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We have investigated the thermal equation of state of bcc tantalum from first principles using the full-
potential linearized augmented plane wévAPW) and mixed-basis pseudopotential methods for pressures up
to 300 GPa and temperatures up to 10 000 K. The equation of state at zero temperature was computed using
LAPW. For finite temperatures, mixed basis pseudopotential computations were performed for 54 atom super-
cells. The vibrational contributions were obtained by computing the partition function using the particle in a
cell model, and the finite-temperature electronic-free energy was obtained from the LAPW band structures. We
discuss the behavior of thermal equation of state parameters such as tles@nuparametey, the thermal
expansivity o, and the Anderson-Gngisen parametef; as functions of pressure and temperature. The
calculated Hugoniot shows excellent agreement with shock-wave experiments. An electronic topological tran-
sition was found at approximately 200 GPa.
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I. INTRODUCTION 9K o(T)Vo(T)
E(V,T)=Eq(T)+ a2 {1+{&(1-x -1}
We investigate from first-principles the thermal equation-
of-state of body-centered cubibcg tantalum, a group V xXexp{é(1-x)}}, Y

transition metal, which is a useful high-pressure standard dugnere E, andV, are the zero pressure equilibrium energy
to its high structural mechanical, thermal, and chemical staz g volume respectivelw=(V/V0)1’3 and §=§(K6—1)

bility.. Ta has a very high melting tempe_rature, 3269 K atKo(T) is the bulk modulus ané,(T) =[dK(T)/dP],. The
ambient pressure, and its bee structure is stable for a largg,hseript 0 alone throughout represents the standard Rtate
pressure range. Static diamond anvil cell expgrm.?ennsto_ =0. All equations of state here are for an isotherm or static
174 GPa and full-potential linearized muffin-tin orbital (T=0) conditions, unless specified otherwise. Pressures
(LMTO) calculation$ up to 1 TPa conclude that the bcc were obtained analytically from

phase of Ta is stable for these pressure ranges. Similarly,

shock compression experimehshowed melting at around Ko(T)(1—x)

300 GPa, but no solid-solid phase transition. P(V,T)= e expl§(1—x)}. 2

The calculated equation of state is compared with
Il. STATIC EQUATION OF STATE experiments'®in Fig. 1. The LAPW GGA results are found
to be more accurate than the LDA. The discrepancies are

Firstly, we discuss the static high-pressure properties ofi"9er between theory and experiment at high pressures; this
Ta, which we obtained from first principles by using the MY be due to strength effects in the experiméhtince we
linearized augmented plane-waveAPW) methodS The find good agreement with the experimental Hugoniot to 400

Pa(discussed below For the pseudopotential mixed-basis
5p, 4f, 5d, and & states were treated as band states, anés Iculation$®*® (MBPP, discussed belowwe find that the
others are described as core electrons. We used both the lo

. S . . A agrees fairly well with the experiments, indicating

6
den5|ty_ apprOX|mat|o7rﬁLDA) and the generallze_d gradient compensating errors between the pseudopotential and the
approximation(GGA)’ for the exchange-correlation poten-

. LDA. Since we are using a first-principles approach, and
tial. The Monkhorst-Pack speci&-point schem® with a  want to avoid ad hoc variations in procedure to get better
16X 16X16 k-point mesh(140 k points within the irreduc- agreement with experiments, we use the computational more
ible Brillouin zone of the bcc lattigewas used after conver- accurate method with the least approximations, that is
gence tests. The convergence param@tef, ., was 9.0, and LAPW and GGA, rather than the MBPP with LDA, in spite
the muffin-tin radii were 2.0 bohr, giving about 1800 planeof the fortuitously better agreement of the latter with the
waves and 200 basis functions per atom at zero pressure. Theom-temperature data.

total energy was computed for 20 different volumes from The residuals between the calculated and fitted energies
62.5 to 164 boht (1 bohr=0.529177 A), and the energies show large deviations for volumes less than 80 BdFig.
were fit to the Vinet equatio‘ﬁ, 2). Note that the residuals are all small and not evident for
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20 % 100 10 720 120 FIG. 3. Band structures and densities of states at two different
Volume (arb. units) volumes (pressures (a) V=120 boht (P=5 GPa) and(b) V

=50 boh? (P=460 GPa). Note the significant change in Fermi
FIG. 1. Static equation of state of Ta. Solid and dashed lines argyface configuration with pressure.

LAPW, GGA, and LDA calculations, respectively. Pseudopotential
mixed-basis results are shown by the dotted line. Circles angyo more parameters related to the next two pressure deriva-
squares are two different diamond anvil cell experiments. The distjye of bulk modulus, it is improved significantly. Hence,
crepancies at high pressures may be due to strength effects in thgase |arge residuals are related to different high- and low-
static equation of state. pressure behavior of Ta. The band structures and densities of
states(Fig. 3 show a major reconfiguration of the Fermi
the large energy scale shown in Figa)z Other equation-of- surface. This electronic topological transition is the reason
state formulations, such as the extended Birch equdtion for this change in compression, and the behavior of the re-
show the same trerld.When the fit is restricted to volumes siduals for the fitted equations of state. This indicates that
greater than 80 bofy or the Vinet equation is extended by systematic deviations from simple equations of state can
be used to find subtle phase transitions.

300 . . . : : : Spin-orbit interactions may be important for Ta. In order
to test this, we included spin-orbit coupling by a second
variational treatment including 20—80 bands. In contrast to
the fully relativistic LMTO result$, we found only negli-
gible effect on the equation of state, so our computations
were done without spin orbit coupling for the valence states.

s
£ The core states in CHPW are fully relativistic.
e ool
E : - I1l. CALCULATION OF THERMAL PROPERTIES
_100 F II 'l - V!net “\\ ’,- ] )
109 \\// e Bich ¥ In order to compute the high-temperature properties of
Y ] +—— Vinet low P p g p 7 p p
V) =~ Birch low P Ta, we separated the Helmholtz free energy’as:
200 } v =—-—= Extended Vinet J
) F(V.T)=Estatid V) +Fe (V. ) +F,in(V.T), (3
800 5% 500 000 1200 1400 1600 where Eg.ii(V) is the static zero-temperature energy,

Volume (arb. units) Fo(V,T) is the thermal free energy from electronic excita-

FIG. 2. Energy differences between the calculated and fittediOnS, andF,i,(V,T) is the vibrational contribution to the
data of the equation-of-state fits. Both Vinet and Birch-Murnagharfree energy Egaiic(V) andFe(V,T) were computed using
equation-of-state fits are shown. In the low-pressure fits only théhe LAPW method with the GGAF ,i,(V,T) was computed
data with volume greater than 84 bdhwere included. The ex- using the particle-in-a-cellPIC) model with a mixed basis
tended Vinet fit included the 2nd and 3rd pressure derivative ofpseudopotential method, as described below. The main dif-
Ko(T). ferences we find between LDA and GGA are in the energy
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versus compression, but we find only small differences inDebye temperature is below room temperature in Ta, the
energy versus atomic displacements. Since LDA convergedlassical thermal properties should be reasonable even down
much faster than GGA, and is also faster per iteration cycleto room temperature.

we used LDA for the large supercell computations required The electronic thermal free energy was obtained using the
for the vibrational contributions. Differences from using Mermin theorer®” [Eq. (5)]. The charge density is tempera-

GGA for this are negligible. ture dependent through both occupation numbers according
The electronic parE(V,T) of the free energy is: to the Fermi-Dirac distribution and self-consistency. The
electronic contributions to the thermal-free energy were

Fe(V,T)=Eg(V,T)=TSy(V,T), (4)  computed by the LAPW method using the same computa-

. . tional parameters as the=0 K computations described in
whereE(V,T) is the internal energy due to thermal elec- g4 |

tronic excitations, For the vibrational contributions, it is necessary to do a

large number of large supercell calculations, which is com-
Sel(V,T)=—2kg >, fiInf,+(1—f)In(1—f;) (5  Putationally intractable by the LAPW method, but is achiev-

[ able with the MBPP methotf In this mixed-basis approach,
pseudoatomic orbitals and a few low-energy plane waves are
used as the basis set within a density functional, pseudopo-
tential calculation. It was shown that the method offers a
1 computationally efficient but accurate alternative.
= A semirelativistic, nonlocal and norm-conserving

1+exp< L&—un(T)] Troullier-Marting! pseudopotentialwith associated pseudo-
kgT atomic orbital$ was used to describe the Ta atoms. The
_ _ . _ . pseudopotential was generated from @°&s?6p° atomic
€; are the eigenvalueg, is the chemical potential, arids is  configuration with cutoff radii 1.46, 2.6, and 3.4 bohr fat,5
Fhe Boltzmann constgnt. The.vibrational free energy is giverBS' and & potentials, respectively, with nonlinear core cor-
in terms of the partition function as rections. The cutoff radii were optimized by testing the trans-
ferability of the pseudopotential by considering the reason-
able variations of the reference atomic configuration and by
. 18 comparing the logarithmic derivative of the pseudowave
The particle-in-a-cell modél”’®was used to calculate the f;nctions with all-electron values in the valence energy
partition function. In this model, the partition function is range. The 6 potential was chosen as the local component
factored by neglecting atomic correlations. An atom is dis~yhile 5d and & were kept as nonlocal while transforming

placed in its Wigner-Seitz cell in the potential field of all the \he hotential to the nonlocal separable Kleinman-Bylander
other atoms fixed at their equilibrium positions, i.e., theg.n22 o f1 plane-wave representation is used for the

ideal, static lattice except for the wanderer atom. The part'bharge density and potential, and a smaller cutoff is used for

tion function is simply a product of identical functions for all o pasis set. The pseudoatomic orbitals are expanded in the
the atoms, involving an integral of Boltzmann factor over the|y e plane wave set for evaluation of the potential and
position of a single atom inside the Wigner-Seitz cell, charge density integrals in the Hamiltonian and overlap ma-
N trices, and in the total energies. After checking the energy
dFJ ®) convergence, 550 and 60 eV were used for the large and
' small energy cutoffs, respectively, in the solid calculations.
The exchange-correlation effects of electrons were treated
wherex =h/(2mm ksT)"?is the de Broglie wavelengths of ithin LDA. The T=0 K equation of state of bcc Ta was
atoms andU(r) is the potential energy of the system with computed to test the pseudopotential, and is compared with

the wanderer atom displaced by radius vectbom its equi- ~ €xperiment and LAPW results in Fig. 1.

librium position. The advantage of the cell model over lattice  For the PIC computations, a supercell with 54 atoms was
dynamics based on the quasiharmonic approximation is thé{sed The MBPP calculations were carried out on this 54
anharmonic contributions from the potential energy of theatoms supercell using LDA for exchange-correlations effects
system have been included exactly without a perturbatiomnd four speciak points for BZ integrations. The potential
expansion. On the other hand, since the interatomic correlaenergy surface was then calculated as a function of the dis-
tions between the motions of different atoms is ignored, it igplacements of the wanderer atom. Symmetry was taken into
only valid at temperatures above the Debye temperature. Difaccount in order to reduce the number of computations. The
fusion and vacancy formation are also ignored, so premeltingntegrand in Eq.(8) has a Gaussian-like shape and decays
effects are not included. We have used the classical partitiorapidly, and essentially is zero at half of the interatomic dis-
function, so quantum phonon effects are not included. Thusances even at very high temperatures. Therefore, integration
the heat capacity and thermal expansivity do not vanish abver the Wigner-Seitz cell can be replaced by an integration
low temperatures, for example. The present results are apver the inscribed sphere. Also, the radial part of the inte-
propriate for temperatures above the Debye temperf24®  grand is invariant under point group operations of the lattice,
K in Ta (Ref. 19] and below premelting effects. Since the hence a numerical quadrature can be used for angular inte-

is the electronic entropy, and the Fermi-Dirac occupafion
is

f

Foin(V,T)=—kgTInZ. (7)

zce.|=x3“[ f exp[_ [U(r);;_o(-ro)]
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TABLE I. Vinet parameters for Ta isotherms. The temperatures 0.0-_|\.'\'. i T i LI T
are odd numbers since computations were done at multiples of _ (@) \'\-\. :
ksT=0.006 Ry. n‘% 053 ey
=4 ] .\.
T (K) Vo(T) (au)  Ko(T) (GPa) Kg(T)  Eo(T) (Ryd) w 1.0 : : —— \,
0 2000 4000 6000 : 8000 10000
0.00 123.63 190.9 3.99 —31252.3341 3003 : : ——
947.32 126.83 163.6 4.31 —31252.3665 - E(b) :
2052.53 131.38 138.2 454 —31252.4388 £ 4903 : —
2999.85 135.53 120.5 4.69 —31252.5119 3 ] - .__,./{—l
3947.17 140.26 103.8 4.83 —31252.5925 > 1003 —" I'—_. : . : . . |
5052.37 147.30 83.1 5.05 —31252.6950 0 2000 4000 6000 8000 10000
5999.69 155.44 64.5 5.30 —31252.7899 200—_.@' ' ' ' ' e
6947.01  167.39 45.0 564 —31252.8017 & 1 T, ]
a 1003 —a . 3
8052.22 192.24 22.4 6.25 —31253.0210 5] E \.\l\i E
8999.54 230 9.2 6.90 —31253.1413 ;" 0_5 !'\-\. .
9946.86 289 3.1 7.53 —31253.2678 T T T T
82 2000 4000 6000 ; 8000 10000
E d T d T T T T T
%) : =
gration based on the method of special directifriSIn this 6] P ]
method, the radial integral is expanded in terms of lattice . .__./_/-/;“ " ]
harmonics, cubic harmonics for a cubic lattice, then a sa3—a—" : 3
quadrature rule is derived for the angular integratiop in terms 0 2000 4000 6000 8000 10000
of the radial integration by choosing special directians,in T(K)

such a way that the contribution froh¥0 terms, as many

lattice harmonics as possible, is zero. In all of the computa- FIG. 4. Vinet equation-of-state parameters as functions of tem-

tions, we used one special direction which integrates exactlperature(a) The minimum energy with respect to tfie=0 K value

up tol =6 cubic harmonicé® Then, the potential energy was Eo(T=0)=—31252.33412 Ryd, (b) the equilibrium volume,

calculated at 4—6 different displacements along this specialo(T), (¢) the bulk moduluKo(T) at P=0, and(d) the pressure

direction. In order to model the potential, these computedlerivative of bulk modulus aP=0. The vertical line shows the

values were fit to an even polynomial up to order 8, whichposition of the last volume point. At higher temperatures the param-

shows the anharmonicity very clearly, since a second-ordefters are fictive, but still govern the high-pressure equation of state.

fit describes the data poorly. Finally, the cell-model partition ) ]

was calculated from Eq(8) by carrying out the integration higher compressions may be due to the fit through the elec-

numerically, and the vibrational free energy is simply giventronic topological transition discussed above, and thus due to

in terms of partition function by Eq(7). inflexibility in the Vinet equation, rather than a real rise in
thermal pressure. The thermal pressure is also quite linear in

T. The thermal pressure changes are given by
IV. THERMAL EQUATION OF STATE

We treated the resulting free enerdfeshree different
ways. Firstly,F-V isotherms were fit using the Vinet equa-
tion of state, givinggy(T), Vo(T), Ko(T), andKy(T) as the
parameters of the fifTable |, Fig. 4. Because of the thermal
expansivity, the minimum energy shifts to higher volumes
with increasing temperature, and aboVe-6000 K the P
=0 volume is not in the range of volumes we studied. The
experimentalP=0 melting temperature is 3270 K, so tem-
peratures above this are nonphysical in any case. The param-
eters for higher temperatures are fictive parameters that dée the static pressurBg4;ic. Since our equation of state is
scribe the higher pressure equation of state accurately. Thaassical, we can use this expression at all temperatures. This
Vinet parameters could be fit to polynomials versus temperasimple equation of state giveg=(dIny/dInV);=1 and
ture to obtain a thermal equation of state, but the following(dK+/dT)y=0, which therefore are good approximations
approaches require fewer parameters. over this pressure and temperature range for Ta.

A second thermal equation of state was obtained by ana- The thermal pressure was averaged over volumes from 60
lyzing the thermal pressure obtained from the Vinet(iits.,  to 220 boh?, and is shown as a function of temperature in
the differences in pressures between isothgrifise thermal  Fig. 6. The solid line has a sloeof 0.00442 GPa/K. This is
pressure as a function of volume and temperature is shown iclose toaKqr(T), which is 0.00460 GPa/K at 1000 K and
Fig. 5. The volume dependence of the thermal pressure farero pressure. So a simple equation of state for Ta is the
Ta is very weak up to 80% compression. Deviations astatic pressure given by, (T=0)=123.632 boht, Ky(T

P(V,T)—P(V,Ty)= fTTaKTdT, 9

and oKy is quite constant for many materi&lsn the clas-
sical regimgabove the Debye temperaturelence, a greatly
simplified thermal equation of state is to add a thermal pres-

Pin(T)=aT (10
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T(K) tion of temperature. The solid line is a linear fit with a slope equal

FIG. 5. The thermal pressure as a function(af volume at
different temperatureshown in Table ) and(b) temperature from

the Vinet fits.

to 0.004 42 GPa/K. Also shown are the average vibrational and
electronic contributions. The fact that the total is linear, whereas the
separate vibrational and electronic contributions are not, must be
fortuitous, suggesting that in some systems nonlinear terms in the
total thermal pressure may be necessary at very high temperatures.

=0)=190.95 GPa, an&y(T=0)=23.98 in the Vinet equa-

tion [Eq. (2)] plus the thermal pressuf®,,=0.00447 .

parameterg\;; are given in Sl units in Table II, which gives

Thirdly, an accurate high-temperature global equation the free energy in Joules/atori; is in Kelvin and V in

state was formed from th&=0 K Vinet isotherm and a
volume dependent thermal free eneifgy, as:

i=3j=3

Fin= Z A TVI=3kgTInT.

i=1j=0

m3/atom. The term ifT In T is necessary to give the proper
classical behavior at low temperatures, since we are evaluat-
ing the classical partition function, witlc,,=3kg and S
=—o at T=0 K. For the best overall accuracy, tie=0
isotherm was also included in the global fit. The global fit is
compared with the computed free energies in Fig. 7. The rms

11

This is the thermal Helmholtz free energy per atom, whichdeviation of the fit is 0.4 mRy. At low temperaturé® and
must be added to Eq1) to obtain the total free energy. The 1000 K) the residual§Fig. 7(b)] are larger due to the elec-

TABLE II. Global fit parameters for Ta in Sl unit@xcept where markedRow is fori and column for
j in A; of Eq. (11). Note that theT=0 parameters are not identical to those in Table I, since these were
determined from a global fit to all result§ €0 andT+#0) and the Table | values were fit =0 only.
There is no practical difference for applications of these equations of state, within the accuracy of the

computations.

0 1 2 3

1 2.768 10%? —3.295 16 6.852 16° —1.751 16°
2 3.734 10% —639.6 2.259 1% —4.524 1068
3 —1.955 103 0.0247 —6.512 16° —1.137 16°
Vo 123.52 au 1.8304 1¢° m®

Ko 186.7 GPa 186.7 GPa

Ko 4.120 4.120

Eo —31252.3333 Ryd —6.812614 88 10*J
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tronic topological transition discussed aba¥ég. 2), but at The thermal expansivity drops rapidly with increasing
higher temperatures this anomaly is less pronounced due wessurgFig. 8), and this is parametrized by the Anderson-
the thermal smearing, and the equation of state fits well. Gruneisen parametdfig. 9)

Thermal equation of state parameters such as
P, a, v, &1, q, and the heat capacity,, andCp can be
obtained from the global fit by differentiation and algebraic 5= ( Jln 0‘) . (12)
manipulation(see Ref. 25 for a collection of useful formu- alnV/;
las) We now discuss the behavior of these parameters. The

thermal expansion coefficient is presented, and compare_ijhe behavior of5; is complex. At low pressures it increases
T .

with zero-pressure experimefftsn Fig. 8. The deviations at with increasing temperature, but at elevated pressures it de-
lower temperatures are due to the use of the classical parti- 9 b ’ P

tion function. The thermal expansivity is a quite sensitive. coge > with temperature. The parameigrcan be fit to a

“form? 51= 81(n=1)7*, wheren=V/V,y(T,). The average
paramgter,_ and the_ errors at moderate temperatures, whi + (averaged from 0—6000 )Kdecreases with compression,
are typical in first-principles computations, may come from a

: T _ 1.29
number of sourceserror in the P=0 volume, LDA, the and a power-law fit givesir(7) =4.567"~, at 1000 K oy

— 1.17 ; .
pseudopotential, the PIC model, or convergence in k point 4.757~". Interestingly these values are not that different

: . ( : ; from MgO (Ref. 28 [6+(n=1, 1000 K)]=5.00 and
or basis set The divergence in behavior at higher tempera-_ 1.48. The behavior is much different than for Fe, whéye

tures is not due to vacancy formation, since the vacancy, .
s oo ' . s constant to 150 GPa with values of 5.2 and 5.0 for fcc and
formation in Ta is high3.2 eV),% and the fraction of vacan- hep. respectively, after which it drops more slowly than a

cies at the me_ltlng point is less than 10 The temperature nower law®’ The difference betweed, andK' is an impor-
range over which the anomaly occurs seems too large to be;a

premelting effect. One possible explanation would be an in-tant anharmonic parameter, and is related to the change in

cipient solid-solid phase transition in Ta, which would not bethe bulk modulus with temperature at constant volume and

detected in the PIC method. The upturndinwith increasing the thermal pressure with compression at constant tempera-

. ture:
temperature is apparently a low-pressure phenomenon. It is

possible that it is due to an experimental problem, such as
oxidation of the sample. @

. T . T .
e E . (Touloukian et al. )
. — Theory

o . . . . ] ,
0.0 ] 1 . 0 GPa

_0.5_- _- ] -

FE (Ryd)
]
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e T 300 GPa
0 2000 4000 6000 8000 10000

1.0 ]

0.002-

—— 8000 K |
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T T T T T T T T T T
0 50 100 150 200 250 300
P (GPa)

-0.002 T T T T T T T v T v T T
60 80 100 120 140 160 180
V (arb. units) FIG. 8. The thermal expansivity as a function(af temperature
and (b) pressure. The wide line i@ shows the experimental zero
FIG. 7. Global fit to free energiesa) Computed Helmholtz free  pressure thermal expansivitfthe dashed part is less well con-
energiessymbolg and the result of the global fitines) using pa-  strained. The experimental thermal expansivity shows an anoma-
rameters from Table Il. The top curve is for 0 K, and the bottomlous increase at high temperatures. Theory predicts the thermal ex-
9947 K. See Table | for exact temperatur@s. Residuals of fit.  pansivity to drop rapidly with pressure, and the temperature
Lines are labeled in order of temperature. dependence to decrease.
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6

T L L 8 L T L T L
(a) — 0GPa
-——-50GPa
------ 100 GPa
—emems 200 GPa
marmem 300 GPa

FIG. 9. The Anderson-
T Gruneisen parametef; as a func-
2 T T T T 2 T T T T T tion of (@ T, (b) P, and (c) #
0 2000 4000 6000 8000 10000 0 50 100 150 200 250 300
TK) P (GPa) =V/Vy(T=0). The average of;

10000 from 0—6000 K is also shown as a

' ! ! T (d) 5.40 thick line in (c). (d) Contours of
R . 51— K’ show that this quantity is

quite small for a large temperature

8000 range.
6000--"':
-
4000 -
2000 4.~
00.6 0‘7 058 0‘9 1I0 11
n n
dln(aKy) that experiments to determinddK+/JT) at low pressures
=K'=l v (13 may not be applicable to a very large pressure range.
T A most important parameter, particularly for reduction of
shock data, is the Gneisen parameter
_ 1 (14)
aKs\ dT |, [P aKV 15
Y= ¢9E V_ CV ’ (

Figure 9d) shows thaté;—K' is quite small over a large

temperature and compression range, but increases affhighwhereE is the internal energy. The Gmeisen parameter is
and P. This is consistent with the accuracy of the simpleysed in the Mie-Gineisen equation of state, which assumes
equation of stat¢Eq. (10)]. The behavior ofo;—K' is also  y independent of temperature. Then the thermal pressure on
surprisingly similar to the behavior of MgGee Fig. 3.3 in  the Hugoniot, for example is given by the change in internal

Ref. 25. energy by
Changes in thermal pressuf@,, are given by oKt

=(dP/dT)y which is shown in Fig. 10. Changes &K1 are
small, but it is interesting that the sign of the change with P _p._. ZZ(E CEgid) (16)
temperature is strongly dependent on pressure, indicating hug ~ Tstaticy/ 1 =hug - =static’:
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FIG. 12. Variation ofg as a function ofa) temperature an¢b)
pressure. The pressure dependence is small above 50 GPa, but the
temperature dependence is significant at all pressures.

Figure 11 shows that at elevated pressusess moderately
temperature dependent, and it varies more strongly with tem-
perature below 100 GPa. The variationyfvith pressure is
given by

alny

~ 9NV’ (17

q

which is shown in Fig. 12. The parametgis not constant,

as is often assumed, but decreases significantly with pressure
and temperature. I&K; and C,, were constant, Eq(15)
shows thatg=1. Figure 10 shows tha&K; is quite con-
stant, so that large changes gnmust be due primarily to
changes in the heat capacidy, .

Figure 13 shows indeed that the heat capacity is a strong
function of temperature and pressure. This is due mainly to
the electronic contributions. The experimen@} at zero
pressur® is also shown. Other than the large differences
from experiment at very low temperatures, due to neglect of
quantum phonon effects in the present model, there is a large
increase in the experimental heat capacity with increasing
temperature that is not seen in the PIC results. A similar
large increase in the experimental thermal expansivity is not
predicted by the modédFig. 8). Vacancy formatior(not in-
cluded in the PIC modglseems an unlikely source for this
discrepancy as discussed above. An incipient phase transi-
tion or sample oxidation seems the most likely cause of the
observed behavior in the thermal expansivity and the heat

perature andb) pressure. The temperature dependence is moderat€apacity.
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FIG. 14. (a) The line shows the computed Hugoniot for Ta
(computed at the points shown as cirgleShe squares are the
shock-wave datdRef. 3. (b) Theoretical temperatures along the

19), which shows an anomalous increase at high temperatures, simtugoniot.

lar to the behavior of the thermal expansivity.

is approximate. They included the electronic free energy in

To compare with experiment at high pressures and temh® same way that we do, but no supercell is used for the
peratures, we consider the high temperature, high-pressuR@onon contribution. Instead they find an effective potential

equation of state obtained by shock compres3idhe pres-
sures,P,,, and temperature§,, , on the Hugoniot of Ta are

given by the Rankine-Hugoniot equation:

1
> Pul[Vo(To) —V]=E{—Eo(T=0).

(18)

from the equation of state of the primitive, one atom unit
cell, and integrate the mean-field phonon partition function
based on this effective potential. This is a tremendous reduc-
tion in effort compared with the use of large supercells and
finding the potential for displacing one atom in the supercell.
They obtain impressive results for this simple model obtain-
ing excellent agreement with the experimental Hugoniots,

We solved the Rankine-Hugoniot equation using ournot only for Ta, but also Al, Cu, Mo, and W. Nevertheless, it
equation-of-state results by varying the temperature at aeems unlikely that this simple model will work for lower
given volume until it was satisfied. The calculated Hugoniotsymmetry systems such as hcp-fRef. 17 or for elastic
shows very good agreement with experimental data as se@wonstants. For example, the c/a varies with temperature in

in Fig. 14.

hcp-Fe, but the Wangt al. model would not allow for this.

Computations of the Hugoniot using a modified free- We summarize the zero pressure 300 K equation-of-state

volume method were recently presented by Wat@

|29

parameters in Table Ill. The equation of state gi%&®,T

Though superficially similar to the PIC method, their model =300 K)=124.489 boht, 2% higher than the experimental

TABLE lIl. Thermal equation-of-state parameters at ambient conditi®a9 K) (theoretical
room-temperature volume and experimental room-temperature viblume

Theoretical volume Experimental volume Experiment
V, bohe 1245 (121.8 121.8(Ref. 1)
Ko GPa 180 197 194Ref. 3]
Ko 4.2 4.07 3.4(Ref. 1) and 3.8(Ref. 31
g 1075 K1 2.64 2.38 1.95Ref. 31
Yo 2.09 2.02 1.64Ref. 3)
Cp/R 3.03 3.08 3.04Ref. 19
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value. Another way of looking at the discrepancy, is that thethermal pressure, and a global fit to the Helmholtz free en-
computed pressure at the room-temperature experimentatgy F(V,T). The simple equation-of-state,;,=aT works
volume 121.8 bohris 4.1 GPa rather than 0. Table IIl also quite well, but more accuracy and insights into higher order
shows the equation-of-state parameters computed at the ethermoelastic parameters were obtained from the global fit in
perimental volume. The main discrepancy is the thermal exV andT. We find thata K+ is quite constant, as has been seen
pansivity which is 35% too high, though this is reduced byin experiments for a wide range of materials above the De-
comparing at the experimental volume. The Gruneisen pabye temperaturé$ and has been shown for simple pair
rameter is similarly high. The origin of this discrepancy is potentials®® Electronic excitations contribute significantly to
unknown, as discussed above, although the thermal expathe heat capacity temperature dependendgqfand thus to
sivity (and thusy) are known to be very sensitive. Appar- variations in the Gmeisen parametery. We find good
ently this inaccuracy must decrease with increasing pressuragreement with the experimental Hugoniot and thermal ex-
since our Hugoniot agrees well with experiment, up to tem-pansivity, though the rapid increase in the thermal expansiv-
peratures of almost 10 000 K. Perhaps our potential surfacky and heat capacity at high temperatures remains unex-
is not modeled accurately enough at small displacements arglained.

low pressures due to the very small energy differences in-

volved in that regime. ACKNOWLEDGMENTS
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