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Monte Carlo simulation of the role of defects as a melting mechanism
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We study in this paper the melting transition of a crystal of a fcc structure with the Lennard-Jones potential,
by using isobaric-isothermal Monte Carlo simulations. Local and collective updates are sequentially used to
optimize the convergence. We show the important role played by defects in the melting mechanism in favor of
modern melting theories.
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I. INTRODUCTION

The melting of crystals has always been an exciting s
ject in condensed matter physics.1,2 The Lindemann criterion
allows us to estimate the melting temperature in a sim
way. However, the mechanism responsible for the meltin
still debated. It was widely admitted that the melting in thr
dimensions~3D! occurs when one of the phonon modes
softened by the temperatureT so that instability of the crys-
talline phase takes place leading to the liquid phase. In
this scenario is not valid. Mermin3 has shown in 1968 tha
long-range crystalline order is destroyed byT if the elastic
interaction is power-law decayed with distance. Nelson a
Halperin4 have shown that the 2D melting is due to defec
analogous to the case of Kosterlitz-Thouless transition
XY spins in 2D.5,6 Inspired by this defect-mediated meltin
several workers have attempted to prove that in 3D the m
ing may also be due to dislocations and defects.7–12 The
soft-mode scenario, though theoretically possible, is not
one frequently observed in numerical calculations. Works
defect theory up to 1989 have been summarized and de
oped in the book by Kleinert.7 Recently, several numerica
investigations8–10 and analytic approximations11,12 have
shown that dislocations and defects are responsible for m
ing. In particular, Burakowsky, Prestoni, and Silbar12 have
shown that melting properties of most of elements of
Periodic Table can be explained by excitations of linear d
locations in the crystal using a polymer theory.

Katsnelson and Trefilov11 have also recently developed
route toward a melting theory based in defects. They h
emphasized the concept of the geometrical frustration,13 i.e.,
the 3D Euclidean space cannot be filled by the closest p
ing structure, the tetrahedral one. Therefore they propo
that superdense regions and voids around them are t
formed near melting by thermal activation. These regio
were suggested to be the precursor of the destruction o
crystalline order.

In this paper, we investigate by Monte Carlo~MC! simu-
lation the melting of a 3D crystal where atoms interact w
each other via the Lennard-Jones~LJ! potential. We show
that defects which occur in the solid phase when the tra
tion temperature is approached from below are respons
for the melting. Section II is devoted to a description of o
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model and MC method. Results are shown in Sec. III. C
cluding remarks are given in Sec. IV.

II. MODEL AND MONTE CARLO METHOD

We consider a crystal of face-centered cubic~fcc! struc-
ture which is described by the following Hamiltonian

H5(
( i j )

U~r i j !, ~1!

where the interaction between atoms atr i andr j is described
by the potentialU(r i j ). For simplicity, the distance depen
dence is supposed to be given by the LJ potentialU(r i j )
54e@(r 0 /r i j )

122(r 0 /r i j )
6#, wherer i j 5r i2r j , r 0, being a

characteristic length of the system, is chosen in such a
that the nearest-neighbor~NN! distance in the fcc lattice is
equal toA2/2 when only NN interactions are taken into a
count. The fcc lattice constant is therefore equal to 1 in
ground state. Different potentials for cohesive interactio
are possible, for example the so-called Gupta many-b
potential14 which has been recently used to study the melt
process of a fcc crystal.10 We have shown that defects cre
ated near melting play an important role in the melti
mechanism. In the present paper we would like to clar
how defects are topologically distributed and how they d
stroy the crystal order. To this end, we choose the LJ po
tial which is simpler for implementing a volume-variab
algorithm as will be described below. However, most of t
conclusions concerning the melting mechanism are sim
for these two potentials. Details of a precise comparison w
be given elsewhere.

In this work, we studied a fcc lattice with different syste
sizes, using periodic boundary conditions, at constant p
sure. Interactions up to a cutoff distancer c51.57 have been
taken into account. This is about the fourth-nearest-neigh
distance in the perfect fcc crystal.

The following algorithm was used. Starting from the so
state where atoms are on the fcc lattice sites, we heat
system up to a temperatureT. We equilibrate the system firs
locally at constant volume and then globally at variable v
ume, as explained hereafter. The local equilibration at c
stant volume is done as follows: we take an atom and m
©2001 The American Physical Society03-1
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it to a nearby random position. This position is accepted
lowers the atom energy. Otherwise it is accepted with a pr
ability according to the Metropolis algorithm. We repeat th
for all atoms: we say we achieve one MC step/atom. Ne
we change the system volume by a random amount: all a
positions are thus rescaled with the volume variation.
recalculate the energy and accept or reject this volume u
a constant pressure Metropolis algorithm. For a gen
method, see Ref. 15. In the following we work at zero pr
sure. We find that the equilibrium is reached very fast w
alternately 10 consecutive local MC steps/atom followed
one volume variation step, and so forth. In all, we perform
about 105 MC sweepings at eachT. Physical quantities such
as averaged internal energy per atomU and radial distribu-
tion functiong(r ) are averaged over the next 105 MC steps/
atom.

From the plot of^E& versusT, we can identify the tran-
sition temperature from solid to liquid state. Furthermore,
investigate the melting mechanism we have computed

FIG. 1. ~a! Internal energyU vs T. ~b! Lattice constant vsT for
the system ofN51372. The jumps at the transition temperatu
indicate the first-order character.
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following quantities: angular distribution of neighbors, di
tribution of defects, number of nearest-neighbors~NN!, etc.
As we discuss below, due to the particular fcc structure
cannot use the Voronoi method which would give confus
results if care is not taken.

III. RESULTS

Let us show first in Fig. 1~a! U versusT. One observes a
discontinuity ofU indicating clearly that the transition is o
first-order as expected for a 3D melting. This is confirmed
the jump of the average fcc lattice constant shown in F
1~b!. These figures show results for three different syst
sizes. Since the transition is of first order, the transition te
peratureTm cannot be defined with precision~due to hyster-
esis!. Moreover, for sizes greater than 500 particles the m
ing temperatures fall within the same interval. Therefore,
the following we will show results for the system ofN
51372 particles. We takeTm as the lower limit of the tran-
sition temperature region. From Fig. 1, we takeTm50.76.
Note that as our simulation cell does not contain surfac
this transition temperature corresponds to the metastab
limit of the crystal’s ability to superheat rather than to t
thermodynamical melting point.16,17In the following, we will
call for simplicity, Tm at this transition temperature and a
sociate the phenomena with an apparent melting point s
the structure losses all local order at this temperature.

Figure 2 shows the radial distribution function betwe
atoms at a lowT (T50.25) in the solid phase. The firs
~second, third, . . . ! peak corresponds to the NN~NNN, third
neighbors, . . . ! distance of the fcc structure.

To calculate the coordination numberc of a site, we inte-
grate the radial distribution function up to the first minimum
For example in Fig. 2, integratingg(r ) over r up to about
r 150.85 ~first minimum! will give c512. Integratingg(r )
from r 1 up to the next minimum atr 251.1 givesc256, and
so on. These coordination numbers verify the fcc structu
We use this method instead of the frequently used Voro

FIG. 2. Radial distribution functiong(r ) at T50.25. This func-
tion gives the mean value of the number of particles sitting at d
tancer from a given particle.
3-2
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construction because the Voronoi polyhedra in a slightly d
torted fcc structure have small faces and short edges and
coordination number could not be precisely calculated
cause these small faces appear and disappear frequentl
to thermal excitations.9,18

Furthermore, to complete our structure determination,
also calculateg(u), the angular distribution of neighbor
around a site within a plane up to a certain distance. T
functiong(u) gives the probability to have two neighbors
an atom forming an angleu. We show in Fig. 3 an exampl
of angular distribution taken atT50.25 . The peak at 60
~90, 120! degrees corresponds to the angular distribution
the NN ~NNN, 3rd NN! atoms in the fcc structure.

Let us increaseT near the transition. The radial distribu
tion g(r ) at T50.7 is shown in Fig. 4. The main difference
with the low-T structure shown in Fig. 2 are:

• All the minima between the peaks are raised. This is e
dence that the crystal order is reduced atT50.7. In par-

FIG. 3. Angular distribution function as defined in the text
T50.25. The area belowg(u) is normalized to one.

FIG. 4. Functiong(r ) at T50.7.
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ticular, the minimum between the first and second pe
does not correspond tog(r )50. This implies that a diffu-
sional dynamics is activated near melting. This is the o
gin of the formation of defect clusters we will discuss b
low.

• Another feature is the strong reduction of the second
fourth peaks. The cubic symmetry is therefore weaken
and the remaining correlated part of the system is wit
the ~111! planes.

Integratingg(r ) over r between two consecutive minima
one obtains the coordination numberc512 only at 74% of
the total crystal sites. 15.5% of the sites have 11 NN, 7.
have 13 NN, and 2% have 10 NN. At this stage, it is wor
while to stress that though the temperature is still belowTm ,
such an important percentage of sites (26%) exhibit defe
The crystal structure, therefore, cannot be considered
defect-free one which is used in the search for a pho
soft-mode responsible for the elasticity instability at t
melting.

The angular distribution forT50.7 is shown in Fig. 5.
One observes a strong deviation from the low-T one shown
in Fig. 3. The cubic symmetry is reduced and the persiste
of the ~111! structure is seen in this figure: the peak at 90
characteristic of the cubic symmetry, is broadened and
duced whereas the other two peaks of the~111! one still have
some structure.

For T50.79, i.e., a temperature just above the transiti
we find the following striking result: 30% of sites with 1
NN, 25% with 10 NN, 20% with 12 NN, 12% with 9 NN
4% with 8 NN, 6% with 13 NN, 1% with 7 NN, and with
14 NN. Note that the percentage of 12 NN atoms h
dropped from 74% atT50.7 to 20% at this temperature. Th
average NN number is therefore 10.71.

Let us analyze now the structure of the observed defe
For this purpose we calculated the radial and angular dis
butions between defectsas follows: whenever we are at
defect, i.e., atom with a coordination number different fro
12, we search for defects around it up to a certain dista

FIG. 5. Angular distribution functiong(u) at T50.7.
3-3
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and realize histograms. Figure 6 shows the radial distribu
of defects atT50.7 around defects withc513. One ob-
serves that~i! the defects are surrounded by other defects
a distance~0.696! slightly shorter than the equilibrium NN
distance indicating that at this temperature defects form c
ters and~ii ! there is a larger number of defects at a distan
0.876 very close toA3/2, indicating that defects occupy th
sites at the middle of the fcc cube which are normally vac
in the equilibrium configuration. This finding is importan
since it shows that defects forms clusters with two shells:
inner are defects at 0.696 and the outer at 0.876 from
center defect. At this temperature, these kinds of defects
uncorrelated at larger distances~see Fig. 6!. The situation for
defects withc511 is shown in Fig. 7. In this case the seco
peak is less intensive and order at larger distances appea
we discuss below. Angular distributions between defects

FIG. 6. Radial distribution functionbetweendefects of coordi-
nationc513 atT50.7. Note the different scale with Fig. 2 becau
we fixed the area belowg(r ) to be one here.

FIG. 7. The same as Fig. 6 but for defects withc511.
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T50.7 show a shift of a few degrees of the peaks tow
smaller angles for defects withc513 as expected forc larger
than 12~see Fig. 8!. However, for defects withc511, only
the first peak is lowered, while the other two peaks a
shifted a few degrees higher.

Let us analyze more carefully the distribution of the clu
ters formed by the defects. We have computed the numbe
defectsinsideeach cluster. As we previously stated we ha
seen that defects are not isolated but they are arrange
separated inner and outer groups within a defect cluster.
outer groups appear and disappear while the simula
evolves, making the cluster size vary. To quantify the si
of these clusters we have obtained a histogram represen
the probability to have a cluster with a given number
particles. The results are plotted in Fig. 9 at low, interme
ate, and near melting point temperatures. At low tempera
@Fig. 9~a!#, where the density of defects is very low, the
appear mainly in pairs. These pairs of defects are comple
isolated and not important for the thermodynamical prop
ties. As the temperature increases, larger clusters of de
start to be created@Fig. 9~b!#. Note that at temperatures ne
melting, clusters of all sizes are present with the same pr
ability up to a large given number of particles@Fig. 9~c!#.
When the cluster size reaches a given critical value the
tem melts. We can interpret these defect clusters as a s
dislocation arrays or alternatively as liquid zones inside
solid bulk. To enforce this interpretation we show the rad
distribution between defects in Fig. 10 for defects withc
513 atT50.79. One observes a large double peak indicat
defects at distances between NN and NNN equilibrium d
tances and pronounced peaks at around 3rd neighbor
tance (A2) and at 2. This suggests that defects are link
over large distances near the transition. Note that this co
lation is in fact insinuated belowTm as is seen in Fig. 7 for
defects ofc511 atT50.7. The scenario proposed by Bur
kowsky, Prestoni, and Silbar12 is somewhat verified. We re
call that this theory states that melting appears as a resu

FIG. 8. Angular distribution around defects of coordinationc
511 and 13 atT50.5.
3-4
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dislocation generation. When the density of the dislocat
array reaches a given critical value, the entropy of these
rays compensates the increase of energy produced by
local breakdown of the perfect crystalline order.

FIG. 9. Histogram of the number of defects in a cluster for~a!
T50.3, ~b! T50.58, and~c! T50.725.
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Finally, we emphasize that our results were obtained w
simulations using a combination of local and volume u
dates. However, the use of only collective updates with v
able volume as in our previous work10 does not alter our
conclusion, though the equilibrating time is somewh
longer.

IV. CONCLUDING REMARKS

We have studied the melting mechanism of a fcc so
with the LJ potential. The results show that defects create
the solid phase become numerous enough to cause the c
to melt. At the transition, about one fourth of the total sit
do not have the coordination number 12 of the perfect str
ture. Just above the transition, only about 20% have 12 N
Our analysis of the structure of defects shows that a defe
surrounded by atoms atr aboutA2/2 ~NN distance! and by
atoms at r about A3/2 which is not the NNN distance
(51) of the perfect structure. A closer examination sho
that these atoms are themselves defects created by disl
ing atoms to somewhere between NN and NNN distanc
These dislocated positions correspond to ‘‘bridge’’ positio
in the potential landscape. We note that statistics taken
tween defects shown above indicate that defects are lin
together at the transition. In other words, the assumption
linear defects by Burakowsky, Prestoni, and Silbar12 is some-
what verified here. By linear defects, one should underst
‘‘strings’’ of defects which are not necessarily straight lin
of defects. Of course, other aspects of their theory should
further checked, but this is out of the scope of the pres
work.
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FIG. 10. Radial distribution functionbetweendefects of coordi-
nationc513 atT50.79.
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