized at one end andk states localized
at the other end for a finite ladder with an odd number
rungs and free boundary conditions. In particular, in the
cinity of d50 one has two such states at each end. N
turning on some weak rung couplings allows these two sta
~at each end! to mix amongst themselves, and there will th
be no states with exponentially small energies in this regim
On the other hand, the same is clearly true for very la
values of the rung couplings. Thus, the phases obtaine

FIG. 3. Numerical check of the Dyson singularity in the ‘‘spin
ful’’ T-invariant case. Number of states with energies betwee
andE for an open chain of lengthL5105, averaged over five dis-
order realizations, is plotted vs the log-energy scaleGE5 ln(1/E).
Independent intersite couplings~real and imaginary parts, of inde
pendent hopping and pairing amplitudes! are chosen from a uniform
distribution over@21,1#, while independent on-site couplings~real
chemical potential and real singlet pairing amplitude! are chosen
from a uniform distribution over@2W,W#. Critical Wc51.630
60.001 was found accurately from numerical transfer matrix ana
sis. At this point, we clearly haveNG;1/G2 ~which is shown dis-
placed from the data for clarity!. We also show several off-critica
points and give rough estimates of the corresponding dynam
exponentsz from the Griffiths fitsNE;Ed/z over 4,NE,1000.
4-7
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either case in the vicinity ofd50 are expected to ‘‘look’’ the
same ~this is made more precise later using our RG a
proach!.

The question then arises: Is there a single interven
phase~at d50) which is topologically different? This would
result in two phase transitions as we scan the magnitude
the rung couplings. Another simple possibility is that there
no transition at all as a function of increasing rung couplin
Of course, there can also be other more complicated
narios ~some possibilities for the full phase diagram a
sketched in Fig. 4!. Moreover, since there are several ind
pendent rung couplings corresponding to each physical
tice site, there are many different ways of ‘‘increasing t
rung coupling’’ and the possible phases and transitions
countered along the way will most likely depend on how
scan.

To get a more detailed picture, we performed an extens
numerical transfer matrix analysis~to obtain accurate results
we used the technique of Ref. 20!, as well as exact diagona
ization studies, for particular choices of scan. In one cho
of scan, we include all possible interrung couplings, but
low only those~intra!rung couplings that correspond to ra
dom on-site chemical potentials in the original superc
ductor problem. In this case, we can clearly delineate
phase boundaries to conclude that we have a phase dia
of the type shown in Fig. 4~A!, with no transition along theR
axis atd50 ~with R now a measure of the strength of th
on-site potentials!. If we scan across the phase boundary a
fixed nonzero value of dimerization~so that we start in the
phase with zero-energy end states and leave it by increa
the mean-square strength of the random potentials!, we find
that the typical localization length defined by the inver
Lyapunov exponent again diverges with an exponentn51,
and the critical density of states is again of the Dyson fo

FIG. 4. Possible phase diagrams in thed-R plane for the ‘‘spin-
ful’’ case withoutT symmetry. We useR to represent some measu
of the strength of the rung couplings. On the diagrams, we de
the phases with zero-energy end states by 1 and the phases w
such states by 0. A and B represent two simple possibilities, w
a more complicated case with a multicritical point is shown in
Our numerical transfer matrix studies tentatively suggest that in
most ‘‘random’’ such superconductor~i.e., with all couplings
present and independent! the phase diagram is very nearly that
the panel C. In many other cases~e.g., when we allow only on-site
chemical potentials in the original superconductor problem,
completely general intersite couplings!, we observe the phase dia
gram A. We have not found realizations that would clearly exh
the phase diagram B; however, we do not have arguments
would rule out this possibility.
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In another scan, we take the most random such sys
~i.e., with all allowed couplings present and independe!
and boost the strength of all the~independent! rung cou-
plings by the same amount on average, while keeping dis
bution of the interrung couplings fixed. As we increase t
typical magnitudes of the rung couplings from zero in th
manner, we again see strong Griffiths singularities in
density of states developing, and, possibly, critical behav
However, near such a tentative critical point the tw
Lyapunov exponents that come close to zero seem to ha
mutual ‘‘level repulsion’’ and the Lyapunov spectrum seem
to exhibit the analog of an ‘‘avoided level crossing;’’ th
results in huge localization lengths and strong near-crit
behavior in large regions around the tentative critical po
A more detailed investigation away fromd50 yields a phase
diagram of the type shown in Fig. 4(C). Thus, to within o
numerical accuracy, there seems to be a multicritical poin
the d-R phase diagram atd50. However, we can not ex
clude the possibility that we are seeing a case with no tr
sition along theR axis ~but phase boundaries coming ve
close to this axis! or an almost-degenerate case with two ve
closely spaced transitions. Crossing the phase bounda
away from the putative multicritical point again gives a l
calization length exponent ofn51. However, we are unable
to make any reliable statements in the vicinity of the mu
critical point.

We have scanned along several other directions in
parameter space~corresponding to different interpretations
the rung-coupling parameterR), but have not clearly seen
two distinct transitions as in Fig. 4~B!; however, behavior of
the type shown in Fig. 4~A! is the most common.~However,
note that the weak-disorder analysis of Ref. 5 did find criti
behavior in the conductance atd50 with interrung and in-
trarung couplings identically distributed and chosen from
Gaussian distribution. Moreover, their result is consist
with our predictions for critical behavior at ‘‘ordinary’’ criti-
cal points, as opposed to multicritical points.!

These numerical results thus confirm our suspicion t
the structure of the full phase diagram in this general ‘‘sp
ful’’ case ~or in multichannel versions of all the cases! is
quite complicated. The specific phase diagram obtained
tuning the parameters of a particular physical system~in
which some subset of the allowed couplings may be ide
cally zero! can thus be very different from case to case~a
similar observation in related 2D models has been mad
Refs. 20 and 21!. However, it is clear that there can be,
general, two kinds of localized phases. Moreover, whene
both phases are present in the phase diagram of a parti
system, we again expect~analogous to the single-chann
cases considered above! the system in the vicinity of the
phase boundary to ‘‘look’’ at low-energies similar to
single-chain random hopping problem with weak dimeriz
tion ~note that the numerical estimaten51 that we obtain
away from any special ‘‘multicritical’’ points supports thi
picture, and our RG results provide further confirmation
the same!.

This is as far as we can go with an elementary trans
matrix analysis. For a more detailed characterization of
low-energy properties, we now turn to the strong disord
RG analysis.
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VI. CRITICAL POINTS AND GRIFFITHS EFFECTS IN 1D:
RG ANALYSIS

To test the above picture in detail, we have implemen
the RG numerically in all three single-channel cases. Si
the single-channel spinful problem withoutT invariance is
essentially identical to the corresponding two-channel sp
less problem, this last example also serves to establish
our conclusions do not depend on any special propertie
the single-channel case. In the single-channel spinless
without T symmetry ~and the corresponding spinful cas
with T invariance!, we focus mainly on the vicinity of the
phase transition atd50 ~see Fig. 2!. In the ‘‘spinful’’ case
without T invariance, we consider the two different realiz
tions described in the previous section—these have ph
diagrams of the types shown in Fig. 4~A! ~in which we scan
across the phase boundary at nonzero dimerization so tha
leave the phase having end-states by increasing the stre
of the onsite potentials! and in Fig. 4~C! ~in this case, we
focus on the immediate vicinity of the putative multicritic
point!. ~For completeness, we have also studied the tra
tions as a function of dimerization in the bipartite ladd
problems of Sec. V A.!

For thed50 spinless case~and the ‘‘spinful’’ T-invariant
case! we consider systems with lengths as large asL52
3105. The initial conditions used have random~interrung!
hoppings chosen from a uniform distribution over@21,1#,
and random~intra!rung couplingsu chosen from a symmet
ric ~with either sign equally probable! power-law distribution
P(u)5(1/2g)uuu2111/g, uuu<1. Note that the RG transfor
mation~7! can be formulated entirely in terms of the imag
nary parts of the couplings, and this is the language that
use here. For the ‘‘spinful’’ case withoutT symmetry, we are
restricted toL<53104. When we scan at finite dimeriza
tion, we enforce this dimerization by choosing the even a
odd interrung couplings from the power-law distributio
P(u), but with different fixed valuesgevenÞgodd for the
power-law exponents. The strength of the rung coupling
again tuned by varying the corresponding power-law ex
nentgrung. We use the ‘‘full’’ RG rule~7! rather than its less
accurate ‘‘max’’ version since we are primarily interested
testing our physical picture for the low-energy propert
starting with a system with moderate values of the bare
order.

Apart from the immediate vicinity of the putative mult
critical point of Fig. 4~C! ~which we comment upon sepa
rately!, our results are equally reliable and essentially id
tical in all the cases studied. In the interests of brevity, be
we display in detail only the results obtained in the spinl
case atd50 ~see Fig. 2!.

We search for the critical point by looking at the fractio
of ‘‘isolated’’ sites among the remaining sites in the syste
If there areN sites left, we find all the sites that are ‘‘cov
ered’’ by theN/2 strongest remaining bonds. Roughly spea
ing, the fate of these covered sites is clear—they will
frozen dynamically at rougly this log-energy scale. The r
of the sites are still dynamically free at this scale, and we
them ‘‘isolated.’’ In a localized phase, this fraction quick
approaches zero. On the other hand, at a critical point,
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expect that new couplings which contribute, upon their s
sequent decimation at a lower energy, to the density of st
at that lower scale, are formed continually over all ener
scales in a scale-invariant way. The fraction of isolated s
at criticality is therefore expected to saturate to some c
stant at low energies. In the case of a single critical R
chain, a quarter of the remaining sites is notionally isola
at each stage of the RG: each site has a bond to the right
to the left, and the bond strengths are uncorrelated; s
each bond has a 50% chance of being ‘‘weak,’’ the site
‘‘isolated’’ with probability 1/4. This gives us a very direc
test for the location and nature of the critical point.

Results of such a search for our spinless case are sh
on Fig. 5. We clearly identify a criticalgc'0.95, and note
that the fraction of isolated sites at this critical point rema
essentially 0.25, which is evidence that the low-energy
havior is that of a single one-dimensional ‘‘backbone’’ th
goes critical. Note that it is also possible to further probe
geometry associated with the low-energy theory, as is do
e.g., below in our ‘‘order-parameter’’ studies, and even m
exhaustively by looking in detail at probability distribution
of the various couplings~which we have not pursued fully—

FIG. 5. Fraction of isolated sites among the remaining sites
the two-leg ImRH ladder representing spinless fermion superc
ducting wire. Criticalgc'0.95 is clearly identified. Inset shows th
fraction of cluster decimations~see text for details!.

FIG. 6. Number of remaining sitesN vs log-energy scaleG.
Also shown is the fit of the criticalNG to the formA/G2.
4-9
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OLEXEI MOTRUNICH, KEDAR DAMLE, AND DAVID A. HUSE PHYSICAL REVIEW B 63 224204
the RG results shown here already confirm our basic pic
of the low-energy physics!.

At the critical point, the number of sites remaining at t
log-energy scaleG[ ln(V0 /V) is NG;1/G2, as can be readily
seen from Fig. 6. SinceNG is essentially the integrated den
sity of states, this is consistent with the Dysonr(e)
;1/eu ln3eu. Moreover, atg5gc , the distributions of all cou-
plings become broader and broader on thelogarithmicscale,
with the characteristic widths growing linearly withG. This
is shown on Fig. 7. In conjunction with our result for th
fraction of isolated sites at low energies at criticality, th
indicates that the critical point is in the same universa
class as the single chain RH problem.@Note that since the
system effectively reduces to a single RH chain ‘‘backbon
in the low-energy limit, we expect19 the critical average ther
mal conductancekc(L) of the original superconductor t
scale askBT/AL, whereL is the length of the wire—this is
consistent with the weak disorder result of Ref. 5. As m
tioned earlier, this leads us to believe that their analysis
performed only at such a critical point and does not repres
the generic behavior of the system.#

Consider now the two different localized Griffiths phase
As expected, we findNG;e2G/z with a continuously varying
dynamical exponentz which diverges asz;ug2gcu21 ~to
within our numerical accuracy! as we tune across the critica
point. Within our strong-disorder approach, the two Griffit
phases are distinguished by the character of the corresp
ing RG-generated dimer patterns. To discuss this intui
distinction more precisely, we compare such RG-genera
dimer covers against some fixed reference dimer cove
natural choice of the reference cover for the spinless prob
at hand is a ‘‘vertical’’ cover with reference dimers coverin
the rungs of the ladder, i.e., joining the two copies of each
the original fermions ofĤSC. We use this specific referenc
cover in our numerical studies presented below; the follo
ing discussion, however, is fairly general.~We use the same
‘‘vertical’’ reference cover in the other two superconduct
problems we study with the RG.!

We call two sites connected by such a reference bon
cluster, and the corresponding coupling between the t
sites afield on the cluster. Couplings that connect sites
different clusters are calledinteractionsbetween the clusters
This terminology is borrowed from the 1D random tran
verse field Ising model~RTFIM!, but we emphasize that th
correspondence isnot exact although we do expect that th
critical behavior, characterized with respect to a well-chos
cover, is essentially that of the RTFIM~we expect this to be
true because a similar analysis for the dimerized single ch
random hopping problem using the natural reference co
consisting of alternate bonds gives an exact mapping to
1D RTFIM!. When a coupling connecting two sites in th
same cluster is decimated~field decimation!, the correspond-
ing cluster iskilled. When a coupling connecting two sites
different clusters is decimated~interaction decimation!, the
two clusters arejoined into one new cluster, which is now
specified by the two other~remaining! end points of the two
original clusters. The number of original sites that belong
a cluster defines its ‘‘magnetic moment,’’ and it then mak
sense to talk of a magnetization densitym for the system.
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Pictorially, a reference dimer cover specifies some conn
tivity rules for the RG-formed dimers, with natural notion
of clusters and percolation with respect to such connecti
rules, while the RG rules prescribe the dynamics~as a func-
tion of increasingG) obeyed by the clusters. Such conne
tivity properties can be used to distinguish between differ
RG-generated dimer covers, and, thus, to characterize
different phases.22 Within the strong-disorder RG, this is th
distinction that captures the different ‘‘topological’’ chara
ter of the two Griffiths phases.

Going back to our numerical RG studies, we find th
with respect to the vertical reference cover, in the ph
which obtains for strong rung couplings~small values ofg)
there are only small clusters and no connectedness acros
whole system, while for weak rung couplings~large values
of g) there is an infinite percolating cluster that forms in t
limit of large G. This development of topological order fo
g.gc is characterized by an exponentb defined by the scal-
ing of the average magetization densitym(G→`);(g
2gc)

b. At criticality, the average moment of the survivin
clusters scales asm;Gf, which defines the exponentf; in
complete analogy to the RTFIM,23 the exponentb for the
topological order parameter~‘‘magnetization’’! can be ob-
tained fromf via the scaling relationb522f. Figure 8
shows our numerical result for theG dependence of the av
erage moment of the surviving clusters at the critical po
The numerical value obtained for the exponentf is very
close to that of the 1D RTFIM. The valueb'0.41 we infer
using the scaling relation is then very close to the cor
sponding exact result for the single dimerized chain@which
has ab exactly equal24 to the magnetization exponent (
2A5)/2 of the 1D RTFIM23#. We also note that, similarly to
the quantum Ising model, the critical point is the point
balance between the cluster fields and cluster interacti
this is shown in the inset of Fig. 5, and provides alternat
means for identifying the critical point. This completes o

FIG. 7. At the critical point~determined from Fig. 5! different
measures of the widths of the log-coupling distributions all sc
linearly with G. We plotted theN/2 width of the distribution of all
bonds, the ‘‘decimation error’’ width~defined as the average loga
rithm of the ratio of the decimated bond to the strongest nea
bond!, and also theN/4-widths of the interaction and field distribu
tions with respect to the vertical reference cover~see text for de-
tails!.
4-10
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RG description of the spinless case.
Essentially the same results are obtained for the co

sponding spinful problem withT symmetry—this is consis
tent with our general argument in Sec. IV. We also repea
this analysis for the specific realization of the spinful pro
lem withoutT symmetry corresponding to Fig. 4~A!. All the
results obtained for this case in the vicinity of the transiti
at fixed finite dimerization~as a function of increasingR) are
essentially identical to the results shown above for the s
less case.~Entirely analogous results are also obtained in
cases for the dimerization driven transitions of the bipar
ladder problems.! Thus, our general picture for the low
energy physics appears to be validated by the RG result
long as we are not in the vicinity of any special multicritic
points.

Finally, a brief comment on the RG results in the vicini
of the putative multicritical point, Fig. 4~C!. As we scanR at
d50, strong Griffiths effects again show up clearly over
wide region in the vicinity of the putative multicritical poin
Moreover, the phases at large and smallR both look ‘‘para-
magnetic’’ in terms of clusters defined with respect to t
vertical reference cover~and also many other reference co
ers!. This is consistent with our arguments in the previo
section. However, our RG results are also inconclusive w
it comes to pinning down the structure of the phase diag
near this apparent multicritical point—again the analysis
plagued by near-critical behavior over a wide region. T
corresponding long crossovers do not allow us to make
definitive statements regarding either the presence or the
versality class of such multicritical points. This remains t
principal unresolved question in our entire analysis of
one-dimensional examples.

VII. HOW ARE THE LOW-ENERGY STATES
GENERATED?

We now consider precisely how the states in the singu
low-energy tail of the density of states are generated,
identify the corresponding Griffiths regions in the ImRH la
guage. As is already implicit in the above discussion, suc

FIG. 8. Average moment of the remaining clusters with resp
to the vertical reference cover. Also shown is the fit at the criti
point for the exponentf. From this fit we obtainf'1.59, which
can be compared with the corresponding exponent for the quan
Ising modelfRTFIM5(11A5)/2'1.62.
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pair of low-energy states is formed if there are two ‘‘is
lated’’ sites separated by a region in which all the other s
are locked into short-ranged~dimer! pairs. Griffiths effects
are a consequence of such isolated sites being generated
ficiently often. An example of a pair of such sites is shown
Fig. 9. The isolated sites are very weakly coupled to e
other—the coupling is of ordere;e2c l, where l is the
length of the region. In a disordered system, there is alw
a probability of orderp l , with somep,1, of finding such a
region—this gives a power-law contribution;e u ln pu/c to the
integrated density of states from such regions. Thus, weal-
waysexpect a variable power-law~Griffiths! density of states
in such random hopping problems in which no on-site en
gies~i.e., diagonal terms! are allowed; we conclude that Grif
fiths phases are generic. The specific example shown in
figure is expected to be relevant to Griffiths effects in t
phase in which the rung couplings dominate on average.
regions to the left and right of the pair are intended to b
caricature of thetypical regions in this regime, while the
region in the middle is comparativelyrare. Decreasing the
strength of the rung couplings would increase the probab
of having such regions, corresponding to the observed
crease in the dynamical exponent as one approaches the
sition to the other phase. The critical point is then charac
ized by a proliferation of such Griffiths regions on all ener
scales.

The picture that emerges is thus very similar to that in o
toy model of Sec. II in which the low-energy states a
closely associated with ‘‘domain walls’’ between the tw
different gapped phases of the pure system.

It is useful, at this point, to recast some of this in terms
the original superconductor HamiltonianĤSC. This will give
us a somewhat different perspective on the origin of th
low-energy states. For simplicity, we restrict the discuss
below to the spinless case. We first examine the basic
rule Eq.~7!. Consider a two-site problem

Ĥ@a,b#5eaca
†ca1ebcb

†cb1~ tca
†cb1Dca

†cb
†1H.c.!.

This can be diagonalized by an appropriate Bogoliub
transformation to give25

Ĥ@a,b#5e1g1
† g11e2g2

† g21const,

e65
1

2
uA~ea1eb!214uDu26A~ea2eb!214utu2u.

From this solution, it is clear that states at botha and b
simultaneously contribute to either eigenstate only if eith
utu*uea2ebu or uDu*uea1ebu. When this happens, we ca
no longer think of the two sites in isolation and need
account for theresonancebetween them. Now, ifutu2

2uDu2;eaeb , e2 for such a resonance can be very sma

In order to obtain a good low-energy description in such

t
l

m

FIG. 9. Griffiths generation of low-energy states.
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situation, we would eliminate the high-energy ‘‘1 ’’ state
and keep only the ‘‘2 ’’ state by introducing a singleeffec-
tive site with site energye2 . In our ImRH RG language, this
corresponds to a situation in which a single bond connec
sites on two different rungs is decimated, leaving behind
site on each rung; these two remaining sites are coupled
weak bond precisely equal in magnitude toe2 . On the other
hand, if there is no mixing of the states ata andb, i.e., when
one of the local potentials, sayea , dominates, we would
eliminate the statea completely; in the ImRH RG this cor
responds to decimating the corresponding rung. Thus,
RG procedure either eliminates a full fermion state becaus
is frozen out by a strong local potential, or eliminates ‘‘ha
of a fermion’’ from each of the two sites in resonance a
recombines the remaining halves to create a new effec
fermion with site energy equal to the new coupling intr
duced~our RG is thus really defined on the correspond
Majorana fermion states!.

Now, consider for concreteness the Griffiths phase
which the on-site potentials dominate. At low enough en
gies, a description in terms of isolated effective sites~with
negligible mixing between them! with some renormalized
distribution of effective site energies is clearly appropria
However, to arrive at such a description, one has to fi
account for all the resonances at higher energy scales
arise from any anomalous regions in which hopping a
pairing amplitudes are large compared to local potentials.
a specific example of such anomalies, consider the cen
region of Fig. 9. In the original superconductor langua
this region corresponds to bothD andt being relatively large
and comparable in magnitude, in addition to having a som
what definite relationship between their phases through
this region. Eliminating all the resonances between the s
in this region finally gives a low-energy description in term
of a single effective site with an exponentially small energ
This effective site in the original superconductor langua
clearly corresponds, in the ImRH language, to the pair
isolated sites shown in Fig. 9. The ImRH RG thus provid
the natural language for capturing the important low-ene
physics. Crudely speaking, the ‘‘effective site-energies’’
the original superconductor language correspond to
‘‘cluster field couplings’’ with respect to the natural vertic
reference dimer cover in the ImRH RG language. Note a
that an important ingredient of the physical picture th
emerges is the spatial character of the quasiparticle state~in
particular, note that wavefunction of a low-energy quasip
ticle in the phase with zero-energy end states is split into
spatially separated pieces!. Such spatial information is als
kept most naturally in the ImRH RG; in particular, the d
velopment of the ‘‘topological order’’ is seen most natura
in this language.

Finally, we can now go back and ask what is the prec
role played by the various symmetry restrictions. As d
cussed above, Griffiths effects in the ImRH RG language
associated with situations in which we repeatedly elimin
only a subset of the couplings connecting two rungs~for
instance, onlyone of the couplings in the spinless examp
above!, thus splitting the original fermion states. Now,
some symmetry restrictions require that some of the orig
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couplings between rungs equal one another, then we wo
be forced to decimate several of them simultaneously—
example, we could be forced to eliminate only complete f
mion states. Within the RG approach, this could then rule
the possibility of Griffiths effects. It is easy to see that t
restrictions imposed byT invariance are not enough for thi
to happen. On the other hand,in the SR-invariant case, a
simple analysis of the symmetry constraints for the cor
sponding ImRH problem shows that this is precisely wh
happens.26 In the strong disorder limit, this, then, is the tru
significance of the absence or presence of SR invariance
quasiparticles of a superconductor.

VIII. DISCUSSION

In this article, we have established the existence of str
Griffiths effects in one-dimensional superconducting wires
which the quasiparticle spin is not a good quantum numb
We associated these singularities with quasiparticle st
that live on ‘‘domain walls’’ between adjacent large regio
in two different phases, one phase that supports zero mo
localized near the ends of a finite system, and another
does not support such modes.

An obvious question now arises: Do such effects exis
two or more dimensions? Thinking in terms of the ImR
RG, it does seem that such effects could exist in cases w
out SR invariance, particularly in the insulating phases. I
of course nota priori clear if ‘‘isolated sites’’ would be
produced sufficiently often in the RG for this to happe
However, in the insulating phases, we can indeed point o
mechanism that is capable of generating power-law con
butions to the low-energy density of states: Since there is
insulating background to start with, to produce a pair of is
lated sites distancel apart ~with the corresponding low-
energy;e2cEl) one only needs to ‘‘break’’ the backgroun
insulating pattern along a string joining the two sites—i.
one needs of orderl specific events, with the resulting occu
rence rate;e2cpl high enough to give a power-law contr
bution. Note that this ‘‘string’’ mechanism does not requi
finding a~rare! droplet of some other phase—in this respe
it is fairly different from the usual Griffiths effects. Note als
that this mechanism is operative in any dimension.
course, there are also other mechanisms for ‘‘filling the ga
in the insulating phases, but we believe there are situat
where this ‘‘string’’ mechanism is the dominant one in d
termining the low-energy density of states.~One example
that we have studied in detail16 and where this indeed hap
pens is the localized phases of a closely related 2D bipa
random hopping problem.!
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