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Landau free energy for a bcc-hcp reconstructive phase transformation
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We study the bcc-hep phase transition in Ti and Zr with the use of first-principles calculations. We have
determined the complete energy surface from the bcc to hep structure. The results are used to find an appro-
priate Landau free energy density for describing this transformation. The proposed Landau free energy density
has two relevant order parameters: shear and shuffle. Through first-principles calculations, we show that the
bce structure is unstable with respect to the shuffle of atofss; (N-point phonon rather than the shear.
Therefore, we reduce the two order parameter Landau free energy to an effective one order pghoféeer
potential, which is a reasonable approximation. In general, the effective Landau free energy is a triple-well
potential. From the phonon dispersion data and the change in entropy at the transition temperature we find the
free energy coefficients for Ti and Zr.
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I. INTRODUCTION (shuffle, which is in agreement with other approachés
finding the appropriate Landau free-energy for this type of
The bcc-hcp transformation, together with the bcc-fcctransformation.
transformation, are the most commonly encountered types of This model was experimentally confirmed for “TiZr,®
reconstructive transformations in crystals of elements. Thewnd Hf® In these cases a low lyin§A; N-point mode was
are found in about twenty elements, such as Sc, Y, Ti, Zrfound that(for Ti and Zn clearly showsalbeit only partial
Hf, Fe, and Tl as well as in their alloys. There is no group-softening; however, néor negligibly small softening of the

subgroup relationship between the space groups of the twglastic constant associated with ﬂ’ial]/[llT] TA, phonon

crystal phases in these transformations. The mechanism gefi- . .
erally assumed for the bcc-hcp transformation is the so—BranCh was observed for Ti and Zr, respectivEiBecause

called Burgers mechanisnthat first established the crystal- partial -softening is sufficientor first Qrder displacive trans-
lographic relationship between the bce and hep structures: formations, the bcc-hep transformation may be considered an

improper ferroelastic transformation.
_ _ In the Landau theory of phase transitions the free energy
(110)p¢d[(000D e, and  [111]ped[[2110]cp- is a function that must be invariant under the symmetry
group of the high-temperatur@aren} phase. Because of a
This transformation can be achieved by the superposition ofroup-subgroup relationship between the high and low tem-
two lattice distortions{i) The transversd A;1/2(110)(i.e.,  perature phases, the free energy is also invariant under the
N-point) phonon with[110] polarization, which displaces Symmetry group of the low-temperatuf@roduc} phase.

neighboring(110) planes irf 110] direction. An amplitude of ~ 1herefore in the absence of group-subgroup refationships,
5=a\/2/12 (wherea is the bcc lattice constanis required to which is the case for reconstructive phase transformations
achieve the correct stacking sequence of the hcp phase. WCh @s bee to hep, an explanation of the LFE of the system
refer to this type of displacement abuffle i.e., atoms move [N terms of the symmetry of only one phase entails a more

by a fraction of the lattice constaft. (i) Two equivalent Careful examination.

— An alternative is to consider a LFE with tw@r more
long wavelength shears, such as the ZYI111] and oo ant order parameters as studied by Lindgard and

(112)[111], squeeze the bce octahedron into a regular hcpyouritsen? Although the effective Landau free-energy den-
one, thereby changing the angle from 109.47° to 1R sty of LM is in agreement with other one-dimensional mod-
equivalently, 70.53° to 60°) in the basal plane. The correg|s, there has been no serious attempt to prove the validity of
sponding shear modulus is approximately given by the initiathe two order-parameter LFE density. In particular, LM con-
slope of the transversBA,[ ££2¢£] phonon branch witlfap-  sidered only the lowest possible coupling term between the

proximately [llT] polarization. order parameters and the importance of higher order cou-
This transformation mechanism has been described bgling terms was neglected.
Lindgard and Mouritseén(LM) in terms of a Landau free- In this work we attempt to investigate the validity of the

energy(LFE) expansion with respect to two order parametersLindgard-Mouritsen Landau free-energy density by using a
(OP’s), representing shuffles and shears. By eliminating thdirst-principles method. We will show that the higher-order
shear through a minimization they obtained an effectivecoupling terms are necessary for improving the fit between
triple-well LFE (¢® mode) in terms of a single primary OP the LFE and first-principles calculations. By minimizing the
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new improved LFE density with respect to the shear order TABLE I. Comparison between calculated and experimental
parameter we can still obtain an effective LFE in terms of the(Refs. 4 and bequilibrium bcc lattice parameters and bulk moduli
shuffle order parameter. for different elements at zero temperature.

The paper is organized as follows. In the next section wé
briefly present the first-principles results. In Sec. Ill we first Lattice  Lattice Bulk Bulk
add higher order shuffle-shear coupling terms, obtain an ef- bcc constant ~ constant  modulus  modulus
fective free energy in the shuffle OP, and then determinestructure (calc. A (expt. A (calc. GPa  (expt. GPa

coeffipientg of the Landau—Ginzbgrg free energy for t?tanium Ti 3.044 3.263 1106 118.0
and zirconium based on electronic structure calculations and

. . . . . Zr 3.568 3.574 90.4 96.7
experimental data. Finally we summarize our findings in Sec
V.

culated theoretical bcc lattice constants for Ti and Zr are
3.244 and 3.568 A. Temperature-dependent lattice param-

We have used a full-potential linear muffin-tin orbital — 11591, and bce-Zr, a(T)=3.574+3.37x 10 °T(K) A,
techniqué? in the calculations reported here. The calcula-9ive lattice constants equal to 3.263 and 3.574 A, respec-

tions were scalar relativistié.e., the Darwin term and rela- tvely atT=0 K, where our first-principles calculations are
tivistic corrections to the kinetic energy were included putvalid. Comparison between the experimental and theoretical

not spin-orbit term and employed no shape approximation Iatt_ll_ce C&nisrgatws gnd_rl]aulk rf?odultl#snarfe rfr?ot\;vr;]ln Iﬁb\ls . I
to the charge density or potential. The electron core was o obta € bee-hep phase transtormation path, we ca

treated fully relativistically and recalculated in each iteration Culated the total energy O.f the crystal as a function of the
o ) "TA; N-point phonon atomic displacemer{ghuffle and the
The _base ge_om_etry was a muffm-tl_n geom_etry with nonove_r:,ingle of the shear motion, for 121 different points in the
lapping muffin-tin spheres; the basis function, charge densityy, e shear plane. The complete energy surfaces for the bce
and potential were expanded in a spherical harmonic Serigg hep sructure are shown in Fig. 1. The contour plot of the
within the muffin tins and in Fourier series in the interstitial 5|culated total energies is shown in Fig. 2. The darker area
region. The basis set was comprised of augmented linegngicates regions with lower energies. In our calculations hcp
muffin-tin Orbitals.lo'll The tails of the basis fUnCtior($he energy is not a g|0ba| minimum' since the volume of the
extension of the bases outside their parent spheveee ei-  different structures were kept constant during the calcula-
ther Hankel or Neuman functions with nonzero kinetic en-tions. The energy-surface results show that the bcc structure
ergy. Four different tails were used in these calculationsjs completely stable with respect to a pure shear transforma-
Spherical-harmonic expansions were carried out upt8  tion. However, frozen-phonon calculations for evaluating the
for the bases, charge density, and potential. For sampling thigequency of theT A; N-point phonon predict that this mode
Brillouin zone we used the speci&-point method”™® s unstable for small displacements and the bcc structure
1008k points for a unit cell with 2 atoms. For calculating therefore has a tendency toward the hcp phase transformation
the ground-state energies, in addition to using the specidbr both Ti and Zr. Instability of the N-point phonon in the
k-point technique, in order to speed up the convergence afase of Zr is also confirmed by other first-principles
the k-point sampling we associated each calculated eigenmethodst®
value with a Gaussian function having a width of about 5
mRy. Finally, the calculations used a gradient-corrected ll. LANDAU FREE ENERGY DENSITY
functional, i.e., generalized gradient approximati@GA),
for exchange and correlation terdfsa very preliminary ac-
count of these results was reported earlfer. The LFE for the bce-hep phase transformation suggested
The lattice constants used in our first-principles calculaby Lindgard and Mouritsérhas two scalar order parameters:

tions correspond to the theoretical equilibrium values. Cal- (shuffle ande (sheay,

A. Higher-order coupling terms

Ti Zr

,§ FIG. 1. Energy surfaces for Ti

= and Zr.E, corresponds to the bcc

f? structure of each element. Units of

ul atomic displacement and angle are
5=ay\2/12 and #=10.53°, re-
spectively.

Angle/
Atomic gls‘gm()emenv ) (shear)
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Ti Zr
1 1
0.8 0.8
FIG. 2. Energy contour plot
D~ 0.6 0.6 for Ti and Zr. Regions with lower
%E energy are darker. Units of atomic
L 4. 0.4 displacement and angle aré
=a\/2/12 and#=10.53°, respec-
tively.
0.2 0.2
0 / 0
0 0.2 0.4 0.6 0.8 1 0
Atomic displacement/ &
(shuffle)

A ) B . C . A, ) B, . ) from the results of first-principles calcqlation_s. Figure 1
Fin=sn"+gn'tgn+to5e+ e+ Cen”. (1) shows that the energy of structures varies fairly smoothly

with shearing of atoms. Therefore higher order shear terms,
e*ande®, as well asp?s* are not necessary. Our experience
with different terms showed that to achieve a better fit it is
best to use a LFE density consisting of two order parameters
given by

The C; term couples the uniform straiishea) with two
internal straingshuffle. The anharmonic terms are not ex-
pected to vary rapidly with temperature ndgy (the transi-
tion temperature In an attempt to investigate the validity of
the LFE, we have tried to fit the first-principles results to the
LFE given by Eq.(1). The basic idea of the fit is to take the = _é 2, E a4y E 6+'°£
LM free energy, and try to find a least-squares fit to the L=27 74T T 2
first-principles data. The results of these fits are shown in
Fig. 3. These fits show that the LFE density proposed by +(% 24 % 4)82 )
Lindgard and MouritseR,Eq. (1), is not a good fit to the 2 T '
first-principles results and it overestimates the stability re-
gion of the bcc and hcp structures. In particular, for the beTheF is a two-variable polynomial of sixth order. Presence
ginning and the end of the transformation this LFE tends toof the higher-order term@nore than sixdid not modify the
minimize the effects of the shuffle OP. Therefore, reducingesults, and their effects were therefore ignored. Figure 4
the LFE to an effective free energy may also be questionablealepicts the results of the fit of E() to the data.

To find a better fit to the first-principles results we modified The goodness of fit is measured by the quantiy
the LFE density by(i) considering the effect of linear com- =3,(E;—F;)?, whereE; is the electronic structure energy of
binations of higher-order coupling terms afid eliminating  ith data point, andF; is the value obtained from the fit. The
higher order terms in shege.g., e, % and the symmetry best fit is the one which minimizeg?. Table Il shows the
allowed coupling termn?c?). The latter is easily justified comparison between the LM and modified Landau free en-

e?+(Cyn°+CyonMe

Ti Zr
1 / 1~
0.8 0.8 /
FIG. 3. Energy contour plot of
the Lindgard-Mouritsen LFE fit-
D .~ 0.6 0.6 . L i
38 ted to first-principles calculations.
g% Regions with lower energy are
T 0.4 0.:4 darker. Units of atomic displace-
ment and angle areS=a\2/12
0.2 0.2 and 6=10.53°, respectively.
0 ” 0o
0 0.2 0.4 0.6 0.8 1 [+) 0.2 0.4 0.6 0.8 1,
Atomic displacement/ &
(shuffle)
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Ti Zr

1 1

0.8 / 0.8
FIG. 4. Energy contour-plot fit
o b 8 of the modified LFE fitted to first-
5 ’ principles calculations. Regions
2 with lower energy are darker.
<= o 04 Units of atomic displacement and

angle are 6=ay2/12 and 6
0.2 0.2 =10.53°, respectively.
0 . ' 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Atomic displacement/ &
(shuffle)

ergies. Calculatedc?® values confirmed that our modified the correct path of motion of a particle can be found from a
LFE is a better fit to the first-principles data. In Fig. 5 the variation of the action integral. In other words by solving
goodness of fit between electronic structure and fitted freequations obtained from equilibrium conditiongf, /de
energies(LM and modified is shown. For a perfect fit one =0 and dF /d5»=0, one can find the actual path of the
expects to see a plafior E— F=0) and any deviation from phase transformation.

this plane shows the region and extent of misfit between The energy surfaces of Ti and Zr show an instability of
electronic structure and free energies. A comparison of fittethe bcc structure with respect to the shuffle OP. Therefore, to
contour plots(Figs. 2, 3, and ¥and Fig. 5 confirms our reduce the LFE from two order parameters to an effective
previous assertion that the LM free energy overestimates sta+E in terms of one order parameter, we can minimize the
bility of the bcc, hcp(and intermediatestructures, and the LFE with respect to the shear order parameter (

modified free energyEq. (2)] improves the fit in all of the

shear-shuffle regions for Ti and Zr. In a separate approach  gF 5 . 5 .

we investigated the effect of the* term on LM and modi- e —(Can™+Con) + (A1 +Can"+Can)e=0. (3

fied Landau free energies. For the LM free energy the fit to

electronic structure calculations improved without thé In a first approximation, if we expand in terms of the
term. With thes* term the fit to the modified free energy did shuffle OP ¢7), we obtain

not improve and we found the value of the calculated coef-

ficient to be very small. This further corroborates our omis- c C, C.C
sion of terms of the fourth order in shear in E8). Table IlI g~ — 7"+ - e 12 & 7*+0(7°). (4)
lists the coefficients of the modified free energy obtained by Ag As A1

a fit to electronic structure data. ]
It is possible to use a simple mechanical analog to undefEduation(4) suggests that the lowest free-energy path be-

stand Fig. 4. If we consider the modified Landau free energyween the bcc-hep structures occurs in the shuffip-ghear

(FL) as a classical “potential,” then the bcc-hcp phase(€) plane along a valley with a minimum and a saddle point

transformation can be interpreted as the motion of a partici@long the path. By replacing the value obtained 40fEq.

in this classical potential. Figure 6 shows a plot of gradient4] in Eg. (2) one can obtain an effective LFE

field of energy obtained from the first-principles calculations

(Fig. 2. The length of the arrows represents the magnitude A, B* 4 c* 6

of the vector at that point, and the direction of the arrow Fet=5 01"t -7 t5 7 ®)

represents the direction of the field at that point. These vector

fields provide some understanding of the most probable pativhere

chosen by the system to transform from the bcc phase to hcp

one(at zero temperatuyeAccording to Hamilton’s principle 2C2 . C GG, Cfcg

6

A + A2 (6)
TABLE Il. Goodness of fitx?=3;(E;—F;)?, for Ti and Zr. ! 1

For B* <0 andC* >0 this effective LFE describes a first-

2 i 2
LFE <M @) order phase transformation if the harmonic coefficidritas
LM 44.2 23.7 a positive temperature coefficient. The effective LFE de-
Modified 16.2 6.2 scribes the different stages of the phase transformation for

different values of coefficients:'8
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FIG. 5. Goodness of fit for LM free enerdg) and modified free energfp) for Ti and Zr.
B. Effective Landau free energy parameters not complete, and the phase transition occurs at a tempera-
One advantage of the reduction of the LFEE. (2)] to an ture Ty h_|gher thanT,. By minimizing the effective LFE at
effective one order parameter is that the LFE coefficients ca{'€ ransition temperature one can find the values of the or-
be found by using experimental data such as the change ger paramgters and a relation between the LFE coefficients
entropy at the transition temperature and the phonon dispefNd transition temperaturg, :
sion of the high-temperature bcc phase. In this way we in-

clude the effect of vibrational entropy in free energy which is 0 - 3[B*[  C*Ao(Tw—To) _ 3 g
absent in first-principles calculations. In the Landau theory 7= % 77— 4c* B*2 T 16 ®
of phase transitions, the coefficient of the second-order term

is usually assumed to be temperature depentiedear the At the transition temperature the effective LFE has three de-
transition temperature this dependency is assumed to be ligenerate minima and the two different phadesc and hcp
ear. Therefore one can rewrite the effective LFE as coexist. The zero order parameter value refers to the high-

* % temperature bcc structure and the two nonzero order param-
Ao(T—Ty) , B* , C* |
= 24 AL 7) eter values correspond to tftevo degenerajehcp structures,

eff 5 e/ A ( . -

since Eq.(4) allows shuffle order parameters with different

whereT, is the temperature at which complete phonon soft-signs related to the same shear order parameter. Also, the
ening would occur. However, since the bcc-hep transformaentropy change of the system at the transition temperature is
tion is first order, the softening of the phonsoft mode is  given by

TABLE lll. Landau free energy densityEq. (2)] coefficients for Ti and Zr.

Element A B C A C, C, Cs Cy
J J ) J ( J J J J J
m° m’ m° m3racf m°rad m’rad, m°racf m’racf
X100  x10'  x10° x 10° X 10%° X 10°° x 10°%t X 10P?
Ti -2.9 4.3 4.7 8.1 —-5.3 -6.4 4.7 -2.0
Zr -1.2 1.7 1.4 3.1 -2.0 -5.2 2.4 —-8.5
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Ti Zr

FIG. 6. Energy contour plot of
first-principles calculations and

gg 0.6 gradient of energy field. The
2s length and direction of arrows
<~ 0.4

represent magnitude and direction
of the field at that point, respec-

0.2 tively.
0 -
0 0.2 0.4 0.6 0.8 1 0 0.2
Atomic displacement/ &
(shuffle)
3A,/B*| stabilized by anharmonic phonon-phonon interactions, and
ASz——*. (90 thermodynamically stabilized by its larger vibrational en-
8C tropy relative to the hcp phase. We showed that the effect of

To identify other coefficients we need the phonon dispersiorigher-order coupling terms between order parameters is
data of the material measured for at least two different temvery important. In an attempt to simplify the LFE density,
peratures. The phonon dispersion relation in the linearizedve have eliminated the shear order parameter by minimizing
form (small wave vectors or long wavelength limig related  the LFE with respect to this order parameter.
to the Ginzburg-Landau parameters. When the wave véctor By calculating the free energy density coefficients from
differs slightly fromTA; N-point wave vectorKy); the pho-  the phonon dispersion data and the change of entropy at the
non dispersion relation is given By transition temperature we find theoretical values for the LFE
pow?=Ag(T—To)+Glky—k[2, (10) parameters._lf we augrznent the effective L. (7)] with a

) ) _ _ shuffle gradientG(V n)</2 term, we can employ the above
where po is the mass density of the material a6dis the  arameter values for calculating the domain watktween
coefficient of the shuffle gradientV(;)?, i.e., the Ginzburg bee-hep and the the two hep varianenergy and width for

term. these elements:"1821The gradient coefficienG can be

The phono_n dlsper5|_on data and yalue Of. the eNtroPYjetermined either from the phonon dispersion datzar the
changes for Ti and Zr give us enough information to Calcu'N—point) or from a direct observation of the domain wall
late the free energy coefficients for these elements. Corre-

sponding effective LFE density parameters are shown irYV'déh using th;gh—resoluuon elefc;tk:onhmlcrtosc:)(ijEM).
Table IV. It is interesting to mention that complete phonon. ecause the space group of the hep structin@(mmg

softening would occur at a finite temperatuiig). In other IS ngt a subgroup of the space group of the bee structure

words the bcc structure of Ti and Zr is unstableTat0 K,  (Im3m), and because thé12] TA; mode in the long wave
which confirms the results of our frozen-phonon calcula-length limit is not a pure mod&, numerical application to a
tions. specific material would require extension of the pregeinh-
Note that if we calculate the values Bf andC* using plified) model, i.e., it would have to be based on the full LFE
Table 1ll and Eq.(6) we find B*=—2.6xX10°Y, C*=9.6  for the six-component primary OP pertaining to tie\,
X 107 for Ti and B* = —1.0x 10°%, C*=4.8x10"? for Zr.  N-point mode?* and it would have to include coupling terms
Clearly, these are different from the values given in Tablebetween the primary OP and all six components of the strain
IV. However, this is not surprising given the difference be-tensor, andprobably also higher-order terms in the elastic
tween experimental data and first-principles calculations. Irenergy?® Indeed, preliminary results on the full LFE based
addition to our approximation in E@4), the effect of vibra-  on a six-component shuffle OP and stfiiimdicate that it
tional entropy as well as possibieeak temperature depen- reduces to Eq(2) in the appropriate limit.
dence ofB* andC* may account for this discrepancy.

TABLE V. Effective Landau free energy densifiq. (5)] pa-
IV. CONCLUSION rameters for Ti and Zr.

We have presented a LFE density that explains the bccélement
hcp phase transformation in Ti and Zr. Using first-principles
calculations we have shown that the static bcc structure igj 484.4 6.3<10°° —-1.7x10°* 1.2x107?
unstable with respect to a shuffling of the atoms, but that 7, 357.5 1.1 1078 —1.1X10°r 7.1x10
shown irf? for Zr) at high temperatures it is mechanically

To (K) Ay (IPK)  B* (I/m¥) C* (J/nP)
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