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The coupled cluster methd@CM) is applied to a spin-half model at zero temperature which interpolates
between a triangular lattice antiferromag(BAF) and akagomelattice antiferromagneKAF). The strength
of the bonds which connekigomdattice sites is), and the strength of the bonds which link the r@agome
lattice sites to thkagomelattice sites on an underlying triangular latticeJis Our results are found to be
highly converged, and our best estimate for the ground-state energy per spin for the spin-half’'kAH (s
—0.4252. The amount of classical ordering on tkegomelattice sites is also considered, and it is seen that
this parameter goes to zero for valuesloivery close to the KAF point. Further evidence is also presented for
CCM critical points which reinforce the conjecture that there is a phase near to the KAF point which is very
different to that near to the TAF poini€J').
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Our knowledge of the zero-temperature properties of lattimate for the ground-state energy of the KAF via finite-sized
tice quantum spin systems has been enhanced by the exisalculation$® stands atEy/N=—0.43. Furthermore, series
tence of exact solutions, mostly fee=1/2 one-dimensional expansion resultsndicate that the ground state of the KAF
systems, and by approximate calculations for higher quaﬂs disordered. Indeed, a variational calculatibwhich uti-
tum spin number and higher spatial dimensionality. Of parlized a dimerized basis also found that the ground state of the
ticular note have been the density matrix renormalization KAF is some sort of spin liquid.
group (DMRG) calculations for One_dimensiona(]_D) and In this article we wish to apply the Coupled cluster method
quasi-lD Spin systems, a|though the DMRG has, as yet, ndeM) to a model which interpolates between the Spin-half
been so conclusively applied to systems of higher spatial AF and spin-half KAF models, henceforth termed thé’
dimensionality. Similarly, quantum Monte Carl@QMC)  model(illustrated in Fig. . The Hamiltonian is given by
calculationd? at zero temperature are limited by the exis-
tence of the infamous sign problem, which in turn is often a
consequence of frustration for lattice quantum spin systems. H=3>
We note that for nonfrustrated systems one can often deter- o)
mine a “sign rule™ which completely circumvents the
minus-sign problem.

A good examp|e of a Spin system for WhiCh, as yet, noWheregi ,J> runs over all nearest-neighb(NN) bonds on the
sign rule has been proven is the spin-half triangular lattic&agomeattice, and{i,k} runs over all NN bonds which con-
Heisenberg antiferromagn€fAF). The fixed-node quantum nect thekagomeattice sites to those other sites on an under-
Monte Car|0(FNQMC) methoé has, however, been app“ed Iylng triangular lattice. Note that each bond is counted once
to this system with some success, although the results con-
stitute only a variational upper bound for the energy. Other
approximate metho83° have also been successfully applied
to the spin-half TAF, and most, but not all, such treatments
predict that about 50% of the classicald\idike ordering on
the three equivalent sublattices remains in the quantum case.
In particular, series expansion resfilgive a value for the
ground-state energy d&,/N=—0.551, although the corre-
sponding value for the amount of remaining classical order
of about 20% is almost certainly too low. This spin-half TAF
model therefore constitutes a very challenging problem for @) (b)

such approximate methods. However, the spin-kafome £y 1 They-3’ model is illustrated in diagrarte), where the
lattice Heisenberg antiferromagn€éKAF) poses an even p,n4s of strengtid betweenkagomielattice sites are indicated by
more difficult problem, because, like the TAF, not only is it e thick solid lines and the ndkagoniebonds of strengtti’ on the
highly frustrated and no exactly provable “sign rule” exists, ynderlying triangular lattice sites are indicated by the “broken”
but also the classical ground state is infinitely degenerataines. The triangular lattice Heisenberg antiferromagfiésF) is
Careful finite-sized calculatioh$™ have, however, been ilustrated in diagram(b), and it is noted that the two models are
performed for the quantum spin-half KAF, and these resultgquivalent wherd=J’. The quadrilateral unit cells for both cases
indicate that none of the classical &ldike ordering seen in are also illustrated. Tha-J’ model contains four sites per unit cell,
the TAF remains for the quantum KAF model. The best eswhereas the TAF has only one site per unit cell.
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and once only. We explicitly s€t=1 throughout this paper, in each of the(independentvariables of the full set. We
and we note that at’ =1 we thus have the TAF and at thereby easily derive the following coupled set of equations:
=0 we have the KAF.

We now briefly describe the general CCM formalism, al- T se — S aSI ) — .
though for further details the interested reader is referred to OHI55=0=(P|C, e”"He®)=0, 1+0; ®
Refs. 9, 14, and 15. The exact ket and bra ground-state en-

ergy eigenvectors)¥) and (¥|, of a general many-body 6H/65,=0=(®[Se”9H,C, ]e%|®)=0, 1#0. (6)
system described by a Hamiltoni&h
Equation(5) also shows that the ground-state energy at the

H|W)=Eg|W); (V|H :Eg<{1‘,|, (2)  stationary point has the simple form

are parametrized within the single-reference CCM as fol- Eg:Eg({S,})=(<I>|e*SHe5|<D> (7)
lows: '

It is important to realize that thigi-)variational formulation
|W)=eS|d); S= SC/, doesnotlead to an upper bound f&; when the summations

170 for SandSin Eq. (3) are truncated, due to the lack of exact
Hermiticity when such approximations are made. However,
(V|=(d[Se™S; S=1+ SCi. (3)  one can prove that the important Hellmann-Feynman theo-
I#0 remis preserved in all such approximations.
The single model or reference state) is required to have In the case of spig-lattice problems of the tYpe (_:o_nsidered
the property of being a cyclic vector with respect to two Nere, th‘i operator§,” become products of spin-raising op-
well-defined Abelian subalgebras ohulti-configurational ~ eratorss, over a set of sitegk}, with respect to a model
creation operatorfC;'} and their Hermitian-adjoint destruc- State |®) in which all spins point “downward” in some
tion counterpart§C; =(C;")'}. Thus,|®) plays the role of _swtably qhosgn Iocgl spin axes. The CCM formgllsm is exact
a vacuum state with respect to a suitable setrofitually " the limit of |nclu3|o~n of all possible such multispin cluster
commuting many-body creation operatof€,'}. Note that ~ correlations forSandsS, although in any real application this
C, |®)=0, V 1#0, and thaiC, =1, the identity operator. is usually impossible to achieve. It is therefore necessary to
These operators are furthermore complete in the many-bodytilize various approximation schemes wittfnand S. The
Hilbert (or FocK space. Also, theorrelation operator Ss  three most commonly employed schemes previously utilized
decomposed entirely in terms of these creation operatorsave been(1) the SUBh scheme, in which all correlations
{C,"}, which, when acting on the model stat¢C( |®)}),  involving only n or fewer spins are retained, but no further
create excitations from it. We note that although the manifestestriction is made concerning their spatial separation on the

Hermiticity ((¥|T=|W)/(¥|W)) is lost, the normalization lattice; (2) the SUB1-m subapproximation, in which all
diti q’|‘1’ —(D|W)=(D|D)=1 licitly i SUBn correlations spanning a range of no more thaad-

conditions ( >_.< >_.<_ )= -_are explicitly im- jacent lattice sites are retained; a3l the localized LSUn

posed. Thecorrelation coefficient{S, ,S,} are regarded as scheme, in which all multispin correlations over all distinct

being independent variables, and the full $§I,3|} thus locales on the lattice defined by or fewer contiguous sites
provides a complete description of the ground state. For inare retained.

stance, an arbitrary operatérwill have a ground-state ex-  For the interpolatingl-J" model described by Eq1), we
pectation value given as choose a model stajé) in which the lattice is divided into
three sublattices, denotéd,B,C}. The spins on sublatticé
A=(T|A|T)=(D|Se SAeId)=A({S,,S}). (4 are oriented along the negatizeaxis, and spins on sublat-
tices B and C are oriented at+ 120° and—120°, respec-
We note that the exponentiated form of the ground-statdively, with respect to the spins on sublattiée Our local
CCM parametrization of Eq3) ensures the correct counting axes are chosen by rotating about yhaxis the spin axes on
of the independentand excited correlated many-body clus- sublattices8 andC by —120° and+ 120°, respectively, and
ters with respect tdq®) which are present in the exact by leaving the spin axes on sublattiéeunchanged. Under
ground statdW). It also ensures the exact incorporation of these canonical transformations,
the Goldstone linked-cluster theorem, which itself guarantees
the size extensivity of all relevant extensive physical quanti- 1 J3 1 J3
ties. sg—>—§s§—7sé; S’é—>—§s}‘;+ 7sé,
The determination of the correlation coefficiefts ,S,}
is achieved by taking appropriate projections onto the

. y_ oV oY oY
ground-state Schebinger equations of Eq2). Equivalently, S—Se:  ScSce (8)
they may be determined variationally by requiring the
ground-state energy expectation functiohrel{S, ,S,}), de- z V3 « L, X z
4 . . . o Sf— 5 S~ 5SR; Se—— 5S¢~ 5S¢ -
fined as in Eq(4), to be stationary with respect to variations 2 2 2 2
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TABLE I. CCM results for the ground-state energy per spin and -0.20
sublattice magnetization of the TAF and KAF models using the o5 |
LSUBmM approximation withm={2,3,4,5,§. CCM critical values, /"”_’_',_f.\_';\\
J¢, of theJ-J' model(with J=1), which are themselves indicators 00 T E/T}
of a phase transition point in the true system, are also given. Com- 05 ¢ r N
parison is made in the last row with the results of other calculations.
Eg/N -040 ¢
m Eq/Nk VR Eq/N MK J; oeol | ~——- LSUB4
2 -037796 0.8065 —0.50290 0.8578 sl | o
3 —0.39470 0.7338 —0.51911 0.8045 -—0.683
4  -0.40871 0.6415 —0.53427 0.7273 -0.217 -060 — Y3 o0 o5 1o
5 —041392 0.5860 —0.53869 0.6958 —0.244 J
6 —041767 05504 -0.54290 0.6561 —0.088 FIG. 2. CCM results for the ground-state energy per spin of the
« —0.4252 0.366  —0.5505 0.516 0.80.1 J-J' model (with J=1) using the LSUEn approximation withm
cf. -043 0.0° -055P 05 ={2,3,4,5,§. The boxes indicate the CCM critical poinf,, and a

simple extrapolation in the limin implies thatd.=0.0+0.1.
agee Refs. 10 and 11. p p —% Imp ¢

bSee Ref. 6. B
‘See Refs. 7 and 8. TAF have CCM correlation coefficientsS, ,S,} which be-
come equal at the TAF poind/ =1. Hence, the CCM natu-
The model stat¢d) now appears mathematically to consist rally and without bias reflects the extra amount of symmetry
purely of spins pointing downwards along thexis, and the  of the J-J’ model at this one particular point. This is an
Hamiltonian (for J=1) is given in terms of these rotated excellent indicator of the validity of the CCM treatment of
local spin axes as, this model. The results for thiJ’ model at)’ =1 thus also
exactly agree with those of a CCM previous treatment of the
TAF. Our approach is now to “track” this solution for de-
creasing values af’ until we reach acritical value ofJ; at
which the solution to the CCM equations breaks down. This
is associated with a phase transition in the real syStem,
and results fod;, for this model are presented in Table I. A
simple “heuristic” extrapolation(e.g., see Ref. )5of these

1 V3\
H :<i2j> [ — 5SS+ T(sfsj++sizsj_—si+sjz— s, s7)

A o 3\ o
+§(si+sj +5°s; )—?(sﬁsﬁsi ; )}

+7 Z ( _ ESZSZ+ @(Szg +s%, —stsi—s ) results gives a value af,=0.0+0.1 for the position of this
(Shy | 277K 4 TR IR T T Bk phase transition point. This result indicates that the classical
\ ~ three-sublattice Nad-like order, of which about 50% remains
F o (sts +s st ) — ~(stst s s0) ). 9 for the TAF_, completely disappears at a point very near to
8( i~k i k) 8 ( i 2k i k) ( ) the KAF pOInt(J’=0).

The results for the ground-state energy are shown in Fig.
2 and in Table I. These results are seen to be highly con-
verged with respect to each other over the whole of the re-

Note thati andj run only over theNy sites on thekagome
lattice, whereak runs over those nokagomesites on the
(underlying triangular lattice.N indicates the total number
of triangular-lattice sites, and each bond is counted once and

once only. The symbol indicates an explicibond direc-

tionality in the Hamiltonian given by Eq(9), namely, the

three directed nearest-neighbor bonds included in E).

point from sublattice siteé\ to B, B to C, andC to A for

both types of bond. We now perform high-order LStB
calculations for this model via a computational procedure for M
the Hamiltonian of Eq(9). The interested reader is referred

to Refs. 9 and 15 for a full account of how such high-order

1.00

CCM techniques are applied to lattice quantum spin systems. l : ———- LSUB4
We note that for the CCM treatment of tldel’ model L --—-- LSUB5
presented here the unit cell contains four lattice sisee i —— LSUBB

Fig. 1). By contrast, previous calculatichfr the TAF used 0.00 ‘ . ‘
a unit cell containing only a single site per unit cell. Hence, T-08 -04 O-OJ, 04 0.8

the J-J’ model has many more “fundamental” configura-

tions than the TAF model at equivalent levels of approxima-  FIG. 3. CCM results for the sublattice magnetization of Ia#
tion. However, we find that those configurations which aremodel (with J=1) using the LSUBn approximation withm
not equivalent for thel-J’ model butare equivalent for the ={2,3,4,5,8.
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gion 0<J'<1. A simple heuristic extrapolatidf® may be a phase in which the model state becomes an increasingly
attempted for these results for varyingy by plotting bad starting point. Again, we extrapolaté these results for
LSUBM results form={3,4,5,8 against Ih? and perform-  the KAF by plotting LSUBnN results fom={3,4,5,§ against

ing a linear extrapolation of these data as was don@/m and performing a linear extrapolation of these data, as
previously for the TAF only. These results are given in was done previoushyfor the TAF. Although the extrapolated
Table | for the KAF and TAF models. We believe that the yajye forMK specifically at the KAF point remains nonzero,
extrapolated results are among the most accurate results ffe | SUB6 result goes to zero very close to the KAF point.
the ground-state energies of the TAF and KAF ever found. ccwm results are thus fully consistent with the hypothesis

_ We now wish to describe how much of the original clas-iha¢ yniike the TAF, the ground state of the KAF does not
sical ordering of the model state remains for the quantum. ) iain any Nel ordering.

system. If one considers nd@gomelattice sites then the It has been shown in this article that the CCM may be

zgllnjircg;ttizx(eom‘s':re\: ?nrg deeflfesctg\t;eeg JfrgéenHéT]tcoethv?/g %29" used to provide highly accurate results for the ground-state
: ’ energy of theJ-J’ model (with J=1) which interpolates

lieve that the relevant quantity to be considered for thisb
. , . etween the TAF and KAF models. Indeed, the extrapolated
model is the average value sf (again after rotation of the results for the ground-state energy for the KAFEf/Ny

local spin axeswherek runs only over theNy kagomelat-
ocal spin axesw . yov k &g = —0.4252 and for the TAF oE,/N=—0.5505 are among
tice sites, given by 9

the most accurate yet determined for these models. Further-

2 Nk more, the amount of classical orderifgvaluated on the
MK =— No k21 Sk - (100  kagomeattice sites onlyyields results which are fully con-
=

sistent with the hypothesis that the KAF is fully disordered.
The results foMK are presented in Fig. 3 and in Table I. CCM critical points also reinforce the conjecture that the
The puzzling “upturn” of MX for the LSUBS5 data is an classically ordered phase evident for the TAF breaks down
artifact, and such behavior only ever ocCushen one enters very near to the KAF point.
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