
PHYSICAL REVIEW B, VOLUME 63, 224114
Landau free energy for a bcc-hcp reconstructive phase transformation
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We study the bcc-hcp phase transition in Ti and Zr with the use of first-principles calculations. We have
determined the complete energy surface from the bcc to hcp structure. The results are used to find an appro-
priate Landau free energy density for describing this transformation. The proposed Landau free energy density
has two relevant order parameters: shear and shuffle. Through first-principles calculations, we show that the
bcc structure is unstable with respect to the shuffle of atoms (TA1 N-point phonon! rather than the shear.
Therefore, we reduce the two order parameter Landau free energy to an effective one order parameter~shuffle!
potential, which is a reasonable approximation. In general, the effective Landau free energy is a triple-well
potential. From the phonon dispersion data and the change in entropy at the transition temperature we find the
free energy coefficients for Ti and Zr.

DOI: 10.1103/PhysRevB.63.224114 PACS number~s!: 73.20.At, 73.21.2b, 75.70.Ak
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I. INTRODUCTION

The bcc-hcp transformation, together with the bcc-
transformation, are the most commonly encountered type
reconstructive transformations in crystals of elements. T
are found in about twenty elements, such as Sc, Y, Ti,
Hf, Fe, and Tl as well as in their alloys. There is no grou
subgroup relationship between the space groups of the
crystal phases in these transformations. The mechanism
erally assumed for the bcc-hcp transformation is the
called Burgers mechanism1 that first established the crysta
lographic relationship between the bcc and hcp structure

~110!bccuu~0001!hcp and @ 1̄11#bccuu@ 2̄110#hcp.

This transformation can be achieved by the superpositio
two lattice distortions:~i! The transverseTA11/2(110) ~i.e.,
N-point! phonon with @ 1̄10# polarization, which displaces
neighboring~110! planes in@ 1̄10# direction. An amplitude of
d5aA2/12~wherea is the bcc lattice constant! is required to
achieve the correct stacking sequence of the hcp phase
refer to this type of displacement asshuffle, i.e., atoms move
by a fraction of the lattice constant.2,3 ~ii ! Two equivalent
long wavelength shears, such as the (112̄) @ 1̄11# and
(1̄12)@11̄1#, squeeze the bcc octahedron into a regular
one, thereby changing the angle from 109.47° to 120°~or
equivalently, 70.53° to 60°) in the basal plane. The cor
sponding shear modulus is approximately given by the ini
slope of the transverseTA1@jj2j# phonon branch with~ap-
proximately! @111̄# polarization.

This transformation mechanism has been described
Lindgard and Mouritsen2 ~LM ! in terms of a Landau free
energy~LFE! expansion with respect to two order paramet
~OP’s!, representing shuffles and shears. By eliminating
shear through a minimization they obtained an effect
triple-well LFE (f6 model! in terms of a single primary OP
0163-1829/2001/63~22!/224114~7!/$20.00 63 2241
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~shuffle!, which is in agreement with other approaches3 for
finding the appropriate Landau free-energy for this type
transformation.

This model was experimentally confirmed for Ti,4 Zr,5

and Hf.6 In these cases a low lyingTA1 N-point mode was
found that~for Ti and Zr! clearly shows~albeit only partial!
softening; however, no~or negligibly small! softening of the

elastic constant associated with the@111#/@111̄# TA1 phonon
branch was observed for Ti and Zr, respectively.4,5 Because
partial softening is sufficient7 for first order displacive trans
formations, the bcc-hcp transformation may be considered
improper ferroelastic transformation.

In the Landau theory of phase transitions the free ene
is a function that must be invariant under the symme
group of the high-temperature~parent! phase. Because of
group-subgroup relationship between the high and low te
perature phases, the free energy is also invariant under
symmetry group of the low-temperature~product! phase.
Therefore in the absence of group-subgroup relationsh
which is the case for reconstructive phase transformati
such as bcc to hcp, an explanation of the LFE of the sys
in terms of the symmetry of only one phase entails a m
careful examination.

An alternative is to consider a LFE with two~or more!
relevant order parameters as studied by Lindgard
Mouritsen.2 Although the effective Landau free-energy de
sity of LM is in agreement with other one-dimensional mo
els, there has been no serious attempt to prove the validit
the two order-parameter LFE density. In particular, LM co
sidered only the lowest possible coupling term between
order parameters and the importance of higher order c
pling terms was neglected.

In this work we attempt to investigate the validity of th
Lindgard-Mouritsen Landau free-energy density by using
first-principles method. We will show that the higher-ord
coupling terms are necessary for improving the fit betwe
the LFE and first-principles calculations. By minimizing th
©2001 The American Physical Society14-1
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new improved LFE density with respect to the shear or
parameter we can still obtain an effective LFE in terms of
shuffle order parameter.

The paper is organized as follows. In the next section
briefly present the first-principles results. In Sec. III we fi
add higher order shuffle-shear coupling terms, obtain an
fective free energy in the shuffle OP, and then determ
coefficients of the Landau-Ginzburg free energy for titaniu
and zirconium based on electronic structure calculations
experimental data. Finally we summarize our findings in S
IV.

II. FIRST-PRINCIPLES CALCULATIONS

We have used a full-potential linear muffin-tin orbit
technique8,9 in the calculations reported here. The calcu
tions were scalar relativistic~i.e., the Darwin term and rela
tivistic corrections to the kinetic energy were included b
not spin-orbit term! and employed no shape approximati
to the charge density or potential. The electron core w
treated fully relativistically and recalculated in each iteratio
The base geometry was a muffin-tin geometry with nonov
lapping muffin-tin spheres; the basis function, charge den
and potential were expanded in a spherical harmonic se
within the muffin tins and in Fourier series in the interstit
region. The basis set was comprised of augmented lin
muffin-tin orbitals.10,11 The tails of the basis functions~the
extension of the bases outside their parent spheres! were ei-
ther Hankel or Neuman functions with nonzero kinetic e
ergy. Four different tails were used in these calculatio
Spherical-harmonic expansions were carried out up tol 58
for the bases, charge density, and potential. For sampling
Brillouin zone we used the specialk-point method,12,13

1008k points for a unit cell with 2 atoms. For calculatin
the ground-state energies, in addition to using the spe
k-point technique, in order to speed up the convergence
the k-point sampling we associated each calculated eig
value with a Gaussian function having a width of abou
mRy. Finally, the calculations used a gradient-correc
functional, i.e., generalized gradient approximation~GGA!,
for exchange and correlation terms.14 A very preliminary ac-
count of these results was reported earlier.15

The lattice constants used in our first-principles calcu
tions correspond to the theoretical equilibrium values. C
22411
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culated theoretical bcc lattice constants for Ti and Zr
3.244 and 3.568 Å. Temperature-dependent lattice par
eters of bcc-Ti,4 a(T)53.308@111.55531025

„T(K)
21155…#, and bcc-Zr,5 a(T)53.57413.3731025T(K) Å,
give lattice constants equal to 3.263 and 3.574 Å, resp
tively at T50 K, where our first-principles calculations ar
valid. Comparison between the experimental and theoret
lattice constants and bulk modulus are shown in Table I.

To obtain the bcc-hcp phase transformation path, we
culated the total energy of the crystal as a function of
TA1 N-point phonon atomic displacements~shuffle! and the
angle of the shear motion, for 121 different points in t
shuffle-shear plane. The complete energy surfaces for the
to hcp structure are shown in Fig. 1. The contour plot of
calculated total energies is shown in Fig. 2. The darker a
indicates regions with lower energies. In our calculations h
energy is not a global minimum, since the volume of t
different structures were kept constant during the calcu
tions. The energy-surface results show that the bcc struc
is completely stable with respect to a pure shear transfor
tion. However, frozen-phonon calculations for evaluating
frequency of theTA1 N-point phonon predict that this mod
is unstable for small displacements and the bcc struc
therefore has a tendency toward the hcp phase transform
for both Ti and Zr. Instability of the N-point phonon in th
case of Zr is also confirmed by other first-principl
methods.16

III. LANDAU FREE ENERGY DENSITY

A. Higher-order coupling terms

The LFE for the bcc-hcp phase transformation sugges
by Lindgard and Mouritsen2 has two scalar order parameter
h ~shuffle! and« ~shear!,

TABLE I. Comparison between calculated and experimen
~Refs. 4 and 5! equilibrium bcc lattice parameters and bulk modu
for different elements at zero temperature.

bcc
Lattice

constant
Lattice

constant
Bulk

modulus
Bulk

modulus
structure ~calc. Å! ~expt. Å! ~calc. GPa! ~expt. GPa!

Ti 3.244 3.263 110.6 118.0
Zr 3.568 3.574 90.4 96.7
i

f
re
FIG. 1. Energy surfaces for T
and Zr.E0 corresponds to the bcc
structure of each element. Units o
atomic displacement and angle a
d5aA2/12 and u510.53°, re-
spectively.
4-2
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FIG. 2. Energy contour plot
for Ti and Zr. Regions with lower
energy are darker. Units of atomi
displacement and angle ared
5aA2/12 andu510.53°, respec-
tively.
x-

f
he
e
h

b

re
be

t
in
b
ed
-

1
hly
ms,
ce
is

ters

ce

e 4

f
e

en-
FLM5
A

2
h21

B

4
h41

C

6
h61

A1

2
«21

B1

4
«41C1«h2. ~1!

The C1 term couples the uniform strain~shear! with two
internal strains~shuffle!. The anharmonic terms are not e
pected to vary rapidly with temperature nearTM ~the transi-
tion temperature!. In an attempt to investigate the validity o
the LFE, we have tried to fit the first-principles results to t
LFE given by Eq.~1!. The basic idea of the fit is to take th
LM free energy, and try to find a least-squares fit to t
first-principles data. The results of these fits are shown
Fig. 3. These fits show that the LFE density proposed
Lindgard and Mouritsen,2 Eq. ~1!, is not a good fit to the
first-principles results and it overestimates the stability
gion of the bcc and hcp structures. In particular, for the
ginning and the end of the transformation this LFE tends
minimize the effects of the shuffle OP. Therefore, reduc
the LFE to an effective free energy may also be questiona
To find a better fit to the first-principles results we modifi
the LFE density by~i! considering the effect of linear com
binations of higher-order coupling terms and~ii ! eliminating
higher order terms in shear~e.g.,«4, «6, and the symmetry
allowed coupling termh2«4). The latter is easily justified
22411
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from the results of first-principles calculations. Figure
shows that the energy of structures varies fairly smoot
with shearing of atoms. Therefore higher order shear ter
«4 and«6, as well ash2«4 are not necessary. Our experien
with different terms showed that to achieve a better fit it
best to use a LFE density consisting of two order parame
given by

FL5
A

2
h21

B

4
h41

C

6
h61

A1

2
«21~C1h21C2h4!«

1S C3

2
h21

C4

2
h4D «2. ~2!

TheFL is a two-variable polynomial of sixth order. Presen
of the higher-order terms~more than six! did not modify the
results, and their effects were therefore ignored. Figur
depicts the results of the fit of Eq.~2! to the data.

The goodness of fit is measured by the quantityk2

5( i(Ei2Fi)
2, whereEi is the electronic structure energy o

i th data point, andFi is the value obtained from the fit. Th
best fit is the one which minimizesk2. Table II shows the
comparison between the LM and modified Landau free
.

-

FIG. 3. Energy contour plot of
the Lindgard-Mouritsen LFE fit-
ted to first-principles calculations
Regions with lower energy are
darker. Units of atomic displace
ment and angle ared5aA2/12
andu510.53°, respectively.
4-3
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FIG. 4. Energy contour-plot fit
of the modified LFE fitted to first-
principles calculations. Region
with lower energy are darker
Units of atomic displacement an
angle are d5aA2/12 and u
510.53°, respectively.
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ergies. Calculatedk2 values confirmed that our modifie
LFE is a better fit to the first-principles data. In Fig. 5 t
goodness of fit between electronic structure and fitted
energies~LM and modified! is shown. For a perfect fit one
expects to see a plane~for E2F50) and any deviation from
this plane shows the region and extent of misfit betwe
electronic structure and free energies. A comparison of fi
contour plots~Figs. 2, 3, and 4! and Fig. 5 confirms our
previous assertion that the LM free energy overestimates
bility of the bcc, hcp~and intermediate! structures, and the
modified free energy@Eq. ~2!# improves the fit in all of the
shear-shuffle regions for Ti and Zr. In a separate appro
we investigated the effect of the«4 term on LM and modi-
fied Landau free energies. For the LM free energy the fi
electronic structure calculations improved without the«4

term. With the«4 term the fit to the modified free energy d
not improve and we found the value of the calculated co
ficient to be very small. This further corroborates our om
sion of terms of the fourth order in shear in Eq.~2!. Table III
lists the coefficients of the modified free energy obtained
a fit to electronic structure data.

It is possible to use a simple mechanical analog to und
stand Fig. 4. If we consider the modified Landau free ene
(FL) as a classical ‘‘potential,’’ then the bcc-hcp pha
transformation can be interpreted as the motion of a part
in this classical potential. Figure 6 shows a plot of gradi
field of energy obtained from the first-principles calculatio
~Fig. 2!. The length of the arrows represents the magnitu
of the vector at that point, and the direction of the arro
represents the direction of the field at that point. These ve
fields provide some understanding of the most probable p
chosen by the system to transform from the bcc phase to
one~at zero temperature!. According to Hamilton’s principle

TABLE II. Goodness of fit,k25( i(Ei2Fi)
2, for Ti and Zr.

LFE k2 ~Ti! k2 ~Zr!

LM 44.2 23.7
Modified 16.2 6.2
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the correct path of motion of a particle can be found from
variation of the action integral. In other words by solvin
equations obtained from equilibrium conditions,]FL /]«
50 and ]FL /]h50, one can find the actual path of th
phase transformation.

The energy surfaces of Ti and Zr show an instability
the bcc structure with respect to the shuffle OP. Therefore
reduce the LFE from two order parameters to an effect
LFE in terms of one order parameter, we can minimize
LFE with respect to the shear order parameter («)

]FL

]«
5~C1h21C2h4!1~A11C3h21C4h4!«50. ~3!

In a first approximation, if we expand« in terms of the
shuffle OP (h), we obtain

«'2
C1

A1
h21S 2

C2

A1
1

C1C3

A1
2 D h41O~h6!. ~4!

Equation ~4! suggests that the lowest free-energy path
tween the bcc-hcp structures occurs in the shuffle (h)-shear
(«) plane along a valley with a minimum and a saddle po
along the path. By replacing the value obtained for« @Eq.
~4!# in Eq. ~2! one can obtain an effective LFE

Feff 5
A

2
h21

B*

4
h41

C*

6
h6, ~5!

where

B* 5B2
2C1

2

A1
, C* 5

C

6
2

C1C2

A1
1

C1
2C3

2A1
2

. ~6!

For B* ,0 andC* .0 this effective LFE describes a firs
order phase transformation if the harmonic coefficientA has
a positive temperature coefficient. The effective LFE d
scribes the different stages of the phase transformation
different values of coefficients.17,18
4-4
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FIG. 5. Goodness of fit for LM free energy~a! and modified free energy~b! for Ti and Zr.
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B. Effective Landau free energy parameters

One advantage of the reduction of the LFE@Eq. ~2!# to an
effective one order parameter is that the LFE coefficients
be found by using experimental data such as the chang
entropy at the transition temperature and the phonon dis
sion of the high-temperature bcc phase. In this way we
clude the effect of vibrational entropy in free energy which
absent in first-principles calculations. In the Landau the
of phase transitions, the coefficient of the second-order t
is usually assumed to be temperature dependent.19 Near the
transition temperature this dependency is assumed to be
ear. Therefore one can rewrite the effective LFE as

Feff 5
A0~T2T0!

2
h21

B*

4
h41

C*

6
h6, ~7!

whereT0 is the temperature at which complete phonon so
ening would occur. However, since the bcc-hcp transform
tion is first order, the softening of the phonon~soft mode! is
22411
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not complete, and the phase transition occurs at a temp
ture TM higher thanT0. By minimizing the effective LFE at
the transition temperature one can find the values of the
der parameters and a relation between the LFE coeffici
and transition temperatureTM :

h50, h56A3uB* u

4C*
;

C* A0~TM2T0!

B* 2
5

3

16
. ~8!

At the transition temperature the effective LFE has three
generate minima and the two different phases~bcc and hcp!
coexist. The zero order parameter value refers to the h
temperature bcc structure and the two nonzero order par
eter values correspond to the~two degenerate! hcp structures,
since Eq.~4! allows shuffle order parameters with differe
signs related to the same shear order parameter. Also
entropy change of the system at the transition temperatu
given by
TABLE III. Landau free energy density@Eq. ~2!# coefficients for Ti and Zr.

Element A B C A1 C1 C2 C3 C4

S J

m5D S J

m7D S J

m9D S J

m3rad2D S J

m5rad
D S J

m7rad
D S J

m5rad2D S J

m7rad2D
31030 31051 31064 3109 31030 31050 31031 31052

Ti 22.9 4.3 4.7 8.1 25.3 26.4 4.7 22.0
Zr 21.2 1.7 1.4 3.1 22.0 25.2 2.4 28.5
4-5
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FIG. 6. Energy contour plot of
first-principles calculations and
gradient of energy field. The
length and direction of arrows
represent magnitude and directio
of the field at that point, respec
tively.
io
m

ze

o

op
cu
rr

on

la

bl
e
. I

-

c
le
e

ly

and
n-
t of
s is
y,
ing

m
t the
FE

e

ll

ture

E

s
rain
ic
d

nS52
3A0uB* u

8C*
. ~9!

To identify other coefficients we need the phonon dispers
data of the material measured for at least two different te
peratures. The phonon dispersion relation in the lineari
form ~small wave vectors or long wavelength limit! is related
to the Ginzburg-Landau parameters. When the wave vectk
differs slightly fromTA1 N-point wave vector (kN); the pho-
non dispersion relation is given by20,21

r0v25A0~T2T0!1GukN2ku2, ~10!

wherer0 is the mass density of the material andG is the
coefficient of the shuffle gradient, (¹h)2, i.e., the Ginzburg
term.

The phonon dispersion data and value of the entr
changes for Ti and Zr give us enough information to cal
late the free energy coefficients for these elements. Co
sponding effective LFE density parameters are shown
Table IV. It is interesting to mention that complete phon
softening would occur at a finite temperature (T0). In other
words the bcc structure of Ti and Zr is unstable atT50 K,
which confirms the results of our frozen-phonon calcu
tions.

Note that if we calculate the values ofB* andC* using
Table III and Eq.~6! we find B* 522.631051, C* 59.6
31072 for Ti and B* 521.031051, C* 54.831072 for Zr.
Clearly, these are different from the values given in Ta
IV. However, this is not surprising given the difference b
tween experimental data and first-principles calculations
addition to our approximation in Eq.~4!, the effect of vibra-
tional entropy as well as possible~weak! temperature depen
dence ofB* andC* may account for this discrepancy.

IV. CONCLUSION

We have presented a LFE density that explains the b
hcp phase transformation in Ti and Zr. Using first-princip
calculations we have shown that the static bcc structur
unstable with respect to a shuffling of the atoms, but that~as
shown in22 for Zr! at high temperatures it is mechanical
22411
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stabilized by anharmonic phonon-phonon interactions,
thermodynamically stabilized by its larger vibrational e
tropy relative to the hcp phase. We showed that the effec
higher-order coupling terms between order parameter
very important. In an attempt to simplify the LFE densit
we have eliminated the shear order parameter by minimiz
the LFE with respect to this order parameter.

By calculating the free energy density coefficients fro
the phonon dispersion data and the change of entropy a
transition temperature we find theoretical values for the L
parameters. If we augment the effective LFE@Eq. ~7!# with a
shuffle gradientG(¹h)2/2 term, we can employ the abov
parameter values for calculating the domain wall~between
bcc-hcp and the the two hcp variants! energy and width for
these elements.15,17,18,21The gradient coefficientG can be
determined either from the phonon dispersion data~near the
N-point! or from a direct observation of the domain wa
width using high-resolution electron microscopy~HREM!.

Because the space group of the hcp structure (P63 /mmc)
is not a subgroup of the space group of the bcc struc

(Im3̄m), and because the@112# TA1 mode in the long wave
length limit is not a pure mode,23 numerical application to a
specific material would require extension of the present~sim-
plified! model, i.e., it would have to be based on the full LF
for the six-component primary OP pertaining to theTA1

N-point mode,24 and it would have to include coupling term
between the primary OP and all six components of the st
tensor, and~probably! also higher-order terms in the elast
energy.25 Indeed, preliminary results on the full LFE base
on a six-component shuffle OP and strain24 indicate that it
reduces to Eq.~2! in the appropriate limit.

TABLE IV. Effective Landau free energy density@Eq. ~5!# pa-
rameters for Ti and Zr.

Element T0 (K) A0 (J/m5K) B* (J/m7) C* (J/m9)

Ti 484.4 6.331026 21.731051 1.231072

Zr 357.5 1.131026 21.131051 7.131071
4-6
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