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Monte Carlo simulation of the role of defects as a melting mechanism
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We study in this paper the melting transition of a crystal of a fcc structure with the Lennard-Jones potential,
by using isobaric-isothermal Monte Carlo simulations. Local and collective updates are sequentially used to
optimize the convergence. We show the important role played by defects in the melting mechanism in favor of
modern melting theories.

DOI: 10.1103/PhysRevB.63.224103 PACS nuni§er64.60.Cn, 05.70.Fh, 75.16b

[. INTRODUCTION model and MC method. Results are shown in Sec. Ill. Con-
cluding remarks are given in Sec. IV.

The melting of crystals has always been an exciting sub-
ject in condensed matter physicsThe Lindemann criterion Il. MODEL AND MONTE CARLO METHOD
allows us to estimate the melting temperature in a simple _ )
way. However, the mechanism responsible for the melting is We consider a crystal of face-centered culiar) struc-
still debated. It was widely admitted that the melting in threeture which is described by the following Hamiltonian
dimensions(3D) occurs when one of the phonon modes is
softened by the temperatuleso that instability of the crys- H= E U(rip) 1)
talline phase takes place leading to the liquid phase. In 2D, m nn
this scenario is not valid. Mermirhas shown in 1968 that
long-range crystalline order is destroyed Byf the elastic ~ where the interaction between atoms aandr; is described
interaction is power-law decayed with distance. Nelson andy the potentiall(r;;). For simplicity, the distance depen-
Halperirf have shown that the 2D melting is due to defects,dence is supposed to be given by the LJ poteritiét;;)
analogous to the case of Kosterlitz-Thouless transition for=46[(ro/rij)12—(ro/ri,-)G], wherer;;=ri—r;, ro, being a
XY spins in 2D>8 Inspired by this defect-mediated melting, characteristic length of the system, is chosen in such a way
several workers have attempted to prove that in 3D the melthat the nearest-neighboKN) distance in the fcc lattice is
ing may also be due to dislocations and deféctd. The  equal to\/2/2 when only NN interactions are taken into ac-
soft-mode scenario, though theoretically possible, is not theount. The fcc lattice constant is therefore equal to 1 in the
one frequently observed in numerical calculations. Works orground state. Different potentials for cohesive interactions
defect theory up to 1989 have been summarized and devedre possible, for example the so-called Gupta many-body
oped in the book by Kleineft.Recently, several numerical potential* which has been recently used to study the melting
investigation&2° and analytic approximatiohs'? have process of a fcc crysta. We have shown that defects cre-
shown that dislocations and defects are responsible for melated near melting play an important role in the melting
ing. In particular, Burakowsky, Prestoni, and Siffanave  mechanism. In the present paper we would like to clarify
shown that melting properties of most of elements of thehow defects are topologically distributed and how they de-
Periodic Table can be explained by excitations of linear disstroy the crystal order. To this end, we choose the LJ poten-
locations in the crystal using a polymer theory. tial which is simpler for implementing a volume-variable

Katsnelson and Trefildv have also recently developed a algorithm as will be described below. However, most of the
route toward a melting theory based in defects. They haveonclusions concerning the melting mechanism are similar
emphasized the concept of the geometrical frustrdfiore.,  for these two potentials. Details of a precise comparison will
the 3D Euclidean space cannot be filled by the closest pacle given elsewhere.
ing structure, the tetrahedral one. Therefore they proposed In this work, we studied a fcc lattice with different system
that superdense regions and voids around them are to Isizes, using periodic boundary conditions, at constant pres-
formed near melting by thermal activation. These regionssure. Interactions up to a cutoff distange=1.57 have been
were suggested to be the precursor of the destruction of thaken into account. This is about the fourth-nearest-neighbor
crystalline order. distance in the perfect fcc crystal.

In this paper, we investigate by Monte CafMC) simu- The following algorithm was used. Starting from the solid
lation the melting of a 3D crystal where atoms interact withstate where atoms are on the fcc lattice sites, we heat the
each other via the Lennard-Jon@s)) potential. We show system up to a temperatufe We equilibrate the system first
that defects which occur in the solid phase when the transitocally at constant volume and then globally at variable vol-
tion temperature is approached from below are responsibleme, as explained hereafter. The local equilibration at con-
for the melting. Section Il is devoted to a description of ourstant volume is done as follows: we take an atom and move
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FIG. 2. Radial distribution functiog(r) at T=0.25. This func-
112 g " " tion gives the mean value of the number of particles sitting at dis-
tancer from a given particle.
® o8 | y S | |
2 following quantities: angular distribution of neighbors, dis-
0958 tribution of defects, number of nearest-neighb@i#N), etc.
1.07 - . As we discuss below, due to the particular fcc structure we
cannot use the Voronoi method which would give confusing
= a results if care is not taken.
T a
o $%° Ill. RESULTS
1.02 + b . . .
@ 2 Let us show first in Fig. (g U versusT. One observes a
0% ON=500 discontinuity ofU indicating clearly that the transition is of
& °° o & ON=1372 first-order as expected for a 3D melting. This is confirmed by
ON=2048 the jump of the average fcc lattice constant shown in Fig.
1(b). These figures show results for three different system

097 L L L . . . . . .
0.2 0.4 0.6 0.8 1.0 sizes. Since the transition is of first order, the transition tem-

T peratureT ,, cannot be defined with precisiddue to hyster-
FIG. 1. (a) Internal energy vs T. (b) Lattice constant v for gsis. Moreover, for size_s greater than _500 particles the me'lt—
the system ofN=1372. The jumps at the transition temperature INd temperatures fall within the same interval. Therefore, in
indicate the first-order character. the following we will show results for the system of
=1372 particles. We tak&,, as the lower limit of the tran-
it to a nearby random position. This position is accepted if itsition temperature region. From Fig. 1, we takg=0.76.
lowers the atom energy. Otherwise it is accepted with a probNote that as our simulation cell does not contain surfaces,
ability according to the Metropolis algorithm. We repeat thisthis transition temperature corresponds to the metastability
for all atoms: we say we achieve one MC step/atom. Nextlimit of the crystal's ability to superheat rather than to the
we change the system volume by a random amount: all atorthermodynamical melting poirtf:*”In the following, we will
positions are thus rescaled with the volume variation. Wecall for simplicity, T,, at this transition temperature and as-
recalculate the energy and accept or reject this volume usingpciate the phenomena with an apparent melting point since
a constant pressure Metropolis algorithm. For a generahe structure losses all local order at this temperature.
method, see Ref. 15. In the following we work at zero pres- Figure 2 shows the radial distribution function between
sure. We find that the equilibrium is reached very fast withatoms at a lowT (T=0.25) in the solid phase. The first
alternately 10 consecutive local MC steps/atom followed by(second, third. . .) peak corresponds to the NININN, third
one volume variation step, and so forth. In all, we performecheighbors. . .) distance of the fcc structure.
about 18 MC sweepings at each Physical quantities such To calculate the coordination numbenof a site, we inte-
as averaged internal energy per atbhand radial distribu-  grate the radial distribution function up to the first minimum.
tion functiong(r) are averaged over the next®1®C steps/  For example in Fig. 2, integrating(r) overr up to about
atom. r,1=0.85 (first minimum will give c=12. Integratingg(r)
From the plot of(E) versusT, we can identify the tran- from r, up to the next minimum at,=1.1 givesc,=6, and
sition temperature from solid to liquid state. Furthermore, toso on. These coordination numbers verify the fcc structure.
investigate the melting mechanism we have computed th&/e use this method instead of the frequently used Voronoi
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FIG. 3. Angular distribution function as defined in the text at FIG. 5. Angular distribution functiom(6) at T=0.7.

T=0.25. The area belog(6) is normalized to one.

ticular, the minimum between the first and second peaks
construction because the Voronoi polyhedra in a slightly dis- does not correspond (r)=0. This implies that a diffu-
torted fcc structure have small faces and short edges and thesjonal dynamics is activated near melting. This is the ori-

coordination number could not be precisely calculated be- gin of the formation of defect clusters we will discuss be-
cause these small faces appear and disappear frequently dug,,,

H H ,18 )
to thermal excitationS: « Another feature is the strong reduction of the second and

Furthermore, to complete our structure determination, we fourth peaks. The cubic symmetry is therefore weakened
also calculgteg(_ﬁ) g the angular d|str|but|on_ of _nelghbors and the remaining correlated part of the system is within
around a site within a plane up to a certain distance. The the (111 planes

functiong( ) gives the probability to have two neighbors of
an atom forming an anglé. We show in Fig. 3 an example
of angular distribution taken af=0.25 . The peak at 60 Integratingg(r) overr between two consecutive minima,
(90, 120 degrees corresponds to the angular distribution oPne obtains the coordination number 12 only at 74% of
the NN (NNN, 3rd NN) atoms in the fcc structure. the total crystal sites. 15.5% of the sites have 11 NN, 7.3%
Let us increasd near the transition. The radial distribu- have 13 NN, and 2% have 10 NN. At this stage, it is worth-
tion g(r) at T=0.7 is shown in Fig. 4. The main differences While to stress that though the temperature is still beToy
with the low-T structure shown in Fig. 2 are: such an important percentage of sites (26%) exhibit defects.
. i . _The crystal structure, therefore, cannot be considered as a
¢ All the minima between the peaks are raised. This is eViyefect-free one which is used in the search for a phonon
dence that the crystal order is reducedlat0.7. In par-  goft-mode responsible for the elasticity instability at the
melting.
6.0 ' ' The angular distribution fo =0.7 is shown in Fig. 5.
One observes a strong deviation from the [dvone shown
in Fig. 3. The cubic symmetry is reduced and the persistence
of the (112) structure is seen in this figure: the peak at 90°,
characteristic of the cubic symmetry, is broadened and re-
40 | 8 duced whereas the other two peaks of(thl) one still have
some structure.
- For T=0.79, i.e., a temperature just above the transition,
° we find the following striking result: 30% of sites with 11
NN, 25% with 10 NN, 20% with 12 NN, 12% with 9 NN,
20 [ 1 4% with 8 NN, 6% with 13 NN, 1% with 7 NN, and with
14 NN. Note that the percentage of 12 NN atoms has
dropped from 74% af =0.7 to 20% at this temperature. The
average NN number is therefore 10.71.
Let us analyze now the structure of the observed defects.

0.0 . . For this purpose we calculated the radial and angular distri-
05 1.0 o 15 20 butions between defectas follows: whenever we are at a
defect, i.e., atom with a coordination number different from

FIG. 4. Functiong(r) at T=0.7. 12, we search for defects around it up to a certain distance
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FIG. 8. Angular distribution around defects of coordination
FIG. 6. Radial distribution functiobetweendefects of coordi- =11 and 13 aT=0.5.

nationc=13 atT=0.7. Note the different scale with Fig. 2 because
we fixed the area belog(r) to be one here.

T=0.7 show a shift of a few degrees of the peaks toward

and realize histograms. Figure 6 shows the radial distributio malligangles for d(;fects W'thf: 13da? expec_t;d_fi(:rllargtlar
of defects atT=0.7 around defects witlt=13. One ob- an (see Fig. 8 However, for defects witit=11, only

serves thati) the defects are surrounded by other defects af€ first peak is lowered, while the other two peaks are
a distance(0.696 slightly shorter than the equilibrium NN Shifted a few degrees higher. o
distance indicating that at this temperature defects form clus- Let us analyze more carefully the distribution of the clus-
ters and(ii) there is a larger number of defects at a distancders formed by the defects. We have computed the number of
0.876 very close ta/3/2, indicating that defects occupy the defectsinsideeach cluster. As we previously stated we have
sites at the middle of the fcc cube which are normally vacangeen that defects are not isolated but they are arranged in
in the equilibrium configuration. This finding is important separated inner and outer groups within a defect cluster. The
since it shows that defects forms clusters with two shells: th@uter groups appear and disappear while the simulation
inner are defects at 0.696 and the outer at 0.876 from thevolves, making the cluster size vary. To quantify the sizes
center defect. At this temperature, these kinds of defects aref these clusters we have obtained a histogram representing
uncorrelated at larger distanceee Fig. 6. The situation for  the probability to have a cluster with a given number of
defects withc=11 is shown in Fig. 7. In this case the secondparticles. The results are plotted in Fig. 9 at low, intermedi-
peak is less intensive and order at larger distances appearsate, and near melting point temperatures. At low temperature
we discuss below. Angular distributions between defects dtFig. Aa)], where the density of defects is very low, they
appear mainly in pairs. These pairs of defects are completely
' ' . . isolated and not important for the thermodynamical proper-
ties. As the temperature increases, larger clusters of defects
0.03 | i start to be createf-ig. Ab)]. Note that at temperatures near
melting, clusters of all sizes are present with the same prob-
ability up to a large given number of particlgBig. 9c)].
When the cluster size reaches a given critical value the sys-
tem melts. We can interpret these defect clusters as a set of
dislocation arrays or alternatively as liquid zones inside a
solid bulk. To enforce this interpretation we show the radial
distribution between defects in Fig. 10 for defects with
=13 atT=0.79. One observes a large double peak indicating
0.01 | defects at distances between NN and NNN equilibrium dis-
tances and pronounced peaks at around 3rd neighbor dis-
tance (/2) and at 2. This suggests that defects are linked
over large distances near the transition. Note that this corre-
‘ . ‘ lation is in fact insinuated belowi,,, as is seen in Fig. 7 for

0.02 -

a(n

0.00 : L L

05 07 08 1 r/;-"‘ LA defects ofc=11 atT=0.7. The scenario proposed by Bura-
kowsky, Prestoni, and Silbris somewhat verified. We re-
FIG. 7. The same as Fig. 6 but for defects with 11. call that this theory states that melting appears as a result of
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FIG. 10. Radial distribution functiobetweerdefects of coordi-
nationc=13 atT=0.79.

Finally, we emphasize that our results were obtained with
simulations using a combination of local and volume up-
dates. However, the use of only collective updates with vari-
able volume as in our previous wdfkdoes not alter our
conclusion, though the equilibrating time is somewhat
longer.

IV. CONCLUDING REMARKS

We have studied the melting mechanism of a fcc solid
with the LJ potential. The results show that defects created in
the solid phase become numerous enough to cause the crystal
to melt. At the transition, about one fourth of the total sites
do not have the coordination number 12 of the perfect struc-
ture. Just above the transition, only about 20% have 12 NN.
Our analysis of the structure of defects shows that a defect is
surrounded by atoms atabout+2/2 (NN distance and by
atoms atr about \/3/2 which is not the NNN distance
(=1) of the perfect structure. A closer examination shows
that these atoms are themselves defects created by dislocat-
ing atoms to somewhere between NN and NNN distances.
These dislocated positions correspond to “bridge” positions
in the potential landscape. We note that statistics taken be-
tween defects shown above indicate that defects are linked
together at the transition. In other words, the assumption of
linear defects by Burakowsky, Prestoni, and Sitba some-
what verified here. By linear defects, one should understand
“strings” of defects which are not necessarily straight lines
of defects. Of course, other aspects of their theory should be
further checked, but this is out of the scope of the present
work.

ACKNOWLEDGMENTS

dislocation generation. When the density of the dislocation We are grateful to E. Jagla for useful discussions. L.G.
array reaches a given critical value, the entropy of these aand A.D. thank the University of Cergy-Pontoise for hospi-
rays compensates the increase of energy produced by thality. Laboratoire de Physique Theque et Modésation is

local breakdown of the perfect crystalline order.

associated with CNREESA 8089.

224103-5



L. GbMEZ, A. DOBRY, AND H. T. DIEP

IN. W. Aschrof and N. D. MerminSolid State Physic&Saunders,
Philadelphia, 1976

2F.A. Linderman, Phys. 21, 609 (1910.

3N.D. Mermin, Phys. Rev. Lettl76, 250 (1968.

4D.R. Nelson and B.l. Halperin, Phys. Rev. R9, 2457
(1979.

5J.M. Kosterlitz and D.J. Thouless, J. Phys6C1181(1973.

6J.M. Kosterlitz, J. Phys. @, 1046(1974).

"H. Kleinert, Gauge Fields in Condensed MattéWNorld Scien-
tific, Singapore, 1989 Vol. II.

8B.E. Clements and D.C. Wallace, Phys. Re\6% 2955(1999.

SW. Brostow, M. Chybicki, R. Laskowski, and J. Rybicki, Phys.
Rev. B57, 13448(1998.

10, Gomez, A. Dobry, and H.T. Diep, Phys. Rev. B5, 6265
(1997.

IM.I.  Katsnelson

and A.V. Trefilov, cond-mat/9906402

PHYSICAL REVIEW B63 224103

(unpublishegl

12| Burakovsky, D. Preston, and R.R. Silbar, Phys. Rev6B
15011(2000.

3M. Kleman and J.F. Sadoc, J. Phy&rance Lett. 40, L569
(1979.

4. Gomez and H.T. Diep, Phys. Rev. Left0, 1807 (1995.

I5M. P. Allen and D. J. TildesleyComputer Simulation of Liquids
(Oxford University Press, Oxford, 1987

16p K. Chokappa, S.J. Cook, and P. Clancy, Phys. Re\39B
10075(1989.

7S R. Phillpot, J.F. Lutsko, D. Wolf, and S. Yip, Phys. Rev4®
2831(1989; J.F. Lutsko, D. Wolf, S.R. Phillpot, and S. Yip,
ibid. 40, 2841(1989.

18p_ Richard, A. Gervois, L. Oger, and J.-P. Troadec, Europhys.
Lett. 48, 415(1999.

224103-6



